
16th International ACM Sigsoft Symposium on
Component-Based Software Engineering (CBSE’13),
Vancouver, BC, Canada, June 17–21, 2013. ACM.

Model Level Worst-Case Execution Time
Analysis for IEC 61499

Luka Lednicki, Jan Carlson
Mälardalen Real-time Research Centre

Mälardalen University
Västerås, Sweden

[luka.lednicki, jan.carlson]@mdh.se

Kristian Sandström
Industrial Software Systems
ABB Corporate Research

Västerås, Sweden
kristian.sandstrom@se.abb.com

ABSTRACT
The IEC 61499 standard provides a possibility to develop
industrial embedded systems in a component-based man-
ner. Besides alleviating the efforts of system design, the
component-based approach also allows analysis of various
system characteristics using system models even before the
actual deployment. One of the crucial characteristics in the
domain of safety-critical and real-time systems is timing: a
failure to execute a specific task on time can have severe
consequences.

This paper presents a method for compositional model-
level analysis of worst-case execution time of IEC 61499 soft-
ware models. The analysis is performed on one hierarchical
level of composition at a time, and the results can be stored
together with the software artefact to be used when anal-
ysis is performed on the higher hierarchical level, or when
the unit is reused in another system. The analysis has been
implemented as a plug-in for the 4DIAC tool.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords
IEC 61499, timing, analysis, WCET

1. INTRODUCTION
One of the most widespread standard used in industrial

software systems, such as manufacturing, rolling mills and
mining hoists, is currently the IEC 61131-3 [4]. However,
a lot of effort has been invested into developing its possible
successor, the IEC 61499 standard [5]. The new standard
introduces more powerful execution model and better system
modeling support, allowing creation of software with more
complex functionality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2122-8/13/06 ...$15.00.

The ability to support more complex systems also re-
quires more advanced analysis methods for understanding
their execution behavior. One possible technique that can
be applied to the IEC 61499 standard is model-level analy-
sis. It allows for more efficient analysis algorithms as it is
performed on an abstract view of a system. It can also be
applied on only parts of the system, or in early stages of de-
velopment, even before the system is fully implemented and
deployable. Still, analysis methods determining functional
and non-functional properties of IEC 61499 systems are very
rare, as currently this is not one of the primary concerns of
the standard [13,15].

An important property that we can analyze in real-time
embedded software systems is the Worst Case Execution
Time (wcet). The wcet value corresponds to the maxi-
mum time that a processing resource will be used to fin-
ish execution of a task or a component’s functionality [10].
Knowing the wcet for the components of a real-time system
is essential for ensuring it’s timing requirements are met.

In this paper we will describe a method for model-level
wcet analysis for IEC 61499 systems. We start the anal-
ysis on the bottom level of hierarchy and perform it in a
compositional manner. The wcet data for each model el-
ement is calculated by composing the data of its subcom-
ponents, based on the models describing their interaction.
Once the analysis of an element is done we attach the re-
sulting context-independent data to that element. We then
use these results when an instance of the element is encoun-
tered while applying the analysis on higher levels of the hi-
erarchy. To address a possible problem of scalability we
provide different versions of the analysis, with different pre-
cision and resource usage. A prototype analysis tool has
also been implemented on top of the 4DIAC environment
for development of IEC 61499 systems.

The rest of the paper is organized as follows: Section 2
gives an overview of the software model for the IEC 61499
standard and a formal definition of the model elements needed
to define our analysis algorithms. The analysis method, in-
cluding formal definitions of data and algorithms, is given
in Section 3. In Section 4 we describe our prototype analy-
sis tool and Section 5 presents experimental results. Related
work is discussed in Section 6 and finally Section 7 concludes
the paper.

2. THE IEC 61499 STANDARD
The IEC 61499 standard is proposed as a successor of

the IEC 61131-3 standard widely used in industry to ac-
commodate development of industrial automation systems.

Over time, the evolvement of controller and network per-
formance have enabled more complex software applications,
distributed over multiple controllers, geographically sepa-
rate in a plant. To meet this increased complexity, the IEC
61499 standard has been developed. The new standard also
addresses other high level requirements of new automation
systems, such as portability, configurability, interoperability,
reconfiguration, on top of distribution of both devices and
system intelligence.

2.1 IEC 61499 architectural elements
The main element of the IEC 61499 software model is the

function block. Function blocks are reusable units of soft-
ware that implement a specific functionality with a clear
separation between interface and implementation. Consid-
ering implementation, a function block can be of three pos-
sible types: Basic function block, Service interface function
block and Composite function block.

The function block interface defines how the functionality
of a function block is presented to the rest of the system.
The interface explicitly separates event and data inputs and
outputs. Event inputs and outputs are used to specify the
execution flow of the system, but do not provide any means
for exchanging data between function blocks. All data trans-
fers are done by data inputs and outputs.

Example 1. Figure 1 a) shows an example of a function
block interface containing event input ports ei11 and ei12,
event output eo11, data input port in11 and data output out11.

A basic function block (BFB) is implemented by means of
an Execution Control Chart (ECC) and one or more algo-
rithms. The ECC is an automaton consisting of states and
guarded transitions. Each state can be associated with zero
or more actions. An action can specify an algorithm which
should be executed once the state is reached, and an output
event port that will be activated. We differentiate between
two types of states: stable states in which execution of ECC
stops until a new event arrives at the input ports, and tran-
sitional states which do not require an event for ECC to
move to another state. Basic function blocks are strictly
event driven – the execution can only start when an event
is received at one of the input ports, and once the execution
stops it will not continue until the next event arrives. One
execution cycle of a function block is called a run. A single
run can traverse more than one ECC state in case the ECC
contains transitional states, and thus result in an arbitrary
number of algorithm executions and output events.

The analysis method presented in this paper does not take
into account values of data ports or internal variables, mak-
ing them irrelevant from the analysis point of view. For
the purpose of the analysis we transform all ECC transition
guards by removing the parts of the guard conditions that in-
clude data values. This means that after the transformation
each transition is either guarded by exactly one event input,
or left unguarded. We also assume that the ECC does not
contain any event-free cycles, i.e. cycles that do not contain
at least one transition guarded by an input event. As the
analysis does not take into account data values, we cannot
analyze ECCs containing such loops.

Example 2. In Figure 1 b) we can see an example of a
basic function block ECC. It contains states START, S1 and
S2, with state START being the initial state. The transi-
tion from START to S1 is guarded by the input event ei1.

e
i11

e
o11

fb
1

in
11

e
i21

e
o21

fb
2

e
oc1

out
oc2

e
ic1

cfb

in
21

out
11

out
21

in
oc1

START S1 A1 e
o11

S2 A2 e
o12

e
i11

e
i12

1

1

c)

b)

a)
e
i11

e
o11

fb
1

in
11

out
11

e
i12

e
ic2

e
i12

Figure 1: a) A IEC 61499 function block interface.
b) Example of a basic function block ECC. c) An
example of a composite function block with the in-
ternal function block network.

When this state is reached, algorithm A1 is executed, and
an event is generated at output event port eo1. The tran-
sition to state S2 is guarded by the input event ei2, and it
executes algorithm A2 and outputs an event at eo2. Both S1
and S2 are transitional states – there are transitions back
to START that are not guarded by any event, their guard
expression being represented by the value 1.

Service interface function blocks (SIFB) are designed to
be used as interfaces to external hardware or services. The
functionality of this element is not specified by the standard,
and although they can contain a sequence diagram describ-
ing their behavior, the functionality might not be fully doc-
umented. Unlike basic function blocks, the service interface
function blocks can start their execution as a result of inter-
nal execution triggers, without the arrival of an input event
(active execution). The occurrence of such internal triggers
can either have a fixed period, or it can be sporadic.

A composite function block (CFB) has an implementation
defined by a function block network (defined below), with
additional connections between the ports of the enclosing
interface and the ports of the function blocks in the network.
As the composite function block can contain active service
interface function blocks, composites can also be active, i.e.
start their execution without receiving an input event.

A function block network (FBN) defines the internal struc-
ture of a composite function block or a whole application.
A function block network consists of a set of function blocks
of arbitrary types (BFB, SIFB or CFB) and connections be-
tween the ports of these function blocks. As a result of the
separation of event and data ports, the flow of control and
data are clearly distinguished.

In some cases our analysis cannot handle function block

networks containing event cycles, depending on the behavior
of the function blocks contained by the cycle, for example if
the termination of the cycle depends on data values.

Example 3. An example of a composite function block
can be seen in Figure 1 c). It’s internal function block net-
work contains two function blocks, fb1 and fb2.

For the purpose of this work we view applications as com-
posite function block with empty interfaces.

2.2 Formal Definition of IEC 61499
To be able to define the WCET analysis, we first have to

provide a formal definition of the IEC 61499 elements used
in the analysis. Parts of the formal definition provided in
this paper are based on work from Čengić and Åkesson [12].
Definitions that differ from the ones defined in the mentioned
paper were modeled according to the IEC 61499 standard
definition [5]. In this definitions we will disregard elements
that are not relevant to the analysis described in this paper,
such as data ports and connections between them.

Definition 1. The following constructs constitute our for-
mal representation of IEC 61499 systems:

Function block interface: fbi = 〈Ei, Eo〉 where

Ei is a set of event inputs;
Eo is a set of event outputs.

Basic function block: bfb = 〈fbi, ecc, A〉 where

fbi is a function block interface;
ecc is an execution control chart (ECC);
A is a set of algorithm functions.

Execution control chart (ECC): ecc = 〈Q,T 〉 where

Q is a set of ECC states;
T is a set of ECC transitions.

ECC state: q = 〈k1, ..., k|q|〉 where

ki is a ECC state action;

ECC state action: k = 〈a, eo〉 where

a is the algorithm to be executed, a ∈ A;
eo is the output event to be generated, eo ∈ Eo.

ECC transition: t = 〈qs, eg, qd〉 where

qs is the source state, qs ∈ Q;
eg is the input event guarding the transition, or 1 if the

transition is not guarded by an event, eg ∈ Ei∪{1};
qd is the destination state, qd ∈ Q.

Service interface function block: sifb = 〈fbi〉 where

fbi is a function block interface;

Composite function block: cfb = 〈fbi, fbn〉 where

fbi is the function block interface;
fbn is the internal function block network.

Function block network: fbn = 〈F,C〉 where

F is a set of function blocks, each of which can be
either a bfb, sifb or cfb;

C is a set of connections between event ports.

Connection: c = 〈es, ed〉 where

es is the event port used as the source of the connec-
tion;

ed is the event port used as the connection target.

3. WCET ANALYSIS
There are two main parts of our analysis method: basic

function block analysis and composite function block analy-
sis. Analysis of basic function blocks is performed first, as
they are at the bottom of the function block hierarchy. Their
wcet data, containing wcet values and information about
generated output events, is derived by analysis of the ECC.
The composite function block analysis produces the same
data by combining the data of function blocks contained in
the function block network, based on the event connections
in the network.

As we have already noted, for the purpose of this paper
we can view applications as composite function blocks with
empty interfaces. Because of that, we do not need to provide
specialized algorithms for their analysis, but use the ones
defined for composite function blocks instead.

Before describing the actual analysis, we first give defi-
nitions for wcet data used in the analysis, together with
definitions of operations on that data.

3.1 WCET Data Definition
To enable compositional wcet analysis of IEC 61499 soft-

ware systems we must first define the format for the reusable,
context-independent data that we will use to describe the
wcet of a function block.

The wcet data for function blocks is organized in two
main data sets: (a) event WCET data and (b) period WCET

data. The event data set consists of entries with informa-
tion about execution initiated by the arrival of event inputs
to the function block. These data entries contain a wcet
value and the number of events produced at each event out-
put of the function block. The wcet value represents the
maximum amount of time that a function block will require
a processing resource to execute its functionality, from the
arrival of an input event until the resulting activity of the
function block finishes. This time does not include waiting
due to preemption or blocking. Because an event input can
result in different internal execution paths, and thus in dif-
ferent execution times and output events, there can be more
than one wcet data entry associated with each input event.
Storing wcet data for different execution path is necessary
because when considering the function block in isolation we
do not know which alternative leads to the worst overall
system wcet.

Similarly, the period wcet data contains information for
executions initiated by the internal activities in the function
block. In this case the wcet data entry sets are associated
with a period of execution instead of an input event. For spo-
radic internal execution triggers, the minimum interarrival
time is used as period value. If the minimum interarrival
time is not know, the period value is set to -1.

Once we calculate the wcet data of a function block it
can be reused in any context, and needs to be recalculated
only if the internals of the function block change.

Definition 2. The wcet data for an algorithm a ∈ A and
a function block f are represented by the functions wcet(a)
and wcet(f), respectively:

Algorithm WCET data: wcet(a) ∈ N

Function block WCET data: wcet(f) = 〈We,Wp〉 where

We is a set of elements on the form 〈ei,W 〉, representing
wcet information for input events.

Wp is a multiset of elements on the form 〈p,W 〉, repre-
senting wcet information for periodical execution.

ei is an input event, ei ∈ Ei;
p is the period of an internally triggered execution,

p ∈ Z+ ∪ −1;
W is a set of wcet data entries.

WCET data entry: w = 〈v, o〉 where

v is the wcet value, v ∈ N;
o is a function mapping output ports to the maximum

number of events generated at them, o ⊆ Ei × N.

Example 4. We can illustrate the wcet data for a func-
tion block by the following example:

wcet(fb) = 〈{ 〈ei1, { 〈10,{eo1=1}〉,
〈 5,{eo1=2, eo2=1}〉 }〉,

〈ei2, { 〈30,{eo2=1}〉 }〉 },
{ 〈 50, { 〈 3,{eo1=1}〉 }〉 }〉

In the example, the o functions are shown as sets of equa-
tions between ports and number of generated events at that
port, and for all output events that do not appear in the set
the value of the function is 0. We can see that for input event
ei1 we have two wcet data entries. One has a value of 10
and generates one event at the eo1 output port. The second
one has a value of 5 but generates two events at eo1 and one
event at the output port eo2. Input event ei2 has only one
data entry with a value of 30 and one event generated at the
output port eo2. The wcet data also contains one periodical
execution with a period of 50 and a single wcet data entry
with the value of 3 and one output at the eo1 port.

For the purpose of our analysis we also need to define the
following operations on the data elements:

Definition 3. For the functions o, and n ∈ N, we define
the operations +, ∗ and inc as follows:

inc(o, e′, n) (e) =

{
o(e) + n if e = e′

o(e) otherwise
(o1 + o2) (e) = o1(e) + o2(e)

(o ∗ n)(e) = n ∗ o(e)

Definition 4. For the sets of wcet data entries, W in the
definition above, and for n ∈ N, we define the following
operations:

W ∗ n = {〈v ∗ n, o ∗ n〉 | 〈v, o〉 ∈W}

W1 ⊗W2 =


W1 if W2 = ∅
W2 if W1 = ∅
{ 〈v1 + v2, o1 + o2〉 |
〈v1, o1〉 ∈W1 ∧
〈v2, o2〉 ∈W2 }

otherwise

3.2 Data normalization
As we have shown in Section 3.1, wcet data that we de-

fine can contain more than one data entry for the same ex-
ecution source (i.e. input event or internal trigger). When

using such data sets in compositional analysis the amount
of resulting data can grow rapidly, when all combinations
of alternatives for all subcomponents must be considered.
To address this problem we will use data normalization to
remove redundant data entries and optimize large data sets
by introducing over-approximations.

First, we introduce a comparison relation capturing when
one wcet data entry is completely covered by another one.

Definition 5. We define the following comparison relation
between w1 = 〈v1, o1〉 and w2 = 〈v2, o2〉:

w1 � w2
def
= v1 ≤ v2 ∧ ∀e : o1(e) ≤ o2(e)

w1 ≺ w2
def
= w1 � w2 ∧ w1 6= w2

In our current work we have defined two methods of data
normalization, the maximal elements method and the supre-
mum method, which we will now describe.

3.2.1 The maximal elements method
Using the maximal elements method we only remove re-

dundant data from our wcet data sets. By this method we
normalize a data set W by keeping only entries which are
maximal elements of W . Since all other elements are guar-
anteed to produce lower or equal wcet values in any con-
text, and thus can be removed without loss of precision, this
method allows reducing the number of data entries without
introducing any overestimation in the normalization process.

Definition 6. The maximal elements normalization func-
tion is defined as follows:

normalizemax(W) = {w | w ∈W ∧ ¬∃w′ ∈W : w ≺ w′}

3.2.2 The Supremum Method
The second normalization method deals with incompa-

rable wcet data values by replacing them by the supre-
mum (the least upper bound), i.e. the smallest value which
is greater than both of them. The result of such normal-
ization can be a drastic reduction of data and complexity
of analysis, as all alternative execution paths for the input
event or periodic activity are represented by a single wcet
entry. However, this method also introduces an overestima-
tion which can grow during every normalization, and can
decrease the precision of the analysis results.

Definition 7. The supremum normalization function is de-
fined as follows:

normalizesup(W) = {sup(W)}

Example 5. As an example of the two normalization meth-
ods, consider the following set of wcet data entries:

W = {〈10,{eo1=2}〉,
〈 8,{eo1=1, eo2=1}〉,
〈 3,{eo1=2}〉}

For this set, the two normalization methods give the follow-
ing results:

normalizemax(W) = {〈10,{eo1=2}〉,
〈 8,{eo1=1, eo2=1}〉}

normalizesup(W) = {〈10,{eo1=2, eo2=1}〉}

The maximal elements normalization removes the third el-
ement since it is smaller than the first element, while the
supremum method returns a single element that safely ap-
proximates all three.

3.3 Basic Function Block Analysis
Now that we have described the wcet data that we will

use in the analysis and the operations for manipulating this
data, we can present the actual analysis method. This sec-
tion will describe the first part of our analysis method, the
analysis of basic function blocks. Analysis of composite func-
tion blocks will be given in the Section 3.4.

The wcet of a basic function block is determined by anal-
ysis of its ECC. To gather the data about execution based
on input events, we must analyze all possible ECC runs that
can be executed by the event input ports in the function
block interface. As the execution of a basic function block
can only start by receiving an input event, their wcet data
only contains the event data set We, while the Wp set of
information for periodical execution is always empty.

We start the basic function block analysis by going through
the interface, and for each input event port we look for all
transitions guarded by the given event. For each such tran-
sition we go through all possible ECC runs, and for each run
add together the wcet values of the algorithms to be exe-
cuted and collect information about produced output events.

Example 6. We can illustrate how the ECC analysis is
performed on the example shown in Figure 2. We will as-
sume that the ECC in the figure is part of a basic function
block bfb1 containing only one input event port, ei1, and two
output event ports, eo1 and eo2. Here we can see that the
event ei1 can result in two different runs. The first run vis-
its only state S1, executes algorithm A1 and produces an
event on the output port eo1. The second run visits states
S2 and S3, executes algorithms A2 and A3, and produces
events at both outputs eo1 and eo2.

As the result of the analysis of bfb1 we would get the fol-
lowing data:

wcet(bfb1) = 〈{ 〈ei1, { 〈10,{eo1=1}〉,
〈 8,{eo1=1, eo2=1}〉 }〉 },

∅ 〉

START S1 A1 e
o1

S3

S2 A2 e
o1

A3 e
o2

e
i1

e
i1

1

1

1

WCET(A1) = 10

WCET(A2) = 5

WCET(A3) = 3

Figure 2: ECC analysis example.

3.3.1 The BFB Analysis Algorithm
Algorithm 1 performs the analysis of a basic function

block. The for loop starting on line 3 is used to iterate
over all event inputs. The combination of for loop on line
5 and an if statements on line 6 is used to find all transi-
tions that are guarded with the given input event. Then, on

Algorithm 1 bfbAnalysis(bfb)

1: We ← ∅
2: 〈〈Ei, Eo〉, 〈Q,T 〉〉 ← bfb
3: for each ei ∈ Ei do
4: W ← ∅
5: for each 〈qs, eg, qd〉 ∈ T do
6: if eg = ei then
7: W ←W ∪ eccAnalysis(qd, T)
8: end if
9: end for

10: W ← normalize(W)
11: We ←We ∪ {〈ei,W 〉}
12: end for
13: return 〈We, ∅〉

line 7, we call the ECC analysis function (described in Algo-
rithm 2) to collect analysis results for all ECC runs starting
from the destination state of a transition. The results from
the ECC analysis are added to a set W , which will in the
end be associated with currently analyzed input event and
added to the result set We on line 11.

3.3.2 The ECC Analysis Algorithm
The ECC run analysis is described by Algorithm 2. In

lines 1 to 6 we collect the wcet value v for all algorithms
and output information o of actions defined for current ECC
state. We use the combination of a for loop and an if state-
ment on lines 8 and 9 to find all ECC transitions starting
with current state that do not have any event inputs as
guards. We recursively start ECC analysis for destination
states of such transitions. The results of recursive analysis
are stored in a temporary wcet data entry set, W ′. If there
were no such results (i.e. no possible transitions), we assign
the wcet value and output information for the current state
as the final ECC analysis results on lines 13 and 14. Other-
wise, we add the data for the current state to all wcet data

Algorithm 2 eccAnalysis(q, T)

1: v ← 0
2: o← ∅
3: for each 〈a, eo〉 ∈ q do
4: v ← v + wcet(a)
5: o← inc(o, eo, 1)
6: end for
7: W ′ ← ∅
8: for each 〈qs, eg, qd〉 ∈ T do
9: if qs = q and eg = 1 then

10: W ′ ←W ′ ∪ eccAnalysis(qd, T)
11: end if
12: end for
13: if W ′ = ∅ then
14: W ← {〈v, o〉}
15: else
16: W ← ∅
17: for each 〈v′, o′〉 ∈W ′ do
18: W ←W ∪ {〈v + v′, o + o′〉}
19: end for
20: W ← normalize(W)
21: end if
22: return W

entries collected by the recursive analysis of ECC in lines 16
to 20. Before we return the result data set W , we normalize
its data in line 20.

3.4 Composite Function Block Analysis
Analysis of a composite function block consists of two sep-

arate parts: (a) analysis of execution based on input events
and (b) analysis of the internal periodic execution sources.
Both of these parts are based on the analysis of the function
block network contained in the composite function block.

Input event execution analysis starts from the interface
of the composite function block. Similar to the analysis of
basic function blocks, for each input event we find all possi-
ble execution paths in the internal function block network.
The analysis is only done on one hierarchical level. We de-
termine the execution paths by traversing event connections
of the network and by using event output information in-
cluded in the existing wcet data for the function blocks in
the network. For each execution path we accumulate the
wcet values defined in the function block wcet data and
gather information about produced output events if a path
ends at one or more output event ports of the composite.

Analysis of the internal event sources is performed by iter-
ating over all function blocks contained in the network and
finding the ones which have at least one entry in their peri-
odic wcet data set. For each such entry we start a network
analysis based on the event output information of the entry.

Example 7. We will illustrate the analysis of composite
function blocks by a simple example depicted in Figure 3.
The figure shows a composite, cfb, containing three function
blocks, and we assume the following wcet data for them:

wcet(fb1) = 〈{ 〈ei11, { 〈1,{eo11=1, eo12=2}〉 }〉 },
∅〉

wcet(fb2) = 〈{ 〈ei21, { 〈10,{eo21=2}〉,
〈30,{eo21=1}〉 }〉 },

∅〉

wcet(fb3) = 〈{ 〈ei31, { 〈300,{eo31=1}〉,
〈100,{eo31=1, eo32=1}〉 }〉 },

{ 〈 50, { 〈 10,{eo31=1}〉 }〉 }〉
This wcet information is also represented graphically in

the figure. Each dashed arrow represents a wcet data entry,
starting from the input event and pointing to the generated
outputs. Multiple outputs at a single event port are repre-
sented by multiple arrow heads. The underlined number next
to an arrow is the wcet value of the entry.

The wcet data for the composite cfb is determined by
starting the analysis at the input event port eic1. The first
function block in the event path is fb1. As we can see, the
single wcet data entry for the port ei11 of fb1 has a value
of 1, one output to eo11 and two outputs to eo12. The analy-
sis continues by first gathering information for all execution
paths starting with eo11 and eo12.

For the first port, the event path leads to fb2. It has two
wcet data entries, both generating output only on eo21. As
this output is connected to the event port eoc1 of the con-
taining composite, we stop the analysis at this output. The
resulting data entries for the execution starting with eo11 are
the same as the ones for port ei21, with the outer port eoc1
replacing the port eo21, because of the direct event connec-
tion from eo21 to eoc1. The figure shows these entries above
the event connection, together with an arrow describing their

e
i11

e
o11

fb
1

e
o12

e
i21

e
o21

fb
2

e
i31

e
o31

fb
3

e
oc1

e
oc2

e
ic1

1

100

300

e
oc3

10

30

cfb

{100, {e
oc2

 = 1},

 300, {e
oc2

 = 1, e
oc3

 = 1}}

{10, {e
oc1

 = 2},

 30, {e
oc1

 = 1}}

e
o32

10

10
50

Figure 3: CFB analysis example.

propagation. In a similar way we gather information for ex-
ecution paths starting from eo12.

After we have gathered the information for all execution
paths starting with both eo11 and eo12, we make all combina-
tions of the gathered data. We do this to cover all possible
execution paths that can occur by generating events on both
ports. Because there are two events generated at eo12 we
must also multiply the wcet values and number of gener-
ated events in the information gathered for that port by two.
To finish the analysis for input port ei11 of fb1 we add the
wcet value of the data entry for this port to each entry in
the data set obtained by generating the combinations. This is
then propagated back to the event port eic1 of the composite.

The periodic execution data for the cfb is calculated using
the information about periodic execution of its subcompo-
nents, in this case only fb3. Because the eo32 event output
which the periodic execution of fb3 generates is connected di-
rectly to the output of the composite, the result will include
just the wcet value of the periodic data entry (10) with its
period 50, and an output to eoc3.

Assuming that we use the maximal element normalization
method, which in this case does not remove any entries, the
final result of the analysis is:

wcet(cfb) = 〈{〈eic1, { 〈611,{eoc1=2, eoc2=2}〉,
〈211,{eoc1=2, eoc2=2, eoc3=2}〉,
〈631,{eoc1=1, eoc2=2}〉,
〈231,{eoc1=1, eoc2=2, eoc3=2}〉 }〉},

{〈 50, { 〈 10,{eoc3=1}〉 }〉 }〉
The supremum normalization would instead give:

wcet(cfb) = 〈{〈eic1, { 〈631,{eoc1=2, eoc2=2, eoc3=2}〉 }〉},
{〈 50, { 〈 10,{eoc3=1}〉 }〉 }〉

3.4.1 The CFB Analysis Algorithm
The start of the composite analysis is given in Algorithm 3,

where we can see separate execution of event based and pe-
riodical execution analysis and the combination of the two
results into a final wcet data set.

Algorithm 3 cfbAnalysis(cfb)

1: 〈fbi, fbn〉 ← cfb
2: We ← eventAnalysis(cfb)
3: Wp ← periodAnalysis(fbn)
4: return 〈We,Wp〉

3.4.2 The CFB Event Analysis Algorithm

Algorithm 4 eventAnalysis(cfb)

1: We ← ∅
2: 〈〈Ei, Eo〉, fbn〉 ← cfb
3: for each ei ∈ Ei do
4: W ← fbnAnalysis(ei)
5: We ←We ∪ 〈ei,W 〉
6: end for
7: return We

Algorithm 4 shows how we start the event analysis for a
composite function block. In the for loop starting on line
3, we iterate through all event inputs of the composite. We
start the network analysis algorithm (given in Algorithm 5)
for each input and store the results of the analysis to the
event wcet data set, linking it with the starting event input.

3.4.3 The FBN Analysis Algorithm
Before we show the algorithm for periodic execution anal-

ysis, we will first show the function block network analysis
algorithm, as some concepts from the latter algorithm are
basis for parts of the periodic execution analysis.

The function block network analysis described in Algo-
rithm 5 starts from an input event port e of the composite
or an output port of a function block instance and gathers
wcet data for all execution paths that can be taken from
that event port. The algorithm starts with initialization of
the wcet data entry set W which will hold the results as-
sociated with the port e.

On line 3 we test if there is any connection leading out
from the selected event port. If not, the resulting wcet data

Algorithm 5 fbnAnalysis(e, fbn)

1: W ← ∅
2: 〈Fi, C〉 ← fbn
3: if ¬∃〈es, ed〉 ∈ C : es = e then
4: return ∅
5: else
6: Let 〈es, ed〉 ∈ C be the connection for which es = e
7: if ed is an output port then
8: o← inc(∅, ed, 1)
9: W ← 〈0, o〉

10: return W
11: end if
12: Let f be the FB to which ed belongs
13: 〈We,Wp〉 ← wcet(f)
14: Let 〈ei,Wt〉 be the element in We for which ei = ed
15: for each 〈v, o〉 ∈Wt do
16: W ′ ← ∅
17: for each eo ∈ E0 : o(eo) > 0 do
18: Wr ← fbnAnalysis(e0)
19: Wr ←Wr ∗ o(eo)
20: W ′ ←W ′ ⊗Wr

21: end for
22: W ′ ← {〈v′ + v, o′〉 : 〈v′, o′〉 ∈W ′}
23: W ←W ∪W ′

24: end for
25: W ← normalize(W)
26: return W
27: end if

for this event is empty. Otherwise, the analysis continues at
the destination port of the connection.

On line 7, we test if the destination port is an output port
of the composite. If it is, we return a wcet data entry with
wcet value 0 and a single output to the destination port as
the only wcet data entry for the currently analyzed event.

If the connection’s destination port is an input event port
of a function block, we continue by first retrieving the wcet
data for that function block, as shown on line 13.

As the function block wcet data can have multiple data
entries (for multiple internal execution paths), we continue
the analysis for each data entry separately by a for loop on
line 15. On line 16 we initialize a temporary set W ′ which we
will use to collect the intermediate results. The intermediate
results will be added to the final result set on line 23.

With a recursive call of network analysis for each output
event in the output information of the current wcet entry
we gather information for execution paths started by these
events, as shown on lines 17 and 18. The results of a single
recursive call are stored in the Wr set, which is multiplied
by the number of occurrences of the output event on line 19.
On line 20 we construct all possible combinations of wcet
data for execution paths started by the current output event
(Wr) with the ones already gathered in the temporary set
W ′, and use these combinations as our new temporary set.
By this we have created all possible execution paths that
can be taken by generating all output events of the currently
examined wcet data entry.

Once we have collected the data for all possible execution
paths we add the wcet value of the current data entry to
all the data in the temporary set W ′ in line 22. We can now
add this temporary data set to our final data set W , as can
be seen in line 23. The final analysis results are normalized
in line 25.

3.4.4 The Periodical Execution Analysis Algorithm
Analysis of wcet for periodical execution inside a func-

tion block network is described by Algorithm 6. The algo-

Algorithm 6 periodAnalysis(fbn)

1: W ′
p ← ∅

2: 〈F,C〉 ← fbn
3: for each f ∈ F do
4: 〈We,Wp〉 ← wcet(f)
5: for each 〈p,W 〉 ∈Wp do
6: W ′ ← ∅
7: for each 〈v, o〉 ∈W do
8: W ′′ ← ∅
9: for each eo ∈ Eo : o(eo) > 0 do

10: Wr ← fbnAnalysis(eo, fbn)
11: Wr ←Wr ∗ o(eo)
12: W ′′ ←W ′′ ×Wr

13: end for
14: W ′′ ← {〈v′′ + v, o′′〉 : 〈v′′, o′′〉 ∈W ′′}
15: W ′ ←W ′ ∪W ′′

16: end for
17: W ′ ← normalize(W ′)
18: W ′

p ←W ′
p ∪ 〈p,W ′〉

19: end for
20: end for
21: return W ′

p

Figure 4: A screenshot of the 4DIAC tool showing analysis results.

rithm starts with preparing an empty set W ′
p which will hold

our result.
Using the for loops on lines 3 and 5 we iterate through

all function blocks in the network, and their period wcet
data if it is defined. For each such data entry we create an
temporary empty data set W ′.

Lines 7 to 16 contain the same recursive analysis of all pos-
sible execution paths that can be started using the currently
analyzed period wcet entry as we have already described
in the function block network analysis. After the results
collected in the temporary data set W ′ are normalized on
line 17, we add them to the final result data set on line 18.
They are linked to the period of execution defined for the
period wcet data entry that was the origin of execution
paths collected in the temporary data set.

4. IMPLEMENTATION
We have built an implementation of our analysis as a plug-

in for 4DIAC-IDE [11] – an open-source tool for modeling
IEC 61499 systems. The implementation includes all algo-
rithms defined in Section 3, including both normalization
methods described in Section 3.2. As the 4DIAC-IDE is an
open-source tool, and built on top of the Eclipse framework,
it was suitable for extending with our analysis. Integration
with the 4DIAC-IDE allowed us to reuse the implementa-
tion of IEC 61499 modeling elements, graphical editors and
mechanisms for loading and storing models. It also enables
user to more easily use our analysis tool as it can be used
on existing 4DIAC systems without the need of any model
transformation. Apart from the analysis algorithms, we have
also implemented GUI elements for presentation and editing
of wcet data.

When starting the analysis a user can choose which data
normalization method will be used during analysis. Also,
user can force redoing analysis for all levels of hierarchy in-
stead of using stored data.

A screenshot of the 4DIAC tool containing a dialog win-
dow for presentation of wcet data can be seen in Figure 4.

The Eclipse plug-in containing the implementation and a

video presentation can be found at the Assist project web
page1.

5. EXPERIMENTS
To evaluate the applicability of our analysis approach and

compare the two proposed data normalization methods we
have conducted a series of experiments using our prototype
analysis tool. The experiments have been carried out on
four different IEC 61499 applications taken from the exam-
ple systems provided by the 4DIAC-IDE [11] and FBDK [3]
tools. Because true wcet values for algorithms and inter-
nal executions of service interface function blocks were not
attainable, we have conducted our experiments using input
sets of random wcet values, uniformly distributed between
1 and 100. To account for the randomness of the data we
have repeated the experiment 1000 times for each system,
each time with a new random set. For each analysis invo-
cation we cleared the existing wcet data for all function
blocks, forcing the re-analysis of all function blocks.

Information about the number of function block types,
instances, hierarchical levels and average analysis running
time for the systems we used in the experiment is given
in Table 1. The actual analysis running time values were
measured for ten consecutive invocations. To eliminate the
impact of loading and storing data from and to function
block models we have used temporary memory caches for
each analysis invocation.

As can be seen in Table 1, the time needed for running of
the analysis was very low, also for fairly complex Boiler sys-
tem. The given numbers were attained using the supremum
normalization, but the analysis time for the two normaliza-
tion methods did not shown any significant difference.

We have also stored the resulting wcet values for all ori-
gins of execution in the analyzed system, i.e. for the in-
dividual event sources within the systems. For each origin
we have compared the data attained by using the two nor-
malization methods for the same random set of algorithm

1http://www.idt.mdh.se/˜jcn01/research/assist/

Table 1: Experiment setup and runtime results
Average

System FB FB Hierarchy supremum
types instances levels running

time (ms)
Boiler 60 158 6 11.8
DSCY MDLL 20 41 4 4.6
ASSY CTL 7 7 2 1.4
XFER MDL 8 17 2 7.0

wcet values. The results of comparing the wcet values for
the two normalization methods are shown in Table 2. They
are aggregated by the systems and the execution origins,
Columns one and two show the system and execution origin
of the values. The third column contains the overestimation
produced by the supremum method compared to the max-
imal elements method, on average over all random wcet
input sets. In the fourth column we show the maximum of
all the supremum overestimations.

In the results we can see many execution origins with
only one execution path, for which the supremum method
naturally did not produce any overestimation compared to
the maximal elements normalization. The average wcet in-
crease when using supremum method was between 3% and
75%. Although the maximal overestimation was only 12%
for one origin of execution, it went up to 258% in the worst
case. The data also shows us that there is no direct cor-
relation between the number of components, instances, hi-
erarchy levels and execution paths, and the overestimation
of the supremum method. This indicates that the effects of
the normalization mostly depend on specific combinations
of function blocks rather than architectural complexity.

The two normalization methods has not shown any signifi-
cant difference in terms of analysis time. This result opposes
our prediction of the supremum normalization resulting in
faster analysis. However, these results can be explained by
a combination of multiple factors: The target applications
were not complex enough for the supremum method to have
much effect on the running time. This is also indicated by
a large amount of execution paths having the same wcet
value for both normalization methods. Also, in many cases

Table 2: Experiment results per execution origin
Average Maximal

System Exec. Exec. wcet wcet
origin paths increase increase

(%) (%)

Boiler 1 – 8 1 0 0
9 36 10 21

DSCY MDLL 1 – 7 1 0 0
8 6 3 12

ASSY CTL 1 – 4 1 0 0
5 3 24 80
6 2 26 80

XFER MDL 1, 2, 3 1 0 0
4, 5, 6 4 75 244
7, 8, 9 4 75 258
10 4 75 238

the maximal elements method greatly reduced the number
of examined execution paths, and thus also reducing the
analysis running time. Lastly, the implementation of the
supremum normalization results in a more complex algo-
rithm than the maximal elements one, which can lead to a
decline in performance in systems with a small number of
hierarchical levels and execution paths. Still, we still believe
that the supremum method could be useful for dealing with
combinatorial complexity in very large systems.

6. RELATED WORK
An overview of the problem of wcet analysis and some

of the existing methods and tools can be found in work by
Wilhelm et al. [14], while some of the benefits and challenges
of early mode-level wcet analysis are given by Lisper [8].

The analysis method presented in this paper has partly
been based on a timing analysis approach for the ProCom
component model [1]. Although we applied some of the ideas
of this approach, it deals with many ProCom-specific con-
structs and could not be directly applied to the IEC 61499
standard. The two layered component model does not al-
low for non-deterministic execution on its lower level, so the
method relates to using only supremum normalization in our
analysis.

An approach for achieving better results when reusing
wcet data for components is presented by Fredriksson et
al [2]. The authors aim to reduce pessimism of composi-
tional wcet analysis by introducing separate wcet values
for clusters of different input data. Selection of appropriate
wcet values is done by manually creating usage scenarios for
components before the analysis. While we also define differ-
ent wcet data based on event inputs of function blocks, the
wcet values in their approach are clustered using values of
data inputs. Our wcet data entries also include information
about generated outputs, so we do not need to manually de-
fine usage scenarios. Applying the ideas of data-dependant
wcet values and clustering of similar wcet data to our
analysis method would be an interesting future work.

A method for verification of functional and non-functional
properties in IEC 61499 is proposed by Preuße and Hanisch [9].
The authors use Symbolic Timing Diagrams and Safety-
Oriented Technical Language for specification of desired be-
havior. Formal system model are derived by simulation. The
specifications and the formal model are then used to verify
the system behavior by model-checking. This approach re-
quires various models to define a system, while our method
uses only the models defined by the IEC 61499 standard.
Also, it is not compositional and does not allow reuse of
analysis results.

Kuo et al. [7] describe a method for worst-case reaction
time analysis for IEC 61499. The method relies on compila-
tion of systems to C code, tagging the code with timing in-
formation and then using a model checker to iterate through
all possible state of the system. Besides the fact that this
work determines reaction time, which is a different concept
from the execution time used in our approach (see Section 3),
the analysis described in the work is not performed on the
model level. Systems must be fully implemented for C code
to be generated, so the method does not support analysis in
the early stages of development. It is also not possible to
perform analysis on one hierarchical level at a time.

An approach for schedulability analysis for IEC 61499 has
been presented by Khalgui et al [6]. Here, a system is first

transformed to a set of tasks, each with a wcet value and
a set of its predecessors and successors. The task chains
acquired by the transformation can then be checked if they
meet end to end deadlines set to them.

7. CONCLUSION
In this work we have presented a method for timing analy-

sis of IEC 61499 systems. Our approach uses the standard’s
software models to determine wcet information for func-
tion blocks and applications. We calculate wcet data for
one function block at a time, using only one level of hier-
archy, by combining the wcet data of its subcomponents.
The resulting data contains not only wcet values, but also
information about outputs generated by the execution, and
can describe multiple execution paths. In this way the wcet
data is context-independent and can be stored and reused
together with the function block. Our analysis method is
supported by a prototype tool built on top of the 4DIAC
development environment.

We have also presented two methods for data normaliza-
tion that can be used to remove redundant data or reduce
the size of the data sets by introducing overestimations.
Data normalization, coupled with the compositional analysis
approach and reuse of analysis results improves the scalabil-
ity of the analysis method. To evaluate data normalization
methods and viability of the analysis method presented in
this paper we have conducted experiments on multiple sys-
tems obtained from example libraries of two IEC 61499 de-
velopment tools.

As future work we would like to a apply the analysis to a
set of systems with known wcet values, which would allow
us to accurately determine the precision of our method.

Another possibility of future work is to conduct new ex-
periments on more complex systems in order to attain better
knowledge of how the different normalization methods affect
the accuracy and performance of the analysis. This could
lead to creation of hybrids of the two methods presented in
this paper, which would, for example, create supremums of
only groups of similar data.

8. ACKNOWLEDGMENTS
This work has been performed in the Assist project at

Mälardalen University, funded by the ABB Software Re-
search Grant Program.

9. REFERENCES
[1] J. Carlson. Timing analysis of component-based

embedded systems. In 15th International ACM
SIGSOFT Symposium on Component Based Software
Engineering. ACM, June 2012.

[2] J. Fredriksson, T. Nolte, M. Nolin, and H. Schmidt.
Contract-based reusableworst-case execution time
estimate. In Embedded and Real-Time Computing
Systems and Applications, 2007. RTCSA 2007. 13th
IEEE International Conference on, pages 39–46.
IEEE, 2007.

[3] Holobloc Inc. Function block development kit
(FBDK), May 2012. http://www.holobloc.org/.

[4] IEC 61131-3: Programmable Controllers–Part 3:
Programming Languages. International
Electrotechnical Commission, Geneva, 1993.

[5] IEC 61499-1: Function Blocks-Part 1 Architecture.
International Electrotechnical Commission, Geneva,
2005.

[6] M. Khalgui, X. Rebeuf, and F. Simonot-Lion. A
tolerant temporal validation of components based
applications. In 12th IFAC International Conference
on Information Control Problems in Manufacturing
(INCOM 06), 2006.

[7] M. Kuo, L. H. Yoong, S. Andalam, and P. Roop.
Determining the worst-case reaction time of IEC
61499 function blocks. In Industrial Informatics
(INDIN), 2010 8th IEEE International Conference on,
pages 1104 –1109, july 2010.

[8] B. Lisper. Trends in timing analysis. In From
Model-Driven Design to Resource Management for
Distributed Embedded Systems, IFIP TC 10 Working
Conference on Distributed and Parallel Embedded
Systems (DIPES), volume 225, pages 85–94. Springer,
2006.

[9] S. Preuße and H.-M. Hanisch. Verifying functional and
non-functional properties of manufacturing control
systems. In Dependable Control of Discrete Systems
(DCDS), 2011 3rd International Workshop on, pages
41–46. IEEE, 2011.

[10] P. Puschner and A. Burns. Guest editorial: A review
of worst-case execution-time analysis. Real-Time
Systems, 18(2):115–128, 2000.

[11] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl,
C. Sunder, A. Valentini, and A. Martel. Framework
for Distributed Industrial Automation and Control
(4DIAC). In Industrial Informatics, 2008. INDIN
2008. 6th IEEE International Conference on, pages
283 –288, july 2008.

[12] G. Čengić and K. Åkesson. On Formal Analysis of
IEC 61499 Applications, Part A: Modeling. Industrial
Informatics, IEEE Transactions on, 6(2):136 –144,
may 2010.

[13] V. Vyatkin. IEC 61499 as Enabler of Distributed and
Intelligent Automation: State-of-the-Art Review.
Industrial Informatics, IEEE Transactions on,
7(4):768 –781, nov. 2011.

[14] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, et al. The worst-case
execution-time problem – overview of methods and
survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):36, 2008.

[15] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. Sünder,
and B. Favre-Bulle. The past, present, and future of
IEC 61499. Holonic and Multi-Agent Systems for
Manufacturing, pages 1–14, 2007.

