

Abstract

Real-time scheduling policies have been widely studied, with many known
schedulability and feasibility analysis techniques for different task models, that
have advanced the state-of-the-art. Most of these techniques are typically de-
rived under the assumption of negligible runtime overheads which may not be
realistic for modern embedded real-time systems, and hence potentially com-
promises the guarantees on their correct behaviors. This calls for methods to
reason about the functioning of the system under the presence of such over-
heads as well as to predictably control them. Controlling these overheads may
place additional performance demands, consequently requiring more resources
such as faster processors. At the same time, the need for energy efficiency
in these class of systems further complicates the problem and necessitates a
holistic approach.

In this thesis, we apply resource augmentation, viz., processor speed-up, to
guarantee desired real-time properties even under the presence of runtime over-
heads. We specifically consider preemptions and faults that, at runtime, man-
ifest as overheads in the system in various ways. Our aim is to provide spec-
ified non-preemption and fault tolerance feasibility guarantees in a real-time
system. We first propose offline and online methods, that uses CPU frequency
scaling, to control the number of preemptions in periodic and sporadic task sys-
tems, under a preemptive Fixed Priority Scheduling (FPS) policy. Furthermore,
we derive the resource augmentation bound, specifically the upper-bound on
the lowest processor speed, that guarantees the feasibility of a specified non-
preemption behavior for any real-time task. We show that, for any task τi, the
resource augmentation bound that guarantees a non-preemptive execution for
a specified duration Li, is given by 4Li

Dmin
, where Dmin is the shortest deadline

in the task set. Consequently, we show that the upper-bound on the lowest pro-
cessor speed that guarantees the feasibility of a non-preemptive schedule for
the task set is 4Cmax

Dmin
, where Cmax is the largest execution time in the task set.

i

ii

We then propose a method to guarantee specified upper-bounds on the preemp-
tion related overheads in the schedule. We first translate the requirements of
meeting specified upper-bounds on the preemption related overheads to a set
of non-preemption requirements for the task set. The resource augmentation
bound in conjunction with a sensitivity analysis is used to calculate the opti-
mal processor speed that guarantees the derived non-preemption requirements,
achieving the specified bounds on the preemption related costs. Finally, we
derive the resource augmentation bound that guarantees the fault tolerance fea-
sibility of a set of real-time tasks under an error burst of known length. We
show that if the error burst length is no longer than half the shortest deadline
in the task set, the resource augmentation bound that guarantees fault tolerance
feasibility is 6.

Our contribution bounds the extra resources, specifically the required pro-
cessor speed-up, that provides specified non-preemption and fault tolerance
feasibility guarantees in a real-time system. It allows us to quantify the ’good-
ness’ of non-preemptive scheduling, referred to as its sub-optimality, as com-
pared to an optimal uni-processor scheduling algorithm, in terms of the re-
quired processor speed-up that guarantees a non-preemptive schedule for any
uni-processor feasible task set. We intend to extend this work to provide non-
preemption and fault tolerance feasibility guarantees in multi-processor sys-
tems.

iii

”Lokah Samastah Sukhino Bhavantu.”

”May all beings everywhere be happy and free, and may the
thoughts, words, and actions of my own life contribute in some
way to that happiness and to that freedom for all.”

This Sanskrit verse is an expression of the universal spirit found in the ancient Indian scriptures
of Vedas.

Acknowledgements

It is hard to express in words my gratitude towards several people who have
contributed directly or indirectly in enriching my life. However, today suppos-
edly being an important day in my academic career, I take a moment to thank
them for their kindness, love and affection.

Let me first thank my supervisors, Prof. Sasikumar Punnekkat and Dr.
Radu Dobrin, for believing in me, and for their continuous support throughout
my bachelors, masters and now the doctoral studies. Prof. Sasi has always
supported me and motivated me to continue exploring my ways even when I
was doubtful about them. Radu has been a great teacher - he taught me great
many ’other’ things, besides real-time systems, during the last four years, and
we have had a wonderful time together during the many conference trips (I still
remember the hunt for the hot peanuts in Hong Kong). Even though we rarely
have a consensus regarding any matter, you have always been a role model to
me. Let me also thank Vipin Sir for pushing me to pursue higher studies and
for being a good teacher and friend, and for patiently listening to me whenever
I have something to talk.

Next, I would like to thank my friends Vidhi and Deepthi for being partners
in crime all these years and for the wonderful time that we have had together.
Many thanks goes to Vidhi, Sebastian, Deepthi, Uma Chechi and Sajith for
putting up with the several quick unplanned Amsterdam trips. I really miss
you guys. Life would have been hard without the once in awhile ’chumma
pingals’ from Vidhi and the nice books and the long philosophical discussions
from Sebastian. I thank Jezy chechi for motivating me to continue my higher
studies at MDH and Paru for being a good friend and for cheering me up quite

A licentiate degree is a Swedish graduate degree halfway between MSc and PhD.

v

vi

often.

My office-mates Adnan, Andreas J, Joe and Hus deserves special mention
for the nice time that we have. Furthermore, many thanks goes to Gabriel, Jey,
Yue, Andreas G, Fredrik E, Mikael Å, Jan C, Rafia, Saad, Guillermo, Svet-
lana, Moris, Leo, Aida, Hang, Thomas N, Irfan, Omar, Farhang, Nima, Eddy,
Cristina, Dag and Barbara for the company during the lunch and/or conference
trips. Special thanks to Adnan for helping me out with many practicalities and
for being a good friend.

The learning process would have been incomplete without the nice Pro-
fessors at IDT, especially Hans, Ivica, Damir, Gordana, Kristina and Bjorn.
Heartfelt gratitude to Susanne, Carola and the other admin staff for the smooth
and ’real-time’ handling of the day-to-day practicalities. I also thank the other
colleagues at IDT for lighting up the otherwise monotonous (winter) days.

I cannot leave out the football gang: Radu, Nikola, Adis, Murat, Fredrik A,
Muhammed, Abdi, Nicho, Irfan, Omar, Alex, Simon, Pedram, Behnam, Fed-
erico, Fredrik E, Eddy, Dennis and the other irregulars, for making weekends
so lively and fun- thanks to Radu and Nikola for organizing it every week. Also
the badminton - pingpong gang: Svetlana, Saad, Gabriel, Dag, Severine, Irfan,
Muhammed A, Andreas G., Bob and Leo, for making wednesdays seem like
saturdays- thanks to Saad and Svetlana for organizing it.

A special word of thanks to Prof. Sasi, Sunitha Chechi and Kannan, for
making me feel at home with the nice company and delicious food and also to
Prakash Chettan, Mridula Chechi and little Mira for the good times.

Finally, I thank my parents and my sister for the love and affection and for
the continuous support without which this thesis would have been impossible.

Abhi,
Västerås, November, 2012

The work presented in this thesis was partially supported by Vetenskapsrådet
(The Swedish Research Council) under the project CONTESSE (2010-4276).

Publications

List of Papers Included in this Thesis1

Paper A: Reducing the Number of Preemptions in Real-Time Systems Sche-

duling by CPU Frequency Scaling, Abhilash Thekkilakattil, Anju S Pillai,
Radu Dobrin and Sasikumar Punnekkat, In proceedings of the 18th Interna-
tional Conference on Real-Time and Network Systems, Toulouse, France, Nov-
ember, 2010

Paper B: Probabilistic Preemption Control using Frequency Scaling for Spo-

radic Real-time Tasks, Abhilash Thekkilakattil, Radu Dobrin and Sasikumar
Punnekkat, In proceedings of the 7th International Symposium on Industrial
Embedded Systems, IEEE, Karlsruhe, Germany, June, 2012

Paper C: Quantifying the Sub-Optimality of Non-Preemptive Real-time Sche-

duling, Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat, Tech-
nical Report, Mälardalen Real Time Research Centre, Mälardalen University,
Västerås, Sweden, November, 2012

Paper D: Resource Augmentation for Fault-Tolerance Feasibility of Real-time

Tasks under Error Bursts, Abhilash Thekkilakattil, Radu Dobrin, Sasikumar
Punnekkat and Huseyin Aysan, In proceedings of the 20th International Con-
ference on Real-Time and Network Systems, ACM, Pont á Mousson, France,
November, 2012 (Shortlisted for Best Student Paper Award)

1The included articles are reformatted to comply with the licentiate thesis guidelines.

vii

viii

Other Relevant Papers

1. Towards a Contract-based Fault-tolerant Scheduling Framework for Dis-

tributed Real-time Systems, Abhilash Thekkilakattil, Huseyin Aysan and
Sasikumar Punnekkat, In proceedings of the 1st International Workshop
on Dependable and Secure Industrial and Embedded Systems, Västerås,
Sweden, June, 2011

2. Preemption Control using CPU Frequency Scaling in Real-time Systems,
Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat, In pro-
ceedings of the 18th International Conference on Control Systems and
Computer Science, Bucharest, Romania, May, 2011

3. Efficient Fault Tolerant Scheduling on Controller Area Network (CAN),
Hseyin Aysan, Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Pun-
nekkat, In proceedings of the 15th International Conference on Emerging
Technologies and Factory Automation, IEEE, Bilbao, Spain, September,
2010

4. Towards Preemption Control Using CPU Frequency Scaling in Sporadic

Task Systems, Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Pun-
nekkat, In proceedings of the 6th International Symposium on Industrial
Embedded Systems (WiP), IEEE, Västerås, Sweden, June, 2011

5. Optimizing the Fault Tolerance Capabilities of Distributed Real-Time

Systems, Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat
and Huseyin Aysan, In proceedings of the 14th International Conference
on Emerging Technologies and Factory Automation (WiP), IEEE, Palma
de Mallorca, Spain, September, 2009

List of Figures

1.1 Real-time task attributes . 4

1.2 The dependability tree by Laprie et. al. [1] 7

2.1 (A) Preemptive real-time schedule (B) Non-preemptive real-
time schedule . 10

2.2 Fault tolerance related overheads for systems that employ tem-
poral redundancy for fault tolerance 11

5.1 An offline detected initial preemption 39

5.2 An off-line detected potential preemption 39

5.3 Original RM schedule . 45

5.4 RM schedule after eliminating one preemption 47

5.5 RM schedule after reducing preemptions using LOPF 47

5.6 Average number of initial preemptions after preemption elimi-
nation . 49

5.7 Average number of potential preemptions after preemption elim-
ination . 49

6.1 Example probability mass function 71

6.2 A part of the original FPS schedule of the sporadic task set . . 71

6.3 The sporadic task schedule after preemption control 72

6.4 Average number of preemptions for various threshold proba-
bilities . 73

6.5 Average power consumption for various threshold probabilities 74

7.1 The feasibility bucket . 88

7.2 Methodology overview . 95

ix

x List of Figures

7.3 Non-preemption requirement to enable preemptions only at op-
timal preemption points . 97

7.4 Non-preemption requirement to always enable critical section
execution inside non-preemptive regions 98

8.1 The worst case error overhead due to error bursts on a single task124
8.2 The maximum length of the burst error. 125
8.3 Error burst hitting multiple jobs 127
8.4 EDF schedule . 136
8.5 EDF schedule under faults with Tlength = 4 136
8.6 EDF schedule under faults after a speed-up of 2.8 137

Contents

I Thesis 1

1 Introduction 3

1.1 Real-time Systems . 3

1.2 Real-time Scheduling . 4

1.3 Energy Awareness in Real-time Systems 6

1.4 Dependability in Real-time Systems 6

1.5 Resource Augmentation . 8

2 Motivation and Problem Description 9

2.1 Motivation . 9

2.2 Problem Description . 12

3 Main Contributions 13

3.1 Summary of Contributions 13

3.1.1 Paper A . 14

3.1.2 Paper B . 14

3.1.3 Paper C . 15

3.1.4 Paper D . 17

3.2 Significance of the Contributions 18

4 Conclusions and Future Work 21

4.1 Conclusions . 21

4.2 Future Work . 22

Bibliography 25

xi

xii Contents

II Included Papers 29

5 Paper A:
Reducing the Number of Preemptions in Real-Time Systems Sche-
duling by CPU Frequency Scaling 31

5.1 Introduction . 33
5.2 Related Work . 34
5.3 System Model . 36

5.3.1 Task Model . 36
5.3.2 Energy Model . 37
5.3.3 Execution Time Model 37

5.4 Methodology . 38
5.4.1 Preemption Identification 40
5.4.2 Preemption Elimination 40

5.5 Example . 44
5.6 Performance Evaluation . 47

5.6.1 Experiment 1 . 48
5.6.2 Experiment 2 . 48
5.6.3 Energy Consumption 50

5.7 Discussion . 50
5.8 Conclusions and Future Work 51
5.9 Acknowledgment . 52
Bibliography . 53

6 Paper B:
Probabilistic Preemption Control using Frequency Scaling for Spo-
radic Real-time Tasks 57

6.1 Introduction . 59
6.2 Related Work . 61
6.3 System Model . 63

6.3.1 Processor Model . 63
6.3.2 Task model . 63
6.3.3 Energy Model . 64
6.3.4 Execution Time Model 64

6.4 Methodology . 65
6.4.1 Offline Phase . 65
6.4.2 Online Preemption Control Algorithm 66

6.5 Example . 70
6.6 Evaluation . 72

Contents xiii

6.7 Conclusions . 73
Bibliography . 75

7 Paper C:
Quantifying the Sub-Optimality of Non-Preemptive Real-time Sche-
duling 79

7.1 Introduction . 81
7.2 System Model . 83

7.2.1 Task model . 83
7.2.2 Scheduling Model 84
7.2.3 Execution Time Model 85

7.3 Feasibility Analysis of Real-time Systems 85
7.4 Quantifying the Sub-Optimality of

Non-Preemptive Scheduling 87
7.5 Guaranteeing a Specified Preemption Behavior using Proces-

sor Speed-up . 94
7.5.1 Translating Preemption Cost Control Requirements to

Non-Preemption Requirements 96
7.5.2 Sensitivity Analysis for Preemption Control 99
7.5.3 Example . 101

7.6 Discussions . 102
7.6.1 Relaxing the Assumption of Linear Speed-up 102
7.6.2 Relaxing the Assumption of Negligible Preemption Re-

lated Overheads at Optimal Preemption Points 105
7.7 Related Work . 105
7.8 Conclusions . 108
Bibliography . 111

8 Paper D:
Resource Augmentation for Fault-Tolerance Feasibility of Real-time
Tasks under Error Bursts 115

8.1 Introduction . 117
8.2 Related Work . 119
8.3 System Model . 121

8.3.1 Task model . 121
8.3.2 Scheduling Model and

Fault Tolerance Strategy 122
8.3.3 Execution Time Model 122

8.4 Problem Description . 123

xiv Contents

8.5 Fault Tolerance Feasibility Analysis 123
8.6 Resource Augmentation for

FT-Feasibility . 132
8.7 Example . 135
8.8 Conclusions . 138
Bibliography . 139

I

Thesis

1

Chapter 1

Introduction

1.1 Real-time Systems

Real-time computing paradigm is being ubiquitously deployed in many areas
and is increasingly becoming the backbone of most mission and safety critical
systems. A real-time system is a computer system where the correctness of
the system depends not only on the functional characteristics of the compu-
tations performed, but also on its temporal characteristics [2]. The temporal
characteristics of the computations are derived from the temporal properties
of the events occurring in the environment that the real-time system interacts
with. The events occurring in the environment, that may be periodic, sporadic
or aperiodic, are mapped to a set of real-time tasks to perform a desired func-
tion within a bounded time interval. The real-time tasks are specified using a
set of task attributes, that reflect the timing requirements of the corresponding
events. In this thesis, we focus on periodic and sporadic real-time tasks that
are characterized by a release time, an exact or a minimum inter-arrival time, a
Worst Case Execution Time (WCET) and a relative deadline with respect to its
release time, as shown in figure 1.1. Each task generates an infinite sequence
of jobs where any two consecutive jobs are separated by the exact/minimum
inter-arrival time. All the jobs generated by the real-time tasks have to com-
plete their execution before their respective deadlines.

Depending on the consequences of a deadline miss in the system, real-
time systems can be classified as hard real-time systems and soft real-time
systems. In hard real-time systems, e.g., aircraft control systems, a deadline
miss can potentially cause catastrophic consequences such as loss to life and

3

4 Chapter 1. Introduction

Figure 1.1: Real-time task attributes

property. On the other hand, a deadline miss in soft real-time systems, e.g.,
telecommunication systems, merely leads to a degradation of the service level.

1.2 Real-time Scheduling

Real-time scheduling can be classified as offline scheduling and online sche-
duling. In offline scheduling, the schedule is computed offline and is stored,
typically in a table, and the tasks are executed according to this order. The main
advantage of using offline scheduling algorithms is that much of the complex-
ity involved in generating a valid schedule is handled offline and it has a sim-
ple runtime mechanism. However, the main disadvantage is that the schedule
needs to be regenerated every time a new task is added to the system. On the
other hand in online scheduling, the scheduling decision is taken online, based
on a suitable criteria e.g., Earliest Deadline First (EDF) or highest priority first.
The main advantage of using an online scheduling algorithm is the flexibility it
provides to the scheduler in accounting for dynamically changing factors e.g.,
new task arrivals. Online scheduling, which is typically priority driven, can be
further classified as static priority and dynamic priority scheduling. In static
priority scheduling, also known as Fixed Priority Scheduling (FPS), the sche-
duling decisions are based on the priorities that are determined offline and the

1.2 Real-time Scheduling 5

task priorities does not change online e.g., Rate-Monotonic (RM) scheduling
and Deadline Monotonic (DM) scheduling. In dynamic priority scheduling,
the scheduling decisions depend on the priorities that change dynamically e.g.,
Earliest Deadline First (EDF) scheduling and Least Laxity First (LLF) sche-
duling.

One of the main goals with respect to the design of real-time systems is
to provide temporal guarantees to the set of real-time tasks. A schedulabil-

ity analysis is a technique designed for a particular scheduler that determines
whether or not there will be a deadline miss in the schedule generated by that
scheduler for any given task set. There exists several utilization based [3], re-
sponse time based [4][5] and demand bound based [6][7] schedulability tests
for various scheduling algorithms such as FPS or EDF. A feasibility analysis on
the other hand determines the existence of a real-time schedule for a given task
set, independent of the scheduler. However, many of the well known feasibil-
ity analysis techniques [6][7] build on the optimality of scheduling algorithms
such as EDF [8] to determine the existence of a real-time schedule.

Real-time scheduling can also be classified as preemptive and non-preemptive
scheduling. In preemptively scheduled systems, a lower priority task can be
preempted in favor of a higher priority task. This enables preemptive sched-
ulers to achieve significantly high processor utilization and preemptive sche-
duling is known to strictly dominate non-preemptive scheduling with respect
to feasibility [9]. On the other hand in a non-preemptively scheduled system,
the lower priority task is allowed to complete its execution before a higher pri-
ority task is scheduled. Non-preemptive scheduling schemes increase blocking
times on higher priority tasks, which may have shorter deadlines, leading to a
significantly under utilized system [9]. It can also be shown that, in general,
non-preemptive scheduling can be infeasible even at arbitrarily low utilizations
[10]. One of the main advantage of using a non-preemptive scheduler is the ex-
tend of determinism it provides to the system, due to the absence of preemption
related overheads, that are typical of a preemptive scheduler.

Even though preemptive scheduling strictly dominates non-preemptive sche-
duling with respect to feasibility [9], it suffers from preemption related over-
heads that may translate as temporal overheads, causing deadline misses in the
schedule. These preemption related overheads e.g., cache related preemption
delays, may invalidate the arguments in many schedulability analysis schemes
e.g., worst case response times at critical instant for FPS [11]. One of the ways
to overcome this problem is to control the number of preemptions as well as the
points at which preemptions occur, thereby bounding the associated overheads.

In chapter 2, we discuss in detail about the preemption related issues in

6 Chapter 1. Introduction

real-time systems, the pros and cons of using a non-preemptive scheduler and
motivate the need to control preemptions.

1.3 Energy Awareness in Real-time Systems

The increasing use of more powerful processors coupled with the increase in
the mobile nature of most real-time applications, necessitated sound methods to
conserve energy in the usually processor intensive real-time applications. Also,
the advances in battery technology did not keep its pace with the advances in
processor technology requiring efficient utilization of the energy resources due
to the increase in need for energy. Various methods like switching off the
unused devices, selectively switching off certain circuits in the processor and
Dynamic Voltage Scaling (DVS), were proposed for managing the power con-
sumption of the system. Many of these methods were adopted fairly quickly
by the industry with publication of standards like ACPI [12] which established
an open standard for power management. DVS has been applied to energy
constrained real-time systems to prolong its operational lifetime, while meet-
ing the real-time requirements. Increasing the processor frequency reduces the
task execution times in many applications, however, requiring higher operat-
ing voltages. The general strategy adopted for implementing DVS for reducing
power consumption is to utilize the slack in the schedule to slow down task
executions, by lowering the processor frequency and the applied voltage. This
has been shown to provide significant reduction in the processor power con-
sumption, which quadratically decreases with decrease in applied voltage and
linearly with the frequency. While applying DVS techniques in real-time sys-
tems to save energy, one must ensure that the slowing down of task executions
does not cause any deadline misses in the schedule.

The possibility of CPU frequency scaling provides for the ability to control
task execution rates in a real-time system to influence the real-time schedule,
making it one of the most important research area in real-time computing.

1.4 Dependability in Real-time Systems

Ubiquitous deployment of real-time systems in safety and mission critical ap-
plications necessitates high levels of dependability due to the catastrophic con-
sequences of a failure. Dependability, as defined by Laprie et. al. [1], is the
ability of a system to deliver a justifiably trusted service. The service deliv-
ered by the system is defined as the perceived behavior of the system by a user,

1.4 Dependability in Real-time Systems 7

Figure 1.2: The dependability tree by Laprie et. al. [1]

which can be a human or another system, at the system interface. Laprie et. al.
[1] identified the threats to dependability, the attributes of dependability and
the means to achieve dependability in their famous dependability tree (refer
figure 1.2). Availability, reliability, safety, integrity, confidentiality and main-
tainability together constitutes the attributes of dependability. The threats that
affect the dependability of a system include faults, which is the hypothesized
cause of an error, that may eventually lead to a failure of the system. An error
in a subsystem can be considered as a fault in the system. Hence, the usage of
faults and errors depends on the level of abstraction. Previous research on de-
pendable real-time systems [13][14][15] focused on single errors per task/job,
which may not be realistic [16]. A more realistic error model may be to con-
sider error bursts e.g., a vehicle passing through a region of electromagnetic
interference that makes any useful task execution impossible during that du-

8 Chapter 1. Introduction

ration [16]. One of the means of achieving dependability is to employ fault
tolerance mechanisms, that can mask subsystem failures from the system.

Temporal redundancy is one of the most commonly employed fault toler-
ance strategy that can be used to tolerate transient and intermittent faults in
the system by a simple execution of a recovery computation, which may be a
re-execution of the failed computation or the execution of an alternate compu-
tation. The failed computations represent a temporal overhead in the system,
potentially causing deadline misses, and can be seen as fault tolerance related
overhead. In real-time systems, a task is typically considered as an independent
unit of failure. Real-time fault tolerance aims at re-executing the failed task or
executing an alternate task before a predefined deadline, which is usually the
original deadline of the failed task, requiring sufficient slack in the schedule
for fault tolerance. The main challenge here is to control these fault tolerance
related overheads so that the feasibility of the task set can be guaranteed even
under the presence of faults.

1.5 Resource Augmentation

Augmenting the scheduler with extra resource, e.g., a faster processor, can
be beneficial for controlling the behavior of the system to guarantee speci-
fied requirements e.g., preemption control. While augmenting the scheduler
with extra resources to achieve a specified behavior, the amount of extra re-
sources required should be bounded by a reasonable value for it to be useful in
practice. Resource augmentation analysis aims at finding the effects of having
additional resources in the system and to find upper-bounds on the extra re-
sources, to achieve a certain specified system behavior. Additionally, resource
augmentation provides insights into the parameters that affect the satisfaction
of the specified goal, giving greater flexibility to the system designer while
designing the system. Kalyanasundaram et. al. [17] first introduced resource
augmentation and proved that augmenting a non-clairvoyant online scheduler
with a faster processor can effectively buy the power of clairvoyance.

In this thesis, we derive resource augmentation bounds that guarantee the
feasibility a set of real-time tasks under preemption and fault tolerance related
overheads and propose methods to control these overheads.

Chapter 2

Motivation and Problem

Description

2.1 Motivation

The unpredictable and costly run time overheads in real-time systems, e.g., pre-
emption related overheads and fault tolerance related overheads, can be con-
trolled by changing the task attributes [18]. In this thesis, we control the task
worst case execution times (WCET) and consequently the real-time schedule,
by controlling the processor speed. Preemption related overheads can be con-
trolled by controlling the number of preemptions and the points at which these
preemptions occur. This can be achieved by controlling the task execution
times such that preemptions occur only at specified points in the task code e.g.,
speed up the task such that it completes before a preemption. Fault tolerance
feasibility under a given fault hypothesis can be achieved by using a faster pro-
cessor which ensures that sufficient slack exists in the schedule to successfully
schedule the recoveries of the failed tasks under an error burst of known length
without causing deadline misses.

The detrimental impact of preemptions on task schedulability has received
considerable attention from the research community [11] [19] and the need
for preemption control is widely recognized. The most commonly considered
preemption related overheads are:

1. Context Switch Related Overheads: Whenever a lower priority task is
preempted by a higher priority task, the context of the preempted task

9

10 Chapter 2. Motivation and Problem Description

Figure 2.1: (A) Preemptive real-time schedule (B) Non-preemptive real-time
schedule

is saved to enable its execution from the same point when it resumes its
execution at a later time. The time taken to perform this context switch
manifests as a temporal overhead in the schedule, potentially causing
deadline misses.

2. Cache Related Preemption Delays: Preemptions can also displace data
from the cache memory, which has to be reloaded when the preempted
task resumes its execution. This translates to a temporal overhead, which
can vary with the point of preemption [11]. The cache related preemp-
tion delays can be of the order of hundreds of micro seconds for a single
preemption [20]. Consequently, the total temporal overhead on a task,
due to preemptions, can be very high depending on the number of pre-
emptions and the points at which the preemptions occur. Hence, bound-
ing the number preemptions, as well as restricting them to only certain
points in the task code is highly desirable.

3. Pipeline Related Overheads: Preemption on a lower priority task flushes
the instruction pipelines, to load the instructions of the higher priority
task. When the preempted task resumes its execution, the pipeline has
to be refilled. This flushing and refilling of the instruction pipeline man-
ifest as a temporal overhead in the system, leading to potential deadline
misses.

Non-preemptive scheduling on the other hand increases blocking times on
higher priority tasks leading to a significantly underutilized system. Conse-
quently, non-preemptive scheduling can be prohibitively expensive for most

2.1 Motivation 11

applications due to space and cost constraints. Hence, controlling preemptions
in a real-time schedule can be an attractive option, i.e., enable non-preemptive
execution of tasks as long as necessary, to reduce the indeterminism in the task
execution times. As seen earlier, the preemption related overheads in a sched-
ule depend on the number of preemptions in the schedule and the points at
which the preemptions occur. Therefore, by controlling the number of preemp-
tions and the points at which these preemptions occur, the associated overheads
can be controlled.

Figure 2.1 shows examples of a preemptive and a non-preemptive schedule
along with the associated temporal overheads.

Figure 2.2: Fault tolerance related overheads for systems that employ temporal
redundancy for fault tolerance

Implementing temporal redundancy requires that, in any time interval un-
der a given fault hypothesis, there exists enough slack in the schedule to achieve
one successful execution of all the tasks, that have their release times and dead-
lines within that interval. If enough slack does not exist during some time in-
terval, there is a possibility of a deadline miss during that time interval. As
mentioned earlier, the real-time tasks must respond to events occurring in the
environment in a timely manner and hence, most of the real-time task attributes
e.g., task periods and deadlines, are derived from the characteristics of these
events, and are therefore strict. Consequently, one way of ensuring the exis-
tence of enough slack in the schedule to guarantee fault tolerance by temporal
redundancy, is to use a faster processor. Finding such a processor speed can
be done by performing a simple search among the set of available processor
speeds. However, before performing a search, it may be desirable to verify if
there exists a bound on the lowest processor speed that can guarantee fault tol-
erance. Hence, we need to find an upper-bound on the lowest processor speed

12 Chapter 2. Motivation and Problem Description

that guarantees fault tolerance feasibility using temporal redundancy under a
given fault assumption. Figure 2.2 shows an example of the fault tolerance
related overheads under an error burst, in systems that employ temporal redun-
dancy.

Hence, in this thesis, we examine the use of resource augmentation to con-
trol the preemption and fault tolerance related overheads, to guarantee a desired
preemption behavior and fault tolerance feasibility.

2.2 Problem Description

Our aim is to use resource augmentation, specifically a faster processor, to
achieve preemption control and fault tolerance feasibility. Specifically, we con-
sider the following questions:

Q1 How can we control preemptions in a periodic task system using CPU
frequency scaling?

Q2 How can we control preemptions in a sporadic task system using CPU
frequency scaling?

Q3 What are the resource augmentation bounds that guarantees the feasibil-
ity of a specified non-preemption behavior?

Q4 What are the resource augmentation bounds that guarantees fault toler-
ance feasibility of a set of real-time tasks under an error burst of known
length?

We present methods to provide non-preemption and fault tolerance feasibility
guarantees using resource augmentation. We use analytical and experimental
approaches to evaluate our proposed methods.

Chapter 3

Main Contributions

Our contributions are presented in four papers which address various aspects
of the problem. We first present an offline method to control preemptions in
periodic task systems using CPU frequency scaling. We also present a com-
bined offline-online approach to perform preemption control in sporadic task
systems. We then derive the resource augmentation bound that guarantees the
feasibility of a certain specified preemption behavior for periodic and sporadic
task systems. Consequently, we derive the resource augmentation bound that
guarantees the feasibility of a fully non-preemptive schedule. We also present a
method to translate the requirements of meeting a specified upper-bound on the
preemption related costs to a set of non-preemption requirements on the tasks.
Later, we use the resource augmentation bound in a sensitivity analysis to cal-
culate the exact processor speed that guarantees the feasibility of the derived
non-preemption requirements for any task set. Finally, we apply resource aug-
mentation to find upper-bounds on the processor speed-up that guarantees fault
tolerance feasibility of a set of real-time tasks under an error burst of known
length.

3.1 Summary of Contributions

In this section, summarize our solutions to the research questions raised in the
previous chapter.

13

14 Chapter 3. Main Contributions

3.1.1 Paper A

Reducing the Number of Preemptions in Real-Time Systems Scheduling by

CPU Frequency Scaling, Abhilash Thekkilakattil, Anju S Pillai, Radu Dobrin
and Sasikumar Punnekkat, In proceedings of the 18th International Conference
on Real-Time and Network Systems1, Toulouse, France, November, 2010

Summary: Controlling the number of preemptions in real-time systems
is highly desirable in order to achieve an efficient system design in multiple
contexts. For example, the delays due to context switches account for high
preemption overheads which detrimentally impact the system schedulability.
Preemption avoidance can also be potentially used for the efficient control of
critical section behaviors in multi-threaded applications. At the same time,
modern processor architectures provide for the ability to selectively choose
operating frequencies, primarily targeting energy efficiency as well as system
performance. In this paper, we propose the use of CPU Frequency Scaling for
controlling the preemptive behavior of real-time tasks. We present a framework
for selectively eliminating preemptions, that does not require modifications to
the task attributes or to the underlying scheduler. We evaluate the proposed
approach by four different heuristics through extensive simulation studies.

My contributions: Main author of the paper and performed simulations.
Anju S Pillai implemented the task generator and helped with the literature sur-
vey. All the co-authors contributed by participating in the discussions and in
reviewing the paper.

Relation to the research questions: This paper, which proposes an of-
fline preemption control method for periodic task systems, addresses research
question Q1.

3.1.2 Paper B

Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-

time Tasks, Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat,
In proceedings of the 7th International Symposium on Industrial Embedded
Systems, IEEE, Karlsruhe, Germany, June, 2012

1This paper is also published in IEEE as ”Preemption Control Using Frequency Scaling in
Fixed Priority Scheduling” in the IEEE/IFIP Embedded and Ubiquitous Computing Conference
since RTNS-2010 had no copyright.

3.1 Summary of Contributions 15

Summary: Preemption related costs are major sources of unpredictability
in the task execution times in a real-time system. We examine the possibility of
using CPU frequency scaling to control the preemption behavior of real-time
sporadic tasks scheduled using a preemptive Fixed Priority Scheduling (FPS)
policy. Our combined offline-online method provides probabilistic preemption
control guarantees by making use of the release time probabilities of the spo-
radic tasks. The offline phase derives the probability related deviation from the
minimum inter-arrival time of tasks. The online algorithm uses this informa-
tion to calculate appropriate CPU frequencies that guarantees non-preemptive
task executions while preserving the overall system schedulability. The online
algorithm has a linear complexity and does not lead to significant implementa-
tion overheads. Our evaluations demonstrate the effectiveness of the method as
well as the possibility of energy-preemption trade offs. Even though we have
considered FPS, our method can easily be extended to dynamic priority sche-
duling schemes.

My contributions: Main author of the paper and performed simulations.
All the co-authors contributed by participating in the discussions and in re-
viewing the paper.

Relation to the research questions: This paper, which proposes a com-
bined offline-online preemption control method for sporadic task systems, ad-
dresses research question Q2.

3.1.3 Paper C

Quantifying the Sub-Optimality of Non-Preemptive Real-time Scheduling, Ab-
hilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat, Technical Re-
port, Mälardalen Real Time Research Centre, Mälardalen University, Västerås,
Sweden, November, 2012

Summary: Many preemptive real-time scheduling algorithms, such as the
Earliest Deadline First (EDF), are known to be optimal on a uni-processor.
However, no such algorithms exist under the non-idling non-preemptive sche-
duling paradigm. Hence preemptive schemes strictly dominate non-preemptive
schemes with respect to feasibility. However, the ’goodness’ of non-preemptive
schemes in successfully scheduling feasible task sets when compared to uni-
processor optimal preemptive scheduling schemes such as the EDF, which can

16 Chapter 3. Main Contributions

also be referred to as its sub-optimality, is unknown. In this paper, we ap-
ply resource augmentation, specifically processor speed-up, to quantify the
sub-optimality of non-preemptive scheduling with respect to an optimal uni-
processor scheduling scheme such as the EDF. We also present a method to
guarantee user specified upper-bounds on the preemption related costs in the
schedule.

We prove that the speed-up required to guarantee the feasibility of a non-
preemptive execution of any task τi, for a duration of Li, is upper-bounded
by 4Li

Dmin
, where Dmin is the smallest relative deadline in the task set. Conse-

quently, we show that the upper-bound on the processor speed that guarantees
the feasibility of a non-preemptive schedule for the task set is 4Cmax

Dmin
, where

Cmax is the largest execution time in the task set. The derived upper-bound is
used in a sensitivity analysis based method to calculate the optimal processor
speed that guarantees a specified upper-bound on the preemption related costs
in the schedule. For this, we first present a method to translate the system-
level requirements of meeting specified upper bounds on the preemption re-
lated costs to task level non-preemption requirements. We then use sensitivity
analysis technique to calculate the optimal processor speed that guarantees the
feasibility of the derived task level non-preemption requirements, which in its
turn guarantees the desired bounds on the preemption related overheads.

Our contribution quantifies the sub-optimality of non-preemptive scheduling
in terms of the processor speed-up required to successfully schedule all the uni-
processor feasible task sets. It also enables a system designer to use a faster
processor to guarantee specified upper-bounds on the preemption related over-
heads.

My contributions: Initiator and main author of the paper. All the co-
authors contributed by participating in the discussions and in reviewing the
paper.

Relation to the research questions: This paper derives upper-bounds
on the lowest processor speed that guarantees the feasibility of a specified
non-preemption behavior of a set of real-time tasks. Hence, we can obtain
the upper-bound on the processor speed that can guarantee the feasibility of
a fully non-preemptive schedule. Using these upper-bounds in a sensitivity
analysis, exact processor speed-up that guarantees the feasibility of a specified
non-preemption behavior is derived. The paper addresses research question
Q3, while also providing a solution for questions Q1 and Q2.

3.1 Summary of Contributions 17

3.1.4 Paper D

Resource Augmentation for Fault-Tolerance Feasibility of Real-time Tasks un-

der Error Bursts, Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat
and Huseyin Aysan, In proceedings of the 20th International Conference on
Real-Time and Network Systems, ACM, Pont á Mousson, France, November,
2012 (Shortlisted for Best Student Paper Award)

Summary: Dependability is a vital system requirement, particularly in
safety critical and mission critical real-time systems, due to the potentially
catastrophic consequences of failures. In most critical applications different
fault tolerance mechanisms using redundancy are employed to prevent possi-
ble failures. In the case of real-time systems the system designer must ensure
that the task set is feasible even under faults, which we refer to as fault tol-
erance feasibility. Due to cost considerations, often temporal redundancy has
been prevalently used to meet this objective. In this paper we focus on guar-
anteeing fault-tolerance feasibility under error bursts on uni-processor systems
by the usage of resource augmentation, specifically through processor speed-
up. Firstly, we derive a processor demand bound based sufficient condition
for a set of real-time tasks to be fault tolerance feasible under an assumption
that no more than one error burst occurs during the hyper-period of the task
set. Subsequently, we derive the necessary resource augmentation bounds (i.e.,
the processor speed-up), that guarantees the fault tolerance feasibility, if the
sufficient test fails. Finally, we prove that, if the error burst length is no more
than half the shortest relative deadline of the task set, the processor speed-up
required to guarantee fault tolerance feasibility is upper-bounded by 6.

My contributions: Initiator and main author of the paper. All the co-
authors contributed by participating in the discussions and in reviewing the
paper. The motivation of the work builds on Huseyin Aysan’s PhD thesis [16].

Relation to the research questions: This paper derives upper-bounds on
the processor speed-up required, that can guarantee fault tolerance feasibility
of a set of real-time tasks under an error burst of known length. It addresses
the research question Q4.

18 Chapter 3. Main Contributions

3.2 Significance of the Contributions

The optimality of preemptive and non-idling non-preemptive Earliest Deadline
First (EDF) scheduling, under the respective assumptions, is well known [8]
[21]. However, not all the task sets schedulable by preemptive EDF is schedula-
ble by non-idling non-preemptive EDF, as preemptive scheduling strictly dom-
inates non-preemptive scheduling [9]. Despite the domination of preemptive
scheduling over non-preemptive scheduling, due to preemption related over-
heads, a preemptive schedule may not always be feasible and limiting preemp-
tions [9] [22] may be necessary to guarantee feasibility. However, the limited
preemption model [9] [22] may not always guarantee a specified preemption

behavior e.g., guarantee a specified upper-bound on the number of preemp-
tions or on the preemption related costs, because the largest non-preemptive
region per task in any time interval is bounded by the processor demand in that
interval. The dependence of the largest non-preemptive region of a task on the
processor demand enables us to use a faster processor to control its length. Our
upper-bound on the processor speed-up, guarantees a specified non-preemption
behavior per task (ranging from preemptive to fully non-preemptive), achiev-
ing a certain generality. Hence, it opens up the possibility of augmenting the
scheduler with a faster processor to guarantee the feasibility of the set of all
uni-processor feasible task sets by a non-idling non-preemptive EDF sched-
uler. Consequently, it provides significant insights into developing a utiliza-
tion based test for non-preemptive feasibility of periodic and sporadic real-time
tasks.

A yet another interesting contribution of this thesis is the quantification of
the sub-optimality of the non-preemptive scheduling scheme with respect to
a uni-processor optimal preemptive scheduling scheme. As mentioned earlier
in this section, preemptive scheduling strictly dominates non-preemptive sche-
duling with respect to feasibility. However, the ’goodness’ of non-preemptive
scheduling, when compared to a uni-processor optimal preemptive scheduling
scheme, which is referred to as its sub-optimality, is unknown. In this thesis,
we derive the resource augmentation bound that guarantees the feasibility of
a non-preemptive schedule, for any set of real-time tasks that is uni-processor
feasible. This allows us to quantify the sub-optimality of non-preemptive sche-
duling in terms of the processor speed-up required to guarantee the non-preemptive
feasibility of any uni-processor feasible task set.

Bounding the processor speed-up that guarantees the fault tolerance feasi-
bility of real-time tasks under an error burst of known length simplifies many
design decisions, while building safety and mission critical real-time systems.

3.2 Significance of the Contributions 19

In cases where the original task set was feasible upon a uni-processor under an
error free scenario, but is not feasible under an error burst, a system designer
can opt for a faster processor to achieve fault tolerance feasibility under the
error burst. We have shown that if the error burst length is no longer than half
the shortest deadline of the task set, the lowest processor speed-up required to
guarantee fault tolerance feasibility is upper-bounded by a constant 6. Hence,
in this case, by increasing the processor speed by only a constant factor, the
fault tolerance feasibility of a real-time task set can be guaranteed.

Chapter 4

Conclusions and Future

Work

4.1 Conclusions

In this thesis, we present methods to control preemption related and fault toler-
ance related overheads in a real-time system, using resource augmentation. We
first present an offline preemption control method for periodic task systems,
that derive individual task instance frequencies which reduces the number of
preemptions in the schedule. Such an offline method is however not possible in
a sporadic task system, when the task release times are not known offline. We
hence propose a combined offline-online approach to control preemptions in a
sporadic task system where the probabilities of the task releases are known. We
first find the probability related deviation from the minimum inter-arrival times
of the task. We then use this information in an online preemption control al-
gorithm that, at any time instant, determines the maximum time for which the
outstanding computations can execute non-preemptively and performs CPU
frequency scaling to avoid a preemption. We hence demonstrate the feasibility
of using resource augmentation to control preemptions in periodic and sporadic
systems.

We derive the upper-bound on the processor speed-up required that guar-
antees the feasibility of a specified preemption (or alternately non-preemption)
behavior of a set of real-time tasks. We show that the upper-bound on the
processor speed-up that guarantees a non-preemptive region of length Li for

21

22 Chapter 4. Conclusions and Future Work

any task τi is given by 4Li

Dmin
, where Dmin is the smallest deadline in the task

set. Consequently, we show that the upper-bound on the processor speed that
guarantees the feasibility of a fully non-preemptive schedule is given by 4Cmax

Dmin
,

where Cmax is the largest execution time in the task set. However, changing the
processor speed changes the required length of the non-preemptive region as
well as its largest possible length. We finally use the derived bound to guarantee
a user specified upper-bound on the preemption related costs. In this approach,
we first present a method to derive a set of non-preemption requirements per
task τi, which is the required length Li of the non-preemptive region for τi,
that guarantees the specified upper-bounds on the preemption related costs.
Then, using a sensitivity analysis based approach, we derive the exact pro-
cessor speed-up that guarantees the feasibility of the derived non-preemption
requirement Li for any such task τi.

Finally, we apply resource augmentation to guarantee the fault tolerance
feasibility (FT-feasibility) of a set of real-time tasks under an error burst of
known length during the hyper-period (LCM of time periods) of the task set.
To calculate the bound, we first derive a sufficient condition that guarantees the
feasibility of a set of real-time tasks under the error burst. We then derive the
necessary bounds on the lowest processor speed-up required that guarantees
FT-feasibility if the sufficient condition fails. We then show that if the error
burst length is no longer than half the shortest deadline in the schedule, the
required lowest processor speed-up is upper-bounded by a constant 6. Thus,
by only a constant times increase in the processor speed, the FT-feasibility of
a real-time task set can be guaranteed when the error burst length is no longer
than half the shortest deadline.

4.2 Future Work

Some possible future work include:

• Extensions to multi-processor scheduling: Derive resource augmen-
tation bounds that guarantees a specified non-preemption behavior for
multi-processor systems.

• Utilization based tests: Develop utilization based tests for non-preemptive
scheduling, and to determine the FT-feasibility of a real-time task set.

• Redefining the notion of feasibility of real-time tasks: Augmenting
the notion of feasibility of real-time task sets with the extend of processor

4.2 Future Work 23

speed-up required to guarantee the existence of a schedule even under the
presence of overheads.

• Contracts for preemption control and fault tolerance: Incorporating
the possibility of processor speed-up to derive online/offline contracts to
achieve preemption control and fault tolerance feasibility in component
based real-time systems.

Bibliography

[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable Securr Computing, January
2004.

[2] J.A. Stankovic. Misconceptions about real-time computing: a serious
problem for next-generation systems. Computer, October 1988.

[3] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. The Journal of ACM, 1973.

[4] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 1986.

[5] N.C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-
time scheduling: The deadline-monotonic approach. In in Proc. IEEE

Workshop on Real-Time Operating Systems and Software, 1991.

[6] Sanjoy K. Baruah, Louis E. Rosier, and R. R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor. Real-Time Systems, 1990.

[7] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In The 11th Real-Time Systems

Symposium, 1990.

[8] Michael L. Dertouzos. Control robotics: The procedural control of phys-
ical processes. In IFIP Congress, 1974.

[9] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of spo-
radic task systems. In The 17th Euromicro Conference on Real-Time Sys-

tems, 2005.

25

26 Bibliography

[10] Gang Yao, G. Buttazzo, and M. Bertogna. Comparitive evaluation of
limited preemptive methods. In The 15th International Conference on

Emerging Technologies and Factory Automation, 2010.

[11] H Ramaprasad and F Mueller. Tightening the bounds on feasible pre-
emptions. In The ACM Transactions on Embedded Computing Systems,
2008.

[12] Advanced Configuration and Power Interface (ACPI):
http://www.acpi.info/spec.htm [Last accessed:- 4 Jul 2012] .

[13] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of fault-
tolerant real-time task sets. In The 8th Euromicro Workshop on Real-Time

Systems, June 1996.

[14] H. Aydin. Exact fault-sensitive feasibility analysis of real-time tasks.
IEEE Transactions on Computers, October 2007.

[15] R.M. Pathan and J. Jonsson. Exact fault-tolerant feasibility analysis of
fixed-priority real-time tasks. In The16th International Conference on

Embedded and Real-Time Computing Systems and Applications, April
2010.

[16] Huseyin Aysan. Fault-tolerance strategies and probabilistic guarantees
for real-time systems. In PhD thesis, Malardalen University, June 2012.

[17] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoy-
ance. Journal of ACM, 2000.

[18] Radu Dobrin and Gerhard Fohler. Reducing the number of preemptions
in fixed priority scheduling. In The 16th Euromicro Conference on Real-

time Systems, 2004.

[19] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for en-
gineering real-time fixed priority schedulers. The IEEE Transactions on

Software Engineering, 1995.

[20] Bach D. Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. Impact
of cache partitioning on multi-tasking real time embedded systems. In
The 14th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, 2008.

[21] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On non-
preemptive scheduling of periodic and sporadic tasks. In The 12th IEEE

International Real-time Systems Symposium, 1991.

[22] M. Bertogna and S. Baruah. Limited preemption edf scheduling of spo-
radic task systems. IEEE Transactions on Industrial Informatics, Nov-
ember 2010.

II

Included Papers

29

Chapter 5

Paper A:

Reducing the Number of

Preemptions in Real-Time

Systems Scheduling by CPU

Frequency Scaling

Abhilash Thekkilakattil, Anju S Pillai, Radu Dobrin and Sasikumar Punnekkat
In proceedings of the 18th International Conference on Real-Time and Net-
work Systems1, Toulouse, France, November, 2010

1This paper is also published in IEEE as ”Preemption Control Using Frequency Scaling in
Fixed Priority Scheduling” in the IEEE/IFIP Embedded and Ubiquitous Computing Conference
since RTNS-2010 had no copyright.

31

Abstract

Controlling the number of preemptions in real-time systems is highly desirable
in order to achieve an efficient system design in multiple contexts. For exam-
ple, the delays due to context switches account for high preemption overheads
which detrimentally impact the system schedulability. Preemption avoidance
can also be potentially used for the efficient control of critical section behav-
iors in multi-threaded applications. At the same time, modern processor archi-
tectures provide for the ability to selectively choose operating frequencies, pri-
marily targeting energy efficiency as well as system performance. In this paper,
we propose the use of CPU Frequency Scaling for controlling the preemptive
behavior of real-time tasks. We present a framework for selectively eliminat-
ing preemptions, that does not require modifications to the task attributes or to
the underlying scheduler. We evaluate the proposed approach by four different
heuristics through extensive simulation studies.

5.1 Introduction 33

5.1 Introduction

Preemptions in real-time scheduling may cause undesired high processor uti-
lization, high energy consumption and, in some cases, even infeasibility. The
preemption cost includes the direct costs to perform the context switches [1]
and to manipulate the task queues [2, 1], as well as the indirect cost of cache-
related preemption delays [3, 4]. The pessimism in many schedulability anal-
ysis methods could be reduced if an efficient control of the critical section
behaviors can be established and preemption eliminations are ideally suited for
achieving this.

Preemptive Fixed Priority Scheduling (FPS) has been extensively analyzed
since the work of Liu and Layland [5], and is used in a large number of ap-
plications, mostly due to its flexibility and simple run-time overhead. In prac-
tice, however, preemptive FPS may imply large preemption related overheads
and the need for preemption control is well recognized [6, 2, 7]. Buttazzo [8]
showed that the rate monotonic algorithm (RM) introduces a higher number of
preemptions than earliest deadline first algorithm (EDF).

Many techniques towards eliminating/minimizing preemptions have been
proposed in literature [9, 10, 11, 12, 13, 14]. Most of the work focuses on re-
assigning task attributes like release times, deadlines, priorities etc and cannot
be applied to those real-time tasks for which the task attributes such as priority,
release times and deadlines reflect strict timing constraints. Alternative choices
have to be developed for such systems where task attributes cannot be modified
due to the inherent nature of the application involved. Butazzo has identified
Quality of Service (QoS) [15] as one of the important research areas in future
real time computer systems. Current methods for preemption elimination may
reduce the quality of service as they change task attributes, which can result in
an increased jitter or reduced levels of service due to late execution of tasks.
Thus, removing preemptions without affecting QoS and without any modifi-
cations to the task attributes would be the ideal one from a system designer’s
perspective. At the same time, reducing the number of preemptions can also
be beneficial from an energy point of view in systems with demands on low
power consumption. When a task is preempted, there is a great probability that
its contents in the cache will be lost. When the execution of the task is again
resumed it will cause a lot of energy consuming accesses to off-chip memory.
An access to off-chip memory is typically 10-100 times more expensive than
an on-chip cache access in terms of energy consumption. Reducing the number
of preemptions will reduce these additional expensive memory accesses due to
reduced cache pollution.

34 Paper A

Traditionally, Dynamic Voltage and Frequency Scaling techniques have
been used for reducing energy consumption by slowing down tasks’ execu-
tions [16, 17, 18, 19]. This is effective in reducing the energy consumption
according to the relation P = CV 2F , where P is the power consumed by the
processor, V is the applied voltage, C is the effective capacitance and F is the
operating frequency. This means that the power dissipation increases/decreases
linearly with frequency and quadratically with the applied voltage.

In this paper we apply CPU Frequency Scaling theory to control the pre-
emption behavior in real-time system scheduling. We propose an offline method
that identifies the maximum number of preemptions in a given schedule, and
provides specific frequencies at which task instances need to be executed such
that the preemptions are avioded. Our method is capable of guaranteeing a
significantly lower number of preemptions without altering the original task
attributes or modifying the underlaying scheduler. While executing tasks at
a higher processor frequency may result in an increased energy demand, our
method is capable of providing trade-offs between the number of preemptions
and the overall energy consumption. While the methodology can be easily ap-
plied to any existing scheduling policy, in this paper we present an instantiation
to FPS.

The main contributions of this paper consist of a) a formal analytical model
to detect and eliminate preemptions using CPU Frequency Scaling by first de-
tecting a preemption and then finding the minimum sufficient frequency that
guarantees the completion of the preempted task before the release of the
higher priority tasks, as well as b) a framework to study the effect of change in
frequency at which task instances execute, over the rest of the schedule.

The rest of the paper is organized as follows: Section 5.2 describes the
related work and in section 5.3 we give an overview of our system model. In
Section 5.4 we describe our methodology illustrated by a simple example in
Section 5.5. In Section 5.6 we present the experimental evaluation results and
in Section 5.7 we discuss some important issues related to this paper. Finally,
in Section 5.8 we present the conclusions and future work.

5.2 Related Work

Several methods have been proposed in the past to reduce the number of pre-
emptions in real-time scheduling. Preemption Threshold Scheduling (PTS) for
FPS was proposed by Wang and Saksena [11, 12], showing that this method
improves schedulability as well as reduces the number of preemptions and the

5.2 Related Work 35

number of threads in the system. In [11] the authors describe an optimal algo-
rithm to assign preemption threshold by iterating over the solution and attempt-
ing to assign the largest feasible preemption threshold values to tasks such that
the task set remains schedulable. The results show that large threshold values
reduce the probability of preemptions and therefore should result in less pre-
emptions. However, this approach results in a dual priority system which may
not be directly suitable for, e.g., legacy systems, where scheduler modifications
may not be possible.

The integration of real time synchronization schemes into PTS was pro-
posed [20], where the authors integrate priority inheritance protocol and pri-
ority ceiling protocol into PTS. The authors have proposed two integrated
schemes- in the first approach, instead of priority, the preemption threshold
of a blocked task is inherited when blocking occurs; in the second approach,
the priority ceiling is used instead of preemption threshold. The results show
that the integrated schemes can minimize worst-case context switches and are
appropriate for the implementation of real-time object-oriented design models.

Gai et al. [21] extend this scheduling model to EDF priority assignment
and show that it can reduce the memory requirements of the system. In [22],
the authors have presented an approach to combine PTS with Dynamic Volt-
age Scaling (DVS) to enable energy efficient scheduling. PTS decreases the
number of context switches among tasks as well as the memory requirement
in the system. Furthermore, the authors describe a dynamic slack reclamation
technique, in conjunction with PTS, that yields energy gains depending on the
available slack.

A method to integrate preemption threshold to FPS under DVS scheduling
algorithms, was proposed in [13], where two preemption-aware algorithms,
ccFPPT and FPPT-WD, are studied. ccFPPT is a cycle conserving fixed prior-
ity preemption scheduling, which slows down every task instance in its cycle or
working range by the same amount. All the slack times are used to slowdown
the processor speed. FPPT-WDA is the FPPT- Work Demand Analysis which
is more complex compared to ccFPPT. The key feature of an online WDA DVS
method is to postpone the release of the tasks as much as possible. Here, most
of the slack time will be used for the first several tasks that discover these times
leaving very tight, or even no scale down at all, for other tasks that arrive later.

In [14], the authors present two techniques that can reduce the increased
number of preemptions introduced by using DVS algorithms. The first method
is an accelerated completion based technique, where the main idea is to shorten
the completion time of a low priority task before the arrival of a high priority
task by accelerating its execution. The second approach is a delayed preemp-

36 Paper A

tion based control technique, in which the activation point of a high priority
task is delayed so that a scheduled low priority task can complete its execution
without the preemption.

In an earlier work [9], we have proposed a method that analyzes offline a
set of periodic tasks scheduled by FPS, and identifies the maximum number of
preemptions that can occur at run time. It then reassigns task attributes, such as
the task priority, period and offsets, without affecting the schedulability of the
task set, while attaining a significantly lower number of preemptions. This is
achieved at the cost of increased number of tasks and/or reduced task execution
flexibility.

While the existing approaches have substantially advanced the state of the
art in the field, all have either introduced potential infeasible costs or have
focused on energy conservation when applying DVS. In this paper we propose
the use of CPU frequency scaling to control the preemptive behavior in real-
time scheduling without requiring modifications of the existing task attributes
or to the underlaying scheduler.

5.3 System Model

5.3.1 Task Model

We assume a uniprocessor system implementing a preemptive fixed priority
scheduling policy. We consider a periodic task set Γ = {τ1, τ2, ...τn } where
task τi has a period Ti, a priority Pi, and a relative deadline Di. The tasks
are sorted in decreasing priority order, i.e., P1 is the highest priority and Pn is
the lowest. The hyperperiod of the tasks is defined by LCM representing the
least common multiple of the task periods. Each task instance τi,l is character-
ized by a worst case execution requirement Ci,l, i ∈ [1, n] and l ∈ [1, LCM

Ti
],

at a discrete CPU frequency Fp ∈ [Fmin, Fmax], where Fmin and Fmax are
the minimum and maximum frequency respectively, as imposed by the hard-
ware constraints. We assume that the tasks are initially executed at a default
frequency supported by the hardware.

Additionally, we denote the release time of the lth instance of task τi by
reli,l, its corresponding actual start time by starti,l, and its finishing time
by finishi,l. In the description of our method, we assume that the offsets
are zero and the deadlines are equal to the periods. However, this restriction
can be easily extended for non-zero offsets and deadlines shorter than periods.
Finally, we assume that the tasks do not suspend themselves.

5.3 System Model 37

5.3.2 Energy Model

We consider a power-aware processor which can operate in a set of discrete
operating modes identified by M = {m1,m2,m3, ...mp}, where each mi is
characterized by mq = (Fq, wq), where Fq is processor frequency and wq is
the power (in watts) consumed by the processor in mode mq [17]. We assume
a negligible frequency-switch overhead, which may occur only in conjunction
with a scheduling decision.

The total energy consumed by the system over the period of LCM can be
represented as:

ELCM =
n
∑

i=1

LCM
Ti
∑

l=1

Ci,l × wq
i,l (5.1)

where wq
i,l is the power consumed by the processor while executing the task

instance τi,l in mode mq at frequency Fq .

5.3.3 Execution Time Model

The execution time of a task instance is inversely proportional to the clock
frequency at which the instance is executed, and can be represented as:

C1
i,j =

Cmax
i,j

F1
× Fmax

where F1 is the frequency which gives an execution time of C1
i,j and Cmax

i,j is
the execution time obtained at Fmax. This implies that,

F1 =
Cmax

i,j

C1
i,j

× Fmax (5.2)

Similarly to obtain an execution time of C2
i,j we require a frequency of:

F2 =
Cmax

i,j

C2
i,j

× Fmax (5.3)

Dividing the equation 5.2 by 5.3, we get:

F1

F2
=

C2
i,j

C1
i,j

38 Paper A

which gives,

F2 =
C1

i,j

C2
i,j

× F1 (5.4)

This equation gives the frequency required for scaling C1
i,j to C2

i,j . We have
used this equation to derive the maximum frequency necessary to ensure a
required worst case execution time for a particular task instance. This model is
derived from the model presented in [18].

5.4 Methodology

In this paper we apply CPU Frequency Scaling theory to control the preemp-
tion behavior in fixed priority schedules. We propose an offline method that
identifies the maximum number of preemptions in a given schedule, and pro-
vides specific frequencies at which task instances need to be executed such that
the number of preemptions is reduced.

A preemption typically occurs when a higher priority task instance is re-
leased during the execution of a lower priority task instance. One way to avoid
the preemption is to make sure that the preempted task instance completes its
execution before the release of the higher priority one. As CPU Frequency
Scaling can be used to speed up or slow down task execution times within a
specified range, our method attempts to provide the minimum sufficient fre-
quencies per task instance that guarantees preemption elimination.

In our offline preemption analysis we assume that tasks execute for their
WCET. However, at run-time, tasks will most likely execute for less than
WCET, implying a different number of preemptions compared to the ones de-
tected by our off-line method. Hence, we divide the preemptions in two major
categories:

Initial preemptions – are detected in the off-line analysis assuming task
executions equal to their WCET, i.e., a high priority task instance is initially

preempting a low priority task instance (Figure 5.1).
Potential preemptions – that occur at run-time due to task executions less

than WCET. In Figure 5.2 a) we can see that if tasks execute for WCET, no pre-
emption will occur. However, in this situation we consider task A potentially

preempting task B since, if task C, that delays the execution of B, is execut-
ing for less than its WCET, then B can start executing earlier, i.e., before the
release time of A, and will actually be preempted by A (Figure 5.2 b)).

In this paper we focus on the offline part of the methodology and, thus, we
do not explicitly address the elimination of potential preemptions that would

5.4 Methodology 39

B B

Ahigh priority

low priority

Figure 5.1: An offline detected initial preemption

B

A

C

B

A

C

B

high priority

medium priority

low priority

a) off-line analysis – potential preemption b) on-line execution less than wcet - preemption

Figure 5.2: An off-line detected potential preemption

mostly benefit of the use of online mechanisms, and is the aim for future work.
However, as later illustrated by the evaluation results, a large number of po-
tential preemptions are automatically eliminated in the process of eliminating
initial preemptions. At the same time, future work will address the use of
online mechanisms for slowing down tasks at runtime, to ensure that the re-
maining potential preemptions are not converted to actual preemptions, as well
as to compensate for the increase in energy for removing initial preemptions.

Our approach to eliminate a particular preemption is performed in two
steps: preemption identification followed by the calculation of the minimum
sufficient frequency at which the preempted task instance needs to execute in
order to guarantee the preemption elimination. Obviously, the such frequency
needs to be available, i.e., if the required frequency may not exceed the maxi-
mum available one, i.e., Fmax, otherwise the preemption cannot be eliminated.

As the problem of finding the set of individual task instance frequencies
to minimize the number of preemption for a given set of tasks is NP-hard,
the significance of offline analysis lies in the fact that complex algorithms can
be used to remove preemptions, which can complement the efforts to remove
initial preemptions online.

40 Paper A

In this paper we investigate and compare four different heuristics with re-
spect to the order in which the preemptions are eliminated. We have examined
the following four possibilities:

1. HPF – highest priority preempted task first

2. LPF – lowest priority preempted task first

3. FOPF – first occurring preemption first (under LCM)

4. LOPF – last occurring preemption first (under LCM)

In each of the approaches we attempt to eliminate the preemptions recur-
sively until all preemptions are eliminated, or no feasible frequencies can be
found for the remaining ones. Note that a preemption that cannot be elimi-
nated at a particular stage, may be eliminated at a later iteration point in the
algorithm, due to earlier completion of interfering tasks in the schedule.

5.4.1 Preemption Identification

We say that a task instance τi,l initially preempts another task instance τj,k if
four conditions hold simultaneously [9]:

1. τi,l has a higher priority than τj,k,

2. τi,l is released after τj,k,

3. τi,l starts executing after the start time of τj,k

4. τj,k finishes its execution after the release time of τi,l

In case of nested preemptions we consider only the cases where a context
switch occurs.

5.4.2 Preemption Elimination

To eliminate a single preemption, e.g., τi,l preempts τj,k, we identify the new
frequency at which the preempted instance must execute, by calculating the
execution reduction that guarantees its completion before the release of the
higher priority instance, i.e,:

finishnew
j,k ≤ reli,l

Where, finishnew
j,k is the new finishing time of the preempted instance after

preemption elimination.

5.4 Methodology 41

Theorem 5.4.1. Given a preemption where τi,l preempts τj,k, the worst case

execution time of τj,k that guarantees the preemption avoidance is given by the

relation:

Cnew
j,k = finishnew

j,k − startj,k − Ij,k (5.5)

The interference Ij,k is given by:

Ij,k =
∑

∀l∈hp(j)

#LCM
Tl

$
∑

x=1

Ψ(j, k, l, x)× Cl,x

where

Ψ(j, k, l, x) =

{

1, if startj,k < startl,x < finishnew
j,k

0, otherwise
(5.6)

Proof. The finishj,k for a task instance τj,k is obtained by adding its exe-
cution time and the interference caused due to preemptions by higher priority
tasks to its start time:

finishj,k = startj,k + Cj,k +
∑

∀τl,x∈Γ′

2

Cl,x

Where Γ′
2 is the set of all higher priority task instances released between

the start time and finish time of τj,k. Γ′
2 can be found by a recursively checking

whether any higher priority task instances start between the start time and the
latest computed finish time of τj,k with the finishj,k initially set to (startj,k+
Cj,k) .Thus, we rewrite the above equation as:

finishj,k = startj,k + Cj,k + (5.7)

+
∑

∀l∈hp(j)

#LCM
Tl

$
∑

x=1

Ψ(j, k, l, x)× Cl,x

where

Ψ(j, k, l, x) =

{

1, if startj,k < startl,x < finishj,k

0, otherwise

42 Paper A

with finishj,k set to startj,k + Cj,k initially.
We rewrite (5.7) as:

finishj,k = startj,k + Cj,k + Ij,k

Where Ij,k is given by:

Ij,k =
∑

∀l∈hp(j)

#LCM
Tl

$
∑

x=1

Ψ(j, k, l, x)× Cl,x

and Ψ(j, k, l, x) is given by the earlier equation. Now rearranging the terms
we get:

Cj,k = finishj,k − startj,k − Ij,k

Here we substitute the new required finish time finishnew
j,k such that the pre-

emption on τj,k by τi,l is eliminated:

Cj,k = finishnew
j,k − startj,k − Ij,k

After calculating the new execution time required to eliminate a single pre-
emption, we check whether it is possible to speed up the execution of the task
instance to guarantee this execution time by checking whether the correspond-
ing frequency range is within the CPU permitted range. This is done by first
calculating the required CPU frequency, denoted by Fr, using the formula:

Fr =
Ccur

j,k

Cnew
j,k

× Fq

where Cnew
j,k is the execution time of kth instance of task τj to finish before it

is preempted by a higher priority task, and Ccur
j,k is its execution time before

removing the preemption, when executing at a frequency Fq . The calculated
Fr is approximated to the nearest discrete value among the values which the
processor can attain, and the old frequency is retained if Fr #∈ [Fmin, Fmax].

Finally, we need to investigate the impact of the preemption elimination on
the rest of the schedule by recalculating the start times and finish times of all
lower priority task instances, according to the equations 5.8 and 5.11, when

Fr ∈ [Fmin, Fmax]

5.4 Methodology 43

Theorem 5.4.2. The start time of any task instance τj,k is given by,

startj,k = max(fhp(j, k), relj,k) (5.8)

where,

fhp(j, k) = max∀l ∈ hp(j)(finishl,#
fhp(j,k)+1

Tl
$
) (5.9)

and, initially,

fhp(j, k) = relj,k (5.10)

Proof. According to our assumption, a task instance τj,k starts its execution if
it is released, and after all high priority tasks in the ready queue have finished
execution. This has two cases,

Case 1 : The ready queue is empty at relj,k and no higher priority tasks
are released simultaneously or are currently executing

Case 2 : There exists at least one high priority task instance the is released,
or is currently executing at relj,k

The value computed by
fhp(j,k)+1

Tl
will give the latest instance number of all

higher priority tasks τl. Using this instance number, equation 5.9 will return the
maximum of the finish times of the corresponding high priority task instances.
This is done recursively until a single value is obtained.

Consider Case 1, where no high priority tasks are executing/released or
in the ready queue at relj,k. The value computed by 5.9 will be less than
relj,k, since the latest of the higher priority task instances would have already
completed. So equation 5.8 will return relj,k as the start time of τj,k. Hence,
the equation 5.8 holds for Case 1.

Consider Case 2, where there exists at least one higher priority task that is
currently executing at the time when τj,k is released. The value computed by
5.9 will be greater than relj,k, since 5.9 computes the latest of the finish times
of all high priority tasks that are released in the busy period before τj,k starts
executing. This finish time is the start time of τj,k as we have assumed that no
task can suspend itself. Hence the equation 5.8 also holds for Case 2.

Finally, we calculate the finish time of τj,k.

Theorem 5.4.3. The finish time for a task instance τj,k is given by the equa-

tion:

finishj,k = startj,k + Cj,k + Ij,k (5.11)

44 Paper A

Ij,k is given by:

Ij,k =
∑

∀l∈hp(j)

#LCM
Tl

$
∑

x=1

Ψ(j, k, l, x)× Cl,x (5.12)

where Ψ(j, k, l, x) is given by the equation:

Ψ(j, k, l, x) =

{

1, if startj,k < startl,x < finishj,k

0, otherwise
(5.13)

Proof. The proof is similar to the one of theorem 5.4.1.

Recalculation of the start times and finish times aims to investigate the im-
pact of one preemption elimination on the rest of the schedule, i.e., whether
any new preemptions have been introduced or any additional ”old” preemp-
tions have been removed. Additionally, a schedulability test is performed in
order to ensure the task completions before their deadlines.

∀i ∈ [1, n], j ∈ [1,
LCM

Ti
], finishi,j ≤ (j − 1)× Ti +Di

In this paper we use 4 different heuristics, i.e., HPF, LPF, LOPF, FOPF, to
recursively eliminate the preemptions in a given set of tasks, schedulable by
preemptive FPS, until all preemptions are eliminated or no feasible solutions
can be found for the remaining ones.

5.5 Example

We illustrate the proposed preemption reduction method with a simple exam-
ple. We assume a set of tasks as described in the Table 5.1 scheduled according
to the rate monotonic scheduling policy, using a default frequency of 40 MHz
provided by the hardware. The time used in the example is expressed in mil-
liseconds (ms). In this example, our method identifies 7 initial preemptions
that may occur at run time (Figure 5.3) when the tasks execute for their worst
case execution times.

For explaining how a single preemption is detected, eliminated, and its
effects over the rest of the schedule, we describe the removal of the preemption
of C1 by A4. The preemption is detected as it satisfies the following condition:

{PA > PC} ∧ {relA,4 > relC,1} ∧ {startA,4 > startC,1}

5.5 Example 45

Figure 5.3: Original RM schedule

Task Time period Execution Time Priority
A 4 1 1(highest)
B 8 2 2
C 20 6 3
D 40 4 4

Table 5.1: Example: task set

∧{finishC,1 > relA,4}

To eliminate the preemption, C1 needs to complete before the release of A4.

finishnew
C,1 ≤ relA,4 = 12

Consequently, the new execution time for C1 is calculated using the equation
5.5:

CC,1 = 12− 3− (1 + 1 + 2) = 5.

At this point, we need to check the possibility of eliminating this preemption
by ensuring that the corresponding frequency is within the permissible range.
For the analysis we take a variable frequency processor having different oper-
ating modes as described in Table 5.2 [17].

We find the frequency at which the task instance C1 must execute to elimi-
nate it being preempted by A4 using equation 6.2.

F2 =
6

5
× 40 = 48

46 Paper A

Mode 0 1 2 3 4 5
Frequency(MHz) 0 5 30 40 50 80

Power Consumption(mW) 0 20 50 50 200 500

Table 5.2: Example: CPU operating modes

This is approximated to 50 MHz which is the next highest frequency supported,
which can guarantee this execution time. C1 will execute for 4.8 ms when it is
run at 50 MHz.

Eliminating this particular preemption will affect the lower priority task’s
start times and finish times. Hence, we re-calculate the start times and finish
times of all the lower priority task instances based on the newly calculated
execution and finish time of C1, according to the equation 5.11:

finishC,1 = 3 + 4.8 + (1 + 1 + 2) = 11.8

We calculate the start time of D1 using equation 5.8:

fhp(D, 1) = relD,1 = 0, initially

fhp(D, 1) = max(finishA,! 0+1
4 ", finishB,! 0+1

8 ",

finishC,! 0+1
20 ")

= max(finishA,1, finishB,1, finishC,1)

= max(1, 3, 11.8) = 11.8

Since 0 != 11.8, we recursively calculate the new value for the start time
for D1 until we reach a fixed point. Here the start time of D1 is 11.8. The
newly computed value of the finish time of D1 is:

finishD,1 = 11.8 + 4 + (1 + 1 + 2) = 19.8

It is now possible to do a schedulability analysis on the finish times of the
task instances or find the total number of preemptions and take a decision on
whether or not to eliminate this preemption. After the removal of the preemp-
tion of C1, the total number of preemptions in the schedule is reduced to 6
(figure 5.4). We use this process to eliminate preemptions according to the last
occurring preemption first strategy (LOPF) as described in section 5.4, until no

5.6 Performance Evaluation 47

Figure 5.4: RM schedule after eliminating one preemption

more preemptions can be eliminated. Figure 5.5 shows the resulting schedule
eliminating preemptions in the reversed order of their occurrences in the sched-
ule. The number of initial preemptions is reduced from 7 to 2, with a cost of
2.7 times increase in energy, according to equation 6.1. Finally, the frequencies

Figure 5.5: RM schedule after reducing preemptions using LOPF

for all the task instances are computed and illustrated in table 5.3.

5.6 Performance Evaluation

We performed a number of experiments to evaluate the efficiency of our pro-
posed method. We used synthetic tasks with randomly generated attributes,

48 Paper A

Instance 1 2 3 4 5 6 7 8 9 10
τA 40 40 40 40 40 40 40 40 40 40
τB 40 40 40 40 40 - - - - -
τC 80 80 - - - - - - - -
τD 80 - - - - - - - - -

Table 5.3: Derived frequencies for each task instances

schedulable by FPS. We studied the effect of the removal of preemptions in
different orders. We generated task sets with utilizations ranging from 0.6 to
1.0 using the UUniFast [23] algorithm that were used to compare the efficiency
of the different approaches. The tasks priorities were assigned according to the
RM policy. Each set consisted of 5 to 15 tasks respectively, with time periods
ranging from 5 to 1500. For the purpose of obtaining integer values of exe-
cution times, we assumed that the calculated CPU frequency is supported by
the processor. However we assumed that the tasks cannot be scaled to a value
less than 60% of their actual execution times i.e., any value above 60% of the
original execution time was deemed acceptable, and those below unacceptable.

5.6.1 Experiment 1

In this scenario, we experimented the preemption elimination based on the task

priority order. We performed rwo different runs for each taskset. In the first
run we eliminated the preemptions starting with the one incurred by the first
instance of the highest priority task to the last instance of the lowest prior-
ity task i.e., highest priority first (HPF), in the order {τ1,1, τ1,2,.......τ1,LCM

T1
},

{τ2,1, τ2,2,....τ2,LCM
T2

},{τn,1, τn,2,....τn,LCM
Tn

}. In the second run, we elimi-

nated the preemptions starting from the first instance of the lowest priority task
to the last instance of the highest priority task i.e, lowest priority first (LPF), in
the order {τn,1,τn,2,..τn,LCM

Tn
}, ..{τ2,1,τ2,2,..τ2,LCM

T2
}, {τ1,1,τ1,2,..τ1,LCM

T1
}.

5.6.2 Experiment 2

In this experiment we eliminated the preemptions in the order of their occur-

rence in the schedule. We conducted two runs, where in the first run we re-
moved preemptions from the first occurring preemption to the last (FOPF) and
in the second run from the last occurring preemption to the first (LOPF). Our

5.6 Performance Evaluation 49

simulations results for the four heuristics used in the 2 experiments are illus-
trated in Figure 5.6.

Figure 5.6: Average number of initial preemptions after preemption elimina-
tion

We also observed that a significant number of potential preemptions are
also eliminated automatically in the process of removing initial preemptions
(Figure 5.7). In this case, LPF and LOPF performed slightly better with respect
to reducing the number of potential preemptions.

Figure 5.7: Average number of potential preemptions after preemption elimi-
nation

In some cases, some preemptions of medium priority tasks are automati-
cally eliminated which will not result in a reduction of execution times of those
medium priority tasks. However while eliminating preemptions in the LOPF,

50 Paper A

the preemptions which are removed automatically in the other three cases are
detected and eliminated first. This result in a reduction in execution times of
these medium priority task instances. As a result of this the preemptions (both
initial and potential) of the lower priority tasks are reduced since they complete
earlier due to this reduction in execution times of medium priority tasks.

LOPF fares slightly better than LPF in our simulations. This is because in
LPF, the preemption that is removed first need not be the last preemption in
the timeline. Removal of such preemptions might result in automatic removal
of preemptions occurring later in time without reducing execution times of
task instances. This can result in low priority tasks completing later than as
observed in LOPF.

5.6.3 Energy Consumption

The elimination of a preemption caused a 4.2 times increase in energy con-
sumption when using LOPF. We found that for tasksets with high utilizations,
the increase in energy was more prominent. Naturally, tasksets with a large
number of tasks also showed a high increase in energy as this can be attributed
to the high number of preemptions in these task sets. However, our proposed
approach provides for trade-off between the number of preemptions and the
energy consumption, as the user can selectively choose which preemptions are
desirable to eliminate.

5.7 Discussion

So far, in our methodology we have not addressed two issues:

1. Speeding up tasks in the busy period before the start of the preempted
task to eliminate the preemption.

2. Explicit removal of potential preemptions (although, as shown in the ex-
periments, many of them are eliminated automatically when eliminating
initial preemptions).

Consider a preemption where τi,l preempts τj,k. It can be either a potential pre-
emption or an initial preemption. In order to address both the cases described
above, we must find the set Υ where,

Υ = τj,k ∪ {
n
∑

p=1

LCM/Tp
∑

q=1

busy period(i, l, p, q)× τp,q}

5.8 Conclusions and Future Work 51

where, busy period(i,m, p, q) returns 1 if τp,q is in the busy period just before
starti,l. Now we need to find Ca,b for each τa,b in Υ such that ∀τa,b ∈ Υ:

finisha,b < (b− 1)× Ta +Da, and

finisha,b < starti,m

Speeding up task executions in the busy period raises two issues:

1. One issue is finding the best execution times for each τa,b such that all
of them finish before starti,m while meeting their individual deadlines.
This is an optimization problem and has to be performed for each pre-
emption elimination, as speeding up tasks may not be the best option to
remove a preemption. It may also be that slowing down tasks in the busy
period such that the preempted task starts after the preempting task can
be a valid alternative. We plan to address this question in the future work
by incorporating energy reduction and minimization of preemptions into
the goal function of an optimization problem.

2. Eliminating potential preemptions by scaling up individual task execu-
tion times can result in a drastic increase in energy consumption. Hence,
an attractive solution may be to remove potential preemptions at run time
by slowing down tasks to ensure that the potential preemptions are not
converted to actual preemptions. This approach again has the additional
advantage of compensating the increased energy consumption due to the
removal of preemptions by speeding up tasks.

5.8 Conclusions and Future Work

In this paper, we have proposed a methodology to reduce the number of pre-
emptions in real-time scheduling by using CPU frequency scaling. We have
provided an instantiation to FPS by analyzing a schedulable task set and calcu-
lating individual frequencies at which task instances need to execute such that
the preemptions are eliminated, by taking into account the effect of preemption
elimination on the rest of the schedule. The proposed approach does not imply
modifications to the task attributes or the underlaying scheduler.

As the main element of cost introduced by our method is the energy con-
sumption, the proposed framework provides for tradeoff between the number
of preemptions and the cost by keeping track of the increase of energy required
for each preemption elimination. Though runtime variations in the execution

52 Paper A

time of task instances can introduce (or remove) additional preemptions, the
offline method can be complemented with online approaches by enabling the
use of efficient algorithms to remove/minimize preemptions.

Future work will focus on optimizing the approach such that the number of
preemptions is minimized while minimizing the energy consumption, as well
as online extensions to cope with execution variations between best and worst
case, including cache related preemption delay cost. At the same time, the
method will be extended to the sporadic task model.

5.9 Acknowledgment

The authors wishes to thank the anonymous reviewers for their useful com-
ments on the paper. This work was partially supported by the Swedish Foun-
dation for Strategic Research via the strategic research center PROGRESS and
the Erasmus Mundus External Co-operation Window programme EURECA.

Bibliography

[1] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and anal-
ysis of fixed priority schedulers. The IEEE Transactions on Software

Engineering, 1993.

[2] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for en-
gineering real-time fixed priority schedulers. The IEEE Transactions on

Software Engineering, 1995.

[3] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha,
Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim.
Analysis of cache-related preemption delay in fixed-priority preemptive
scheduling. IEEE Transactions on Computers, 1998.

[4] Schneider J. Cache and pipeline sensitive fixed priority scheduling for
preemptive real-time systems. The 21st Real-Time Systems Symposium,
2000.

[5] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. The Journal of ACM, 1973.

[6] Harini Ramaprasad and Frank Mueller. Bounding preemption delay
within data cache reference patterns for real-time tasks. In The IEEE

Real-Time Embedded Technology and Applications Symposium, 2006.

[7] Krithi Ramamritham and John A. Stankovic. Scheduling algorithms and
operating systems support for real-time systems. In The Proceedings of

the IEEE, 1994.

[8] Giorgio C. Buttazzo. Rate monotonic vs. EDF: judgment day. In Real-

Time Systems Journal, January 2005.

53

54 Bibliography

[9] Radu Dobrin and Gerhard Fohler. Reducing the number of preemptions
in fixed priority scheduling. In The 16th Euromicro Conference on Real-

time Systems, 2004.

[10] Gang Yao, G. Buttazzo, and M. Bertogna. Bounding the maximum length
of non-preemptive regions under fixed priority scheduling. In The 15th

IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, 2009.

[11] Yun Wang and M. Saksena. Scheduling fixed-priority tasks with preemp-
tion threshold. In Sixth International Conference on Real-Time Comput-

ing Systems and Applications, 1999. RTCSA ’99., 1999.

[12] Manas Saksena and Yun Wang. Scalable multi-tasking using preemption
thresholds. In In Digest of Short Papers For Work In Progress Session,

The 6th IEEE Real-Time Technology and Application Symposium, 2000.

[13] Liu Yang, Man Lin, and Laurence T. Yang. Integrating preemption thresh-
old to fixed priority dvs scheduling algorithms. In The 15th IEEE Interna-

tional Conference on Embedded and Real-Time Computing Systems and

Applications, RTCSA ’09, 2009.

[14] Woonseok Kim, Jihong Kim, and Sang Lyul Min. Preemption-aware
dynamic voltage scaling in hard real-time systems. In ISLPED ’04: Pro-

ceedings of the 2004 international symposium on Low power electronics

and design, New York, NY, USA, 2004. ACM.

[15] Giorgio Buttazzo. Research trends in real-time computing for embedded
systems. SIGBED Rev., pages 1–10, 2006.

[16] Hakan Aydin, Rami Melhem, Daniel Moss, and Pedro Meja-Alvarez.
Power-aware scheduling for periodic real-time tasks. The IEEE Trans-

actions on Computers, 2004.

[17] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe Lipari. Minimizing
CPU energy in real-time systems with discrete speed management. ACM

Transaction on Embedded Computer Systems, 2009.

[18] Mauro Marinoni and Giorgio C. Buttazzo. Elastic dvs management in
processors with discrete voltage/frequency modes. IEEE Transactions on

Industrial Informatics, 2007.

[19] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scal-
ing for low-power embedded operating systems. In The 18th ACM sym-

posium on Operating systems principles, 2001.

[20] Saehwa Kim, Seongsoo Hong, and Tae-Hyung Kim. Integrating real-time
synchronization schemes into preemption threshold scheduling. IEEE In-

ternational Symposium on Object-Oriented Real-Time Distributed Com-

puting, 2002.

[21] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor systems-on-
a-chip. In Proceedings of the 22nd IEEE Real-Time Systems Symposium,
pages 73–83, 2001.

[22] Ravindra Jejurikar and Rajesh K. Gupta. Integrating processor slowdown
and preemption threshold scheduling for energy efficiency in real time
embedded systems. In The IEEE Real-Time Computing Systems and Ap-

plications, 2004.

[23] Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 2005.

Chapter 6

Paper B:

Probabilistic Preemption

Control using Frequency

Scaling for Sporadic

Real-time Tasks

Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat
In proceedings of the 7th International Symposium on Industrial Embedded
Systems, IEEE, Karlsruhe, Germany, June, 2012

57

Abstract

Preemption related costs are major sources of unpredictability in the task exe-
cution times in a real-time system. We examine the possibility of using CPU
frequency scaling to control the preemption behavior of real-time sporadic
tasks scheduled using a preemptive Fixed Priority Scheduling (FPS) policy.
Our combined offline-online method provides probabilistic preemption con-
trol guarantees by making use of the release time probabilities of the sporadic
tasks. The offline phase derives the probability related deviation from the min-
imum inter-arrival time of tasks. The online algorithm uses this information
to calculate appropriate CPU frequencies that guarantees non-preemptive task
executions while preserving the overall system schedulability. The online algo-
rithm has a linear complexity and does not lead to significant implementation
overheads. Our evaluations demonstrate the effectiveness of the method as well
as the possibility of energy-preemption trade offs. Even though we have con-
sidered FPS, our method can easily be extended to dynamic priority scheduling
schemes.

6.1 Introduction 59

6.1 Introduction

Predictable execution of real-time tasks is one of the major requirements to
guarantee the temporal properties of safety- and mission critical real-time sys-
tems. These systems typically employ the preemptive fixed priority scheduling
(FPS) policy, that, since the pioneering work of Liu and Leyland [1], has been
widely used in industrial real-time applications mainly due to its simple run-
time scheduling mechanisms and low overhead, as well as its ability to handle
even task sets with incomplete attribute specifications. However, preemptions
are one of the major causes for the unpredictability in, e.g., the execution times
of real-time tasks in such systems, thus potentially jeopardizing the system
schedulability. Preemptions incur additional costs e.g., cache related preemp-
tion delays and context switch overheads, which negatively impact the tempo-
ral behavior of the system. These costs are difficult to bound given that they
vary with the point of preemption and even possibly with the state of the sys-
tem at the time of preemption [2]. The preemption related costs are difficult to
be accounted in the schedulability analysis, which is typically done offline. On
the other hand, too pessimistic assumptions regarding the preemption related
costs may lead to inefficient utilization of the resources.

Preemption reduction, besides reducing preemption related costs, can also
be beneficial in systems with low power consumption requirements. Preemp-
tions can increase the accesses to off-chip memory, thereby increasing the
power consumption in the system. This is because, some of the cache lines are
evicted during a preemption and when the preempted task resumes its execu-
tion, the evicted cache lines have to be restored, increasing the off-chip access.
It has been shown that [3], an off-chip memory access is typically more expen-
sive than an on-chip cache access in terms of energy consumption. Preemption
reduction, hence, reduce these additional energy requirements that occurs due
to an increased cache pollution. Preemptions can also potentially accelerate
the wear and tear of the hardware that the real-time system is controlling. A
non-preemptive FPS, on the other hand, may be an attractive alternative due
to its lower runtime overhead. A major drawback in using non-preemptive
scheduling, however, is that, due to the blocking of the higher priority tasks
by the lower priority tasks, a portion of the processor time is typically wasted.
This loss of utilization [4] cannot be bounded and hence non-preemptive sche-
duling can prove to be infeasible even for arbitrarily low utilizations. This loss
of utilization makes non-preemptive scheduling unfavorable for most practical
applications.

On the other hand, the need for energy efficient systems necessitates the use

60 Paper B

of adequate energy management techniques. One of the methods adopted to re-
duce the energy consumption is to utilize the possibility of Dynamic Voltage
and Frequency Scaling (DVS) to reduce the CPU frequency and voltage when-
ever possible, without jeopardizing the temporal guarantees of the real-time
system. Reducing the CPU frequency reduces the performance and increases
the execution times of the real-time tasks in the system, increasing the pro-
cessor utilization. The increase in CPU utilization, in its turn, increases the
number of preemptions in the system [5]. The ability to scale up/down the
CPU frequency to change task execution times provides the designer the pos-
sibility of using energy manipulation to influence the execution behaviour of
real-time tasks, in order to achieve specified requirements. Traditionally, DVS
has been used in real-time systems mainly to conserve energy, while meeting
the temporal requirements [6][7]. On the other hand, increasing the CPU fre-
quency leads to shorter task execution times, and, implicitly, less preempting
opportunities. We use the possibility of using frequency scaling to influence
the tasks’ execution times in order to control the number of preemptions.

In real-time systems, the physical events occurring in the system are mapped
to a set of real-time tasks. The events are sampled at a minimum or an exact
frequency that is sufficient to meet the physical requirements of the system. A
sporadic task model is adopted to represent events where no two events can oc-
cur more frequently than a certain known frequency. In such systems, the task
arrival rates are assumed at a maximum frequency to analyze its worst case
behavior in a predictable manner. However, in many cases the probabilities
of the event occurrences can be found, thus enabling the use of a probabilistic
analysis. Probabilistic approaches reduce pessimism by considering the prob-
abilistic distribution of the task attributes such as minimum inter-arrival times
or WCETs [8].

In this paper, we present a method to control the preempting behavior in
sporadic task systems with probabilistic release times, using CPU frequency
scaling. The task release time probabilities are considered to find deviations
in the inter-arrival times. This deviation is derived from the task release time
probabilities such that the probability of a task release is greater than a known
threshold e.g., the time instant where the probability of preemption is the high-
est. This information is used by an online algorithm to control the preemptions
online. Considering probabilities while performing preemption control using
CPU frequency scaling provides the designer the possibility of trade-off be-
tween preemption costs and energy-consumption. Simulation results clearly
indicate that considering task release probabilities can provide energy preemp-
tion trade-offs. Our algorithm has a linear complexity and does not add any

6.2 Related Work 61

significant runtime overhead.

The paper is organized as follows. In section 6.2, we discuss the related
work. Section 6.3 details the system model and the various notations used
throughout this paper. In Section 6.4, we present our methodology followed by
an example in Section 6.5. We conclude in Section 6.7.

6.2 Related Work

Preemptions are widely known to increase costs in the system and the need
for reducing the preemptions in a real-time system is widely recognized in the
literature [9][10][11][2]. The main preemption related costs are composed of
the direct costs to perform the context-switches [11], the costs to manipulate
the task queues [10][11], as well as the generally unpredictable cost of cache-
related preemption delays [2]. It has been observed by Bui et. al in [9] that
cache related preemption delays can increase the task execution times by 33%
as the overhead due to cache related preemption delays can be as high as 655µS
for a single preemption.

Since the work of Liu and Layland [1], preemptive FPS has been widely
studied and several extensions were proposed for different task models. Pre-
emptive FPS has also found widespread acceptance in the industry and is used
in a large number of applications, mainly due to its flexibility and simple run-
time overhead. However in reality, due to the overheads involved during a pre-
emption, the use of preemptive FPS might not be ideal [10][12][2]. Buttazzo
[5], for example, showed that the rate monotonic algorithm (RM), a widely
used preemptive FPS technique, introduces a higher number of preemptions
than earliest deadline first algorithm (EDF). He also observed that the number
of preemption constantly increases with the task utilization.

Due to the widespread recognition for the need for preemption reduction,
several methods have been proposed to reduce the number of preemptions in
real-time scheduling. Preemption Threshold Scheduling (PTS) for FPS, first
introduced in the ThreadX operating system [13], later formalized by Wang
and Saksena [14], improves schedulability and reduces the number of preemp-
tions and the number of threads in the system. The main disadvantage of this
method is the need for a dual priority system which may not be directly suitable
for, e.g., legacy systems, where scheduler modifications may not be possible.
Baruah [4] studied the feasibility of limited preemption techniques and calcu-
lated the length of the longest possible non-preemptive execution of a task in
a sporadic task system. Yao et. al. [15], evaluated and compared the vari-

62 Paper B

ous limited preemption methods using experiments. Earlier they had extended
[4] to FPS, finding an upper bound on the length of the largest possible non-
preemptive execution of tasks under FPS [16]. Bertogna et. al. [17], presented
a method to place preemption points within task code assuming a fixed pre-
emption overhead.

DVS techniques, traditionally, were used for reducing energy consumption
by slowing down tasks’ executions [6][7]. It was observed [6][7] that the en-
ergy consumption increases linearly with frequency and quadratically with the
applied voltage. One of the disadvantages of using DVS is the increase in the
number of preemptions due to an increase in task execution times. In [18],
the authors observed a less than 140µS of time for a frequency switch. An-
other work by Lu et. al. [19] reported 2µS on an Intel StrongARM processor
for the same. This cost is not significant compared to the overhead incurred
due to preemptions, making CPU frequency scaling a promising approach to-
wards controlling preemption behavior in real-time systems. Also, since this is
a technology dependent cost, with the advances in technology, this overhead is
expected to come down.

Dobrin and Fohler [20], proposed a method to minimize the number of pre-
emptions by re-assigning task attributes, such as priorities, periods and offsets,
without affecting the schedulability of the taskset. Later in [21], we proposed
an offline method to control the preemption behavior of periodic real-time tasks
scheduled by FPS using CPU frequency scaling, by finding job level frequen-
cies that guarantee preemption control. Later in [22] and [23], we extended
this to the sporadic task model. However, the algorithm presented was a min-
imal algorithm and it did not make use of the task release probabilities, while
determining the earliest point of preemption. In [22], for instance, only the
preempting job was speed-ed up to avoid the preemption before the preemp-
tion point determined by the minimum inter-arrival time of the higher priority
tasks. In [23], this was extended to speed-up the busy period before the pre-
emption to gain more slack and thus require a lower speed-up. In this paper,
we extend our previous works [22] and [23] to propose a method to control the
preemption behavior of a sporadic task system scheduled by FPS by making
use of task release probabilities to obtain better energy savings. We use the
probabilities of task releases in order to derive probabilistic guarantees on the
preemption behavior of the schedule while saving on the energy consumption.
The use of probabilities to determine the earliest probable preemption point is
shown to provide energy preemption trade offs.

6.3 System Model 63

6.3 System Model

In this section, we describe the system model and the notations used in this
paper.

6.3.1 Processor Model

We assume a processor model that supports a set of discrete operating modes
denoted by M = {m1,m2,m3, ...mp}, where each mq is characterized by
mq = (Fq,Wq). Each Fq denotes the processor frequency associated with
mode mq , and Wq is the set Wq = {w1

q , w
2
q , .., w

r
q}, that represents the power

consumption per clock cycle by the r resources used by the tasks in mode
mq . We assume that a known upper-bounded frequency-switch overhead ex-
ists. Fmax and Fmin respectively represents the maximum and minimum fre-
quency supported by the processor. The task set is initially assumed to be
executing at a default processor frequency X ≥ Fsched, where Fsched denotes
the minimum frequency that guarantees the system schedulability.

6.3.2 Task model

We consider a set of sporadic tasks [24] [25] denoted by Γ= {τ1, τ2, ...τn},
where each τi has a minimum inter-arrival time Ti, a worst case execution re-
quirement Ci, a unique priority Pi and a deadline Di, relative to its release.
Moreover, we assume that Ci, which is given by the largest number of clock
cycles required for the execution of task τi, is independent of the clock fre-
quency and is a constant [26]. Additionally, let hp(i) represent the set of tasks
with higher priorities than τi i.e., Pj > Pi, ∀j ∈ hp(i) and LCM represents
the Least Common Multiple of the minimum inter-arrival times of all the tasks
in the taskset. We define the outstanding computations at a time instant t as the
set of remaining clock cycles required to complete the execution of all tasks in
the ready queue. The ready queue is denoted as readyQ. We define Cr

j (t) as
the time required to complete the outstanding computations of τj at any time t,
at the default frequency, X . Moreover, we define relj(t) as the earliest release
time of the next job of τj at the time instant t and is easily obtained by adding
Ti to the release time of its latest job that has been released before time t.

In addition to the above task parameters, we associate a probability mass
function fi(t), t ∈ Z with every task τi. fi(t) gives the probability that a job of
the task τi is actually released at time t, relative to the its earliest release time.

64 Paper B

Thus, the probability that a job of τi is released at a time relj(t) + t1 is given
by fi(t1)[8].

6.3.3 Energy Model

We represent the total energy consumption required by all task executions until
time t by:

Et =
n
∑

i=1

k
∑

l=1

ei,l (6.1)

where k is given by the smallest integer satisfying:

(k + 1)Ti +
k

∑

d=1

φi,d ≥ t

and e by:

ei,l =
Ci
∑

b=1

{

r
∑

a=1

wa
q

}

In the above equation, mq is the execution mode of the processor during the
bth clock cycle of τi,l and φi,d is the offset in the release of the job τi,d since
the end of the inter-arrival time of τi,d−1. Hence, ei,l is the sum of the actual
power consumption of all the clock cycles, which gives the total energy used
for the execution of the job τi,l.

6.3.4 Execution Time Model

We assume a linear relationship between frequency and execution time of a job
i.e., the execution time of a job τi,j , denoted by Ci,j , is inversely proportional to
the processor frequency. Note that Ci represents the execution requirement of
τi and Ci,j represents the execution time of its job τi,j at the default processor
frequency, X . Consequently, the frequency required for scaling Ci,j to C ′

i,j is
given by the equation [21]:

X ′ =
Ci,j

C ′
i,j

×X (6.2)

The above equation gives the maximum frequency that guarantees a required
worst case execution time for a particular job. Also note that, if Ci,j repre-

sents the initial execution time of τi,j ,
Ci,j

C′

i,j
also denotes the speed at which the

processor must execute to complete τi,j in C ′
i,j time units.

6.4 Methodology 65

6.4 Methodology

Our solution consists of a joined offline - online approach: 1) an offline phase
which calculates the deviation between the most probable inter-arrival time and
the minimum inter-arrival time and 2) an online algorithm that determines the
earliest possible preemption point for each task, using the values derived in the
offline analysis, and calculates the optimum CPU frequencies that guarantees
the preemption avoidance.

In the offline phase, the task release probabilities are considered to calcu-
late the deviation between the most probable inter-arrival time and the mini-
mum inter-arrival time such that the probability that a higher priority task is
released does not exceed a certain pre-determined threshold. Later, in the on-
line phase, while calculating a particular earliest preemption point we obtain
a probabilistic preemption guarantee, which is less pessimistic than the proba-
bility of preemption occurrence based on the minimum inter-arrival time of the
preempting task. By less pessimistic we mean that the preemption point deter-
mined by our algorithm will be farther in time than in the case when the actual
inter-arrival times of the preempting tasks are considered. This is beneficial
from an energy usage point of view, since the speed up required to avoid the
preemption is less than the case when the actual minimum inter-arrival times
are considered. In the following, we discuss the details of our method.

6.4.1 Offline Phase

Every sporadic task τi has a minimum inter-arrival time Ti and a task release
probability fi(t) from the point of its earliest release time. For instance, if a
job of τi was released at time tk, the earliest release time of the next job is
tk + Ti and fi(t) gives the probability of its release at time tk + Ti + t, t ∈ Z.
Consequently, the next job of τi will be released at at a time

tk + Ti + tk+1 s.t. fi(tk+1) = li

where li represents the threshold probability for release of a job of τi.
Thus the deviation between the most probable inter-arrival time and the

minimum inter-arrival time can be calculated using the task release probabili-
ties. Let Ri be the deviation from the minimum inter-arrival time to the most
probable inter-arrival time of the task τi i.e., fi(Ri) = li. At any time instant
t, the next job of a task τi will be released at

reli(t) +Ri

66 Paper B

The most probable time instant for a task release at a time t is:

reli(t) +Ri s.t. fi(Ri) = max(fi(t)) ∀ t ∈ Z

6.4.2 Online Preemption Control Algorithm

In a sporadic task system, since the inter-arrival times of the tasks are bounded
by a lower bound, it is impossible to know the time at which a job of the task
will be actually released. Consequently, preemptions on lower priority tasks
cannot be predicted because of the indeterminism in the higher priority task
releases after their minimum inter-arrival times. However, the minimum time
interval during which the next job of a particular task will not be released can
be determined during runtime. Hence, for a lower priority task, it is possible
to find the maximum time for which a higher priority task will not be released
i.e., it gives the maximum time for which the task can be guaranteed a non-
preemption. This gives the maximum time within which the set of outstanding
computations must be executed, in order to guarantee its non-preemptiveness
considering the minimum time interval during which a higher priority job will
not be released.

In our task model, every job of τi is released with a probability fi(t), t time
units after its earliest release time. It is quite evident that higher the value of
fi(t), higher the probability that the task is released. We use these task release
probabilities to provide a probabilistic guarantee for removing the preemption
by executing the outstanding computations before the probable point in time at
which higher priority task is released.

In our previous work [23], we used the earliest release time of a job as the
earliest possible preemption point. However, when considering the task release
probabilities, we can relax the above assumption by exploiting the probabilities
of the higher priority task releases in future, thereby deriving probabilistic pre-
emption points. We can make use of these probabilistic preemption points to
derive processor speeds such that we are able to provide probabilistic guaran-
tees on the preemption behavior of the schedule. Algorithm 1, finds the lowest
priority task (τu) in the ready queue whenever a job of a task τi starts its exe-
cution. It finds the earliest time in the future at which a job having a priority
higher than τu can be possibly released with a known threshold probability.
This gives the earliest time at which at least the lowest priority job from among
the jobs in the ready queue can be preempted by the higher priority task with
a probability equal to the threshold. It then computes the minimum frequency
at which the processor must execute the outstanding computations to avoid a

6.4 Methodology 67

preemption at this point.
Whenever a job starts its execution, if τu is the lowest priority task in the

ready queue, the earliest release time of a job with a higher priority than τu is
given by:

thp rel = min
∀τi∈hp(u)

(reli(t) +Ri)

The maximum time for which the outstanding computations can execute
non-preemptively relative to a time instant t, is given by:

tavailable = thp rel − t

Hence, in order to guarantee the non-preemptive execution of the outstand-
ing computations at any time t, its execution time should be no greater than
tavailable.

Algorithm 1 The algorithm is executed at the start time of a job in order to
control the number of frequency switches required and to also leverage on the
potential gains due to tasks executing for less than their WCET. For instance,
we consider a job of τi starting its execution at a time instant t. Let the lowest
priority task in the ready queue at time t be τu. The outstanding computations
must execute no greater than tavailable units of time in order to finish execution
before the preemption, where,

tavailable = thp rel − t

The outstanding computations require tout time units to execute at the default
frequency X , where:

tout =
∑

∀τa∈readyQ

Cr
a(t)

If tavailable ≤ 0, it means that the time instant when the release probability
of a higher priority task is equal to its threshold probability has elapsed, and
its job was not released. Here we could use the same reasoning by using a
secondary threshold. However, to preserve the simplicity of the method, we
execute the processor at the maximum speed so that the low priority computa-
tions complete as early as possible.

If tavailable > 0, we have three cases,

1. tavailable < tout

2. tavailable = tout

68 Paper B

3. tavailable > tout

Consider case 1, tavailable < tout, i.e., the time required to execute the out-
standing computations at time t is greater than the minimum time to the next
preemption. In this case, if the outstanding computations finish their execu-
tions in tavailable time units, their non-preemptive execution can be guaranteed.
Hence, the new frequency X ′, that guarantees their non-preemptive execution
is given by:

X ′ =
tout

tavailable
×X

If the calculated frequency is higher than Fmax, i.e., the preemption avoidance

Algorithm 1: Find the minimum processor frequency at time t for the
non-preemptive execution of the outstanding computations.

τu : the lowest priority task active in readyQ
thp rel ← 9999999(a large value)
i ← 1
while Pi > Pu do

if thp rel > reli(t) +Ri then
thp rel ← reli(t) +Ri

end if
i ← i+ 1

end while
tavailable ← thp rel − t
if tavailable > 0 then

tout =
∑

∀τa∈readyQ

Cr
a(t)

X ′ ← tout

tavailable
×X

if X ′ > Fmax then
X ′ ← Fmax

end if
if X ′ < Fsched then
X ′ ← Fsched

end if
else
X ′ ← Fmax

end if

cannot be guaranteed due to hardware limitations, the processor frequency is

6.4 Methodology 69

set to Fmax. If in such a scenario, more complex algorithms are used online to
calculate the probabilistic preemption points on the outstanding computations,
the associated overheads increase. For example, we could use a secondary
threshold probability to determine the next possible preemption point. How-
ever, to keep the method simple, we set the processor frequency to Fmax.

In case 2, the above equation becomes X ′ = X , i.e., the processor executes
at the default frequency. In case 3, i.e., tavailable > tout, there is a possibil-
ity to slow down the processor to conserve energy. The equation to find the
new frequency is valid for this case as well. It will find a lower frequency
(thus a lower voltage) that guarantees a non-preemptive execution of the out-
standing computations. If the calculated frequency is lower than Fsched, the
processor executes at Fsched, thus preserving the overall schedulability of the
task set. Even though we have presented our method in the context of FPS,
our methodology can be easily extended to dynamic priority scheduling e.g.,
the EDF scheduling. This can be achieved by considering the task instance
priorities rather than the task priorities in the algorithm.

Computational Complexity : The algorithm 1 has a linear complexity as-
suming that the existence of the jobs in the ready queue is kept track of by, e.g.,
a simple associative array. The number of jobs in the ready queue at any time
t cannot exceed the total number of tasks n. The lowest priority job is the last
task in the ready queue, and finding it does not add any significant complex-
ity to the approach. The earliest possible preemption point for the outstanding
computations can be found by a simple search in reli(t), ∀i ∈ hp(u). This can
also be done in a time linear in the number of tasks as reli(t) contains a max-
imum of n release times. Also, finding the outstanding computations can also
be done in linear time because the number of jobs in the ready queue cannot
exceed n.

Implementation Considerations : The online preemption control algo-
rithm can be easily implemented using techniques similar to the DVS algo-
rithms. The implementation typically should occur at the operating system
level, where the scheduler is modified to calculate frequencies that can en-
able preemption control. Whenever a new task arrives, the total outstanding
computations can be updated without significant overhead, by just adding the
computation requirement of the new task to the current total outstanding com-
putations. The lowest priority task in the ready queue is the last task in the
queue, thus a search through the queue can be avoided. In order to find the ear-
liest possible preemption point on the outstanding computations, the OS has to
maintain a data structure which stores the next earliest release times of each
sporadic task. This is calculated by adding the inter-arrival time of the task to

70 Paper B

Task Ci Ti

X 1 5
Y 3 10
Z 3 20

Table 6.1: Example taskset

its latest release time. The earliest possible preemption point can be found by
a simple search through this data structure.

6.5 Example

We illustrate our proposed method with an example. Consider a set of sporadic
tasks with execution requirements Ci and minimum inter-arrival times Ti, as
given in table 6.1. Let the time required to execute Ci computations of each
task be Ci time units at speed 1. Let the probability of task releases from their
respective earliest release times be given by the probability mass function in
Figure 6.1. Note that the probabilities can be different for different tasks. In
this example, for the purpose of simplicity we assume the same probability
mass function for all the tasks. Due to the sporadic nature of task releases, one
possible runtime scenario for the task executions is shown in Figure 6.2 where
there are 2 preemptions when the tasks execute for their WCET’s, are sched-
uled using FPS and the priorities are assigned according to the rate monotonic
priority ordering. Let the ith job of task X be represented by Xi, that of Y be
represented by Yi and of Z by Zi.

In the offline analysis, we assume that the threshold probability is 0.20.
The corresponding deviation from the minimum inter-arrival time that gives a
release probability equal to the specified threshold probability is 1 time unit.
Thus, the most probable time instant at which a job can be released is 1 time
unit after the its earliest release time.

When X1 starts its execution at time t1 = 0, the lowest priority job in the
ready queue is Z1. The next possible release time of a job having a higher
priority than Z1 is by X2 at time t2 = 5. We add the deviation to the inter-
arrival times based on the probability mass function in figure 6.1. Thus the next
probable higher priority task release will happen at time t′2 = 5+ 1 = 6. Thus
the processor has t′2 − t1 = 6 time units available to execute the outstanding
computations non-preemptively. The outstanding computations take 1+3+3 =

6.5 Example 71

Figure 6.1: Example probability mass function

7 time units to execute. The processor has to be speed-ed up by a factor of
7
6 such that the outstanding computations execute non-preemptively. A part
of the sporadic task schedule implementing algorithm 1 is shown in Figure
6.3. When Y2 starts its execution at time 12, the earliest preemption point has
already elapsed (at time instant 11). After adding the deviation of 1 time unit,
we can see that the probable release time of X3 has already elapsed. Here
we could use a secondary threshold value to determine the earliest preemption
point on Y2 by a job of X . However for the purpose of simplicity, we speed up
the processor such that Y2 completes its execution as early as possible.

Figure 6.2: A part of the original FPS schedule of the sporadic task set

72 Paper B

Figure 6.3: The sporadic task schedule after preemption control

Processor speed 0 1 2 3 4 5
Power consumption

per clock cycle (mW) 0 20 50 50 200 500

Table 6.2: Processor Model

6.6 Evaluation

We evaluated our method on synthetic tasks by generating 1400 task sets, hav-
ing 3 - 15 tasks per task set with LCM ≤ 2000, using the UUniFast [27] algo-
rithm. The processor model that we used in our evaluations, which we adapted
from [28], is given in table 6.2. The task sets were generated such that they are
schedulable at speed=1. In our experiments, for each task τi in Γ, we generated
LCM
Ti

number of instances where every task instance was released after a time
t, with a probability as given in Figure 6.1. We assumed threshold probabilities
of 0.20 and 0.24, to bound the number of preemptions. Consequently, the de-
viations determined in the offline phase are 1 and 3 time units. Each simulation
was run until all the LCM

Ti
jobs of every τi were executed. We calculated the

average number of preemptions that occurred for the following cases i) normal
FPS ii) algorithm 1 with Ri = 0 iii) algorithm 1 with Ri = 1 and iv) algo-
rithm 1 with Ri = 3. We present our results in Figures 6.4 and 6.5. Figure
6.4 shows the average number of preemptions for various task utilizations un-
der the different cases described previously and figure 6.5 shows the average
power consumption under the different cases.

Our method showed significant reduction in the number of preemptions as
seen from the evaluation results presented in Figure 6.4. It is seen that con-

6.7 Conclusions 73

Figure 6.4: Average number of preemptions for various threshold probabilities

sidering probabilities while calculating the CPU frequency achieves almost an
equal reduction in the number of preemptions as for the case where probabil-
ities are not considered (i.e., Ri = 0) while saving energy in the system. The
number of preemptions for the highest utilization range (0.8-0.9) shows a de-
crease for Ri = 0 because these task sets where found to have less number
of tasks causing less preemptions. The reduction in the energy consumption
achieved is particularly significant for tasks with higher utilizations where the
number of preemptions is typically higher.

The task release probabilities can be used to achieve preemption-energy
trade-offs in the system as can be seen from the two figures. By varying the
relaxations permitted to the probable earliest release times, we observe that
the preemption reduction achieved varied and so did the energy consumption,
demonstrating the possibility of energy preemption trade-off.

6.7 Conclusions

In this paper we presented a combined offline-online approach to control the
preemptive behaviour of sporadic task systems with probabilistic inter-arrival
times by using CPU frequency scaling. While an offline analysis derives the
probability related deviation from the minimum inter-arrival time, an online
algorithm uses this information to provide appropriate CPU frequencies that

74 Paper B

Figure 6.5: Average power consumption for various threshold probabilities

guarantees the non-preemptive task executions while preserving the overall
system schedulability. We do so by finding the earliest time instant at which
at least one of the jobs in the busy period can be preempted with a probability
above a certain known threshold, whenever a task starts its execution. We then
calculate the processor frequency such that the jobs in the busy period finishes
execution before this point so that a preemption is avoided. The online algo-
rithm has a linear complexity and does not lead to significant implementation
overheads. Evaluation results show the effectiveness of our method in reducing
the number of preemptions in the schedule, as well as it also demonstrates the
methods’ ability to provide for trade-offs between the number of preemptions
and overall energy consumption.

Ongoing efforts focus on deriving upper bounds on the speed-up required
for guaranteeing a specified preemption behaviour and extensions to the multi-
processor platform.

Bibliography

[1] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. The Journal of ACM, 1973.

[2] H Ramaprasad and F Mueller. Tightening the bounds on feasible pre-
emptions. In The ACM Transactions on Embedded Computing Systems,
2008.

[3] Michael Zhang and Krste Asanovic. Highly-associative caches for low-
power processors. In In Kool Chips Workshop, Micro-33, 2000.

[4] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of spo-
radic task systems. In The 17th Euromicro Conference on Real-Time Sys-

tems, 2005.

[5] Giorgio C. Buttazzo. Rate monotonic vs. EDF: judgment day. In Real-

Time Systems Journal, January 2005.

[6] Hakan Aydin, Rami Melhem, Daniel Moss, and Pedro Meja-Alvarez.
Power-aware scheduling for periodic real-time tasks. The IEEE Trans-

actions on Computers, 2004.

[7] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scal-
ing for low-power embedded operating systems. In The 18th ACM sym-

posium on Operating systems principles, 2001.

[8] Liliana Cucu and Eduardo Tovar. A framework for the response time anal-
ysis of fixed-priority tasks with stochastic inter-arrival times. SIGBED

Rev., 2006.

[9] Bach D. Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. Impact
of cache partitioning on multi-tasking real time embedded systems. In

75

76 Bibliography

The 14th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, 2008.

[10] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for en-
gineering real-time fixed priority schedulers. The IEEE Transactions on

Software Engineering, 1995.

[11] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and anal-
ysis of fixed priority schedulers. The IEEE Transactions on Software

Engineering, 1993.

[12] Krithi Ramamritham and John A. Stankovic. Scheduling algorithms and
operating systems support for real-time systems. In The Proceedings of

the IEEE, 1994.

[13] William Lamie. Preemption threshold. Whitepaper, 1997.

[14] Yun Wang and M. Saksena. Scheduling fixed-priority tasks with preemp-
tion threshold. In Sixth International Conference on Real-Time Comput-

ing Systems and Applications, 1999. RTCSA ’99., 1999.

[15] Gang Yao, G. Buttazzo, and M. Bertogna. Comparitive evaluation of
limited preemptive methods. In The 15th International Conference on

Emerging Technologies and Factory Automation, 2010.

[16] Gang Yao, G. Buttazzo, and M. Bertogna. Bounding the maximum length
of non-preemptive regions under fixed priority scheduling. In The 15th

IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, 2009.

[17] Marko Bertogna, Giorgio Buttazzo, Mauro Marinoni, Gang Yao,
Francesco Esposito, and Marco Caccamo. Preemption points placement
for sporadic task sets. In The 22nd Euromicro Conference on Real-Time

Systems, 2010.

[18] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic voltage
scaling on a low-power microprocessor. In The 7th annual international

conference on Mobile computing and networking, 2001.

[19] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Dynamic fre-
quency scaling with buffer insertion for mixed workloads. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,
2002.

[20] Radu Dobrin and Gerhard Fohler. Reducing the number of preemptions
in fixed priority scheduling. In The 16th Euromicro Conference on Real-

time Systems, 2004.

[21] Abhilash Thekkilakattil, Anju S Pillai, Radu Dobrin, and Sasikumar Pun-
nekkat. Reducing the number of preemptions in real-time systems sche-
duling by CPU frequency scaling. In The 18th International Conference

on Real-Time and Network Systems, 2010.

[22] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat. Pre-
emption control using CPU frequency scaling in real-time systems. In
The 18th International Conference on Control Systsems and Computer

Science, 2011.

[23] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat. To-
wards preemption control using CPU frequency scaling in sporadic task
systems. In Proceedings of the WiP of The 6th International Symposium

on Industrial Embedded Systems, 2011.

[24] Aloysius Ka Lau Mok. Fundamental design problems of distributed sys-
tems for the hard-real-time environment. Massachusetts Institute of Tech-

nology, PhD thesis, 1983.

[25] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In The 11th Real-Time Systems

Symposium, 1990.

[26] Rami Melhem, Daniel Mosse, and Elmootazbellah (Mootaz) Elnozahy.
The interplay of power management and fault recovery in real-time sys-
tems. IEEE Transactions on Computers, 2004.

[27] Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 2005.

[28] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. Minimizing cpu en-
ergy in real-time systems with discrete speed management. ACM Trans-

actions on Embedded Computer Systems, 2009.

Chapter 7

Paper C:

Quantifying the

Sub-Optimality of

Non-Preemptive Real-time

Scheduling

Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat
Technical Report, Mälardalen Real Time Research Centre, Mälardalen Univer-
sity, Västerås, Sweden, November, 2012

79

Abstract

Many preemptive real-time scheduling algorithms, such as the Earliest Dead-
line First (EDF), are known to be optimal on a uni-processor. However, no such
algorithms exist under the non-idling non-preemptive scheduling paradigm.
Hence preemptive schemes strictly dominate non-preemptive schemes with re-
spect to feasibility. However, the ’goodness’ of non-preemptive schemes in
successfully scheduling feasible task sets when compared to uni-processor op-
timal preemptive scheduling schemes such as the EDF, which can also be re-
ferred to as its sub-optimality, is unknown. In this paper, we apply resource
augmentation, specifically processor speed-up, to quantify the sub-optimality
of non-preemptive scheduling with respect to an optimal uni-processor sche-
duling scheme such as the EDF. We also present a method to guarantee user
specified upper-bounds on the preemption related costs in the schedule.

We prove that the speed-up required to guarantee the feasibility of a non-
preemptive execution of any task τi, for a duration of Li, is upper-bounded
by 4Li

Dmin
, where Dmin is the smallest relative deadline in the task set. Conse-

quently, we show that the upper-bound on the processor speed that guarantees
the feasibility of a non-preemptive schedule for the task set is 4Cmax

Dmin
, where

Cmax is the largest execution time in the task set. The derived upper-bound is
used in a sensitivity analysis based method to calculate the optimal processor
speed that guarantees a specified upper-bound on the preemption related costs
in the schedule. For this, we first present a method to translate the system-
level requirements of meeting specified upper bounds on the preemption re-
lated costs to task level non-preemption requirements. We then use sensitivity
analysis technique to calculate the optimal processor speed that guarantees the
feasibility of the derived task level non-preemption requirements, which in its
turn guarantees the desired bounds on the preemption related overheads.

Our contribution quantifies the sub-optimality of non-preemptive scheduling
in terms of the processor speed-up required to successfully schedule all the uni-
processor feasible task sets. It also enables a system designer to use a faster
processor to guarantee specified upper-bounds on the preemption related over-
heads.

7.1 Introduction 81

7.1 Introduction

Real-time scheduling theory has matured to the point where most of the fun-
damental questions regarding preemptive uni-processor scheduling have been
fairly answered and many of the results have been passed on to the indus-
try. A major part of this research deals with schedulability analysis [1] [2]
[3] and feasibility analysis [4] [5] [6] [7] of hard real-time periodic and spo-
radic tasks under a preemptive scheduling scheme. However, the feasibility
of non-preemptive scheduling has received relatively much less attention [8]
and non-preemptive scheduling can be considered as less understood when
compared to preemptive scheduling [9]. While there exists utilization based
tests for schedulability and feasibility of preemptive real-time tasks under var-
ious assumptions [1], no such tests exists for non-preemptive scheduling even
under restrictive assumptions. The Earliest Deadline First (EDF) is known
to be optimal [4], while Fixed Priority Scheduling (FPS) scheme is not op-
timal with respect to uni-processor scheduling. Consequently, many works
focused on finding the sub-optimality of FPS with respect to an optimal sche-
duling scheme such as the EDF under preemptive and non-preemptive sche-
duling [10] using resource augmentation. However, no such attempts have
been made to quantify the sub-optimality of non-preemptive scheduling with
respect to preemptive scheduling even though it is known that preemptive real-
time scheduling strictly dominates non-preemptive scheduling [7]. Investigat-
ing the sub-optimality of non-preemptive scheduling with respect to a preemp-
tive scheduling may also provide significant insights into the development of a
utilization based test for non-preemptive scheduling.

A major factor which influences task set feasibility in modern real-time sys-
tems, where hardware features such as caches influences the task executions, is
the number of preemptions and the points at which these preemptions occur. A
detailed discussion on the preemption related costs is given in the related works
section. The feasibility analysis of real-time tasks [6] [5] assumes zero preemp-
tion related overheads. Whenever these preemption related overheads are not
negligible, they are assumed to be accounted for in the worst case execution
time (WCET) of the tasks, leading to significant pessimism in the resulting
analysis. Hence, the task sets which were originally feasible, without consider-
ing the preemption related overheads, may not be feasible when the worst case
preemption related overheads are added to the WCET. As a consequence of
this assumption, the set of feasible task sets identified by the feasibility anal-
ysis, may not include those task sets which might be feasible by restricting
preemptions. In order to account for such task sets, Baruah and Bertogna in-

82 Paper C

troduced the limited preemption technique called the floating non-preemptive
region (f-NPR) [7] [11] scheduling, which disables preemptions per task for
a bounded time period, without compromising task feasibility. However, the
limited preemption scheduling scheme may still identify some task sets as in-
feasible e.g., due to increased preemption costs resulting from the number of
preemptions being greater than a known threshold. This is because the largest
non-preemptive regions are not ’large’ enough to provide any specified non-
preemption guarantees e.g., in this case guarantee that the number of preemp-
tions are less than the known threshold. It is known that the task WCET scales
with processor frequency. Consequently, there exists a possibility to speed-up
the processor to control the length of the largest non-preemptive region, and
guarantee its feasibility by ensuring that the largest non-preemptive regions are
’large’ enough to achieve the specified non-preemption behavior. Augmenting
the scheduler with a faster processor, can guarantee the feasibility of a specified
non-preemption behavior that minimizes the preemption related overheads, and
hence broaden the set of feasible task sets.

Resource augmentation was first introduced by Kalyanasundaram et. al.
[12], showing that faster processors can achieve the same effect as clairvoy-
ance. We [13] derived the upper-bound on the minimum processor speed-up
required, that can guarantee the fault tolerance feasibility of a set of real-time
tasks under an error burst of known length. They showed that if the error burst
length is no larger than half the shortest deadline, the processor speed-up re-
quired that guarantees the fault tolerance feasibility is upper-bounded by 6.
Davis et. al. [10] derived the upper and lower bounds on the processor speed-
up required for a fixed priority scheduler to schedule all the task sets scheduled
by an optimal scheduling algorithm, leveraging on the optimality of the EDF. In
this work, the ’goodness’ or sub-optimality of FPS with respect to an optimal
scheduling algorithm such as the EDF, is quantified by the processor speed-up
required to guarantee the FPS schedulability of the set of all feasible tasks that
are schedulable by the optimal algorithm.

In this paper, our aim is to quantify the sub-optimality of non-preemptive
scheduling with respect to uni-processor optimal preemptive schemes, such
as EDF, using resource augmentation. We derive the resource augmentation
bound, specifically the upper-bound on the processor speed-up, that guaran-
tees the feasibility of a user specified non-preemption behavior of the real-time
tasks. Using this, we derive the upper-bound on the processor speed-up that
guarantees the feasibility of a fully non-preemptive schedule, which allows us
to quantify the sub-optimality of non-preemptive scheduling. Processor speed-
up can be used to achieve effective preemption related cost control by guaran-

7.2 System Model 83

teeing a non-preemption behavior that bounds the preemption related costs by
a user specified value. To achieve this, we first present a method to translate
the preemption related cost control requirements to a set of non-preemption
requirements on the tasks e.g., the length of the non-preemptive region that
guarantees no more than a user specified number of preemptions per task. We
then use sensitivity analysis using the derived upper-bound to calculate the
optimal processor speed-up factor that guarantees the feasibility of the de-
rived non-preemption requirements, consequently guaranteeing the specified
bounds on the preemption related costs. Our proposed approach provides a
real-time system designer with the possibility of controlling the length of the
non-preemptive regions in order to achieve finer control on the preemption re-
lated costs, besides quantifying the sub-optimality of non-preemptive real-time
scheduling.

The paper is organized as follows: section 7.2 details the system model
and the various notations used throughout this paper. We recall and reinterpret
some key results about feasibility of preemptive and non-preemptive real-time
scheduling in section 7.3. We present our main contribution, the resource aug-
mentation bound for non-preemptive real-time scheduling, in section 7.4. We
then build on the theory presented in section 7.4 to derive a methodology for
minimizing preemption related costs by using processor speed-up to guarantee
a specified preemption behavior in section 7.5. The two steps of the method
are presented in sections 7.5.1 and 7.5.2, followed by an example in section
7.5.3. In section 7.6, we present a discussion on relaxing the assumption made
previously. Finally, we present our conclusions in section 7.8 after giving an
overview of some related works in section 7.7.

7.2 System Model

In this section, we introduce the notations used in this paper whilst describing
the task model, scheduling model and the execution time model.

7.2.1 Task model

We consider a set of sporadic real-time tasks Γ= {τ1, τ2, ...τn}, where each
τi has a minimum inter-arrival time, Ti, a worst case execution time, CS

i at
processor speed S, and a relative deadline, Di. We assume that the tasks are
ordered according to the increasing order of their deadlines, which means that
Dmin = D1. Let the length of the longest critical section in τi be denoted

84 Paper C

by CSS
i at speed S. We assume that every task τi has mi optimal preemption

points within its execution, where the mth
i point denotes the end of the task

execution. Let qSi,j , j = 1...mi denote the length of the task execution of τi up

to its jth optimal preemption point on a processor at speed S, from the start of
the task execution. We assume negligible preemption related overheads at these
optimal preemption points for the sake of clarity of presentation, the relaxation
of which is discussed in section 7.6.

Let βS
i denote the blocking tolerance of τi, which is the largest time for

which τi can be blocked without causing a deadline miss. Also, let BS
i ≤ βS

i

denote the largest time for which τi is actually blocked. LCM denotes the Least
Common Multiple of the time periods of all the tasks in the set. The utilization

Ui of a task τi executing on a processor at speed S is defined as US
i = CS

i

Ti
and

the utilization of the entire task set is given by US =
∑n

i=1 U
S
i . The demand

bound function of a task τi, on a processor of speed S, during a time interval
[0, t] is given by [5],

DBFS
i (t) = max

(

0, 1 +

⌊

t−Di

Ti

⌋)

CS
i

For example, DBF 1
i (t) denote the cumulative processor time requested by τi

during a time interval [0, t] on a processor of speed S = 1.

7.2.2 Scheduling Model

In our scheduling model, we assume that, whenever a higher priority task is
released during the execution of a lower priority task τi, instead of immediately
preempting τi, the scheduler blocks the higher priority task for QS

i time units
on a processor of speed S. This QS

i is the largest length of the non-preemptive
region of τi derived from the task attributes [7] [11]. This type of scheduler
is referred to as an f-NPR scheduler [14] (f-NPR for Floating Non-Preemptive
Regions). Consequently, the maximum number of times the task τi can be

preempted, when a processor of speed S is used, is given by,
⌈

CS
i

QS
i

⌉

− 1.

We assume a work conserving scheduler, i.e., the scheduler does not idle
the processor when there are active tasks awaiting the processor. It is known
that the Earliest Deadline First scheduling (EDF) is optimal under a work
conserving uniprocessor scheduling scheme under both preemptive and non-
preemptive paradigms [4]. We leverage on the optimality of EDF to study
the processor speed-up required to guarantee the feasibility of a required non-
preemptive behavior for real-time tasks.

7.3 Feasibility Analysis of Real-time Systems 85

7.2.3 Execution Time Model

We assume a linear relationship between execution time and processor speed
as assumed by [12] and [10]. This assumption can be easily relaxed by dividing
the execution requirement into processor speed dependent and processor speed
independent parts [15] which we discuss in section 7.6. In this paper we are
focusing mainly on the theoretical consequences of resource augmentation on
the preemption behavior, and hence we have assumed a linear speed-up of task
execution times.

To ease the readability, and without loss of generality, we assume that the
task set is initially executing on a processor of speed S = 1 and that the ex-
ecution time of τi at that speed S = 1 is equal to the number of clock ticks
required to execute it.

We assume that, if C1
i is the execution time at speed S = 1, the task exe-

cution time of τi scales linearly as follows:

CS
i =

C1
i

S

Conversely, the speed S required to obtain an execution time of CS
i is given

by:

S =
C1

i

CS
i

This model also allows us to use processor speed-up factors and processor
speeds interchangeably. Changing the processor speed from S = 1 to S = a,
is equivalent to speeding up the processor by a factor of ’a’.

7.3 Feasibility Analysis of Real-time Systems

Limited preemption models are considered to be generalizations of non-preemptive
and preemptive scheduling models. A limited preemption scheduler can be
used to simulate a non-preemptive or a preemptive schedule by setting the non-
preemption parameters appropriately. The floating Non-Preemptive Model (f-
NPR model) [7] [11] can be seen as a general scheduling model, i.e., if QS

i is
set equal to 0, for all τi, the system simulates a fully preemptive model, while
if QS

i is set equal to CS
i , the system simulates a fully non-preemptive model

[14]. In our approach we build on the f-NPR scheduling paradigm to study the
feasibility of preemptive, non-preemptive and limited preemptive scheduling
of real-time tasks, with or without synchronization schemes, by varying the

86 Paper C

length of the non-preemptive regions of the tasks by changing the processor
speed.

Let us now recall with modifications, some previously published theoreti-
cal results on the feasibility of real-time tasks. Due to the sustainability of the
EDF scheduling algorithm [16], we can generalize the following theorems to
a processor of speed S (S ≥ 1). Baruah et. al. [5] derived the demand bound
function, which, for any time interval, calculates the total processor time re-
quested by the jobs of a task completely scheduled in the interval. A real-time
task set is feasible if the cumulative processor time requested by the set of tasks
during any time interval does not exceed the size of that time interval.

The following theorem determines the feasibility of uni-processor sche-
duling based on the blocking tolerance (βS

i) of the tasks.

Theorem 7.3.1. [7] [11] A task set is feasible on a speed S processor, if and

only if, ∀i ∈ [1, n],
βS
i ≥ 0

where, βS
i is given by,

βS
i = min

Di≤t<Di+1



t−

n
∑

j=1

DBFS
j (t)





t = kTj +Dj , ∀k ∈ N, j ∈ [1, n]

In the above theorem, Dn+1 is set as,

Dn+1 = min (LCM,P)

Where,

P = max

{

D1, D2, ..., Dn,

∑n
i=1(Ti −Di)US

i

1− US

}

When the βS
i = 0, ∀i ∈ [i, n], the task set is schedulable only under a fully

preemptive scheduling scheme.
The above theorem can be used to determine the feasibility of limited pre-

emption scheduling on a processor at speed S and is stated by the following
theorem.

Theorem 7.3.2. [7] [11] [17] A task set is feasible under limited preemptive

scheduling on a speed S processor, if ∀i ∈ [1, n],

BS
i ≤ βS

i

7.4 Quantifying the Sub-Optimality of
Non-Preemptive Scheduling 87

where, βS
i is given by,

βS
i = min

Di≤t<Di+1

(

t−

n
∑

i=1

DBFS
i (t)

)

t = kTj +Dj , ∀k ∈ N, j ∈ [1, n]

and BS
i is the largest blocking actually experienced by τi due to the limited

preemptions on a processor of speed S.

The bound QS
k on the length of the non-preemptive region of a task τk, on

a processor of speed S, is given by the following theorem.

Theorem 7.3.3. [17] A task set is feasible under limited preemptive scheduling

on a speed S processor, if ∀k ∈ [1, n],

QS
k = min

1≤i<k
βS
i

The task can execute entirely non-preemptively if the calculated value of
QS

k is greater than its execution time CS
k . We can use the above theorem to

state the non-preemptive feasibility of the task set i.e., whether it is possible to
find a non-preemptive schedule.

Theorem 7.3.4. [8] [7] [17] A task set is feasible under non-preemptive sche-

duling on a speed S processor, if ∀k ∈ [1, n],

CS
k ≤ QS

k

7.4 Quantifying the Sub-Optimality of

Non-Preemptive Scheduling

In this section, we derive the resource augmentation bound that guarantees
the feasibility of a specified non-preemption behavior of a given task set. An
illustration of the main contribution of this paper is presented in figure 7.1. We
refer to the figure as the feasibility bucket. The depth of the bucket provides
the processor speed-up required to guarantee a specified preemption behavior.
Each cross-section of the bucket indicates the set of all task sets feasible under a
limited preemption behavior, guaranteed at the corresponding processor speed.
The radius is largest at the mouth of the bucket which denotes the set of all uni-
processor feasible task sets on a processor of speed S = 1. The radius, which

88 Paper C

indicates the size of the set, is the smallest at its base, for the set of all task sets
that is feasible under a fully non-preemptive scheduling scheme. On increasing
the processor speed, the set of all uni-processor feasible task sets becomes
feasible under a corresponding limited preemption scheduling scheme, finally
becoming feasible under a fully non-preemptive scheme at speed S = 4Cmax

Dmin
.

Definition 1. A non-preemption requirement on a task τi is defined as the lower

bound on the lengths of the non-preemptive regions of τi, that, for example,

guarantees a user defined upper bound on the preemption related cost on τi.

We denote the non-preemption requirement on a task τi at speed S by LS
i .

A non-preemption requirement can also be denoted by Li in case it does not
change with the processor speed. We formally define the feasibility of a speci-

fied non-preemption behavior as follows.

Definition 2. The feasibility of a specified non-preemption behavior of a task

set is defined as the existence of a real-time schedule that guarantees the non-

preemptive execution of every task for a user specified time duration, given by

the non-preemption requirement.

The feasibility of the specified non-preemption behavior of the task set can
be guaranteed by guaranteeing the feasibility of the specified non-preemption

requirement for every task τi in the task set.

Figure 7.1: The feasibility bucket

7.4 Quantifying the Sub-Optimality of
Non-Preemptive Scheduling 89

We assume that during any arbitrary time interval, the processor is busy ex-
ecuting only the higher priority jobs and derive the maximum speed-up factor
that guarantees the feasibility of a specified non-preemption requirement during
that time interval. We then derive the upper-bound on the required processor
speed-up factor that guarantees the feasibility of a non-preemptive schedule,
thereby allowing us to quantify the sub-optimality of non-preemptive sche-
duling with respect to an optimal scheduling scheme. Later, we use this bound,
in section 7.5, to derive the optimal processor speed-up factor that guarantees
a specified upper-bound on the cumulative preemption related costs.

Let us now derive the processor speed that guarantees the feasibility of a
non-preemption requirement Li for a task τi.

Theorem 7.4.1. The processor speed Si that guarantees the feasibility of a

non-preemption requirement Li for a task τi is given by,

Si = max
D1≤t<Di

{

∑n
j=1 DBF 1

j (t)

t− Li

}

Proof. The length of the non-preemptive region for τi at speed 1 is given by
[7],

Q1
i = min

D1≤t<Di







t−

n
∑

j=1

DBF 1
j (t)







⇒ Q1
i ≤ t−

n
∑

j=1

DBF 1
j (t), ∀t,D1 ≤ t < Di

Our aim is to find the processor speed Si that guarantees the feasibility of a
non-preemption requirement Li. Thus,

Li ≤ t−

∑n
j=1 DBF 1

j (t)

Si
, ∀t,D1 ≤ t < Di

Solving for Si, we get,

Si ≥

{

∑n
j=1 DBF 1

j (t)

t− Li

}

, ∀t,D1 ≤ t < Di

i.e.,

Si = max
D1≤t<Di

{

∑n
j=1 DBF 1

j (t)

t− Li

}

90 Paper C

Thus the processor speed Sopt, that guarantees the feasibility of a non-
preemption requirement Li for a task τi is the maximum of the processor
speeds that guarantees the non-preemption requirement for each task individu-
ally.

Corollary 7.4.1. The optimal processor speed Sopt that guarantees the feasi-

bility of a non-preemption requirement Li for a task τi is given by,

Sopt = max(Si)

We now find the upper-bound on the required processor speed that can
guarantee a non-preemption requirement Li for any task τi.

Lemma 7.4.1. The speed Si that guarantees the feasibility of a non-preemption

requirement Li for any task τi, during a time interval t is upper-bounded by,

Si ≤
y

y − 1

where, y = t
Li

∀t ∈ [D1, Di).

Proof. In order to ensure a specified non-preemption requirement Li, the total
processor demand during any time interval must be decreased such that a slack
with a length of at most Li is generated:

n
∑

j=1

DBF 1
j (t)−

∑n
j=1 DBF 1

j (t)

Si
≤ Li

Solving for Si gives,

Si ≤

∑n
j=1 DBF 1

j (t)
∑n

j=1 DBF 1
j (t)− Li

The maximum value of
∑n

j=1 DBF 1
j (t) on a processor at speed 1 is t, since

we assume that the task set is feasible under a preemptive scheme. Substituting
for

∑n
j=1 DBF 1

j (t) = t, we get:

Si ≤
t

t− Li

And, finally, substituting y = t
Li

,

Si ≤
y

y − 1

7.4 Quantifying the Sub-Optimality of
Non-Preemptive Scheduling 91

We now find the upper-bound on the required processor speed that guaran-
tees the feasibility of a non-preemption requirement Li, for any τi, during any
time interval t such that Li is no greater t

2 .

Lemma 7.4.2. The speed Si that guarantees the feasibility of a non-preemption

requirement Li for any task τi is upper-bounded by 2, if t
Li

≥ 2, ∀t ∈ [D1, Di).

Proof. Evaluating the limit of the equation in lemma 7.4.1 at y = 2, we get,

Si = 2

Evaluating the limit using l’Hopital’s rule as y tends to infinity (∞), we get,

Si = 1

For any value of y ∈ [2,∞],

Si ≤ 2

We now find the upper-bound on the required processor speed that guar-
antees the feasibility of a non-preemption requirement Li for any τi when
1 ≤ t

Li
< 2 in any time interval t.

Lemma 7.4.3. The speed Si that guarantees the feasibility of a non-preemption

requirement Li for any task τi is upper-bounded by 4, if 1 ≤ t
Li

< 2 ∀t ∈
[D1, Di).

Proof. Since 1 ≤ t
Li

< 2, we have t ≥ Li and t < 2Li Let us now increase the
processor speed by a factor of 2. We effectively have t′ = 2t clock ticks in the
time interval t on a processor of speed 2. Thus, t′

Li
≥ 2 since 1 ≤ t

Li
< 2. By

using lemma 7.4.2, the speed-up S′
i required to guarantee the non-preemption

requirement, for the increased processor speed, is upper-bounded by 2. As that
we have already increased the processor speed by a factor of 2, the upper-bound
on the processor speed that guarantees the non-preemption requirement for the
case 1 ≤ t

Li
< 2 is Si ≤ 4.

Observation 7.4.1. The speed Si that guarantees the feasibility of a specified

non-preemption requirement Li for any task τi is exactly upper-bounded by 2
if 1 ≤ t

Li
< 2 ∀t ∈ [D1, Di).

92 Paper C

We know that, 1 ≤ t
Li

< 2 and thus, we have t ≥ Li and t < 2Li. At
speed S = 1, there are t clock ticks available in any time interval t. Thus it
is evident that in a worst case, when the processor is fully occupied during the
interval t, Li computations of the non-preemption requirement can not be fea-
sibly executed within the interval t. Let us assume an increase in the processor
speed by a factor of 2. This implies that within an interval of time t, there are
in effect t′ = 2t clock ticks. In this case, it is clear that 2t ≥ Li + t since
t ≥ Li. Thus, a non-preemption requirement Li can be successfully scheduled
within t without causing any deadline miss. Hence, the speed-up required for
this case is exactly upper-bounded by 2.

Lemma 7.4.4. The speed Si that guarantees the feasibility of a non-preemption

requirement Li for any task τi is upper-bounded by 4Li

t , if 0 < t
Li

< 1,

∀t ∈ [D1, Di).

Proof. In this case we know that t < Li. Let us now assume an increase in the
processor speed to S = Li

t . The number of available clock ticks in the time

interval t increases from t to t′ = t× Li

t = Li. We thus obtain, t′

Li
= 1. This is

a special case of lemma 7.4.3, and hence the speed-up S′
i required to guarantee

the non-preemption requirement of τi is,

S′
i ≤ 4

Since we had already increased the processor speed by Li

t , the upper-bound on
the actual speed Si is:

Si ≤
4Li

t

Observation 7.4.2. The speed Si that guarantees the feasibility of a non-

preemption requirement Li for any task τi is exactly upper-bounded by 2Li

t
if 0 < t

Li
< 1 ∀t ∈ [D1, Di).

On increasing the processor speed to S = Li

t , the number of clock ticks

in the time interval t increases from t to t′ = t × Li

t = Li. We can now
execute the original t computations, and the Li − t computations of the non-
preemption requirement Li, using the Li clock ticks in the time interval t, at
speed S = Li

t . Let the remaining non-preemption requirement that cannot be
executed without a deadline miss in the interval t, be denoted by L′

i = t. We

know that t < Li, thus, in effect we get t′

L′

i
= Li

t > 1. Using lemma 7.4.2 and

7.4 Quantifying the Sub-Optimality of
Non-Preemptive Scheduling 93

the exact upper-bound for the case 1 ≤ t
Li

< 2 ∀t ∈ [D1, Di), the exact upper-
bound on the speed, denoted by S′

i, that ensure the specified non-preemption
requirement L′

i is 2 i.e.,

S′
i ≤ 2

Since we had already increased the processor speed by Li

t , the exact upper-
bound on the actual speed Si is:

Si ≤
2Li

t

We now find the upper-bound on the processor speed that guarantees a non-
preemption requirement Li for any task τi in the general case.

Theorem 7.4.2. The speed Si that guarantees the feasibility of a non-preemption

requirement Li for any task τi is upper-bounded by 4Li

t ∀t ∈ [D1, Di).

Proof. In the general case, Li is bounded by the maximum of the execution
times of the tasks at speed S = 1 (i.e., for its non-preemptive execution) in the
task set, and t by the shortest deadline and hence t

Li
> 0.

It follows from lemmas 7.4.2 7.4.3 and 8.5.4 that the speed-up required in
the general case is 4Li

t . When t
Li

≥ 2, we obtain Si ≤
4
t

Li

= 4
2 = 2 and when

1 ≤ t
Li

< 2, we obtain Si ≤
4
t

Li

= 4
1 = 4 and when 0 < t

Li
< 1 the speed-up

required is Si ≤
4Li

t .

Thus, for any t
Li

> 0, the speed-up required is Si ≤
4Li

t .

Hence, we have derived the upper-bound on the processor speed that guar-
antees the feasibility of a specified non-preemption behavior for any task set
Γ. We use this upper-bound later in section 7.5.2 to find the exact processor
speed-up that can guarantee a specified preemption behavior to control the pre-
emption related costs.

We now examine the feasibility of a non-preemptive schedule for any task
set Γ.

Corollary 7.4.2. The speed Si that guarantees the feasibility of a non-preemption

requirement Li for any task τi is upper-bounded by 4Li

Dmin
.

This is straightforward as the value of t that maximizes 4Li

t , t ∈ [D1, Di),
is the smallest value of t given by the shortest relative deadline t = Dmin

(remember that Dmin = D1).

94 Paper C

Corollary 7.4.3. The speed Si that guarantees the feasibility of the non-preemptive

execution of τi is upper-bounded by
4C1

i

Dmin
.

This is easily seen from theorem 7.4.2 by substituting Li = C1
i and using

the smallest value of t, which is the shortest deadline Dmin. Moreover, Baruah
[7] derived the feasibility of limited preemption scheduling by building on the
optimality of the Earliest Deadline First (EDF) scheduling. We have derived
the resource augmentation bounds based on the feasibility of limited preemp-
tive scheduling proposed by Baruah [7]. Hence our resource augmentation
bounds guarantees the feasibility of the specified non-preemption behavior.

Corollary 7.4.4. The speed S that guarantees the feasibility of a non-preemptive

execution of all the tasks in the task set is upper-bounded by 4Cmax

Dmin
, where

Cmax = max(C1
i)∀τi ∈ Γ.

The limited-preemptive execution of the tasks are independent of each
other [7]. Hence, the processor speed-up that guarantees the non-preemptive
execution of the task with the largest execution time, will also guarantee the
non-preemptive execution of other tasks.

Hence, the sub-optimality of non-preemptive scheduling with respect to an
optimal uni-processor preemptive scheduling scheme for any task set Γ is given
by 4Cmax

Dmin
where Cmax = max(C1

i)∀τi ∈ Γ.

7.5 Guaranteeing a Specified Preemption Behavior

using Processor Speed-up

In the previous section, we derived the upper-bound on the required proces-
sor speed-up that guarantees the feasibility of a user specified non-preemption
behavior. In this section, we apply this bound to guarantee a user specified
upper-bound on the preemption related costs in the schedule. This is achieved
by first deriving the non-preemption requirement that guarantees the upper-
bounds on the preemption related costs and then finding the processor speed-
up that guarantees the feasibility of the derived non-preemption requirement.
We propose a sensitivity analysis method that uses the bound derived in sec-
tion 7.4, to calculate the optimal processor speed that guarantees the derived
non-preemption requirements which in turn guarantees specified upper-bound
on the preemption related costs.

Definition 3. The optimal processor speed Sopt that guarantees the feasibility

of a specified non-preemption behavior is defined as Sopt = min(S), where

7.5 Guaranteeing a Specified Preemption Behavior using Processor
Speed-up 95

S ∈ the set of available processor speeds such that, ∀ τi in Γ,

Q
Sopt

i ≥ L
Sopt

i

Here, L
Sopt

i , is the specified length of the non-preemptive region for τi
(its non-preemption requirement), that guarantees the feasibility of a specified
non-preemption behavior per τi.

According to our scheduling model, the length QS
i determines the upper-

bound on the preemption related costs in the schedule e.g., upper-bound on
the number of preemptions or the possibility of preemptions only at optimal
preemption points. However, if, for any task τi, Q

S
i does not guarantee the

specified upper-bound on the preemption related costs, we can derive the non-
preemption requirement LS

i that guarantees the specified bound. We can then
calculate the speed-up required to guarantee the feasibility of the non-preemption
requirement LS

i , which will in turn guarantee the specified upper-bounds on the
preemption related costs.

Figure 7.2: Methodology overview

96 Paper C

Methodology Overview : Our approach is performed in two steps. In the
first step, we translate the requirements of meeting the specified upper bounds
on the preemption related costs into a set of non-preemption requirements.
We then perform a sensitivity analysis using the task parameters and the non-
preemption requirements to derive the optimal processor speed that guaran-
tees the desired non-preemption behavior. An overview of our methodology is
given in figure 7.2. In the following two sections, we describe each of the steps
in detail.

7.5.1 Translating Preemption Cost Control Requirements to
Non-Preemption Requirements

The key idea behind the approach is that the system level requirements of meet-
ing specified bounds for various preemption related costs can be translated into
a set of task level non-preemption requirements, i.e., a lower bound on the
length of the non-preemptive regions for each task.

In the following, we outline the first step in our approach i.e., the translation
of preemption cost control requirements to specified non-preemption require-
ments for each task that will, for example, lower the overall preemption related
overheads. Our aim is to find the optimal processor speed that will guarantee
that the length of the non-preemptive region per task at that speed is greater
than or equal to the non-preemption requirement.

Controlling the Number of Preemptions

The cumulative preemption related costs for a task set depends both on the
number of preemptions as well as the points at which the preemptions occur.
The maximum number of times a task τi, characterized by a non-preemptive
region QS

i , can be preempted while executing on a speed S processor is given
by [7] [14]:

⌈

CS
i

QS
i

⌉

− 1

If in order to guarantee no more than pi preemptions per τi, its non-preemption
requirement LS

i on a speed S processor, should be:

LS
i ≥

CS
i

pi + 1
⇒ LS

i =

⌈

CS
i

pi + 1

⌉

(7.1)

Note that QS
i is the actual length of the non-preemptive region of τi at speed

S, i.e., given by the original task attributes, and LS
i is the lower bound on the

7.5 Guaranteeing a Specified Preemption Behavior using Processor
Speed-up 97

lengths of the non-preemptive region of τi that will guarantee no more than pi
preemptions per τi. When pi = 0, the task τi executes non-preemptively.

It is evident that, on a speed 1 processor, if Q1
i < L1

i , where L1
i is calculated

according to equation 7.1, τi cannot be guaranteed to incur no more than pi
preemptions. Hence, we have to find a processor speed, S, which ensures that:

QS
i ≥ LS

i =

⌈

CS
i

pi + 1

⌉

(7.2)

Thus if the processor runs at speed S, τi can be guaranteed to be preempted at

Figure 7.3: Non-preemption requirement to enable preemptions only at optimal
preemption points

most pi times.

Enabling Preemptions at Optimal Preemption Points

As mentioned earlier the preemption related costs also depends on the points
at which the preemptions occur. If a preemption cannot be avoided, it is prefer-
able to have it at points where the cost of a preemption is the least, i.e., optimal
preemption points. The possibility of enforcing preemptions only at these op-
timal preemption points depends on the length of the non-preemptive region
on a processor of a given speed S. Remember that qSi,j , j = 1...mi denote the

length of the task execution of τi up to its jth optimal preemption point on a
processor at speed S. Hence, the non-preemption requirement for a task τi is
given by the largest interval between any two consecutive optimal preemption
points of τi when it executes on a processor at a speed S:

LS
i = max

1≤j<m
(qSi,j+1 − qSi,j , q

S
i,1)

98 Paper C

Consequently, our goal is to find the processor speed, S, that satisfies:

QS
i ≥ LS

i = max
1≤j<m

(qSi,j+1 − qSi,j , q
S
i,1) (7.3)

Thus if the processor executes at speed S, any premption on τi can be deferred
to the closest optimal preemption point. An illustrative example is given by
figure 7.3 where the non-preemption requirement of a task that guarantees pre-
emptions only at optimal preemption points, is greater than its non-preemptive
execution.

Executing Critical Sections within Non-Preemptive Regions

An attractive feature of the limited preemption scheduling paradigm is that
it has the potential to enable access to shared resources without the need for
synchronization mechanisms, by executing the critical sections within non-
preemptive regions. However, this is not always possible, e.g., in case the
length of the non-preemptive region QS

i , for a task τi is shorter than its largest
critical section CSS

i on a processor of speed S. This issue, on the other hand,
can be solved by finding an adequate processor speed S that enables QS

i ≥ LS
i .

The processor speed that guarantees this is given by the speed S that will sat-
isfy the relation:

QS
i ≥ LS

i = CSS
i

An illustrative example is given by figure 7.4 where the non-preemption re-

Figure 7.4: Non-preemption requirement to always enable critical section exe-
cution inside non-preemptive regions

quirement of a task that guarantees the non-preemptive execution of its critical
sections is greater its actual length of the non-preemptive region.

7.5 Guaranteeing a Specified Preemption Behavior using Processor
Speed-up 99

7.5.2 Sensitivity Analysis for Preemption Control

In most situations, changing the processor speed may also change the required
length of the non-preemptive regions to satisfy the desired preemption related
cost control requirements. It also changes the possible lengths of the non-
preemptive regions of some of the tasks in the system. Thus, we need to
perform a sensitivity analysis on the task set to derive the required processor
speed-up that guarantees a given non-preemption requirement. The length of
the non-preemptive region of τi is known to be Q1

i at speed 1 (calculated using
the results by [7] [11] [17]. If Q1

i < L1
i , we need to use a faster processor to en-

sure that for each τi, its possible non-preemptive region satisfies the required
non-preemption requirement. Remember that L1

i is the non-preemption re-
quirement that guarantees a certain non-preemption behavior for τi on a speed
1 processor. Since we use a binary search to find the optimal speed Sopt, the
challenge is to find an upper-bound on the processor speed below which Sopt

lie. We can use the upper-bounds derived in the earlier section. The upper-
bound on the processor speed-up that guarantees a non-preemption require-
ment of L1

i for any τi, on a processor of speed 1, is given by:

Si =
4L1

i

Dmin

Thus, the processor speed which guarantees that every task can execute non-
preemptively is given by,

Shigh = max
1≤i≤n

(Si)

However, when we use a faster processor, the execution times (CS
i ∀ τi) of all

the tasks decrease. This, in its turn, changes the lengths of the longest non-
preemptive regions of the tasks. The lowest processor speed that guarantees
the non-preemption requirements lies in the interval [Slow = 1, Shigh]. We can
now perform a sensitivity analysis on the speeds between 1 and Shigh in order
to come up with the lowest processor speed Sopt which guarantees that every
task τi can exhibit the required non-preemption behavior. The correctness and
optimality of our method is given by the correctness of the binary search.

In the algorithm, at each iteration of the binary search, LSmid

i is re-calculated
for the speed Smid as follows:

LSmid

i = max(a, b, c)

100 Paper C

Algorithm 2: Algorithm to find the processor speed Sopt that guarantees

Q
Sopt

i ≥ L
Sopt

i for every τi.

1 Slow=1
2 Shigh = 0
3 foreach Task i do

4 Calculate QSlow

i

5 Calculate LSlow

i

6 Si =
4L

Slow
i

Dmin

7 if Shigh < Si then
8 Shigh = Si

9 while TRUE do

10 Smid = Shigh+Slow

2
11 Stemp = 0
12 foreach Task i do

13 Calculate QSmid

i

14 Calculate LSmid

i

15 Si =
4L

Slow
i

Dmin

16 if Stemp < Si then
17 Stemp = Si

18 if Slow "= Shigh then
19 flag = 0
20 foreach Task i do

21 if LSmid

i > QSmid

i then
22 flag = 1

23 if flag = 1 then
24 Slow = Smid

25 if Stemp < Shigh then
26 Shigh = Stemp

27 else
28 Shigh = Smid

29 else
30 Sopt = Smid

31 return Sopt

7.5 Guaranteeing a Specified Preemption Behavior using Processor
Speed-up 101

where a is given by,

a =

⌈

CSmid

i

pi + 1

⌉

b is given by,
b = CSSmid

i

and c is given by,

c = max
1≤j<m

(qSmid

i,j+1 − qSmid

i,j , qSmid

i,1)

The binary search converges when a suitable value of Smid is obtained such
that for every value of S < Smid, QS

i < LS
i and for all values S ≥ Smid,

QS
i ≥ LS

i . Thus, Smid is the optimal speed that guarantees the non-preemption
requirement for all the tasks τi ∈ Γ.

7.5.3 Example

We illustrate our method using a simple example. Consider the task set given
in table 7.1 executing on a processor of speed 1. We assume an execution time
model, where the task executions scale linearly with the processor speed. In
other words, if the processor speed is increased to 2 from a default speed of 1,
the tasks execute twice as fast. The longest possible non-preemptive regions
per task for each speed is given in table 7.2. Note that, at speed 1, there are 16
preemptions on task τ2, 23 preemptions on τ3, 19 preemptions on τ4 and 26
preemptions on τ5. Assume that τ4 is a task controlling a physical system and
more than 3 preemption on τ2 will degrade the physical system. Thus, we want
to ensure that task τ4 in the task set is preempted no more than 3 times, which
is, however, not possible on a speed 1 processor. We perform a sensitivity
analysis, as described in the previous section to find the lowest processor speed
that guarantees that task τ4 is preempted no more than thrice. In this case, our
algorithm gave an output of Sopt = 3.4. In order to show that our derived speed
is the lowest one which can guarantee the desired non-preemption behavior,
we also calculated the number of preemptions that the task set would incur at a
speed less than Sopt. We observed that, for speeds, arbitrarily lower than Sopt,
the desired non-preemption property cannot be satisfied, as seen from the table
7.3.

The execution times, length of the longest non-preemptive regions and the
longest number of preemptions possible at this speed are calculated and enu-
merated in table 7.3. It can be easily seen that using a processor of speed

102 Paper C

Task C1
i Di Ti

τ1 2 5 50
τ2 50 230 230
τ3 70 360 370
τ4 60 900 900
τ5 80 990 1000

Table 7.1: Example task set (speed=1)

Task Speed (S)=1 Speed (S)=3.4 (Sopt)
CS

i QS
i No. of preemptions CS

i QS
i No. of preemptions

τ1 2 2 0 0.588235 0.588235 0
τ2 50 3 16 14.705882 4.411765 3
τ3 70 3 23 20.588234 4.411765 4
τ4 60 3 19 17.647058 4.411765 3
τ5 80 3 26 23.529411 4.411765 5

Table 7.2: The task execution times, length of the longest non-preemptive re-
gions and the number of preemptions at different processor speeds

S = 3.39999 increases the number of preemptions on τ4 to 4, while it was 3 at
the optimal speed Sopt = 3.4.

7.6 Discussions

Let us now discuss how we can relax some of the assumptions made in this pa-
per. Specifically, we consider relaxing the assumptions of linear speed-up and
negligible preemption related overheads at optimal preemption points, which
we address partially.

7.6.1 Relaxing the Assumption of Linear Speed-up

We have considered the possibility of a linear speed-up in this paper. While
such an assumption allows us to derive interesting theoretical results on the
resource augmentation bounds for preemption control, it might not be a rea-
sonable assumption from a practical point of view because of the effects of
memory wall [18]. In this sub-section, we consider relaxing the assumption of
a linear speed-up by considering the execution time model proposed by [15].

7.6 Discussions 103

Task Speed (S)=3.39999 (< Sopt)
CS

i QS
i No. of preemptions

τ1 0.588237 0.58824 0
τ2 14.705925 4.411763 3
τ3 20.588295 4.411763 4
τ4 17.647110 4.411763 4

τ5 23.529480 4.411763 5

Table 7.3: The number of preemptions at a speed arbitrarily less than Sopt

Marinoni et. al. [15] assumed that the execution time of a task consists of
two parts- one that scales linearly with the processor frequency and one that
does not scale with the processor frequency. Following their notation, let us
define φ as the percentage of the execution time for every τi, that scales with
the processor frequency.

Let us see how the theorem 7.4.1 changes when we consider our new as-
sumption.

Theorem 7.6.1. The processor speed Si that guarantees the feasibility of a

non-preemption requirement Li for a task τi is given by,

Si = max
D1≤t<Di

{

φ
∑n

j=1 DBF 1
j (t)

t− Li − (1− φ)
∑n

j=1 DBF 1
j (t)

}

Proof. The length of the non-preemptive region for τi at speed 1 is given by
[7] [11],

Q1
i = min

D1≤t<Di







t−

n
∑

j=1

DBF 1
j (t)







⇒ Q1
i ≤ t−

n
∑

j=1

DBF 1
j (t), ∀t,D1 ≤ t < Di

Our aim is to find the processor speed Si that guarantees the feasibility of a
non-preemption requirement Li. We know that, of the total demand bound in
any interval t, only φ percentage scales with the processor frequency. Thus,

Li ≤ t−







φ
∑n

j=1 DBF 1
j (t)

Si
+ (1− φ)

n
∑

j=1

DBF 1
j (t)







, ∀t,D1 ≤ t < Di

104 Paper C

Hence,

SiLi ≤ Sit−







φ

n
∑

j=1

DBF 1
j (t) + Si(1− φ)

n
∑

j=1

DBF 1
j (t)







, ∀t,D1 ≤ t < Di

Solving for Si, we get,

Si ≥

{

φ
∑n

j=1 DBF 1
j (t)

t− Li − (1− φ)
∑n

j=1 DBF 1
j (t)

}

, ∀t,D1 ≤ t < Di

i.e.,

Si = max
D1≤t<Di

{

φ
∑n

j=1 DBF 1
j (t)

t− Li − (1− φ)
∑n

j=1 DBF 1
j (t)

}

Lemma 7.6.1. The speed Si that guarantees the feasibility of a non-preemption

requirement Li for any task τi, during a time interval t is upper-bounded by,

Si ≤
φy

φy − 1

where, y = t
Li

, ∀t ∈ [D1, Di).

Proof. We know from theorem 7.6.1 that,

Si = max
D1≤t<Di

{

φ
∑n

j=1 DBF 1
j (t)

t− Li − (1− φ)
∑n

j=1 DBF 1
j (t)

}

Since we have assumed that the task set is feasible, the upper-bound on the
value of

∑n
j=1 DBF 1

j (t) is t. Hence,

Si ≤

{

φt

t− Li − (1− φ)t

}

which gives,

Si ≤
t

φt− Li

Finally, substituting y = t
Li

,

Si ≤
φy

φy − 1

7.7 Related Work 105

We can now use similar reasoning as in lemma 7.4.2, 7.4.3 and 8.5.4 to
derive upper-bounds on the processor speed-up required that provides the re-
quired non-preemption guarantees. We however leave more details to a future
work. In future, we plan to consider more realistic execution time models to
find upper-bounds on the processor speed-up to provide the required guaran-
tees.

7.6.2 Relaxing the Assumption of Negligible Preemption Re-
lated Overheads at Optimal Preemption Points

The assumption of negligible preemption related overheads at optimal preemp-
tion points can be very conservative for actual systems. This however can be
easily accounted for in the worst case execution times of the tasks without be-
ing pessimistic. To account for the preemption related costs in our proposed
method, the optimal preemption points must be identified first and the pre-
emption related costs at these points should be calculated. These preemption
related costs must then be considered while calculating the non-preemption re-
quirement. We can then use an optimal preemption point placement strategy
e.g., proposed by Bertogna et. al. [17]. This will enable the application of our
method to real world applications. We however leave more details to a future
work.

7.7 Related Work

Preemptive real-time schedulers are associated with preemption related over-
heads, and their effects are challenging to analyze because they typically vary
with the point of preemption e.g., cache related preemption delays, and even
with the state of the physical process that the real-time system is controlling.
Moreover, preemptive scheduling typically requires the use of resource access
protocols [19] to enable mutual exclusion, in cases where tasks communicate
through shared resources. These resource access protocols, though predictable,
introduce schedulability overheads in the system, as well as may lead to pes-
simistic assumptions in the schedulability analysis. Even though preemptive
scheduling schemes are used in a large number of applications, mostly due to
its ability to achieve high processor utilization, the detrimental impact of pre-
emptions is widely recognized in the community [20] [21] [22]. The preemp-
tion related costs includes the context-switch overhead [23] and to manipulate
the task queues [21], as well as the indirect cost of cache-related preemption

106 Paper C

delays [24]. Bui et. al [20] observed a worst case increment in task execution
time of upto 33% on a PowerPC MPC7410 with a 2 MB two way associative
L2 cache, due to the cache related preemption delays. The worst case tempo-
ral overhead due to cache related preemption delays were found to be as high
as 655µS for a single preemption. The rate monotonic algorithm (RM) was
shown to introduce a higher number of preemptions than earliest deadline first
algorithm (EDF) by Buttazzo [25], increasing the overheads in the system and
hence reducing the benefits of its simple runtime implementation.

The applicability of a non-preemptive scheduling scheme, on the other
hand, is limited to only a small fraction of the feasible task sets [5] due to its
inability to fully utilize the computational resources in most of the cases [7].
Task sets scheduled by non-preemptive schemes can be deemed as unschedu-
lable even at arbitrarily low utilizations [14]. On the other hand, the major
benefits of using non-preemptive scheduling is the absence of preemption re-
lated costs and that it does not require any resource access protocols, as mutual
exclusion is guaranteed by the scheduler. However, the problem of finding a
non-preemptive schedule for a given task set is either NP-hard or infeasible for
most task sets [8].

In order to take advantage of the benefits of both preemptive and non-
preemptive scheduling paradigms, various limited preemption scheduling mod-
els were proposed, a detailed survey of which can be found in [26]. A benefit of
using these approaches is that non-preemptive regions can be enforced within
the task executions. The use of a limited preemption technique reduces the pre-
emption related costs, i.e., it basically ensures that a preemption occurs only
when absolutely necessary and/or at an optimal point with the least cost. It also
ensures that, whenever possible, critical sections can be executed entirely non-
preemptively. However, the limited preemption approach does not provide for
a fine grained ability to control the preemption behavior of real-time tasks e.g.,
to guarantee a user specified bound on the number of preemptions per task.
To guarantee mutual exclusion during critical section execution, it is essential
that the non-preemptive region of each task is larger than its largest critical
section. Similarly, to minimize preemption related costs, the length of the non-
preemptive region of any task must be no less than the length of the task exe-
cution between any two consecutive optimal preemption points, where the cost
of a preemption is the least. If the length of the non-preemptive region does
not guarantee a specified preemption behavior, a preemptive or non-preemptive
schedule may not be feasible. For example, if the preemptions are not possible
at optimal preemption points, it may increase the task execution time by 33%
[20], potentially causing deadline misses. Augmenting the limited preemption

7.7 Related Work 107

scheduling schemes with the flexibility for specifying a certain non-preemption
behavior can further enhance its applicability in modern real-time systems to
control the preemption related costs.

Of the several methods that have been proposed to reduce the number of
preemptions in real-time scheduling, Preemption Threshold Scheduling (PTS)
for FPS was first introduced in the ThreadX operating system by Lamie [27].
This scheme was later formalized by Wang and Saksena [28], by providing
an accurate analysis and also proposing an optimal algorithm to calculate the
preemption thresholds. Jeffay et. al. [8] derived the sufficient and neces-
sary conditions for non-preemptive feasibility of periodic and sporadic tasks.
They also showed that EDF is an optimal algorithm for scheduling tasks non-
preemptively under a work conserving paradigm. [7] proposed the limited pre-
emption model, which was subsequently named as Floating Non-Preemptive
Region model (f-NPR model), in which they proposed an algorithm to calcu-
late the length of the longest possible non-preemptive execution of a task in a
sporadic task system. Later, Bertogna and Baruah[11] evaluated the approach
for randomly generated task sets, showing its effectiveness. In an earlier work,
they had extended the f-NPR scheduling scheme to FPS [29], where they found
an upper bound on the length of the largest possible non-preemptive execution
of a task under FPS and presented extensive simulation results. Later, Bertogna
et. al. [17] presented a method to optimally place preemption points within the
task code, assuming a fixed preemption overhead, and presented extensive sim-
ulation results for both EDF and FPS. The evaluation results showed that the
limited preemption models are more effective than non-preemptive and fully
preemptive scheduling schemes with preemption costs, in successfully sche-
duling task sets. Bertogna et. al. [30] also proposed a method to improve
the schedulabilility of FPS by executing the last portion of the tasks in a non-
preemptive fashion, as long as possible. Dobrin and Fohler [31] proposed a
method to identify preemption offline and to control the number of preemp-
tions by changing the task parameters, such as the priority, to avoid these con-
ditions required for a preemption. An extensive survey of the various limited
preemption methods can be found in [26] and a detailed comparison can be
found in [14].

The energy consumption in a processor can be modeled by the relation
P = CV 2F , where P is the power consumed by the processor, V is the applied
voltage, C is the effective capacitance and F is the operating frequency [32].
This relation indicates that using a slower processor would decrease the energy
consumption. However, when using Dynamic Voltage Scaling (DVS) [32] for
energy efficiency, due to an increase in task execution times, the number of pre-

108 Paper C

emptions increases significantly. Pouwelse et. al. [33] found that a frequency
switch can be done in less than 140µS, which amounts to just one fifth of the
cost of a single preemption making CPU frequency scaling a promising ap-
proach towards controlling preemption behavior in real-time systems. In [34]
[35] [36], we proposed methods to control the preemption behavior of sporadic
and periodic tasks scheduled by FPS using CPU frequency scaling. In [37],
an approach to combine PTS with DVS to enable energy efficient scheduling
was presented. However, it does not provide for controlling the preemption
behavior of the schedule.

All the above limited preemption approaches still require the support of a
preemptive scheduler on top of which additional support mechanisms are re-
quired for their implementation e.g., dual priority scheduler for PTS [28] and
timers for limited preemption models [7] [11]. None of the above methods
are able to completely eliminate preemptions, even though they are able to
greatly reduce the preemption overheads. These methods also do not provide
for controlling the preemption related costs in the schedule e.g., ensuring no
more than a user desired number of preemptions per task or guaranteeing that
a preemption is always possible at an optimal preemption point in the task. In
this context, we examine and prove the possibility of using a faster processor
to achieve effective preemption related cost control in the schedule. Control-
ling the preemption related costs provides a system designer with the ability to
perform trade-offs between, e.g., energy- preemption overhead trade-offs.

7.8 Conclusions

In this paper, we have derived the upper-bound on the required processor speed-
up that guarantees the feasibility of a non-preemptive schedule for any task set
that is feasible on a uni-processor. We have proved that the speed-up required
to guarantee the non-preemptive execution of any task τi, for a duration Li, is
no greater than 4Li

Dmin
where Dmin is the smallest relative deadline in the task

set. Consequently, the upper-bound on the processor speed that guarantees a
fully non-preemptive schedule is given by 4Cmax

Dmin
, where Cmax is the largest

execution time in the task set. Our sensitivity analysis based method derives
the optimal processor speed that guarantees specified upper-bounds on the pre-
emption related costs in the schedule. In this method, we first translate the sys-
tem level requirements of meeting specified upper bounds on the preemption
related costs to a set of non-preemption requirements on the task set. We then
use sensitivity analysis to calculate the optimal processor speed that guarantees

7.8 Conclusions 109

the derived non-preemption requirements. This in turn guarantees the specified
bounds on the preemption related costs in the system. The method empowers a
real-time system designer to guarantee user specified bounds on the preemption
related costs, using a faster processor, while maintaining schedulability.

Ongoing efforts include extensions to multi-processor scheduling to guar-
antee a specified preemption behavior in multi-processor systems.

Bibliography

[1] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. The Journal of ACM, 1973.

[2] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 1986.

[3] N.C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-
time scheduling: The deadline-monotonic approach. In in Proc. IEEE

Workshop on Real-Time Operating Systems and Software, 1991.

[4] Michael L. Dertouzos. Control robotics: The procedural control of phys-
ical processes. In IFIP Congress, 1974.

[5] Sanjoy K. Baruah, Louis E. Rosier, and R. R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor. Real-Time Systems, 1990.

[6] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In The 11th Real-Time Systems

Symposium, 1990.

[7] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of spo-
radic task systems. In The 17th Euromicro Conference on Real-Time Sys-

tems, 2005.

[8] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On non-
preemptive scheduling of periodic and sporadic tasks. In The 12th IEEE

International Real-time Systems Symposium, 1991.

[9] M. Marouf and Y. Sorel. Scheduling non-preemptive hard real-time tasks
with strict periods. In The 16th Conference on Emerging Technologies

Factory Automation, September 2011.

111

112 Bibliography

[10] Robert Davis, Thomas Rothvo, Sanjoy Baruah, and Alan Burns. Ex-
act quantification of the sub-optimality of uniprocessor fixed priority pre-
emptive scheduling. Real-Time Systems, 2009.

[11] M. Bertogna and S. Baruah. Limited preemption edf scheduling of spo-
radic task systems. IEEE Transactions on Industrial Informatics, Nov-
ember 2010.

[12] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoy-
ance. Journal of ACM, 2000.

[13] Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat, and
Hüseyin Aysan. Resource augmentation for fault-tolerance feasibility of
real-time tasks under error bursts. In The 20th International Conference

on Real-Time and Network Systems. ACM, November 2012.

[14] Gang Yao, G. Buttazzo, and M. Bertogna. Comparitive evaluation of
limited preemptive methods. In The 15th International Conference on

Emerging Technologies and Factory Automation, 2010.

[15] Mauro Marinoni and Giorgio Buttazzo. Elastic dvs management in pro-
cessors with discrete voltage/frequency modes. IEEE Transactions on

Industrial Informatics, February 2007.

[16] Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In The

27th IEEE International Real-Time Systems Symposium, 2006.

[17] Marko Bertogna, Giorgio Buttazzo, Mauro Marinoni, Gang Yao,
Francesco Esposito, and Marco Caccamo. Preemption points placement
for sporadic task sets. In The 22nd Euromicro Conference on Real-Time

Systems, 2010.

[18] Sally A. McKee. Reflections on the memory wall. In Proceedings of the

1st conference on Computing frontiers, 2004.

[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. The IEEE Transactions on

Computers, 1990.

[20] Bach D. Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. Impact
of cache partitioning on multi-tasking real time embedded systems. In
The 14th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, 2008.

Bibliography 113

[21] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for en-
gineering real-time fixed priority schedulers. The IEEE Transactions on

Software Engineering, 1995.

[22] H Ramaprasad and F Mueller. Tightening the bounds on feasible pre-
emptions. In The ACM Transactions on Embedded Computing Systems,
2008.

[23] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and anal-
ysis of fixed priority schedulers. The IEEE Transactions on Software

Engineering, 1993.

[24] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha,
Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim.
Analysis of cache-related preemption delay in fixed-priority preemptive
scheduling. IEEE Transactions on Computers, 1998.

[25] Giorgio C. Buttazzo. Rate monotonic vs. EDF: judgment day. In Real-

Time Systems Journal, January 2005.

[26] G.C. Buttazzo, M. Bertogna, and G. Yao. Limited preemptive scheduling
for real-time systems: A survey. The IEEE Transactions on Industrial

Informatics, 2012.

[27] William Lamie. Preemption threshold. Whitepaper, 1997.

[28] Yun Wang and M. Saksena. Scheduling fixed-priority tasks with preemp-
tion threshold. In Sixth International Conference on Real-Time Comput-

ing Systems and Applications, 1999. RTCSA ’99., 1999.

[29] Gang Yao, G. Buttazzo, and M. Bertogna. Bounding the maximum length
of non-preemptive regions under fixed priority scheduling. In The 15th

IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, 2009.

[30] M. Bertogna, G. Buttazzo, and Gang Yao. Improving feasibility of fixed
priority tasks using non-preemptive regions. In The IEEE Real-Time Sys-

tems Symposium, 2011.

[31] Radu Dobrin and Gerhard Fohler. Reducing the number of preemptions
in fixed priority scheduling. In The 16th Euromicro Conference on Real-

time Systems, 2004.

[32] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scal-
ing for low-power embedded operating systems. In The 18th ACM sym-

posium on Operating systems principles, 2001.

[33] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic voltage
scaling on a low-power microprocessor. In The 7th annual international

conference on Mobile computing and networking, 2001.

[34] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat. To-
wards preemption control using CPU frequency scaling in sporadic task
systems. In Proceedings of the WiP of The 6th International Symposium

on Industrial Embedded Systems, 2011.

[35] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat. Pre-
emption control using CPU frequency scaling in real-time systems. In
The 18th International Conference on Control Systsems and Computer

Science, 2011.

[36] Abhilash Thekkilakattil, Anju S Pillai, Radu Dobrin, and Sasikumar Pun-
nekkat. Reducing the number of preemptions in real-time systems sche-
duling by CPU frequency scaling. In The 18th International Conference

on Real-Time and Network Systems, 2010.

[37] Ravindra Jejurikar and Rajesh K. Gupta. Integrating processor slowdown
and preemption threshold scheduling for energy efficiency in real time
embedded systems. In The IEEE Real-Time Computing Systems and Ap-

plications, 2004.

Chapter 8

Paper D:

Resource Augmentation for

Fault-Tolerance Feasibility of

Real-time Tasks under Error

Bursts

Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat and Huseyin Aysan
In proceedings of the 20th International Conference on Real-Time and Network
Systems, ACM, Pont á Mousson, France, November, 2012 (Shortlisted for Best

Student Paper Award)

115

Abstract

Dependability is a vital system requirement, particularly in safety critical and
mission critical real-time systems, due to the potentially catastrophic conse-
quences of failures. In most critical applications different fault tolerance mech-
anisms using redundancy are employed to prevent possible failures. In the case
of real-time systems the system designer must ensure that the task set is fea-
sible even under faults, which we refer to as ’fault tolerance feasibility’. Due
to cost considerations, often temporal redundancy has been prevalently used to
meet this objective.

In this paper we focus on guaranteeing fault-tolerance feasibility under er-
ror bursts on uni-processor systems by the usage of resource augmentation,
specifically through processor speed-up. Firstly, we derive a processor demand
bound based sufficient condition for a set of real-time tasks to be fault toler-
ance feasible under an assumption that no more than one error burst occurs
during the hyper-period of the task set. Subsequently, we derive the necessary
resource augmentation bounds (i.e., the processor speed-up), that guarantees
the fault tolerance feasibility, if the sufficient test fails. Finally, we prove that,
if the error burst length is no more than half the shortest relative deadline of the
task set, the processor speed-up required to guarantee fault tolerance feasibility
is upper-bounded by 6.

8.1 Introduction 117

8.1 Introduction

Mission and safety critical real-time systems typically have to perform a num-
ber of functionalities of mixed criticality levels, ranging from ultra-critical to
non-critical. In addition to the temporal correctness, these systems need to pro-
vide for a high degree of reliability, due to the catastrophic consequences a fail-
ure may lead to. The reliability of the system is typically achieved by the use of
fault tolerance mechanisms that aim to prevent potential system failures while
guaranteeing the real-time constraints. Consequently, any reasoning about the
correctness of the system needs to take into account an appropriate fault model,
as well as the overheads associated with the employed fault-tolerance mecha-
nisms.

In a real-time system, the events occurring in the system are typically
mapped to a set of real-time tasks, with the requirement that the task exe-
cutions must complete by their respective deadlines. Additionally, reliability
constraints require the use of an appropriate fault tolerance strategy, most com-
monly in the form of temporal redundancy, which involves the re-execution of
the original task or the execution of an alternate task, before its predefined
deadline [1][2][3][4]. In this context, the original task execution is typically
referred to as the primary and the re-executions upon faults are referred to as
alternates. If the fault occurrence persists during the execution of the recovery
attempts, alternates are executed until one successful execution is achieved. In
order to reason about the temporal correctness of the system, safe upper-bounds
on the task execution times, i.e., the Worst Case Execution Times (WCET),
derived using suitable techniques [5], are required. Additionally, the use of
temporal redundancy requires that the schedulability analysis techniques con-
sider the transient overloads generated by the execution of alternates in order
to guarantee the overall system schedulability under fault occurrences.

Many safety critical and mission critical real-time systems employ a pre-
emptive Fixed Priority Scheduler (FPS) due to its simple scheduling mecha-
nism that enables an easy implementation, even on operating systems that do
not provide explicit support for timing constraints [6]. However, in the gen-
eral case, preemptive FPS may not be able to guarantee schedulability of the
task sets if the total task utilization is greater than 69% [7]. Dynamic priority
schemes, on the other hand, e.g., Earliest Deadline First scheduling [8] [7],
have the ability to utilize the processor more effectively, and are being pro-
moted in the academia [6], as well as in many commercial operating systems
[9]. Hence a real-time systems designer can choose from a wide variety of
scheduling schemes while designing the system. During the design stage of the

118 Paper D

system, the choice of a scheduler is influenced by the task attributes. In most
cases, the task attributes are derived from the physical characteristics of the en-
vironment that the real-time system is controlling and are thus unchangeable.
Hence an important question is which scheduling scheme will yield a feasible
schedule that can tolerate faults under a specified fault hypothesis. However,
even before answering this question it is more appropriate to ask whether it is
possible to determine if there exists a scheduling scheme that can tolerate faults
under the specified fault hypothesis for the given task set.

A real-time fault tolerant scheduler that employs the temporal redundancy
approach needs to ensure the execution of either a primary or an alternate, of
all critical tasks, before their respective deadlines under the specified fault hy-
pothesis. The existence of a real-time scheduling algorithm that can tolerate
faults can be demonstrated by showing that, in any time interval, the total pro-
cessor demand requested by the task primaries and the alternates that results in
a worst case scenario is no greater than the size of the interval [10] [2]. Hence,
for a real-time scheduling scheme to be fault tolerant, there must exist sufficient
slack in the schedule for the execution of the task primaries and the alternates.
EDF is known to be an optimal uniprocessor scheduling algorithm, i.e., if it
is possible to schedule the original task executions together with the required
alternates without causing a deadline miss, then EDF will also schedule them.

A real-time task set is said to be Fault Tolerance feasible (FT-feasible) if
there exists a schedule that is capable of tolerating worst case fault occurrences
under a specified fault hypothesis [2]. If the task set is not FT-feasible then
there exists no sufficient slack in the schedule which can be utilized by the
fault tolerance scheduling algorithm in order to recover from faults. In this
case, the use of a faster processor can compensate for the slack deficit, thus
enabling feasible recovery from faults. Thus the system designer can select a
faster processor that guarantees the fault tolerance feasibility, but at the same
time may be interested in choosing the one with the lowest speed among those
eligible due to cost factors. However, the system designer has to first know if
FT-feasibility can be achieved by speeding up the processor by a practicable
and a reasonably low factor. Consequently it demands the knowledge of an
upper-bound on the minimum processor speed-up required that can guarantee
FT-feasibility. This information is interesting because 1) it provides the system
designer with a quick test to check whether a processor of appropriate speed
is available in his inventory and 2) it can also provide significant insights into
developing a simple utilization based test for FT-feasibility.

In this paper, we examine the FT-feasibility of real-time tasks under at most
a single error burst of known length occurring during the hyper-period of the

8.2 Related Work 119

task set-which is the least common multiple of the task periods. We first derive
a sufficient condition for the fault tolerance feasibility, leveraging on the op-
timality of EDF under uni-processor scheduling. We then derive the resource
augmentation bounds, specifically the processor speed-up, required to make a
real-time task set which is not fault tolerant feasible to be feasible under the er-
ror burst. We also show that, if the error burst length is no longer than half the
shortest deadline of the task set, the upper-bound on the minimum processor
speed-up that guarantees FT-feasibility is 6.

The rest of the section is organized as follows: section 8.2 discusses the
related works and section 8.3 details the system model. In section 8.4 we for-
mally define the problem, followed by the fault tolerance feasibility analysis in
section 8.5. We present an example in section 8.7 followed by our conclusions
in 8.8.

8.2 Related Work

Avizienis et. al. [1] defines dependability as the ability of a system to deliver
a justifiably trusted service. They proposed the use of fault tolerance mecha-
nisms as one of the means to achieve dependability to tackle the threat of faults,
that compromise the dependability of the system. The fault tolerance strategy
typically involves two stages: error detection and recovery. The recovery pro-
cess can be classified as error handling and fault handling depending on the
process involved in the recovery. The commonly used error handling schemes
are rollback, roll forward and compensation using redundancy. The most com-
monly adopted redundancy technique is the temporal redundancy which in-
volves either the re-execution of the failed software component or the execution
of an alternate. In [11], the authors proposed a fault tolerant multi-processor
scheduling algorithm for aperiodic tasks. A global optimization method called
simulated Annealing [12] was derived from the slow cooling of molten metal
to form regular crystalline structure. Attiya and Hamam [13] used Simulated
Annealing to allocate tasks in a heterogenous real-time system, maximizing
the reliability of the system. Bannister and Trivedi [14] proposed a simple
heuristic algorithm that evenly distributes the computational load of the tasks
over the nodes. More recently, Islam et.al.[15] proposed a heuristic approach
to perform allocation by considering dependability and real-time constraints as
well as communication efficiency.

Baruah et. al. [10] derived a sufficient and necessary condition for a set of
real-time tasks to be feasible on a uni-processor. They used the optimality of

120 Paper D

EDF to derive these conditions i.e., if the task set if EDF schedulable, then it is
feasible. Here the feasibility refers to the existence of a real-time scheduling al-
gorithm that can schedule the task set without any deadline misses. In [16], the
authors presented an exact schedulability test for fault tolerant real-time task
sets for the Fixed Priority Scheduling (FPS) scheme. They considered time
redundancy as the fault tolerance strategy while deriving these tests. Aydin
[2] considered the uni-processor fault tolerance feasibility of a real-time task
set under a k-fault scenario. They presented an exact feasibility analysis for
the real-time task set to be fault tolerant, leveraging on the optimality of EDF.
The paper also proposed a dynamic programming technique to calculate the
worst case recovery overhead for task sets scheduled using EDF. The k-fault
scenario may not be a realistic model; a more realistic model might be to con-
sider fault/error bursts e.g., single event upsets caused due to radiation when an
automobile passes through the vicinity of a radiation source, rather than consid-
ering a maximum of k faults [17]. Pathan et. al. [18] extended this [2] analysis
to FPS and derived a necessary and sufficient condition for the fault tolerance
feasibility of real-time tasks scheduled using FPS. They assumed no more than
k faults every largest relative deadline in the task set. However, as mentioned
earlier, the k fault model may not be realistic as the faults normally may occur
for a duration. Zhu et. al. [19] studied the effects of power management on
the reliability of the system and showed that energy management techniques
detrimentally affect the reliability of the system. Later, they [20] proposed re-
liability aware energy management techniques. The technique involves, sche-
duling a recovery at the maximum processor frequency before executing any
task at a lower frequency. Many et. al. [4] considered the FPS schedulability
of a set of real-time tasks under a fault burst and derived an equation to find
the response times of tasks scheduled under the burst. Additionally they also
presented a fault resilience evaluation method. Aysan et.al. [3] derived a suffi-
cient condition to guarantee the schedulability of a task set using FPS under an
error burst. They presented a probabilistic burst error model and derived prob-
abilistic schedulability guarantees for the task set. Earlier, they [21] presented
a method to maximize the schedulability of mixed criticality real-time tasks us-
ing FPS. This was achieved by exploiting the ability of EDF to achieve 100%
utilization to embed primary and alternates in the schedule. They achieved this
by deriving feasibility windows and then deriving fixed priorities for the tasks
and their alternates [22] which was later extended to schedule mixed criticality
messages on the Controller Area Network (CAN) [23], as well as to schedule
tasks on a distributed real-time system under safety constraints [24].

Resource augmentation [25], is a technique used to understand how much

8.3 System Model 121

extra resources a scheduler requires such that it can provide a specific guaran-
tee with respect to some constraints. Here, the scheduler under study is given
extra resources such as more number of processors or faster processors, such
that a certain goal is achieved. Kalyanasundaram et. al. [25] first introduced
resource augmentation, in which they studied the effectiveness of online sche-
duling of real-time tasks showing that augmenting the processor with more
speed can achieve the same effect as clairvoyance while scheduling tasks on-
line. Davis et. al. [26] used resource augmentation to study the effectiveness
of fixed priority schedulers in scheduling all the feasible task sets. They de-
rived resource augmentation bounds on the processor speed-up required for a
fixed priority scheduler to schedule all the task sets scheduled by an optimal
scheduling algorithm leveraging on the optimality of the Earliest Deadline First
(EDF) algorithm.

We leverage on the optimality of EDF to derive a sufficient condition for
the FT-feasibility of the real-time tasks under an error burst. Our fault tolerance
feasibility analysis is very much similar to [2], with the exception that we con-
sider error bursts affecting the task executions, rather than a bounded number
of task execution failures. We then examine the use of processor speed-up to
guarantee the FT-feasibility of a task set under the error burst using which we
derive resource augmentation bounds for FT-feasibility.

8.3 System Model

In this section, we describe the system model and the notations used in this
paper.

8.3.1 Task model

We consider a set of sporadic real-time tasks Γ= {τ1, τ2, ...τn}, where each τi
has a minimum inter-arrival time, Ti, a worst case execution time, CS

i at speed
S, and a relative deadline, Di. We assume that the tasks are ordered according
to their increasing deadlines. Each of these tasks generate a potentially infinite
sequence of jobs, where the jth job of the ith task is denoted by τi,j . A job
τi,j is released at time (j−1)Ti and has to complete its execution no later than
(j − 1)Ti +Di in order to meet its deadline. Additionally, let {d1, d2, ..., dm}
denote the set of absolute deadlines of the task set in the LCM, ordered in the
increasing order i.e,. ∀τi ∈ Γ, di < di+1, where LCM represents the Least
Common Multiple of the time periods of the tasks.

122 Paper D

The utilization Ui of a task τi executing on a processor at speed S is

defined as US
i = CS

i

Ti
, and the utilization of the entire task set is given by

US =
∑n

i=1 U
S
i . The demand bound function [10] of a task τi, on a processor

of speed 1, during an interval t is given by:

DBFi(t) = max

(

0, 1 +

⌊

t−Di

Ti

⌋)

C1
i

8.3.2 Scheduling Model and
Fault Tolerance Strategy

It is known that EDF is optimal under a work conserving uniprocessor sche-
duling scheme, i.e., a work conserving EDF can schedule all task sets which
are schedulable by any other work conserving scheduler [8]. Thus, if a valid
schedule exists for a particular task set, then EDF can feasibly schedule it. We
leverage the optimality of EDF to study the fault tolerance feasibility of real-
time tasks on a uni-processor.

Most of the previous works treat an error as a singleton event. In this paper,
we consider an error burst which is a series of errors occurring within a specific
time interval that makes it impossible to perform any meaningful task execu-
tions during that interval. We assume a known upper-bound on the length of
the error burst during the LCM denoted by Tlength. We assume that all the task
executions during the error burst fails, and the failure detection happens at the
end of the task execution, before its completion. The employed fault tolerance
strategy is the re-execution of the failed task or the execution of an alternate
task before the original deadline. The fault tolerance strategy assumes that the
alternates have the same deadline as the original task (the primary) and they
are executed along with the rest of the tasks according to EDF. Consequently,
the alternates can also be hit by the error burst, and the alternates are sched-
uled until one successful execution of the task is achieved. The WCET of the
alternates is assumed to be no greater than the WCET of the original task.

8.3.3 Execution Time Model

In our approach we assume a linear relationship between execution time and
processor speed [26] [25]. To ease the readability, and without loss of gener-
ality, we assume that the task set is initially executing on a processor of speed

8.4 Problem Description 123

S = 1. Hence, if C1
i is the execution time at speed S = 1, for any S > 1:

CS
i =

C1
i

S

Thus the speed required to obtain an execution time of CS
i is given by:

S =
C1

i

CS
i

This model also allows the use of processor speed-up factors and processor
speeds interchangeably. Changing the processor speed from S = 1 to S = a,
is equivalent to speeding up the processor by a factor of ’a’. We also assume
that the number of clock ticks required to execute a task τi is equal to the
execution time of τi at speed S = 1. Hence, DBFi(t) denotes the number
of clock ticks requested in the time interval t on a processor of speed S = 1.
Consequently, when a processor of speed ’a’ is used, the total time requested

by the tasks during the time interval t becomes DBFi(t)
a .

8.4 Problem Description

In this paper, we address the following questions:

1 How to determine the FT-feasibility of a given set of temporally redun-
dant real-time tasks under an error burst of known upper-bounded length
during LCM?

A followup question is:

2 If the real-time task set is not found to be FT-feasible, what is the low-
est processor speed-up that guarantees its FT-feasibility under the error
burst?

8.5 Fault Tolerance Feasibility Analysis

In this section, we present the proposed fault tolerance feasibility analysis and
derive the processor speed-up required to guarantee the FT-feasibility of a real-
time task set, under an error burst.

Due to the error detection mechanism assumed to be performed at the end
of the tasks’ executions, in the analysis we account for the WCET of the pri-
mary and alternate tasks under the error burst. If the error burst starts just

124 Paper D

before any job of τi finishes its execution, the rest of the execution of τi is out-
side the influence of the error burst. We define the execution of τi that occurs
outside the error burst as the maximum wasted execution time of τi.

Definition 4. The Maximum Wasted Execution Time (MWET) of a task τi hit

by an error burst, is defined as the execution time of the primary or an alternate

of τi which lies outside the error burst, that leads to the largest wastage of the

processor utilization.

An example of the maximum wasted execution time of a task is shown in
figure 8.1. In any time interval t, the error burst can hit multiple tasks (τ ′is)

Figure 8.1: The worst case error overhead due to error bursts on a single task

leading to many such maximum wasted execution times (MWET) that wastes
the processor time. The worst case sum of all the possible maximum wasted
execution times of all the tasks until t gives the worst case temporal wastage
(WCTW) in the interval t, that leads to the largest overhead outside the error
burst. This is formally defined in the following definition.

Definition 5. The Worst Case Temporal Wastage (WCTW) during a time in-

terval t, denoted by Werr(t), is defined as the largest possible temporal over-

head which lies outside the error burst, that occurs due to the execution of the

MWETs of all the failed primaries and alternates in the interval t, that have

their releases and deadlines within t.

We now identify a necessary condition for FT-feasibility of the set of real-
time tasks.

Lemma 8.5.1. A necessary condition for the FT-feasibility of a task set Γ is,

Tlength ≤ min
∀τi∈Γ

(Di − 2Ci) + ε

8.5 Fault Tolerance Feasibility Analysis 125

Figure 8.2: The maximum length of the burst error.

Proof. The proof for this lemma can be easily seen from figure 8.2. If the burst
length is greater than min(Di − 2Ci + ε) where ∀τi ∈ Γ, for any task τj with
a deadline t, it is impossible to guarantee a successful execution τj before the
deadline t.

Some assumptions : In the rest of the section, we consider any time
instant t′ when a job τi,j is executing on the processor. Unless stated otherwise,
we assume that the job τi,j is the first job to be hit by the error burst and the
error burst starts at the time instant t′. We also consider a time instant t which
is the absolute deadline of τi,j , t > t′. The worst case temporal wastage occur
when all the jobs arrive in a strictly periodic manner. Our strategy of finding the
FT-feasibility is as follows- we assume that even under the error burst, there are
no deadline misses in the schedule, and then we derive the sufficient condition
for this to be true.

Lemma 8.5.2. If no task is released at or after time t′, that has an absolute

deadline less than or equal to t, the worst case temporal wastage Werr(t) at t
is given by:

Werr(t) = 2(Ci − ε)

Proof. According to our assumption, every job of a task released between time
t′ and t has an absolute deadline greater than the deadline of τi,j . The job
τi,j has to finish its execution for any other job to start its execution. Thus,
τi,j is the only job that is hit by the error burst. This is because, every job
present in the ready queue and every job released after time t′, has an absolute
deadline later than the absolute deadline of τi,j , and will execute only after
τi,j completes its execution successfully, since we assume an EDF scheduler.
Thus Werr(t) is given in the scenario when the error burst starts just before the

126 Paper D

primary of τi,j completes its execution and just after the last failed alternate of
τi,j starts its execution (see figure 8.1). Hence, in this case:

Werr(t) = 2(Ci − ε)

The WCTW at time t is thus equal to twice the MWET of τi.

Observation 8.5.1. Every task that is released at or after time t′, having an

absolute deadline less than or equal to t, will have a relative deadline less than

or equal to Di.

This is quite straight forward as τi,j has been released at a time instant less
than or equal to t′. Thus every task that is released after t′ having an absolute
deadline less than or equal to t must have a relative deadline less than the
relative deadline of τi.

All the jobs that are released in the interval [t′, t], having a later deadline
than t will not be hit by the error burst. This is proved in the following lemma.

Lemma 8.5.3. No job τa,b released in the interval [t′, t], having an absolute

deadline bTa +Da > t, can be hit by the error burst.

Proof. The job τa,b will be scheduled only after τi,j has completed one suc-
cessful execution since τi,j has the earliest deadline. According to our assump-
tion, the task set is schedulable even under the error burst. Thus, the error burst
would have ended before τa,b started its execution, since τi,j completed one
successful execution.

We now show that the WCTW at the absolute deadlines of jobs released in
the interval [t,′ t], having a later deadline than t, is equal to the WCTW at time
instant t.

Lemma 8.5.4. The Werr(dl) for any job τa,b that is released in the interval

[t′, t], having an absolute deadline denoted by dl = bTa+Da > t, is given by:

Werr(dl) = Werr(dl−1)

Proof. When τa,b starts its execution, the value of Werr(dl) is equal to the
value of Werr(t), since no job with a deadline greater than t is hit by the error
burst (consequently no ’new’ alternates are executed). Thus, in general we can
say that Werr(dl) = Werr(dl−1) for such a job τa,b, as the same argument
holds for every such job having an earlier absolute deadline than dl.

8.5 Fault Tolerance Feasibility Analysis 127

Figure 8.3: Error burst hitting multiple jobs

In the next lemma, we bound the contribution of τi,j to the WCTW at t
when more than one task is hit by the error burst in the interval [t′, t].

Lemma 8.5.5. If the error burst hits more than one task in the interval [t′, t],
the contribution of τi,j to Werr(t) at time t is 2(Ci − ε).

Proof. In this case, the primary of τi,j is hit ε units before it completes its exe-
cution, and one of its failed alternates is preempted immediately (ε time units)
after it starts its execution. Assume that τa,b is the task preempting τi,j , which
means that τa,b has an earlier absolute deadline than τi,j . Using the similar
argument from lemma 8.5.3, the error burst will end before τa,b completes one
successful execution. When τi,j resumes its execution, its remaining execu-
tion, i.e., Ci − ε is wasted as it was hit by the error burst just before it was
preempted. The alternate of job τi,j then executes successfully as the error
burst has already ended. Thus the contribution of τi,j to to Werr(t) at time t is
2(Ci − ε).

Only either the primary or one of the alternates of the jobs hit by the error
burst in the interval [t′, t] contributes to the WCTW at time t. While a proof
of it under FPS has been presented in [17], in this paper, we extend it to EDF
in the following lemma since the assumptions under FPS are no longer valid
under EDF.

128 Paper D

Lemma 8.5.6. If the error burst hits more than one task in the interval [t′, t],
only either the primary, or exactly one alternate of each task, other than τi,
that is hit by the error burst will contribute to Werr(t) at time t.

Proof. We consider only the jobs that are executing in the interval [t′, t]. This is
because only these jobs have to finish their execution before their correspond-
ing absolute deadlines, so that τi,j can finish its execution no later than time
instant t. Any job having an absolute deadline greater than t will not affect the
execution of τi,j .

According to our assumption, τi,j is the first job to be hit by the error burst.
Let the job τa,b that has a release time and deadline in the interval [t′, t], be the
next task to be hit by the error burst. For the task set to be schedulable, τa,b
needs to recover before its absolute deadline i.e., it must have one successful
execution before its absolute deadline. Additionally, there should not be any
deadline misses in the rest of the schedule until the LCM. The execution of the
job τa,b is under the error burst and its contribution to Werr(t) is maximum
when either:

1. The primary or one of the failed alternates of job τa,b is immediately
preempted by a higher priority job τe,f as soon as it starts execution.

In this case, the error burst will end before the job τe,f completes one
successful execution, after which the remaining executions of the failed
primary or alternate of τa,b, which was preempted, execute to comple-
tion. Thus the maximum processor time wasted by τa,b is (Ca − ε),
before it can successfully execute, according to the definition 4.

2. The error burst ends just before the last failed alternate of τa,b starts
executing.

This is the case when τa,b is the only job other than τi,j that is hit by the
error burst. In this case, the contribution of τa,b to Werr(t) is maximum
when the error burst ends just after the start of an alternate of τa,b. Hence,
according to definition 4, the maximum processor time wasted is (Ca −
ε), before τa,b successfully executes.

In both cases, maximum execution of τa,b that can lie outside the region of the
error burst is (Ca − ε). The above argument can be repeated for all higher pri-
ority jobs τe,f that are released between the release time of τa,b and its absolute
deadline.

Thus we can see that, if the error burst hits more than one job, either only
the primary or exactly one alternate of each task other than τi,j , that is hit by
the error burst, will contribute to Werr(t) at time t.

8.5 Fault Tolerance Feasibility Analysis 129

We have thus bounded the contributions of the jobs scheduled in the interval
[t′, t] to the Werr(t) at t, when the error burst hits more than one job. An
example, when the error burst hits multiple jobs, is given in figure 8.3. We now
derive the Werr(t) when the error burst hits more than one job in the interval
[t′, t], in the general case.

Lemma 8.5.7. If the error burst hits more than one job in the interval [t′, t],
the worst case temporal wastage Werr(t) is given by:

Werr(t) = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

Proof. We know from lemma 8.5.6 that only either the primary or one of the
alternate of the failed tasks that have release times and deadlines in [t′, t] will
contribute to the worst case temporal wastage at t. Thus the total contribution
to Werr(t) is the maximum when every job τa,b released in the interval [t′, t],
that has a deadline no later than t, is hit by an error burst and leaves Ca−ε time
units of execution outside the error burst. This scenario occurs when the tasks
released in the interval [t′, t] preempt each other in a nested manner, with every
preemption occurring ε units after the start of the execution of the preempted
task.

The tasks that may be potentially released in the interval [t′, t] are the tasks
that have relative deadlines less than or equal to Di (observation 8.5.1). Thus
following the reasoning in lemma 8.5.6, only either the primary or exactly
one alternate of each of the failed tasks other than τi,j will contribute to the
worst case temporal wastage. The worst case contribution of τi,j is 2(Ci − ε)
according to lemma 8.5.5.

Thus, the worst case temporal wastage at time t is equal to,

Werr(t) = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

We thus obtain the WCTW at t, when the error burst hits multiple jobs.

Let us now consider the case when the error burst hits only a single job
and τi,j is not necessarily the job to be hit. This means that any task in the
interval [t′, t] could be hit by the error burst and the WCTW at t is given by the
following lemma.

Lemma 8.5.8. If the error burst hits only a single job, not necessarily τi,j , in

the time interval [t′, t], the worst case temporal wastage at time t is given by:

Werr(t) = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε), 2(Ci − ε)}

130 Paper D

Proof. According to the observation 8.5.1, all the jobs that are completely
scheduled in the interval [t′, t] are the jobs of the tasks with a relative dead-
line less than or equal to the relative deadline of τi. Thus, if only one job is hit
by the error burst in the interval [t′, t], the maximum contribution to the worst
case temporal wastage at t is twice the maximum of the worst case execution
time wastage (wk) of τk, if a job of τk is scheduled in the interval [t′, t]. This
is the case when the error burst starts just before the primary of the task hit by
the burst finishes its execution and ends just after the last failed alternate has
started its execution, as shown in lemma 8.5.2. Here, τk can be either τi or, ac-
cording to observation 8.5.1 and using lemma 8.5.3, any τk such that Dk ≤ Di.
Hence,

Werr(t) = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε), 2(Ci − ε)}

We have thus derived the worst case temporal wastage for the final scenario.

We now propose one of our main theorems which bounds the WCTW at t,
which we later use to reason about the FT-feasibility.

Theorem 8.5.1. The worst case temporal wastage Werr(t) at any time instant

t, where t = dl = jTi +Di for any job τi,j , is given by:

Werr(t) = max (x, y,Werr(dl−1))

Here,

x = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε)}

y = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

Proof. The proof follows from lemma 8.5.4, 8.5.7, 8.5.8. At deadline dl, ac-
cording to lemma 8.5.7, if the error burst hits more tasks in addition to τi,j ,

Werr(t) = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

According to lemma 8.5.8, at deadline dl, if the error burst hits only one
task, the Werr(t) is given by the maximum of the MWETs of the tasks sched-
uled until dl, thus,

Werr(t) = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε), 2(Ci − ε)}

8.5 Fault Tolerance Feasibility Analysis 131

Finally, according to lemma 8.5.4, if τi,j is a job that has an absolute deadline
greater than the deadline of the job first hit by the error burst, then,

Werr(dl) = Werr(dl−1)

Hence, Werr(t), where t = jTi +Di for any τi,j is given by the maximum of
the Werr(t) given by lemmas 8.5.4, 8.5.7, 8.5.8.

We now define the worst case error overhead at any time t which is the
worst case overhead involved in tolerating faults.

Definition 6. The worst case error overhead Et, in any time interval t, is

defined as the sum of the error burst length Tlength and the worst case temporal

overhead in the time interval t.

Et = Tlength +Werr(t)

An example of the worst case error overhead at a time instant t i.e., Et is
shown in figure 8.1. We now build on the demand bound analysis proposed by
Baruah et. al [10] and define the sufficient condition for FT-feasibility under
an error burst.

Theorem 8.5.2. A real-time task set Γ is FT-feasible under an error burst of

length Tlength if, ∀t = kTj +Dj , ∀τj ∈ Γ and t ≤ LCM ,

Et +
n
∑

i=1

DBFi(t) ≤ t

Sketch. When the above condition is satisfied, there is sufficient slack in the
schedule, during any time interval t, for the execution of the real-time tasks
and the alternates of the failed tasks, outside the region of the error burst.

Suppose that the above condition is not satisfied for some t, i.e.,

Werr(t) +
n
∑

i=1

DBFi(t) > t− Tlength

This means that during some time interval, the total execution demanded by the
task set exceeds the size of that interval and hence the task set is not feasible.
The formal proof is similar to the proof presented in [2].

However, depending on the real-time schedule, the actual maximum tem-
poral wastage at t may or may not be equal to the worst case. Hence if the
lemma is not satisfied, no guarantees can be given about the FT-feasibility us-
ing the above feasibility test. Thus the above theorem is only a sufficient test
for FT-feasibility.

132 Paper D

8.6 Resource Augmentation for

FT-Feasibility

In this section, we examine the resource augmentation bounds that guarantees
the FT-feasibility of a set of real-time tasks under a known error burst length.
We first, in the following theorem, derive the exact processor speed-up that
guarantees the FT-feasibility of the real-time task set.

Theorem 8.6.1. The minimum processor speed-up required to guarantee the

FT-feasibility of a real-time task set Γ under a burst error of length Tlength is

given by:

S = max
∀t

{

Werr(t) +
∑n

i=1 DBFi(t)

t− Tlength

}

Proof. If any given task set Γ is not FT-feasible on a processor of speed S = 1,
there exists a time instant t such that,

Tlength +Werr(t) +
n
∑

i=1

DBFi(t) > t

Suppose that speeding up the processor by a factor of S will ensure its FT-
feasibility. We get,

Tlength +
Werr(t)

S
+

∑n
i=1 DBFi(t)

S
≤ t

Thus, ∀t,
Werr(t) +

∑n
i=1 DBFi(t)

S
≤ t− Tlength

Solving for S we get ∀t,

S ≥
Werr(t) +

∑n
i=1 DBFi(t)

t− Tlength

Hence,

S = max
∀t∈aTj+Dj ,t≤LCM

{

Werr(t) +
∑n

i=1 DBFi(t)

t− Tlength

}

We thus obtain the minimum processor speed-up required to guarantee FT-
feasibility.

8.6 Resource Augmentation for
FT-Feasibility 133

In order to derive upper-bounds on the processor speed-up that guarantees
FT-feasibility, we bound the Werr(t) at any time instant t.

Lemma 8.6.1. The worst case temporal wastage Werr(t), t ∈ {d1, d2, ..., dm},

is upper-bounded by:

Werr(t) ≤ 2
n
∑

i=1

DBFi(t)

Proof. At deadline d1, which is the shortest relative deadline D1, the worst
case temporal wastage Werr(t), according to theorem 8.5.1, is given by:

Werr(t) = max(x, y)

x = max
∀τk∈Γ:Dk≤D1

{2(Ck − ε)}

y = 2(C1 − ε) +
∑

∀τk∈Γ:Dk≤D1

(Ck − ε) = 2(C1 − ε)

Here, clearly x or y can be upper-bounded by:

x ≤ 2
n
∑

i=1

DBFi(D1) and y ≤ 2
n
∑

i=1

DBFi(D1)

Consider any absolute deadline dl of any task τi, dl = jTi + Di. The
Werr(t) is given by:

Werr(t) ≤ max(x, y, dl−1)

Here again, we can see that x and y can be bounded by:

x ≤ 2
n
∑

i=1

DBFi(dl) and y ≤ 2
n
∑

i=1

DBFi(dl)

Hence for any t,

Werr(t) ≤ 2
n
∑

i=1

DBFi(t)

This gives an upper-bound on the worst case temporal wastage in any time
interval t.

134 Paper D

Using the above bounds on the Werr(t), we derive an upper-bound on the
processor speed-up that guarantees FT-feasibility in the following theorem.

Theorem 8.6.2. The minimum processor speed-up Sb that guarantees the FT-

feasibility of a set of real-time tasks Γ under an error burst of length Tlength is

upper-bounded by:

Sb ≤
3y

y − 1

where y = t
Tlength

, t ∈ {d1, d2, ..., dm}.

Proof. According to lemma 8.6.1, the upper-bound on the Werr(t), t ∈ {d1, d2, ..., dm}
is given by:

Werr(t) ≤ 2
n
∑

i=1

DBFi(t)

According to theorem 8.6.1,

S = max
∀t

{

Werr(t) +
∑n

i=1 DBFi(t)

t− Tlength

}

Substituting the upper-bounds on Werr(t), we get, ∀t ∈ {d1, d2, ..., dm},

S ≤
3
∑n

i=1 DBFi(t)

t− Tlength

Since we assume that the original task set is schedulable, ∀t ∈ {d1, d2, ..., dm},

n
∑

i=1

DBFi(t) ≤ t

Substituting for
∑n

i=1 DBFi(t), ∀t ∈ {d1, d2, ..., dm}, we get the upper-
bound on the required speed-up denoted by Sb,

Sb ≤
3t

t− Tlength

Thus,

Sb ≤
3y

y − 1

where y = t
Tlength

, t ∈ {d1, d2, ..., dm}.

The largest value of Sb is obtained at d1 = D1, the shortest relative dead-
line of the task set.

8.7 Example 135

Task Ci Di Ti

A 1 5 6
B 1 9 9
C 2 18 18

Table 8.1: Example task set

We now derive the resource augmentation bounds for the case when the
error burst length is no longer than half the shortest deadline.

Theorem 8.6.3. The upper-bound on the minimum processor speed-up Sb that

guarantees the FT-feasibility of a set of real-time tasks Γ under an error burst

of length Tlength such that for any time interval t ∈ {d1, d2, ..., dm}, y ≥ 2,

y = t
Tlength

, is given by:

Sb ≤ 6

Proof. This is straight away obtained from theorem 8.6.2, by evaluating the
limits at y = 2 and y = ∞.

We have thus presented a sufficient condition for the fault tolerance fea-
sibility of a task set under an error burst, and derived upper-bounds on the
processor speed-up required to guarantee the fault tolerance feasibility, if the
sufficient condition fails for some task set. We have proved that if the error
burst length is no longer than half the shortest deadline of the task set, the
resource augmentation bound that guarantees the FT-feasibility is 6.

8.7 Example

We illustrate our feasibility analysis and resource augmentation bounds using
a simple example. Consider a real-time task set as shown in table 8.1 with 3
tasks. To illustrate the use of processor speed-up to enable FT-feasibility, let
us assume that the error burst length Tlength = 4. The demand bound until the
first absolute deadline 5 (demanded by task A) is equal to:

C
∑

i=A

DBFi(5) = 1

Suppose the primary of task A is hit by the error burst, the maximum time is
wasted when the burst hits the primary just before it finishes its execution. At

136 Paper D

Figure 8.4: EDF schedule

Figure 8.5: EDF schedule under faults with Tlength = 4

time instant t = 1, the alternate of task A starts its execution and this is again
hit by the burst. At t = 2, the alternate is again executed, which is again hit
by the error burst. Alternates continue to execute and at time instant t = 4.9,
during the execution of one of the alternates, the error burst ends. It can be
easily seen that task A does not have sufficient slack outside the error burst to
complete one successful execution since it has a deadline at t = 5. One of
the fault scenarios where Tlength = 4 is illustrated in figure 8.5, and there is a
deadline miss on task A. Formally,

E5 +
C
∑

i=A

DBFi(5) = 5.8 + 1 = 6.8 > 5

8.7 Example 137

Figure 8.6: EDF schedule under faults after a speed-up of 2.8

Similarly at deadline t = 9, the demand bound = 2. Here the worst possible
overheads due to the error burst can be bounded by E9 = 6.7. The worst case
temporal wastage (WCTW) occurs when the primary of task B is hit leading to
a scenario as in the previous deadline. Additionally, we add one failed alternate
from the higher priority task to account for the cases where higher priority tasks
preempt the primary or one of the alternates of the task B under consideration.
Hence,

E9 +
C
∑

i=A

DBFi(9) = 6.7 + 2 = 8.7 < 9

Similarly, we calculate the processor demand bounds at all the absolute dead-
lines.

E11 +
C
∑

i=A

DBFi(11) = 6.7 + 3 = 9.7 < 12

E17 +
C
∑

i=A

DBFi(17) = 6.7 + 4 = 10.7 < 17

E18 +
C
∑

i=A

DBFi(18) = 9.6 + 6 = 15.6 < 18

Thus, the only possibility of a deadline miss due to the error burst is at time
t = 5. The speed-up required to guarantee FT-feasibility is,

S = max

(

2.8

1
,
4.7

5
,
5.7

8
,
6.7

13
,
11.7

14

)

=
2.8

1
= 2.8

138 Paper D

When we increase the processor speed to 2.8, during the time interval [0, 5],
the total value of Werr(t) +

∑n
i=1 DBFC

A (t) = 1.8+1
2.8 = 1. Hence,

E5 +
n
∑

i=1

DBFi(5) = 1 + 4 = 5

The same scenario in figure 8.5 on a processor that is 2.8 times faster is given
in figure 8.6. Observe that there is no deadline miss on task A in the schedule
in figure 8.6 under the error burst, after the speed-up. Thus, we can prevent a
deadline miss at t = 5 by using a processor that is 2.8 times faster.

8.8 Conclusions

In this paper, we have examined the use of resource augmentation to guarantee
the fault tolerance feasibility of a set of real-time tasks under an error burst.
In this context, we derive a sufficient condition under the assumption of no
more than a single error burst occurrence during the hyper-period of the tasks.
For the cases where the sufficient condition fails, we also derive the necessary
speed-up that guarantees the fault tolerance feasibility under the burst. We
show that, if the length of the error burst is no more than half the shortest dead-
line of the task set, the processor speed-up that guarantees the fault tolerance
feasibility is upper-bounded by 6.

The proposed method adds a new capability in the system designer’s reper-
toire for analyzing the fault tolerance feasibility of a given set of real-time tasks
under an error burst and derive essential resource augmentation requirements.
We intend to extend the proposed approach to more severe error scenarios as
well as to distributed systems in future.

Bibliography

[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable Securr Computing, January
2004.

[2] H. Aydin. Exact fault-sensitive feasibility analysis of real-time tasks.
IEEE Transactions on Computers, October 2007.

[3] Hüseyin Aysan, Radu Dobrin, Sasikumar Punnekkat, and Rolf Johansson.
Probabilistic schedulability guarantees for dependable real-time systems
under error bursts. In The 8th IEEE International Conference on Embed-

ded Software and Systems, November 2011.

[4] Florian Many and David Doose. Scheduling analysis under fault bursts.
In The 17th IEEE Real-Time and Embedded Technology and Applications

Symposium, April 2011.

[5] Bjrn Lisper. Trends in timing analysis. In From Model-Driven Design

to Resource Management for Distributed Embedded Systems. Springer
Boston, 2006.

[6] Giorgio C. Buttazzo. Rate monotonic vs. EDF: judgment day. In Real-

Time Systems Journal, January 2005.

[7] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. The Journal of ACM, 1973.

[8] Michael L. Dertouzos. Control robotics: The procedural control of phys-
ical processes. In IFIP Congress, 1974.

139

140 Bibliography

[9] Michele Cirinei, Antonio Mancina, Davide Cantini, Paolo Gai, and Luigi
Palopoli. An educational open source real-time kernel for small embed-
ded control systems. In Computer and Information Sciences. Springer
Berlin / Heidelberg, 2004.

[10] Sanjoy K. Baruah, Louis E. Rosier, and R. R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor. Real-Time Systems, 1990.

[11] S. Ghosh, R. Melhem, and D. Mosse. Fault-tolerance through scheduling
of aperiodic tasks in hard real-time multiprocessor systems. IEEE Trans-

actions on Prarallel and Distributed Systems, March 1997.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, May 1983.

[13] G. Attiya and Y. Hamam. Task allocation for maximizing reliability of
distributed systems: A simulated annealing approach. Journal of Parallel

and Distributed Computing, October 2006.

[14] J. A. Bannister and K. S. Trivedi. Task Allocation in Fault-Tolerant Dis-
tributed Systems. Acta Informatica, Springer-Verlag, 1983.

[15] S. Islam, R. Lindstrom, and Neeraj Suri. Dependability driven integration
of mixed criticality SW components. Ninth IEEE International Sympo-

sium on Object and Component-Oriented Real-Time Distributed Comput-

ing, April 2006.

[16] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of fault-
tolerant real-time task sets. In The 8th Euromicro Workshop on Real-Time

Systems, June 1996.

[17] Huseyin Aysan. Fault-tolerance strategies and probabilistic guarantees
for real-time systems. In PhD thesis, Malardalen University, June 2012.

[18] R.M. Pathan and J. Jonsson. Exact fault-tolerant feasibility analysis of
fixed-priority real-time tasks. In The16th International Conference on

Embedded and Real-Time Computing Systems and Applications, April
2010.

[19] Dakai Zhu, R. Melhem, and D. Mosse. The effects of energy manage-
ment on reliability in real-time embedded systems. In Proceedings of

the 2004 IEEE/ACM International conference on Computer-aided design,
November 2004.

[20] Dakai Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. In In Proceedings of the 12th IEEE Real-

Time and Embedded Technology and Applications Symposium, April
2006.

[21] Radu Dobrin, Hüseyin Aysan, and Sasikumar Punnekkat. Maximizing
the fault tolerance capability of fixed priority schedules. In The 14th

IEEE Internationl Conference on Embedded and Real-Time Computing

Systems and Applications, August 2008.

[22] Radu Dobrin, Gerhard Fohler, and Peter Puschner. Translating off-line
schedules into task attributes for fixed priority scheduling. In Real-Time

Systems Symposium, December 2001.

[23] Hüseyin Aysan, Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar
Punnekkat. Efficient fault tolerant scheduling on controller area network
(CAN). In 15th International Conference on Emerging Technologies and

Factory Automation, September 2010.

[24] Abhilash Thekkilakattil, Hüseyin Aysan, and Sasikumar Punnekkat.
Towards a contract-based fault-tolerant scheduling framework for dis-
tributed real-time systems. In The 1st International Workshop on De-

pendable and Secure Industrial and Embedded Systems, June 2011.

[25] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoy-
ance. Journal of ACM, 2000.

[26] Robert Davis, Thomas Rothvo, Sanjoy Baruah, and Alan Burns. Ex-
act quantification of the sub-optimality of uniprocessor fixed priority pre-
emptive scheduling. Real-Time Systems, 2009.

Populärvetenskaplig svensk
sammanfattning

Datorsystem används idag i många enheter som vi använder dagligen, t.ex.,
låsningsfria bromsar (ABS) i en bil. En stor del av dessa datasystem kallas
för realtidssystem, där systemet måste utföra en mängd uppgifter inom en
fördefinierad tid. Schemaläggningsalgoritmer används för att bestämma när
dessa uppgifter utförs på en viss processor, för att, i slutändan, garantera de-
ras slutförande före en fördefinierad tid, s.k. deadline. I de flesta fall måste
uppgifterna schemaläggs omlott, där de avbryter varandra, för att på ett bättre
sätt använda systemets resurser. Dessa avbrott, å andra sidan, genererar kost-
nader som kan, i värsta fall, leda till en situation där en särskilld uppgift inte
slutförs före sin deadline, som i sin tur kan leda till att ABS-systemet inte
fungerar som det ska. Därför är det avgörande att ha kontroll över dessa
omkostnader för att systemet ska fungera korrekt.

Vissa datorstyrda system är säkerhetskritiska, vilket innebär att katastrofala
konsekvenser kan inträffa om en enstaka uppgift missar sin deadline. Dessutom
används dessa system i en miljö där de utsätts för fel, till exempel bilens elek-
tronik som tidsvis utsätts för elektromagnetisk interferens. Därför måste da-
torsystemen vara feltoleranta, vilket innebär att de måste slutföra alla uppgifter
före deras deadlines eller ett eller flera fel uppstår.

Moderna datorsystem ger designern möjligheten att snabba upp processor
för att åstadkomma en snabbare exekvering av vissa uppgifter. Detta medför
en kostnad i form av ökad energiförbrukning. I denna avhandling visar vi på
möjligheten att använda processorer med variabla hastigheter för att hantera
avbrottsrelaterade kostnader i realtidssytem för att optimera systemets pre-
standa, samt öka systemets feltolerans.

143

