
Analysis Support for TADL2 Timing Constraints on
EAST-ADL Models

Arda Goknil1, Jagadish Suryadevara2, Marie-Agnès Peraldi-Frati1, Frédéric Mallet1

1 AOSTE Project, UNS-I3S-INRIA, Sophia-Antipolis, France
2 Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

arda.goknil@inria.fr, jagadish.suryadevara@mdh.se, map@unice.fr,
frederic.mallet@unice.fr

Abstract. It is critical to analyze characteristics of real-time embedded systems
such as timing behavior early in the development. In the automotive domain,
EAST-ADL is a concrete example of the model-based approach for the architec-
tural modeling of real-time systems. The Timing Augmented Description Lan-
guage v.2 (TADL2) allows for the specification of timing constraints on top of
EAST-ADL models. In this paper we propose a formal validation & verification
methodology for timing behaviors given with TADL2. The formal semantics of
the considered timing constraints is given as a mapping to the Clock Constraint
Specification Language (CCSL), a formal language that implements the MARTE
Time Model. Based on such a mapping the validation is carried out by the sim-
ulation of TADL2 specifications. The simulation allows for a rapid prototyping
of TADL2 specifications. The verification is performed through a mapping to
Timed Automata implemented by UPPAAL. The whole process is illustrated on a
Brake-By-Wire application.

1 Introduction

Non-Functional properties and time are central concerns in real-time embedded sys-
tems. The increasing complexity of automotive systems requires the early identification
of specification problems and the use of common/standard formalisms to cover all as-
pects of the systems. In the automotive domain, EAST-ADL [9] is a concrete example
of the model-based approach for the architectural modeling of safety-critical embedded
systems. EAST-ADL has been developed to provide a standard architecture description
language aligned with Autosar [10]. The new release of EAST-ADL (v.2) has recently
adopted the timing model proposed in the Timing Augmented Description Language
(TADL) [19]. TADL allows for expressing and composing basic timing constraints such
as repetition rates, end-to-end delays, or synchronization constraints.

The TIMMO-2-USE project [2] goes one step beyond TADL by recently introduc-
ing TADL2 [19]. The time model of TADL2 specializes the time model of the UML Pro-
file for MARTE (Modeling and Analysis of Real-Time and Embedded systems) [18].
It elaborates on TADL and adds constructs borrowed from the MARTE companion
language, the Clock Constraint Specification Language (CCSL) [8], a formal language
dedicated to the specification of temporal and causality constraints. In particular, it adds

new modelling capabilities such as the explicit notion of time base and the ability to use
symbolic timing expressions in timing constraints.

In this paper, we propose a formal validation & verification methodology for timing
behaviors given with TADL2. The validation is carried out by the simulation of TADL2
specifications, based on a mapping of TADL2 specifications to CCSL specifications.
With such a mapping the simulation of TADL2 timing constraints becomes possible
through TIMESQUARE [11], the framework dedicated to the analysis of CCSL specifi-
cations. This mapping gives a semantic reference interpretation for TADL2 constraints
and the simulation with CCSL allows for a rapid prototyping of TADL2 specifications.
Complementary to the simulation, the formal verification is performed by model check-
ing, based on a mapping of TADL2 to Timed Automata for using the UPPAAL model-
checker [17]. We use a Brake-By-Wire (BBW) application as a running example to
illustrate and compare the results of those mappings.

The remainder of the paper is organized as follows. Section 2 introduces the BBW
system used as a running example. Section 3 gives a brief overview of TADL2. Section
4 describes the mapping between TADL2 & CCSL and the analysis results provided by
TIMESQUARE. In Section 5, we give the mapping between TADL2 and UPPAAL with
the analysis results in the UPPAAL model-checker. Section 6 discusses the benefits of
using both languages together. Section 7 discusses the related work.

2 Running Example: Brake-By-Wire Application

A distributed Brake-By-Wire (BBW) application with an anti-lock braking functionality
illustrates our approach. The BBW application is one of the validator proposed by Volvo
Technology in the TIMMO-2-USE project [2].

The structural decomposition of the braking functionality is shown in Figure 1.
It gives the BBW functional design architecture in East-ADL: the parts denote sub-
functions and the connectors represent data dependencies. The BBW is composed of
two mains functions. First, the brake controller reads the wheel speed sensors and the
brake pedal sensor. The brake controller computes the desired brake torque applied to
the wheels. In addition to this basic brake controller functionality, a second function
Anti-lock Braking System (ABS) adapts the brake force on each wheel if the speed of
one wheel is significantly smaller than the estimated vehicle speed. The brake force is
reduced on that wheel until it regains the speed that is comparable with the estimated
vehicle speed. The braking functionality has the following components (Fig. 1):

– BrakePedalSensor (BPS) reads the pedal position percentage on port EISignal.
– BrakeTorqueCalculator (BTC) receives the pedal position percentage from BPS

and computes the desired global torque.
– The wheel sensors—RearRightWheelSensor (RRWS), RearLeftWheelSensor

(RLWS), FrontRightWheelSensor (FRWS) and FrontLeftWheelSensor (FLWS)—
read the speed values for each wheel.

– GlobalBrakeController (GBC) receives the speed values measured by the wheel
sensors and the global torque calculated by BrakeTorqueCalculator. It calculates
the torque required for each wheel.

– The ABS components—ABSatRearRightWheel (ABSrrw), ABSatRearLeft-
Wheel (ABSrlw), ABSatFrontRightWheel (ABSfrw) and ABSatFrontLeftWheel
(ABSflw)—control the wheel braking to prevent locking the wheels.

– The brake actuators—RearRightBrake (RRB), RearLeftBrake (RLB), FrontRight-
Brake (FRB) and FrontLeftBrake (FLB)—apply the brake force on each wheel.

Sensors, actuators and the Electronic Control Units (ECUs) are distributed through a
unique Controller Area Network (CAN).

source target

<<designFunctionType>>

FunctionalDesignArchitecture

structure

<<designFunctionPrototype>>

+ BrakePedalSensor

EISignal

PositionPercent

<<designFunctionPrototype>>

+ GlobalBrakeController

RearRightWheel_rpm

TorqRearRightWheel

GlobalTorque

RearLeftWheel_rpm

FrontRightWheel_rpm

FrontLeftWheel_rpm

TorqRearLeftWheel

VehicleSpeedEst_kmph

TorqFrontRightWheel

TorqFrontLeftWheel

<<designFunctionPrototype>>

+ RearRightBrake

TorqCmd

EISignal

s
o

u
rc

e

ta
rg

e
t

TC10: Synchronization X10 = 5ms

TC5: Delay X5 = 0.4*X1

s
o

u
rc

e

<<designFunctionPrototype>>

+ RearRightWheelSensor

Ticks

SpeedRpm

<<designFunctionPrototype>>

+ RearLeftWheelSensor

Ticks

SpeedRpm

<<designFunctionPrototype>>

+ FrontRightWheelSensor

Ticks

SpeedRpm

<<designFunctionPrototype>>

+ FrontLeftWheelSensor

Ticks

SpeedRpm

<<designFunctionPrototype>>

+ BrakeTorqueCalculator

PedalPercent

DriverReqTorq

<<designFunctionPrototype>>

+ ABSatRearRightWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ ABSatRearLeftWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ ABSatFrontRightWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ ABSatFrontLeftWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ RearLeftBrake

TorqCmd

EISignal

<<designFunctionPrototype>>

+ FrontRightBrake

TorqCmd

EISignal

<<designFunctionPrototype>>

+ FrontLeftBrake

TorqCmd

EISignal

s
o

u
rc

e

ta
rg

e
t

s
o

u
rc

e

s
o

u
rc

e ta
rg

e
t

ta
rg

e
t

ta
rg

e
t

source target

TC9: Synchronization X9 = 5msTC3: Repeat X3 = 10ms

TC1: Delay X1 = [70ms – 120ms]

TC2: Delay X2 = [5ms-15ms]

TC4: Delay X4 = [1ms-2ms] TC7: Delay X7 = [1ms-2ms]

TC6: Delay X6 = [40ms-50ms] TC8: Delay X8 = [5ms-15ms]

Fig. 1. Brake-By-Wire functional view augmented with TADL2 timing constraints.
This functional decomposition is augmented with thirty one TADL2 timing con-

straints. Figure 1 and Table 1 reflect the main types of timing constraints attached to
the BBW architecture and provide an intuitive description of them. Some of these con-
straints are about a periodic sensor acquisition (see TC3). The distributed nature of the
system generates some potential de-synchronizations. Therefore, some synchronization
constraints that represent the temporal consistency of events (TC9 and TC10) are intro-
duced in the BBW timing specification. Delays on the ports are represented by delay
constraints (TC1, TC2, TC4, TC5, TC6. TC7 and TC8).

3 TADL2: Timing Augmented Description Language

In this section, we introduce TADL2 and give an informal semantics of the timing con-
straints. We also briefly describe the increment from TADL2 over TADL. The first

Table 1. The main timing constraints for the functional architecture of the BBW.

ID Constraint Description
TC1 Four delays X1 are measured from the brake pedal stimulus (EISignal on BPS) to the brake

actuator responses (the EISignal ports on RRB, RLB, FRB and FLB). The delays are bounded
with a minimum value of 70 ms and a maximum value of 120 ms.

TC3 The acquisition of the wheel sensors (the Ticks ports on RRWS, RLWS, FRWS, FLWS) must be
done periodically every X3=10 ms.

TC5 Four delays X5 are measured from the wheel rpm signal (the RRW rpm, RLW rpm, FRW rpm
and FLW rpm ports on GBC) to the brake torque calculation (the TRRW, TRLW, TFRW, TFLW
ports on GBC). The delay constraint X5 applied on the global brake controller is 40 percent of
the initial time budget X1 given in TC1.

TC10 First and last wheel brake actuations (the EISignal ports on RRB, RLB, FRB, FLB) must follow
each other by no more than X10 =5 ms.

improvement with TADL2 concerns symbolic timing expressions used to express dura-
tions such as maximum/minimum delay and tolerance. The second improvement is the
ability to define explicit time bases by using modeling elements: TimeBase, Dimension
and Unit. For a more detailed description of TADL2 please refer to [19].

3.1 TADL2 Timing Constraints

In this paper, we consider the following TADL2 timing constraints, sufficient to capture
the constraints described in Figure 1 (See [9] for the whole set of constraints):

– DelayConstraint imposes duration bounds (minimum and maximum) be-
tween two events source and target.

– SynchronizationConstraint is a constraint on a set of events. All events
must occur within a sliding window, specified by the tolerance attribute, i.e., max-
imum allowed skew between the events.

– RepeatConstraint imposes a period of the successive occurrences of a single
event. upper and lower give the time interval between two subsequent occurrences.
The TADL2 timing constraints mostly constrain the identifiable state changes for-

mulated as Events. The causally related events are contained as a pair by EventChains.
Based on Events and EventChains, it is possible to represent data dependencies and crit-
ical execution paths as additional constraints for an EAST-ADL functional architecture
model, and to apply timing constraints on these paths.

Timing attributes like tolerance, upper and lower are given as Timing Expressions.
There are three types of timing expressions: Value, Variable and Symbolic. Variable
Timing Expressions stand for free variables and constants. Symbolic Timing Expressions
integrate basic arithmetic and relation operators associated with timing values.

3.2 TimeBase, Dimension and Unit in TADL2

TimeBase represents a discrete and totally ordered set of instants. An instant can be seen
as an event occurrence called a tick. It may represent any repetitive event in the system.
Events may refer to the classical time dimension or to some evolution of a hardware
part (e.g., rotation of crankshaft, distance). The type of TimeBase is Dimension with a

kind that represents the nature of TimeBase. Time, Angle and Distance, often used in
automotive specifications, are proposed as a predefined dimension kind.

Dimension has a set of units to express durations measured on a given TimeBase.
Each Unit is related to another Unit with factor, offset and reference to enable conver-
sions. Only linear conversions are allowed. Because Timebase is a discrete set of in-
stants, a discretization step is specified with precisionFactor and precisionUnit. Listing
1.1 gives examples of TADL2 declarations for Dimension and TimeBase. The physical-
Time dimension has three units where 1 second is equal to 106 micros and 1 ms is equal
to 103 micros (lines 2-4). universal time is declared based on physicalTime (lines 7-8).

1 Dimension p h y s i c a l T i m e {
U n i t s { mi c r os{ f a c t o r 1 . 0 o f f s e t 0 . 0} ,

3 ms{ f a c t o r 1000 .0 o f f s e t 0 . 0 r e f e r e n c e mic ro s } ,
s econd{ f a c t o r 1000000 .0 o f f s e t 0 . 0 r e f e r e n c e mi c ro s} }

5 k ind Time
}

7 TimeBase u n i v e r s a l t i m e { d imens ion p h y s i c a l T i m e p r e c i s i o n F a c t o r 1
p r e c i s i o n U n i t m ic ro s }

Listing 1.1. Declaration of Dimension and TimeBase in TADL2

3.3 BBW Example in TADL2

Listing 1.2 gives some of the BBW timing constraints in TADL2. For the complete
TADL2 specification of the BBW example, please refer to [1].

Event b r a k e P e d a l S e n s o r A c t i v a t i o n {} Event p o s i t i o n P e r c e n t {}
2 Event f i r s t W h e e l B r a k e A c t u a t i o n {} Event f i r s t W h e e l r p m {}

Event f i r s t W h e e l S e n s o r A c q u i s i t i o n {} Event t o r q F i r s t W h e e l {}
4

EventCha in ec1 {
6 s t i m u l u s b r a k e P e d a l S e n s o r A c t i v a t i o n r e s p o n s e f i r s t W h e e l B r a k e A c t u a t i o n

e v e n t C h a i n s ec1a , ec1b , ec1c , ec1d , ec1e , ec1f , ec1g
8 }

EventCha in ec1a { s t i m u l u s b r a k e P e d a l S e n s o r A c t i v a t i o n r e s p o n s e p o s i t i o n P e r c e n t }
10

v a r X1min ms on u n i v e r s a l t i m e := 7 0 . 0
12 v a r X1max ms on u n i v e r s a l t i m e := 120 .0

D e l a y C o n s t r a i n t t c 1 a {
14 s o u r c e b r a k e P e d a l S e n s o r A c t i v a t i o n t a r g e t f i r s t W h e e l B r a k e A c t u a t i o n

lower = X1min upper = X1max
16 }

18 v a r X3 ms on u n i v e r s a l t i m e := 1 0 . 0
R e p e a t C o n s t r a i n t t c 3 a {

20 e v e n t f i r s t W h e e l S e n s o r A c q u i s i t i o n lower = X3 upper = X3 span = 1
}

22

v a r X5min ms on u n i v e r s a l t i m e := (X1min * 0 . 4 0)
24 v a r X5max ms on u n i v e r s a l t i m e := (X1max * 0 . 4 0)

D e l a y C o n s t r a i n t t c 5 a {
26 s o u r c e f i r s t W h e e l r p m t a r g e t t o r q F i r s t W h e e l lower = X5min uppe r = X5max

}
28

S y n c h r o n i z a t i o n C o n s t r a i n t t c 1 0 {
30 e v e n t s f i r s t W h e e l B r a k e A c t u a t i o n , secondWhee lBrakeAc tua t ion ,

t h i r d W h e e l B r a k e A c t u a t i o n , f o u r t h W h e e l B r a k e A c t u a t i o n
32 t o l e r a n c e = (5 . 0 ms on u n i v e r s a l t i m e) }

Listing 1.2. Some BBW Timing Constraints in TADL2

In Listing 1.2, we give only a part of events and event chains (lines 1-3). ec1 gives
the execution path between the activation of the brake pedal sensor and the actuation of
the first wheel brake (lines 5-8). It contains other event chains ec1a, ... , ec1g (line 7)
which give the intermediate executions. ec1a states that positionPercent is provided just
after the activation of the brake pedal sensor (line 9). Each event is attached to a port in
EAST-ADL. brakePedalSensorActivation and firstWheelBrakeActuation are attached to
EISignal of BPS and EISignal of RRB in Figure 1 respectively.

We have variable declarations as variable timing expression (e.g., lines 11-12). All
delay and repeat constraints in Figure 1 are replicated for the four wheels. tc1a, tc3a and
tc5a (TC1, TC3 and TC5) are only for the first wheel. The lower and upper bounds of
tc5a (line 25) are computed by using symbolic timing expressions (“X1min*0.40” and
“X1max*0.40” in lines 23-24). tc3a describes the occurrences of the first wheel sensor
acquisition with a period (lower and upper). tc10 is about the maximum tolerated time
difference among the wheel brake actuations (TC10). Its tolerance attribute is equal to
a value timing expression (“5 ms on universal time” in line 32).

4 TADL2 to MARTE/CCSL: Simulation Approach

The TADL2 timing constraints are described informally in the previous section. How-
ever, to conduct validation and verification it is required to rely on a formal semantics.
In this section, we use CCSL to capture the semantics of those constraints. We then
rely on the CCSL operational semantics to execute the BBW example. This is the first
part of our proposal is to make TADL2 specifications executable. CCSL was selected
because it supports both kinds of constraints available in TADL2: causal ones (event
chains) and temporal ones (delay, synchronization, repeat). After a brief introduction
to CCSL, we give a mapping from TADL2 to CCSL. At the end, we illustrate our
proposed validation framework for TADL2.

4.1 The Clock Constraint Specification Language (CCSL)

MARTE is the UML profile for Modeling and Analysis of Real-Time and Embedded
systems [18,7]. It defines a broadly expressive formal Time Model [8] that provides
a generic timed interpretation for UML models through the notion of clock. A clock
c (not to be confused with the UPPAAL clocks) denotes particular UML events on
which we want to impose a constraint. Clocks (events) are ordered sets of instants (event
occurrences), I. When the set is discrete, c[i] denotes the ith occurrence of event c.
The Clock Constraint Specification Language (CCSL) was defined as a non-normative
annex of MARTE as a language to build causal and timed constraints on clocks. CCSL
considers two kinds of binary instant relations: precedence (denoted≺) and coincidence
(denoted ≡). Given two instants i and j ∈ I, i ≺ j denotes that the event occurrence
i must be observed before j, whereas i ≡ j denotes that i and j must be observed
simultaneously. A labeling function λ : I → T associates instants with a time tag.

Based on these two primitive relations on instants, CCSL derives relations on
clocks. We only describe here the clock relations pertinent to our running example.
Eq.1 gives an example of a non-functional clock relation where mic universalT ime

is a logical clock, such that ∀i ∈ N?, λ(mic universalT ime[i]) = i ∗ 0.000001, it
models a discrete clock of period 1 mic, one microsecond since IdealClock is defined
relative to the unit second.

mic universalT ime = IdealClock discretizedBy 0.000001 (1)

Eq.2 gives an example of synchronous clock relation that defines a new discrete
logical clockms such that ∀i ∈ N?,ms[i] ≡ micro universalT ime[(i−1)∗1000+1].

ms isPeriodicOn mic universalT ime period 1000 (2)

A basic asynchronous constraint is given by the clock relation precedes. ”a pre-
cedes b” (symbolically denoted by a ≺ b) specifies that for all natural number k, the
kth instant of a precedes the kth instant of b: ∀k ∈ N?, a[k] ≺ b[k].

Some clock constraints mix precedence and coincidence relations. ”a causes b” or
”b dependsOn a” (both denoted a 4 b) specifies that for all natural number k, the
kth instant of a precedes or is coincident with the kth instant of b: ∀k ∈ N?, a[k] ≺
b[k] ∨ a[k] ≡ b[k]).

CCSL also provides expressions to build new clocks from existing ones. For in-
stance, the CCSL expression c = inf(a, b) builds a new clock c such that c is the slow-
est clock that is faster than both a and b: (∀k ∈ N?, c[k] ≡ a[k] if a[k] ≺ b[k] , c[k] ≡
b[k] otherwise). Similarly, ”d = sup(a, b)” is the fastest clock slower than both a

and b: ∀k ∈ N?, d[k] ≡ b[k] if a[k] ≺ b[k] , d[k] ≡ a[k] otherwise. Most of the
time, inf and sup are neither a nor b. inf and sup are easily extended to sets of clocks.

Finally, the expression delayedFor builds a delayed clock.”c = a delayedFor
n on b” imposes c to tick synchronously with the nth tick of b following a tick of a. It
is considered as a mixed constraint since a and b are not assumed to be synchronous.

TimeSquare. TimeSquare [11] is a software environment (set of Eclipse plug-
ins) dedicated to the analysis of MARTE time model and CCSL specifications. It has
four main functionalities: 1) interactive clock-related specifications, 2) clock constraint
checking, 3) generation of a solution and 4) displaying and exploring waveforms. The
second functionality relies on a constraint solver that yields a satisfying execution trace
for CCSL clocks. The traces are given as waveforms written in VCD (Value Change
Dump) format [14]. The solver intensively uses Binary Decision Diagrams (BDD) to
compose symbolically boolean equations induced by CCSL clock constraints.

4.2 Modelling TADL2 Constraints in CCSL

We first give the MARTE time model representation of basic TADL2 elements
TimeBase, Dimension and Unit in CCSL. Then we express the semantics of Event,
EventChain and some of the TADL2 constraints in CCSL.

4.2.1 TimeBase, Dimension and Unit. Each Unit of a Dimension in a TimeBase
represents a set of ticks. Hence, we represent each Unit in a given TimeBase as a
CCSL clock. The reference unit in a dimension is a special unit whose corresponding
clock is derived by discretizing IdealCLK. Eq.1 defines a discrete chronometric clock
mic universalTime for the micro Unit of physicalTime in universal time in Listing 1.1.

Clocks for other units in the TimeBase are defined as a subclock of the reference unit
clock with a period. Eq.2 defines ms as a subclock of mic universalTime with period
1000 (factor of the ms unit) for the ms unit of universal time.

4.2.2 Timing Constraints. Each TADL2 Event on which we want to attach timing
constraints is associated with a CCSL Clock. An event denotes something that occurs
(e.g., the start of an action, the receipt of a message.). Therefore, a CCSL clock repre-
sents the set of instants at which the related event occurs.

An EventChain in TADL2 contains causally related events. It is mapped to the
causes operator of CCSL. For instance, we have the following clock constraints for ec1
and ec1a event chains: (bpsa 4 fwba) and (bpsa 4 pp) where the CCSL clocks
bpsa, fwba and pp correspond to the TADL2 events brakePedalSensorActivation, first-
WheelBrakeActuation and positionPercent respectively.

DelayConstraint. It specifies an end-to-end delay between the source and target events
where the attributes lower and upper denote minimum and maximum values of the
delay respectively. tc1a (Listing 1.2) specifies the permissible delay between the
source event brakePedalSensorActivation and the target event firstWheelBrakeActua-
tion. Eqs. 3-6 give the corresponding CCSL clocks and clock constraints for tc1a.

Clock bpsa, fwba (3)
Clock lower = bpsa delayedFor 70 onms (4)
Clock upper = bpsa delayedFor 120 onms (5)(

lower 4 fwba
)
∧
(
fwba 4 upper

)
(6)

Eq.3 declares two CCSL clocks for the source and target events brakePedalSensorAc-
tivation (bpsa) and firstWheelBrakeActuation (fwba). The CCSL constraint delayedFor
delays an initial clock (bpsa) for a given duration. Combining delayedFor and causes
allows for specifying distances between two clocks. Eqs. 4-5 build two clocks lower
and upper delayed for 70 and 120 ms respectively from the source event clock bpsa.
Eq. 6 enforces the target event clock fwba to tick between the corresponding ticks of
the clocks lower and upper.

SynchronizationConstraint. It specifies the bounds on the delay among event occur-
rences specified by the attribute tolerance. tc10 (see Listing 1.2) specifies the output
synchronization among the four brake actuators that must occur within the specified
time duration. Eqs. 7-10 give the corresponding CCSL clocks and constraints for tc10.

Clock fwba, swba, twba, ftwba (7)
Clock fastest = inf(fwba, swba, twba, ftwba) (8)
Clock slowest = sup(fwba, swba, twba, ftwba) (9)

slowest 4 (fastest delayedFor 5 on ms) (10)

The constraint concerns the distance from the earliest event to the latest event. It has
four events, one for each wheel. Eq. 7 declares clocks for events firstWheelBrakeActu-
ation (fwba), secondWheelBrakeActuation (swba), thirdWheelBrakeActuation (twba)
and fourthWheelBrakeActuation (ftwba). Eqs. 8-9 we get the fastest/slowest clocks
among all clocks slower/faster than fwba, swba, twba and ftwba. Eq. 10 states that
slowest must not tick later than 5 ms after the respective ticks of fastest.

RepeatConstraint. It specifies the periodic occurrence of an event. The duration of the
period is specified by the attributes lower, upper and span. This constraint defines
the basic notion of repeated occurrences. If the span attribute is 1 and the lower and
upper attributes are equal, the accepted behaviors must be strictly periodic. If lower is
less than upper, the event occurrences may deviate from a strictly periodic one in an
accumulating fashion. tc3a (Listing 1.2) specifies the strictly periodic nature of the
sensor value acquisition, for one of the four wheels. Eqs.11-14 give the corresponding
CCSL clocks and clock constraints for tc3a.

Clock fwsa (11)
lower isPeriodicOnms period 10 (12)
upper isPeriodicOnms period 10 (13)(
lower 4 fwsa

)
∧
(
fwsa 4 upper

)
(14)

Eq. 11 declares the CCSL clock fwsa for the event firstWheelSensorAcquisition.
Eqs. 12-13 build two clocks lower and upper of period 10 from ms. Eq. 14 enforces
the event clock fwsa to tick between the corresponding ticks of the clocks lower and
upper. Since lower and upper have the same period, fwsa ticks every 10 ticks of ms. We
defined both lower and upper clocks to propose an exhaustive transformation in case
lower and upper bounds differ.

4.3 Executing TADL2 specification with TimeSquare

Based on the mapping presented in Section 4.2, we obtain an executable CCSL speci-
fication from the Brake-By-Wire TADL2 description. A simulation trace produced by
TimeSquare is partially shown in Figure 2. The focus here is on the constraint TC10.
The dashed (blue) arrows are the precedence relations, whereas the vertical plain (red)
connectors are the coincidence relations between two instants. The first entry shows the
fastest (fastest) of the four wheel brake actuator events (fwba, swba, twba, ftwba).
It is followed by the four events. The sixth entry is the slowest of the four events
(slowest). Coincidence relations show that there is always one occurrence of each of
the four actuator between an occurrence of fastest and an occurrence slowest. Ad-
ditionally, it also shows that slowest always occur before the deadline, which is 5 ms
after fastest. The deadline is shown as the last entry of the simulation.

In TimeSquare runs consist of multiple execution steps. At each step, the CCSL
solver builds a boolean solution and computes a set of all the valid configurations. A
configuration is a set of enabled clocks, i.e., clocks that are allowed to tick at the given
step. If the CCSL specification is deterministic, there is only one valid configuration. If

Fig. 2. CCSL Simulation focusing on the constraint TC10 of the BBW Example.

it is nondeterministic, for each step the simulator fires one of the valid configurations.
This selection is based on a scheduling policy. When TimeSquare manages to produce a
valid trace, this means there is a way to satisfy the constraints. If the system is not deter-
ministic there may be other runs that do not satisfy all the constraints.This is why such a
tool must be complement with exhaustive analyses when possible. However, it must be
noted that in the general case it is not possible to conduct exhaustive analyses of CCSL
specifications, whose state-space can be infinite. In such cases, TimeSquare provides an
early support to validate and refine the specification. When focusing on TADL2 tim-
ing constraints (delay, repeat and synchronizations) the state-space is bounded and can
be explored by model-checking. However, event chains with indeterminate delays may
cause problems and need to be further refined. This is discussed in the next section.

On this example, TimeSquare has found one possible run that satisfies the TADL2
specification meaning that the specification is consistent and a solution exists. In the
following section, UPPAAL shows that there also may be runs such that the synchro-
nization constraint TC10 is violated (see eq. 20).

5 TADL2 to Timed Automata/UPPAAL: Verification Approach

In this section, we present a formal verification approach for TADL2 specifications.
For this, we have chosen UPPAAL [17], a model-checking tool, and present a mapping
for a subset of TADL2 into timed automata, the modeling language of UPPAAL.

5.1 UPPAAL model-checker: An overview

UPPAAL extends timed automata (TA), originally introduced by Alur and Dill [6], with
a number of features, such as, global and local (bounded) integer variables, arithmetic
operations, arrays, and a C-like programming language. The tool consists of three parts:
a graphical editor for modeling timed automata, a simulator for trace generation, and
a verifier for symbolic (exhaustive) verification of a system modeled as a network of
timed automata. A subset of CTL (computation tree logic) is used as the input language
for the verifier.

A timed automaton (TAn) is a tuple < L, l0, C,A,E, I >, where L is a set of
locations, l0 ∈ L is the initial location, C is the set of clocks, A is the set of actions,
co-actions and the internal τ -action, E ⊆ L × A × B(C) × 2C × L is a set of edges
between locations with an action, a guard, a set of clocks to be reset, and I : L→ B(C)

assigns clock invariants to locations. A location can be marked urgent (u) or commit-
ted (c) to indicate that the time is not allowed to progress in the specified location(s),
the latter being stricter form indicating further that the next transition can only be taken
from the corresponding locations. Synchronization between two automata is modeled
by channels (e.g., x! and x?) with rendezvous or broadcast semantics.

Semantically, the state of a TAn represents the current location (several in case of
a network of TA) and current evaluation of all the variables. An enabled edge (that is,
when the guard becomes true) indicates a transition that may be taken in the current
state. The semantics of a TAn defines transitions between locations as well as the time
progress; an enabled edge at a current location may be taken (non-deterministically
in case of many), when the invariant at the corresponding target location is preserved,
otherwise no transition is taken and the time is allowed to progress as long as the invari-
ant at the current location holds. For further details, we refer the reader to the UPPAAL
tutorial [17].

5.2 Modeling TADL2 in UPPAAL

To begin with, we present the TA modeling of basic time (chronometric) aspects in
TADL2, such as, timebase, dimension and unit. Next, we will show that the timing
constraints in TADL2 can be modeled as TA.

5.2.1 TimeBase, Dimension and Unit. In the semantics of TA, time progresses sym-
bolically, that is, through construction of so-called “region-graphs” 3. Hence, we rep-
resent a time dimension and a given time unit in TADL2, corresponding to a given
time base, as a single step of (chronometric) time progress in TA clocks. Concretely, a
timebase can be modeled as a TAn using a clock variable which implicitly represents
the associated dimension and the corresponding unit. As a timebase, the automaton is
a reference clock for a TADL2 timing specification (or part of it, in case of multiple
time bases in the specification).

Fig. 3. universal time: a timebase automaton.
In Figure 3, we present the TAn for the universal time in BBW specifica-

tion, a timebase as defined in Listing 1.1. The corresponding dimension, that is, the
physical time and the time unit ms (Eqs. 1 and 2) are implicitly represented by the
clock variable ‘x’. The duration of the time unit is represented by the invariant x<=1
and the guard x>=1 at the location L0; it represents a single step of the discrete time
progress or tick’ of the universal time. The time progress can be observed by the
successive ticks of ut tick (modeled as a broadcast channel) during simulation.

3 Makes reachability analysis decidable by transforming otherwise an infinite-state timed au-
tomaton into finite-state.

5.2.2 Timing Constraints. Timing constraints can be specified for Event and
EventChain in TADL2. An event chain can be modeled as a TAn with syn-
chronization channels representing the corresponding events. For instance, in Fig.
4(a), we present the TA modeling of the event-chain ec1 (Listing 1.2). It consists
of events brakePedalSensorActivation (bpsa) as the source (stimulus) event and
firstWheelBrakeActuation (fwba) as the target (response) event, modeled as syn-
chronization channels. The causality among the events is modeled by the receiving(?)
and sending(!) signals of the corresponding channels respectively.

DelayConstraint. In Figure 4(b), we present the TA modeling of the delay constraint
tc1, for the event chain ec1. The transition from L0 is taken when the source event
bpsa occurs. At location L1, the permissible delay, specified in terms of the invariant
and the guard (on outgoing edge) using clock variable x, is allowed before the target
event fwba occurrence. It can be observed that the TA modeling of the delay con-
straint tc1 is a time constrained model of the corresponding event-chain automaton
(Fig. 4(a)).

Fig. 4. TADL timing constraints as TA: (a) EventChain ec1 (b) DelayConstraint tc1 (c) Repeat-
Constriant tc3a (d) SynchronizationConstraint tc10.

SynchronizationConstraint. In Figure 4(d), we present the TA modeling of the
synchronization constraint tc10 (Listing 1.2). It consists of two locations L0
and L1; the edges between the locations contain synchronization channels (re-
ceiving signals) corresponding to the events of the specified event group, that
is, firstWheelBrakeActuation(fwba), secondWheelBrakeActuation(swba),
thirdWheelBrakeActuation(twba) and fourthWheelBrakeActuation(ftwba);
corresponding transition is taken when anyone of these occur first. At location L1, the
other three events need to occur, before the transition back to L0 is taken, within the
specified tolerance value denoted by the invariant x <= TOL.

RepeatConstraint. In Figure 4(c), we present the TA modeling of the constraint tc3a
(Listing 1.2). When span is 1, and upper is equal to lower, the specified event is periodi-

cally generated. Thus the event fwsa (firstWheelSensorAcquistion) periodically occurs
with the specified period.

5.3 Verification Results

For a TADL2 specification, the corresponding network of TA models is an executable
specification that can be simulated and verified. However, to support the verification,
we further extend the composed model to enable verification. For example, for event
chains with no associated delay constraint, we make the non-initial locations urgent
to skip indeterminate delays. Further, we introduce a synchronization pattern (Fig. 5
(a) and (b)), for event chains with common response event. Also, we use an observer
TAn, e.g. Fig. 5 (c), to verify delay constraints. To begin with, we can verify general
properties, such as, well-formedness, deadlock-freeness, as discussed below:

– well-formedness : we define a TADL2 specification as well-formed, if every loca-
tion in the composed TAn is reachable. For example, we can verify a location L in
an automaton T is reachable by verifying that the property E<> T.L is satisfied
(that is, there exists a path where the boolean predicate T.L eventually holds).

– consistency: a deadlock in the execution of TADL2 timed automata model,
indicates an inconsistent specification, due to inconsistent timing constraints or
even modeling errors. However, the diagnostic traces given by UPPAAL are useful
to identify and resolve the deadlocks.

Fig. 5. (a) join stimulus (b) join response (c) Observer TA to verify ‘tc1a’

We have verified TADL2 timing constraints as follow. However, these constraints are
verified in isolation whenever possible to keep the statespace minimal. While verifying
the delay constraints, Eq. 15 shows there is no deadlock. And, Eq. 16 establishes that the
event ’bpsa’ always leads to () the corresponding response event ’fwba’. Further,
we can verify that the DelayConstraints are consistent. For BBW example, the event
chain ec1a is defined in terms of ec1a, ... , ec1g (Listing 1.2). From this, we can verify
the timing behavior of ec1a given by tc1aw.r.t. the combined timing/causality behavior
of ec1a, ... , ec1g (Fig. 1 and [1]). For this, we compose the specification model with an
observer automaton for tc1a, by extending it with auxiliary variables v and c (Fig. 5
(c)). Eqs. 17 and 18 show the timing property tc1a is not satisfied.

A[] not deadlock //satisfied (15)
tc1a.L1 --> tc1a.L0 //satisfied (16)
A[] v imply c >= 70 //satisfied (17)
A[] v imply c <= 120 //not satisfied (18)
E <> v1 imply c1 <= 5 //satisfied (19)
A[] v1 imply c1 <= 5 //not satisfied (20)

For output synchronization constraint, TC10, we have extended the corresponding
automata with auxiliary variables c1 and v1 (similar to Fig. 5(c)). Eq. 19, a reach-
ability property, shows existence of a solution satisfying TC10, which confirms the
TimeSquare simulation (Section 4.3). However, Eq. 20 shows that the constraint is not
satisfied in all cases. This means that applying the constraints alone is not enough, these
constraints should be complemented with a refined description of the actual behavior of
the system.

6 Discussion of the Approach

This section discusses the benefits of combining two formal models CCSL and Timed
Automata to offer a complete support for the analysis of TADL2 specifications. First
it should be noted that one major extension of TADL2 over TADL is the addition of
explicit references to time bases. Such time bases can be either logical or physical. This
extension took a direct inspiration from the MARTE Time model. It recognizes the im-
portance of logical clocks in high-level specifications where information about physical
time is not always available. As a specification language, MARTE CCSL offers a full
support to build both logical and physical clocks as well as capturing time expressions
referring to such clocks. CCSL specifications can be analyzed by TimeSquare that was
specifically designed for the purpose. TimeSquare provides several features. The first
important one is a support for model simulation. Thus, the transformation from TADL2
to CCSL provides a support for making TADL2 specifications executable directly in-
side a UML environment (like Papyrus). Other features of TimeSquare offer support
for exhaustive analyses of CCSL specifications. Those features mainly focus on logi-
cal aspects and offer little or no benefit for the exhaustive analysis of physical-based
constraints such that those shown in this paper. Timed Automata, however, are a pow-
erful formalism to handle physical time constraints through the UPPAAL clocks. By
offering a transformation to Timed Automata, we then provide a support for the ex-
haustive analysis of physical-based constraints. This is why the two formalisms are
used in a complementing way, CCSL to support model execution and analysis of log-
ical time aspects, Timed Automata/UPPAAL for the exhaustive analysis of physical
time constraints. However, having a coordinated analysis of mixed logical and physical
constraints is out of the scope of this paper and is still an on-going research work.

Furthermore, exhaustive verifications can only be conducted with finite specifica-
tions. However, early specifications may remain incomplete and therefore may not be

sufficiently refined to be bounded. For instance, event chains with indeterminate delays
are typical unbounded specifications (the time may progress arbitrarily without any up-
per bound constraint). As discussed in the previous sections, we had to complete the
event chains to conduct the analysis with UPPAAL.

7 Related Work

A number of approaches in the literature address modeling and analyzing timing con-
straints. Klein and Giese [16] present Timed Story Scenario Diagrams (TSSD), a visual
notation for scenario specifications that takes structural system properties into account.
In TSSD it is possible to specify Time Constraints that allow setting lower and up-
per bounds for delays. There is no mention of analysis support for TSSD. Alfonso et
al. [5] present VTS, a visual language to define complex event-based constraints like
freshness, bounded response, and event correlation. VTS does not support the notion of
explicit time units coded as time bases. A mapping between VTS and timed automata
is provided to model and analyze VTS scenarios. Aegedal [4] presents a general mod-
elling language for Quality of Service (QoS). The language uses a time model where
different clocks can be specified.

In the context of EAST-ADL, several approaches have been proposed for timed au-
tomata based modeling. In [20], Qureshi et al. presented timed automata templates for
EAST-ADL timing constraints. These modeling templates capture various error sce-
narios and are based on EAST-ADL architectural models. In contrast, the automata
templates presented in this paper specify event chains and associated causality and
temporal behavior. While Kang et al. [15] have addressed the functional modeling for
EAST-ADL models using UPPAAL, Enoiu et al. [13] have addressed a limited aspect of
timing modeling for EAST-ADL models. However, none of the works mentioned above
address the analysis of timing specifications including the explicit notion of timebase
and symbolic timing expressions. Also they do not mention how to use different analy-
sis approaches for timing constraints in a complementary fashion.

8 Conclusions

In this paper, we have presented both simulation and model-checking approaches for
formal analysis of TADL2 specifications. We have mapped TADL2 specifications into
CCSL specifications for simulations in TimeSquare and to timed automata for exhaus-
tive verifications with UPPAAL model-checker. In addition to well-formedness and con-
sistency checking, we have also verified the TADL2 timing constraints. The main lim-
itation of the verification approach is the statespace explosion problem with model-
checking. However, this may be addressed by using compositional techniques based on
event chains in TADL2 specifications.

We have used a real industrial example proposed by Volvo Technology in the
TIMMO-2-USE project [2] to show the capability of our approach for handling timing
behavior of industrial systems. However, a natural question arises about the scalability
and the efficacy of the proposed analysis approach on larger case studies. As a future
work we plan to conduct experimental analysis on larger case studies. We also plan

to consider a detailed comparison of analysis features of TimeSquare and UPPAAL for
TADL2 specifications. Further, the mappings can be extended to multiple timebases
and timebase relationships in TADL2, for specification and verification of timing con-
straints for distributed embedded systems, i.e., systems with multiple ECUs where each
ECU has its own timebase. The mappings provide a basis for automated model trans-
formations from TADL2 specifications to CCSL and UPPAAL. The automated model
transformation from TADL2 to CCSL [3] is already implemented with QVTo [12].
Currently, we are working on the model transformation from TADL2 to UPPAAL.

References

1. BBW Spec in TADL2, http://www-sop.inria.fr/members/Arda.Goknil/bbw/.
2. ITEA TIMMO-2-USE Project, http://timmo-2-use.org/.
3. TADL2-CCSL QVTo Transformation, http://www-sop.inria.fr/members/Arda.Goknil/bbw/.
4. J. Aegedal. Quality of service support in development of distributed systems. PhD Thesis,

2001.
5. A. Alfonso, Vı́ctor A. Braberman, Nicolas Kicillof, and Alfredo Olivero. Visual timed event

scenarios. In ICSE’04, pages 168–177, 2004.
6. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
7. C. André. Syntax and semantics of the Clock Constraint Specification Language (CCSL).

Research Report 6925, INRIA, May 2009.
8. C. André, F. Mallet, and R. de Simone. Modeling time(s). In Models’07, volume 4735 of

LNCS, pages 559–573. Springer, 2007.
9. ATESST (Advancing Traffic Efficiency through Software Technology). East-ADL2 specifi-

cation, http://www.atesst.org, 2008-03-20.
10. Autosar Consortium. AUTOSAR specification, release 4.0, 2009, http://www.autosar.org/.
11. J. Deantoni and F. Mallet. Timesquare: Treat your models with logical time. In TOOLS

Europe 2012. Springer LNCS, vol 7304, May 2012.
12. R. Dvorak. Model transformation with operational qvt. EclipseCon’08, 2008.
13. E. P. Enoiu, R. Marinescu, C. C. Seceleanu, and P. Pettersson. Vital: A verification tool for

east-adl models using uppaal port. In ICECCS’12, pages 328–337, 2012.
14. IEEE Standards Association. IEEE Standard for Verilog Hardware Description Language.

Design Automation Standards Committee, 2005. IEEE Std 1364TM-2005.
15. E. Y. Kang, P. Y. Schobbens, and P. Pettersson. Verifying functional behaviors of automotive

products in east-adl2 using uppaal-port. In SAFECOMP’11, pages 243–256, 2011.
16. F. Klein and H. Giese. Joint structural and temporal property specification using timed story

scenario diagrams. In FASE’07, pages 185–199, 2007.
17. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on Software Tools

for Technology Transfer, 1(1–2):134–152, October 1997.
18. OMG. UML Profile for MARTE, v1.0. Object Management Group, November 2009.

formal/2009-11-02.
19. M. A. Peraldi-Frati, A. Goknil, J. DeAntoni, and J. Nordlander. A timing model for spec-

ifying multi clock automotive systems: The timing augmented description language v2. In
ICECCS’12, pages 230–239, 2012.

20. T. N. Qureshi, D. J. Chen, and M. Törngren. A timed automata-based method to analyze
east-adl timing constraint specifications. In ECMFA’12, pages 303–318, 2012.

