
”Can we do useful industrial software engineering
research in the shadow of Lean and Agile?”

Kristian Wiklund, Sigrid Eldh, Daniel Sundmark, Kristina
Lundqvist.

Preprint - Accepted to CESI 2013, ICSE, San Francisco,
California

c© 2013 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.



Can we do useful industrial software engineering
research in the shadow of Lean and Agile?

Kristian Wiklund, Sigrid Eldh
Ericsson AB

SE-164 80 KISTA
Stockholm, Sweden

{kristian.wiklund,sigrid.eldh}@ericsson.com

Daniel Sundmark, Kristina Lundqvist
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

{daniel.sundmark,kristina.lundqvist}@mdh.se

Abstract—The software industry is rapidly changing from
traditional ways of working to lean and agile development
methods using self-organized feature development teams that are
performing a much larger part of the development process than
before. Face to face communication will replace many of the
design artifacts used for work-in-progress, such as defect reports
and feature system design specifications. This type of data will
cease to exist when the feature is developed or the problem is
solved, and will not be readily available to researchers. As a
consequence, software engineering research in industry will have
to rely primarily on participatory and observational methods.

Index Terms—empirical research;agile;lean

I. INTRODUCTION

During the recent decade, a large number of software
companies have changed to agile development methods [1][2].
Transforming to agile methods for software development is
usually considered by software developers to be a a great
improvement over ”traditional” software development meth-
ods. Laanti et al. [2] report from a survey at Nokia that agile
methods are perceived by the respondents as making work
more fun, development more effective, and product quality
higher. Less than 10% of the respondents wanted to return
to their old ways of working, something that is in line with
informal survey results reported to us. Petersen and Wohlin
found in their case study [3] that learning and understanding
was improved by an increase in face to face communication,
and Parnell-Klabo [4] reports lead-time improvements in the
order of 40% compared to the ”waterfall baseline”. In short,
it is likely that agile and lean development methods are here
to stay.

How will this change the field of empirical research in
industry? As empirical researchers in the industry we are
spoiled with access to a vast amount of information. There
are databases filled to the brink with valuable information,
such as project plans and their fulfilment, problem reports with
resolutions and root causes, build logs, and change information
showing changes to both source code and documents.

Lean thinking is in large parts about optimizing flow and
reducing or removing queues [5], and according to the Scrum
Alliance, ”the most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation” [6].

Define
Requirements

Deployment
and

Verification

System
Architecture

System
Integration
and Test

Detailed
Design

Build and
Test

Development

Define
Requirements

Deployment
and

Verification

System
Architecture

System
Integration
and Test

Detailed
Design

Build and
Test

Development

Change

Fig. 1. Changing to feature-oriented end-to-end development

One way of implementing lean and agile software develop-
ment is by using cross-discipline, colocated, feature-oriented,
development teams [7][4]. The team members work physically
close to each other, and the team is responsible for the end-
to-end development of a feature that brings value to the
customer. End-to-end development is about doing as much
of the work with the feature as possible within the team.
This gives an opportunity to significantly reduce, and in many
cases totally eliminate, the queues [7] in the development
process, and to replace parts of the documentation with direct
communication [3].

When a larger part of the work flow is handled internally
in a single team, the need to communicate across team
boundaries will be reduced. Information and actions that
were previously managed across a larger organization will be
completely enclosed in the team scope as shown in Figure 1.
This means that there is an opportunity for decentralization
and simplification [8]. The handling of information such as
problem reports and process metrics is likely to take place on
the team task boards, and cease to exist after sprint completion.

II. CHANGES TO INFORMATION AVAILABILITY

Encapsulating the information in the team and removing
the queues is likely to eliminate the need for the information
carrier used to hold the queue. Based on our observations,
a software development team do not want to produce written
information only to produce a trace of how someting was done
or to enable metrics. The primary measurement of success is
working software and they want to reach that point quickly.
Why spend more time reporting a problem than on the fix



itself, and why write a delta specification when you can can
do the design on a whiteboard, then change the design and the
documentation directly?

These changes are likely great time-savers for the team [4],
and the impact on quality is likely positive. Misinterpretation
of requirements and functionality have been reported to be a
large source for errors [9], and the risk for miscommunication
is reduced if the developers interact directly instead of via
documents. Turning to project management, planning is done
with sticky notes on a sprint-to-sprint basis, and teams typi-
cally track their progress as a ”burn-down chart” [10] on their
task board. This information vanishes at the end of a sprint,
what remains is usually an adjustment to the estimated work
capacity in the next sprint.

III. IMPACT ON RESEARCH

Lean and agile methods, in particular if the development
teams are encapsulating a large part of the process, have the
potential to decentralize information and to reduce the time
information is available. Self-organization is an important part
of agile methods [11], and depending on the freedom given by
line management, this could result in eliminating a large part
of the previously observable design artifacts and meta-data.

This could have severe impact on the availability of data
for industrial software engineering research. We will no longer
have the comfort of very large databases of information reach-
ing years and years back through history. This not only makes
it harder to research new methods and improvements, but also
prevents us from evaluating the results of the improvements
that caused the loss of data, for example, how do we know if
we work more efficient in the design phase if we have nothing
to compare to the baseline data? An even worse situation
may occur if there indeed is ”[a] lack of research into cause
and effect” in some research areas as reported by Höfer and
Tichy [12], and we as researchers do not realize that the change
in availability has occured and continue to use the data in the
same ways as before.

We can still do end-to-end measurements, from sales to
customer, but the lack of detailed observability in that type of
measurements and the lead time to obtain them in large-scale
industrial development could make the information useless for
research and process improvement.

Line managers and project managers in organizations chang-
ing to agile have to change and operate closer to the engineers.
With decentralized information and daily team stand-ups,
participatory management [13] is needed. The same will be
required from software engineering researchers.

Data analysis in its own right can likely not be a major
source of knowledge from industrial research in the future and
obtaining this type of supporting information for other types
of studies will be harder.

Instead, a much more participatory approach is needed.
Seeking information through direct methods [14], such as
interviews, participatory observation and walking around to
collect data observed over time on task boards will be nec-
essary. We also expect that the lean and agile revolution

will bring new opportunities for research as well, the built-in
willingness to change and the possibility for rapid feedback
through observation makes the setting perfect for experimen-
tation and action research.

REFERENCES

[1] Need for speed: More IT companies switch to Agile code
development. 2012. URL: http://articles.economictimes.
indiatimes.com/2012-08-06/news/33065621%5C 1%
5C thoughtworks-software-development-iterative.

[2] Maarit Laanti, Outi Salo, and Pekka Abrahamsson.
“Agile methods rapidly replacing traditional methods at
Nokia: A survey of opinions on agile transformation”.
In: Information and Software Technology 53.3 (Mar.
2011), pp. 276–290.

[3] Kai Petersen and Claes Wohlin. “A comparison of
issues and advantages in agile and incremental devel-
opment between state of the art and an industrial case”.
In: Journal of Systems and Software 82.9 (Sept. 2009),
pp. 1479–1490.

[4] Emma Parnell-Klabo. “Introducing Lean Principles with
Agile Practices at a Fortune 500 Company”. In: AGILE
2006 (AGILE’06). IEEE, 2006, pp. 232–242.

[5] James P Womack and Daniel T Jones. Lean Thinking.
Free Press, 2003.

[6] Scrum Alliance Code of Ethics. 2013. URL: http://www.
scrumalliance.org/pages/code%5C of%5C ethics.

[7] Craig Larman and Bas Vodde. Scaling Lean & Agile
Development: Thinking and Organizational Tools for
Large-Scale Scrum. Addison-Wesley, 2009, p. 154.

[8] Lisa Crispin. Limbo Lower Now : An Agile Approach
to Defect Management. 2010. URL: http: / / lisacrispin.
com/presentations/.

[9] Victor R. Basili and Barry T. Perricone. “Software
errors and complexity: an empirical investigation0”.
In: Communications of the ACM 27.1 (Jan. 1984),
pp. 42–52.

[10] Henrik Kniberg. Scrum and XP from the Trenches.
InfoQ Enterprise Software Development Series, 2007.

[11] Mikael Lindvall et al. “Empirical Findings in Ag-
ile Methods An Experience Base for Software Engi-
neering”. In: Extreme Programming and Agile Meth-
ods—XP/Agile Universe. 2002, pp. 197–207.

[12] Andreas Höfer and Walter F. Tichy. “Status of empirical
research in software engineering”. In: Int. Conf. Empiri-
cal software engineering issues: critical assessment and
future directions. June 2006, pp. 10–19.

[13] Jason Yip. Lean Software Development: Seeing the IT
and Software Development Gemba. 2011. URL: http :
//www.shmula.com/lean-software-development-gemba/
8837/.

[14] Per Runeson and Martin Höst. “Guidelines for con-
ducting and reporting case study research in software
engineering”. In: Empirical Software Engineering 14.2
(Dec. 2008), pp. 131–164.


