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1 Introduction

This chapter deals with the problem of how to es-
timate and analyze the execution time of embedded
real-time software, in particular the worst-case execu-
tion time.

A real-time system must react within precise time
constraints, related to events in its environment and
the system it controls. This means that the correct be-
havior of a real-time system depends not only on the
result of the computation but also on the time at which
the result is produced. Thus, knowing the execution-
time characteristics of a program is fundamental to
the successful design and execution of a real-time sys-
tem [22, 57].

The size and the complexity of the software in real-
time system are constantly increasing. This makes it
hard, or even impossible, to perform exhaustive testing
of the execution time. Furthermore, the hardware used
in real-time systems is steadily becoming more com-
plex, including advanced computer architecture fea-
tures such as caches, pipelines, branch prediction, and
out-of-order execution. These features increase the
speed of execution on average, but also makes the tim-
ing behavior much harder to predict, since the variation
in execution time between fortuitious and worst cases
increase.

Execution time analysis is any structured method
or tool applied to the problem of obtaining informa-
tion about the execution time of a program or parts
of a program. The fundamental problem that a tim-
ing analysis has to deal with is the following: the ex-
ecution time of a typical program (or other relevant
piece of code) is not a fixed constant, but rather varies
with different probability of occurrence across a range
of times. Variations in the execution time occur due to
variations in input data, as well as the characteristics
of the software, the processor and the computer system
in which the program is executed.

The worst-case execution time (WCET) of a pro-
gram is defined as the longest execution time that will

ever be observed when the program is run on its tar-
get hardware. It is the most critical measure for most
real-time work. The WCET is needed for many differ-
ent types of system analysis for real-time systems. For
example, it is a critical component of schedulability
analysis techniques, it is used to ensure that interrupts
are handled with sufficiently short reaction times, that
periodic processing is performed quickly enough, and
that operating-system calls return to the user applica-
tion within a specified time-bound. The simplest case
is the question whether a particular small piece of code
executes within an allocated time budget.

The best-case execution time (BCET) is defined as
the shortest time ever observed. The BCET can for ex-
ample, be of interest in case some code should not finish
too quickly, or to analyze the potential jitter in execu-
tion time. The average-case execution time (ACET)
lies somewhere in-between the WCET and the BCET,
and depends on the execution time distribution of the
program.

1.1 The Need for Timing Analysis

Reliable timing estimates are important when de-
signing and verfying many type of embedded systems
and real-time systems. This is especially true, when
the system is used to control safe critical products such
as vehicles, aircraft, military equipment and industrial
plants. Basically, only if each hard real-time compo-
nent of such a system fulfills its timing requirements
the whole system could be shown to meet its timing
requirements.

However, whether timing analysis is needed for a
program is not a black-and-white question. In reality,
there is a continuum of criticality for real-time systems,
as shown with some typical examples in Figure 1.1.
Depending on the criticality of the system, an approx-
imate or less accurate analysis might be acceptable. It
is really a business issue, where the cost of a timing-
related failure has to be weighed against the cost of
various means of preventing or handling such a failure.
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Figure 1.1. Continuum of timing criticality

In many embedded systems, only some part of the
system is actually time critical. In a mobile telephone,
for example, the parts which deals with communication
and signal coding have hard real-time requirements,
while the user interface is less time-critical. The fact
that only part of the code is timing-critical help make
timing analysis feasible, since trying to analyze the to-
tal system would be virtually impossible due to its size
and complexity.

For other type of systems the goal is to maintain a
high throughput on average, and not necessarily that
each task is completed within specified time limits. In
a telecom system, for example, it is acceptable that
calls are dropped occasionally, and that parts of the
system crash and reboot. Glitches are annoying but
not dangerous as long as the system as a whole keeps
running.

1.2 WCET Analysis

Since the WCET is a key component in the anal-
ysis of real-time systems, a lot of research and tool
development has been devoted to the WCET determi-
nation problem. A timing analysis with a main focus
on WCET determination is called a WCET analysis,
even though most tools also produce other information
like the BCET or maximum stack depth.

Figure 1.2 shows how different timing estimates re-
late to the WCET and BCET. The example program
has a variable execution time, and the darker curve
shows the probability distribution of its execution time.
Its minimum and maximum are the BCET and WCET
respectively. The lower gray curve shows the set of ac-
tually observed and measured execution times, which
is a subset of all executions. Its minimum and max-
imum are the minimal measured time and maximal
measured time respectively. In most cases the program
state space and the hardware complexity is too large
to exhaustively explore all possible executions of the
program. This means that the measured times will in
many cases overestimate the BCET and underestimate

the WCET.
A WCET analysis derives an estimate of the WCET

for a program or part of the program. To guarantee
that no deadline are missed, a WCET estimate must
be safe (or conservative), i.e., a value greater than or
equal to the WCET. To be useful, avoiding over allo-
cation of system resources, the estimate must also be
tight, i.e., provide little or no overestimation compared
to the WCET. Similarly, a BCET estimation should
not overestimate the BCET and provide acceptable
underestimations. Some real-time literature does not
maintain the crucial distinction between the WCET
and the WCET estimates derived by timing analysis
tools. We will strive to avoid such confusion in this
chapter.

It should be noted that all timing analysis tech-
niques presented here are focussed on the issue of tim-
ing a single program or code fragment. This means that
timing analysis does not consider that several tasks or
programs normally are run togther on the same com-
puter, that there might be a operating system (OS)
which schedules and interrupts the programs, etc. All
such interactions are handled on a higher analysis level,
e.g., using schedulability analysis, where it should be
shown that the whole computer system works even in
the most stressful situations. For such analyses reliable
WCET estimates are an important input.

The following two sections will go explain in more
detail the issues that any timing or WCET analysis
must consider. In particular, both the software behav-
ior (Section 2), and the hardware timing (Section 3)
must be considered in order to derive reliable timing
estimates.

Timing and WCET analysis can be performed in a
number of ways using different tools. The two main
methodologies employed are measurements (Section 4)
and static analyses (Section 5). In general, measure-
ments are suitable for less time-critical software, where
the average case behavior is of interest. For time-
critical software, where the WCET must be known,
static analysis or some type of hybrid method (Sec-
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Figure 1.2. Example distribution of execution time

tion 6), is preferable. The research invested in static
WCET analysis has resulted in sophisticated commer-
cial tools (Section 7) able to produce estimates within a
few percent of the WCET. Experiences from industrial
usage of these tools (Section 8) and a chapter summary
(Section 9) complete this chapter.

2 Software Behavior

One of the main reasons for the success of com-
puters in embedded applications is that they are pro-
grammable, making it possible to use a standard part
(the processor) for a variety of applications, and en-
abling new functions that could never have been imple-
mented using fixed-function logic. However, this also
means that in order to correctly analyze and under-
stand the behavior and timing of an embedded system
we need to understand the software behavior.

Embedded software comes in many different flavors,
using many different languages. In our experience,
most timing-critical real-time software is written in C
or Ada, with some assembly language. It is also com-
mon to use various code-generating tools working on
a high-level model of the software (for example, Mat-
Lab/Simulink, LabView, UML, StateCharts, SDL, and
Esterel) to make programming more efficient. This
means that a wide variety of codes and coding styles
have to be considered for WCET analysis tools.

There have been some studies on the properties of
embedded software, and they indicate a huge range of
programming practices, from very disciplined simple
and predictable code, to code with deep loop nesting,
complex if-statements, and significant use of pointers

[6, 9, 49]. Dynamic memory allocation is rare due to
resource contraints, but the logic can be very convo-
luted.

The software behavior contributes a large part of the
execution time variability of a program, often dominat-
ing the effect of local hardware timing variability [32].
Note that this does not mean that hardware timing
analysis is unnecessary; we need the hardware timing
in order to get a concrete execution time. But we need
to have a good understanding of the software behavior
in order to get a precise analysis result.

As illustrated in Figure 1.3, even small codes might
exhibit variable and interesting behavior. The exam-
ple code consists of two functions task N and convert.
The first function reads two values from two different
sensors1 and calls convert twice, with the values read
in each case. The results of the calls to convert are
used to set an actuator. The convert function con-
tains a typical case of software variability, having a
loop which iterates a variable number of times depend-
ing on input data, and conditional statements where
one branch takes longer than the other branch to exe-
cute.

A good real-life example of input-dependent flow is
the message-polling loop described in [15], where the
number of CAN messages received over a network can
vary in number, immediately impacting the execution
time of an interrupt handler. On the other hand, some
compute-oriented codes exhibit a single possible exe-
cution path, by virtue of having no input-dependent
loops or decision statements [65]. Instructions in such

1This is a simplification compared to a real system where the
sensor values needs to be calibrated after reading.
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Figure 1.3. Code illustrating software variability

codes will only exhibit execution-time variation due to
hardware effects. This fact has triggered research for
rewriting programs to only have single-path behavior
[44].

Note that complex software behavior is equally
problematic for static tools and measurement tech-
niques. A program with complex structure and vari-
able flow will be just as hard to measure correctly as
to analyze statically. Real-time code has to be writ-
ten for predicability and analyzability regardless of the
techniques used to analyze their timing.

3 Hardware Timing

All timing analysis ultimately has to deal with the
timing of the hardware on which a program is execut-
ing, and the precise sequence of machine instructions
that actually make up a program. As hardware gets
more complicated, analyzing the hardware timing be-
havior becomes progressively harder.

The main complexity in hardware timing analysis
is the behavior of the processor itself, along with its
memory system. Other components of a computer sys-
tem like IO, networks, sensors, and actuators have less
impact on the program timing. They usually dictate
when a program is executed in response to external
stimuli, but do not affect the instruction-level execu-
tion time to any appreciable extent.

Processor instruction timing has been getting in-
creasingly variable over time, as features improving
average-case performance and overall throughput are
invented and put in use. Typically, performance im-
provements are achieved using various speculation and
caching techniques, with the effect that the span be-
tween best-case and worst-case times increase. The
goal is for the common case or average case to be close
to the best case, and that this best case is better than

the best-case times for previous processors. In the pro-
cess, the worst case typically gets worse, and the pre-
cise timing becomes more dependent on the execution
history.

Traditional 8-bit and 16-bit processors typically fea-
ture simple architectures where instructions have fixed
execution times, and each instruction has minimal ef-
fect on the timing of other instructions. There is little
variability in execution time. Somewhat more com-
plex 32-bit processors are designed for cost-sensitive
applications. Typical examples are the ARM7, ARM
Cortex-M3, and NEC V850E. With simple pipelines
and cache structures, variability is present but fairly
easy to analyze and limited in scope.

The high end of the embedded market requires pro-
cessors with higher performance, and these are begin-
ning to deploy most of the variability-inducing features
like caches, branch prediction, and aggressive pipelin-
ing. These range from the ARM11 and MIPS24k de-
signs where the pipeline is still in-order, to full out-
of-order superscalar processors like the PowerPC 755
and 7448, or even Intel Xeons. Analyzing such pro-
cessors require quite sophisticated tools and methods
in the hardware timing analysis. Nevertheless, there
have been impressive success stories for tools analyz-
ing quite complicated hardware systems with good re-
sults [20, 52].

The mainstream trend in computer architecture is
still to add ever-more speculation in order to improve
overall performance. However, it is clear that em-
bedded computer architecture is becoming its own
field, and that some designs actually have the issues
of real-time systems as their primary design require-
ments. Such designs emphasize predictability, short
interrupt latencies, and bounded worst-cases over max-
imal average-case performance.
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3.1 Memory Access Times

Even disregarding caches, the time to access main
memory on a modern system is highly variable. Mod-
ern RAM technology uses a variety of techniques to
take advantage of access locality to improve perfor-
mance, but this also increases variability in execution
time. For static analysis, this means that knowing the
precise sequence of addresses of memory accesses be-
comes important. It is also common to mix different
memory technologies and thus memory access times in
a system, and at the very least the area of memory ac-
cessed by an instruction needs to be known for a tight
analysis to be performed [15, 52].

3.2 Long Timing Effects

Conventional wisdom in WCET analysis used to
hold that the timing of instructions flowing through
a simple pipeline (in-order issue, single instruction per
cycle, in-order completion) could be accounted for by
pairwise combination of instructions, as illustrated in
Figure 1.4. However, this is not true. Even very simple
three-stage pipelines exhibit a phenomenon known as
Long Timing Effects, LTEs. The essence of an LTE is
that interactions occur between instructions that are
not adjacent to each other, as illustrated in Figure 1.5.

The example in Figure 1.5 shows an interaction be-
tween instructions A and C that is not visible when
just analyzing the neighbouring pairs of instructions
AB and BC. It has been shown that such timing effects
can occur across arbitrary distances [12, 14]. In exper-
iments, some processors have been shown to exhibit
very many very long LTE [47]. The practical conse-
quence of this is that a static WCET analysis tool has
to be very careful about how interactions between in-
structions are analyzed, and that is has to ensure that
all possible LTEs are found or a safe margin added to
account for them. Note that since WCET tools are al-
lowed to selectively overestimate execution times, this
problem is tractable. There have also been attempts to
make a processor not have any LTEs, thus facilitating
analysis [47].

3.3 Caches

Caches add to the variability of execution time of
a program, and make the difference between the worst
case and average case quite large [62]. This effect is
well-known, and cache optimization is a concern for any
performance-oriented programmer. On average, caches
work well, but a poorly designed cache or poor use of a
cache has the potential to cause disastrous worst cases.

From a timing analysis and predictability perspective,
caches with least-recently-used replacement policies are
preferrable, since their state converges over time, mak-
ing the behavior more predictable [20].

The traditional assumption in analyzing cache be-
havior is that misses are always worse than cache hits,
but as discussed below in Section 3.5 this is not neces-
sarily true on all processors.

In order to overcome some of the unpredictability
of caches for critical code, many embedded processors
offer the ability to lock parts of the cache. This makes it
possible to obtain predictable timing for selected code,
even in the presence of interrupts and task switching
[43, 61]. An extreme variant of this is to use a software-
controlled cache, where the programmer has complete
control and responsibility for what is in the cache and
what is not.

3.4 Branch Prediction

Dynamic branch prediction mechanisms try to pre-
dict which way a particular branch instruction will go
(taken or not-taken), long before the branch has ac-
tually been resolved in the processor pipeline. The
processor will then speculatively fetch instructions
along the predicted path, and if the prediction was
wrong, the speculatively fetched instructions will have
to be squashed and instruction fetching redirected.
Thus, branch prediction can affect the state of both
instruction- and data cache, as well as the processor
pipeline, and it has a large impact on the variability in
instruction execution time.

Effective branch prediction is very important in
modern processors with deep pipelines and high clock
frequencies. Very sophisticated predictor mechanisms
have been developed that on average achieve very high
prediction rates. Indeed, to get above around 75 %
accuracy, dynamic prediction is necessary [13].

However, these branch predictors typically have
complicated worst-case behavior. There are examples
of cases where executing more iterations of an inner
loop takes less time than iterating fewer iterations [13],
due to branch prediction effects in a loop which is vis-
ited several times. Finally, just like the FIFO caches
discussed in Section 3.5, dynamic branch predictors do
not necessarily converge to a known state over time,
thus complicating WCET analysis.

3.5 Timing Anomalies

When WCET research started working on complex,
out-of-order processors with caches and branch predic-
tion, a phenomenon known as timing anomalies was
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Figure 1.4. Pipelining of instruction execution
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Figure 1.5. Example long timing effect

observed [39]. Timing anomalies are cases where a lo-
cal worst case does not entail the globally worst case.
Examples are that a cache hit for a particular instruc-
tion causes a longer execution time for a program than
a cache miss.

Timing anomalies are usually associated with out-of-
order dynamic scheduling of instructions. Most anoma-
lies are similar to the known scheduling anomalies stud-
ied in scheduling theory, where making a certain task
(instruction) faster can cause an entire schedule to take
longer. As noted in [46] there are some cases where the
behavior of processors go beyond scheduling anoma-
lies, since a dynamic decision in a branch predictor can
cause the actual set of instructions executed to change.

A strict in-order pipeline does not suffer timing ef-
fects in and of itself [12, 39]. However, the cache at-
tached to such a pipeline might. For example, a miss
in a cache using the FIFO replacement policy might
create a better cache state for later code, causing the
overall execution to speed up. Since the FIFO cache
has a potentially infinite memory, this can cause prob-
lems at any later point in time [46].

A variant of a timing anomaly called an accelera-
tion effect is that the global slow-down ensuing from a
slow-down of some instruction is greater than the lo-
cal penalty. For example, an instruction being delayed

by 8 cycles causing the overall program to be delayed
by 11 cycles, as seen in the examples in [39]. Such
acceleration effects can be unbounded [39].

3.6 Multicore and Multiprocessor Sys-
tems

The use of multiple processors and multiple proces-
sor cores is a clear trend in computer architecture. De-
pending on how systems are designed and programmed,
using multiple processor cores can both benefit and hin-
der timing analysis.

A system using many specialized processors, each
with its own defined task, is easier to analyze than a
system combining all the tasks onto a single processor.
Less interference between tasks and less competition
for shared resources like caches makes the analysis eas-
ier. Private memory for each processor is definitely the
recommended design here, as that helps predictability
and reduces variability, at the expense of some more
work for the programmers. This design template is
common in mobile phones, where you typically find an
ARM main processor combined with one or more DSPs
on a single chip. Outside the mobile phone space, the
IBM-Sony-Toshiba Cell processor contains a PowerPC
core along with eight DSP-style processors designed
with timing predictability in mind [27].
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On the other hand, using a classic shared-memory
multiprocessor model like that found in PCs and
servers makes it significantly harder to analyze the tim-
ing of programs. Programs might be interrupted and
scheduled on a different processor in mid-execution,
and shared data will cause cache misses due to cache
coherency activity on other processors. Even with
scheduling tricks like binding a particular task to a par-
ticular processor, there are just too many complicating
interacting factors to make any precise timing analysis
impossible.

3.7 Custom Accelerator Hardware

Various forms of accelerator hardware is becom-
ing more common in embedded systems, implemented
as part of an ASIC, System-on-Chip, or FPGA. This
means that real-time software will contain calls to ac-
tivate the accelerator hardware, and that the WCET
analysis will need to account for these calls. This does
not have to make WCET analysis more difficult, as the
execution time of accelerator functions is typically fixed
or easy to compute. Compared to a software imple-
mentation of the same function, hardware accelerators
typically exhibit much simpler behavior and less vari-
ation. The support necessary in the WCET analysis
tool is to be able to identify calls to hardware acceler-
ators, and to provide information about the time the
calls take.

4 Timing by Measurements

The classic method for obtaining information about
the execution time of a program is to execute the pro-
gram many times with different input data, and then
measure the execution time for each test run. Finding
the input that causes the WCET to occur is very dif-
ficult in the general case, and guaranteeing that it has
been found is basically impossible without some form of
static analysis. Nevertheless, measurements are often
the only means immediately at the disposal of a pro-
grammer, and are useful when the average case timing
behavior of the program is of interest.

On the hardware side, the measurement method has
the potential advantage of being performed on the ac-
tual hardware. This avoids the need to construct a
model of the hardware as required by static analysis
techniques (an advantage shared with hybrid analy-
sis techniques as discussed below in Section 6). On
the other hand, measurement requires that the target
hardware is available, which might not be the case for
systems where hardware is developed in parallel with
the software [59].

Note that as hardware gets more complex and
execution-time variability increases (see Section 3), it
becomes harder and harder to explore all possible tim-
ing with measurements. A static analysis tool has the
advantage that it in principle can consider all possible
executions and thus the entire possible execution-time
span.

Measurements can be performed in the lab prior to
software deployment, or in the field after deployment.
Measuring in the field has the advantage that only real
executions are observed, but the clear disadvantage
that the data is obtained only after the system has
been fielded. If some mistake was made when dimen-
sioning the system, timing-related failures could occur
in the field. For systems that can tolerate occasional
timing problems and which are continuously upgraded,
online measurements of performance can be immensely
useful.

4.1 Measurement Techniques

Over the years, many software- and hardware-
based timing measurement techniques have been de-
veloped [56]. We ignore manual methods like using
a stopwatch, as that is too low in accuracy for real-
time code. There are some issues that all measurement
methods needs to address:

• Probe effect : Measuring a system might cause the
timing to change. This is especially common when
the program is instrumented or extended with
measurement support.

• Resolution: Executing code can take a very short
time, and the resolution of the timing system has
to be fine enough to accurately capture the vari-
ations that occur. Typically, you want microsec-
onds or better resolution.

• Interruptions: The program under measurement
might be interrupted by hardware or operating-
system scheduling intervals. This will lead to in-
termittent large increases in the end-to-end execu-
tion time of a program, and this effect needs to be
identified and compensated for [67].

• Visibility : It is typically hard to deduce the de-
tailed execution path that a program under mea-
sure took in a particular measurement run. This
leads to problems interpreting the results and at-
tributing execution time appropriately [15, 67].

Most of these problems can be resolved by design-
ing a hardware platform which supports debugging and
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timing measurements from the outset. Today, built-
in debug support in embedded processors is improving
thanks to Moore’s law, allowing more functionality to
be put on a single chip. Still, far from all embedded
computer platforms have useful debug and analysis fea-
tures.

Other issues that need to be considered when select-
ing a suitable measurement technique are Cost, e.g.,
special purpose hardware solutions, such as an emula-
tor, are more often costly than general purpose ones,
such as an oscilloscope. Availability, not all type of tar-
get systems are using an OS with suitable timing facil-
ities support. Retargetability, a solution suitable for a
particular processor and hardware platform might not
be directly applicable on another one [56, 67].

Some of the more important measurement tech-
niques used in practice today are:

• Oscilloscope and logic analyzers: Both these meth-
ods look at the externally visible behavior of a
system while it is running, without affecting its
execution. Using an oscilloscope typically involves
adding a bit-flip on an externally accessible pin of
the processor to the program segments of interest,
and then observing the resulting waveform to di-
vine the periodicity and thus the execution time
[56, 67]. A logic analyzer looks at the data- or ad-
dress bus of the system and can see when certain
instructions are being fetched, greatly improving
the visibility. However, it requires that relevant
memory transactions do reach the bus, which not
necessarily the case on a system with a cache.

• Hardware traces: Hardware traces and debug
ports are extra features added on-board processor
chips to help debugging and inspection. The most
well-known example is the ARM Embedded Trace
Macrocell (ETM), and JTAG and Nexus debug
interfaces. Note that such interfaces while power-
ful often have particular limitations that can make
their use more complicated than one might think
[3].

• High-resolution timers: Adding code to a program
to get timing information from timers in the sys-
tem, and then collect start and stop times. Some-
times, special clock hardware is added to a system
for this purpose. This will slightly modify the pro-
gram code, under programmer control.

• Performance counters: Most high-end processors
from families like x86, PowerPC, and MIPS offer
built-in performance counters which can be used
to determine details about the performance of pro-
grams. However, such mechanisms are typically

oriented towards spotting hot-spots and perfor-
mance problems in a program, and less towards
reliable and precise execution-time measurements.

• Profilers: Profilers are typically provided with
compilers. They are dependent on good timing
sources in hardware to obtain time measurements,
but can provide very good insight into where a
program is spending its time. Profilers can use
periodic interrupts to sample program execution,
which does not provide for very precise measure-
ments, or instrument the code, which creates a
probe effect.

• Operating system facilities: Operating system
support for timing measurement can take many
forms. High-water marking is a common feature of
real-time operating systems, where the longest ex-
ecution time observed for a particular task is con-
tinuously recorded. There can also be command-
line tools for timing programs available. Note that
all OS-based solutions depend on the availability
of suitably precise timing facilities in the hard-
ware.

• Emulator : An In-Circuit Emulator is a special-
purpose hardware which behaves like a particular
processor, but with better debug and inspection
capabilities. Provided that they do match the tar-
get processor, they can provide very detailed data.
Today, emulators are being replaced with hard-
ware trace facilities, since they are too hard to
construct for current processors. There is also the
risk that they do not actually perfectly match the
behavior of the real processor [67].

• Simulators: Processor simulators are sometimes
used as a substitute for the real hardware for the
purpose of timing analysis. Developing and vali-
dating correct simulators is very hard [11, 12], and
in practice there are very few simulators which are
guaranteed to be totally accurate.

5 Timing by Static Analysis

As mentioned in Section 1.2 measurements are suit-
able for soft real-time applications where the average
timing is of interest. However, for hard real-time ap-
plications, where the WCET must be known, static
analysis techniques are preferable since they provide
stronger evidence about the worst possible execution
time of a program.

A static timing analysis tool works by statically
analysing the properties of the program that affect its

8



(a) Emulator (b) Logic analyzer (c) Oscilloscope

Figure 1.6. Tools for dynamic timing analysis

timing behavior. It can be compared to determining
the stability of a bridge by investigating its design, in-
stead of building the bridge and testing it by running
heavy trucks across it. Most static timing analysis has
been focussed on the WCET determination problem.
Given that the inputs and analyses used are all cor-
rect, such a static WCET analysis will derive a WCET
estimate larger than or equal to the actual WCET.

In general, both the software behavior and the hard-
ware timing must somehow be bounded in order to de-
rived a safe and tight WCET estimate. Consequently,
static WCET analysis is usually divided into three
(usually independent) phases, as depicted in Figure 1.7:
(1) A flow analysis phase, where information on the
possible execution paths through the program is de-
rived (2) A low-level analysis phase, where information
about the execution time of program instructions is ob-
tained. (3) A calculation phase, where the flow- and
timing information derived in the first two phases are
combined to derive a WCET estimate.

Some tools integrate two or more of these phases.
For example, the approach in [39] performs all three
functions at the same time, approximately executing
the program. Nevertheless, all three phases are needed.
As discussed in Section 7, most tools also include a
decoding phase, for reading the program to be analyzed,
and a visualization phase, for presenting the result of
the WCET analysis.

5.1 Flow Analysis – Bounding the Soft-
ware Behavior

The purpose of the flow analysis phase is to derive
bounds on the possible execution paths of the analyzed
program, i.e., to find constraints on the dynamic be-
havior of the software. Such flow information can be
provided manually by the system programmer, or by
an automatic flow analysis. The result is information
on which functions that get called, bounds on loop it-
erations, dependencies between conditionals, etc.

To find exact flow information is in general unde-
cidable2: thus, any flow analysis must be approximate.
To ensure a safe WCET estimate, the flow information
must be a safe (over)approximation including (at least)
all possible program executions.

Upper bounds on the number of loop iterations are
needed in order to derive a WCET estimate at all.
Without such loop bounds, any instruction occuring
in a loop might be taken an infinite number of times,
leading to an unbounded WCET estimate. Similarly,
recursion depth must also be bounded. For the loop in
Figure 1.7 the flow analysis has derived a loop bound
of 100. This bound has been added to the control flow
graph as a max #loop: 100 annotation.

Flow analysis can also identify infeasible paths, i.e.,
paths which are executable according to the control-
flow graph structure, but not feasible when considering
the semantics of the program and possible input data
values. In contrast to loop bounds, infeasible path in-
formation is not required to find a WCET estimate,
but may tighten the result. An extreme case of an in-
feasible path is dead code. In Figure 1.7 the infeasible
path annotation max #C: 5 is specifying that node C
can be executed at most five times.

There are a number of approaches to automatic
loop-bound and infeasible path analyses, using tech-
niques such as abstract interpretation, symbolic execu-
tion, Presburger analysis, specialized data flow analy-
ses, and syntactical analysis on parse trees [1, 5, 23, 25,
26, 30, 33, 38, 39, 58]. Some of the methods are gen-
eral, while others are specialized for certain types of
code constructs. The methods also differ in the type of
codes they analyze, i.e., source-, intermediate- (inside
the compiler), or machine code. Most WCET analysis
tools allow the user to provide additional flow informa-
tion as manual annotations [17, 21, 30, 34].

Once again, consider Figure 1.3, as an illustration of
the work a flow analysis must perform. After a careful

2A perfect flow analysis would solve the halting problem.
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Figure 1.7. Phases in static WCET analysis

examination of the system it has been found that the
two sensors, SENSOR1 and SENSOR2, can give readings
within certain boundaries, 0 ≤ val1 ≤ 100 and 0 ≤
val2 ≤ 200.

After studying the code in convert we see that its
loop will, for each call, iterate as many times as the
value of the input argument val. A safe upper loop
bound for the two calls to convert in this program
would therefore be to assume that the loop iterates
200 times each time convert is called, i.e., a bound
corresponding to the largest possible value of val2.

However, the loop bound could be improved by not-
ing that the first time that convert is called, its input
argument cannot be larger than 100. This gives that
in total, for the whole execution of the program, the
loop in convert could iterate at most 100 + 200 = 300
times. Furthermore, we note that each time convert
is called, the j++; statements on row 22 could be ex-
ecuted at most five times. The last two observations
are not required to derive a WCET estimate, but could
result in a tighter estimate.

5.2 Low-Level Analysis – Bounding the
Hardware Timing

The purpose of low-level analysis is to determine
and bound the possible timing of instructions (or larger
code parts) given the architectural features of the tar-
get hardware. For example, in Figure 1.7 each basic

block in the control-flow graph has been annotated
with an upper execution time derived by a low-level
analysis. The analysis requires access to the actual bi-
nary code of a program, since it has to analyze the
processor timing for each instruction.

For modern processors it is especially important
to analyze the effects of complex features such as
pipelines, caches, branch predictors, speculative, and
out-of-order execution. As explained in Section 3, these
features all increase the variability in instruction tim-
ing and makes the prediction more complex.

Most static low-level analyses work by creating a
timing model of the processor (and other hardware
which affect the instruction timing). The model does
not need to include all hardware details, as long as it
can provide bounds on the timing of instructions. It
common to use safe approximations where precise tim-
ing is impossible or very difficult to provide. Typical
examples include assuming that an instruction always
misses the cache, or that an instruction whose precise
execution time depends on data always executes for
the longest possible time. Note that certain intuitive
assumptions might not always be correct, as discussed
in Section 3.5.

One should note that standard cycle-accurate pro-
cessor simulators differ in functionality from timing
models. When determining a timing bound for an in-
struction not just one single concrete execution of the
instruction, but rather all possible executions, must be

10



accounted for by the timing model. This can be a very
large set of possible states for a complex processor.

The complexity of the low-level analysis depends
on the complexity of the processor used. The more
complex the processor is, the more complex the tim-
ing model becomes. For simple 8- and 16-bit proces-
sors the timing model construction is fairly straight-
forward, but still time consuming [42]. For some-
what more advanced 16-bit and 32-bit processors, using
simple (scalar) pipelines and maybe caches, the tim-
ing effects of different hardware features can be an-
alyzed separately, making the models fairly efficient
and simple [12]. For more advanced processors, the
performance enhancing features like branch prediction,
out-of-order execution, and caches typically influence
each other, and models that integrate all aspects of
the processor timing behavior are needed [20, 35, 52].
Obviously, such timing models can get very complex,
with large state spaces and corresponding long analysis
times.

The low-level analysis in today’s WCET analysis
tools are usually fully automatic. Only information
on the hardware characteristics, such as CPU model,
processor frequency, cache- and memory layout, need
to be provided as parameters to the analysis. The tools
usually allow the user to assist and improve the low-
level analysis results, e.g., by specifying what memory
area certain memory accesses go to and known bounds
on register values [21].

5.3 Calculation - Deriving the WCET Es-
timate

The purpose of the calculation phase is to combine
the flow- and timing information derived in the preced-
ing phases to derive a WCET estimate and the corre-
sponding worst-case execution path(s). For example,
in Figure 1.7 the calculation derives a WCET estimate
of 3843 clock cycles. This corresponds to an execution
where each of the nodes A, B, E and F are taken 100
times, while C and D are taken 5 and 95 times respec-
tively.

There are three main categories of calculation meth-
ods proposed in the WCET literature: tree-based, path-
based and IPET (Implicit Path Enumeration Tech-
nique). The most suitable calculation method depends
on the underlying program representation as well as
the characteristics of the derived flow- and timing in-
formation.

In a tree-based calculation, the WCET estimate is
generated by a bottom-up traversal of a tree corre-
sponding to a syntactical parse tree of the program
[7, 8, 37, 41]. The syntax-tree is a representation of

the program whose nodes describe the structure of the
program (e.g., sequences, loops or conditionals) and
whose leaves represent basic blocks. Rules are given
for traversing the tree, translating each node in the
tree into an equation that expresses the node timing
based on the timing of its child nodes.

Figure 1.8(a) shows an example control-flow graph
with timing on the nodes and loop-bound flow infor-
mation. Figure 1.8(d) illustrates how a tree-based cal-
culation method would proceed over the graph accord-
ing to the program syntax-tree and given transforma-
tion rules. Collection of nodes are collapsed into single
nodes, simultaneously deriving a timing for the new
node.

In a path-based calculation, the WCET estimate is
generated by calculating times for different paths in
parts of a program, to form an overall path with the
worst execution time [24, 53, 54]. The defining feature
is that possible execution paths are explicitly repre-
sented.

Figure 1.8(b) illustrates how a path-based calcu-
lation method would proceed over the graph in Fig-
ure 1.8(a). The loop in the graph is first identified and
the longest path within the loop is found. The time for
the longest path is combined with the loop bound flow
information to extract a WCET estimate for the whole
program.

A frequently used calculation method is IPET (Im-
plicit Path Enumeration Technique) [17, 28, 36, 45, 58].
Here, the longest path no longer is explicit, but in-
stead implicitly defined. IPET represent the program
flow and execution times using algebraic and/or logical
constraints. Each basic block and/or edge in the basic
block graph is given a time (tentity), and a count vari-
able (xentity), the latter denoting the number of times
that block or edge is executed. The WCET is found
by maximising the sum

∑
i∈entities xi ∗ ti, subject to

constraints reflecting the structure of the program and
possible flows. The WCET estimate is then derived us-
ing integer linear programming (ILP) or by constraint
solving. The result is a worst-case count for each node
and edge, and not an explicit path like in path-based
calculation. IPET is usually applied on a whole pro-
gram basis, but can also be applied on smaller program
parts in a bottom-up fashion [16, 28].

Figure 1.8(c) shows the constraints and WCET for-
mula generated by a IPET-based calculation method
for the program illustrated in Figure 1.8(a). The start
and exit constraints states that the program must be
started and exited once. The structural constraints re-
flect the fundamentals of program flow, where a basic
block has to be entered the same number of times as
it is exited. The loop bound is specified as a constraint
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Figure 1.8. Different calculation methods

on the number of times node A can be executed. Addi-
tional constraints on the execution counts of nodes can
be used to tighten the WCET bound.

5.4 Relation Between Source and Binary

Static WCET analysis has to be performed on the
compiled object code of a program, since that is the
only level that actually reveals the actual sequence of
machine instructions being executed. However, per-
forming flow analysis on the object-code level is harder
than on source code, since the identity of variables and
the program structure is obscured by the process of
compilation.

Ideally, flow analysis should be performed on the

source code level, where program flow is easier to di-
vine than on the compiled code. Analyzing the source
code also makes it simpler for the programmer to help
the analysis with annotations. Combining source-code
level flow analysis with object-code level timing analy-
sis requires flow information to be mapped from source-
code to object-code.

This mapping process is complicated by the fact that
the compiler performs many transformations on the
code during code generation. For example, transforma-
tions like unrolling loops, inlining function calls, or re-
moving unused code all make the relationship between
source code and compiled code non-obvious [10, 34].

The pragmatic solution today is to use only low lev-
els of optimization when compiling programs to be an-
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alyzed, relying on debug information in compiler pro-
vided symbol tables, and using manual intervention to
resolve tricky cases [30, 58]. Some research tools are
attempting to integrate the WCET analysis with the
compiler [19, 23, 24], which gets around the problem
and should allow for a more precise analysis. However,
it binds the analysis tightly to a particular compiler.

Note that tools operating on object code are to some
extent dependent on the compilers used, since they
need to understand the pecularities of their code gen-
eration in order to build a model of the code structure
in the decoding phase, as discussed in Section 7.

5.5 Analysis Correctness

To guarantee that a static WCET analysis tool de-
rives safe WCET estimates, all parts of a tool must be
proven safe. For the low-level analysis the correctness
of the timing model is crucial. Validation of a timing
model is a complex and burdensome work, especially
for complex CPUs [12, 40]. Usually, a large number
of test cases are used to compare the model with the
actual target hardware, forcing the model to follow the
same path as the execution on the hardware.

The correctness of flow analysis methods are much
easier to prove, since the semantics of programming
languages are well defined and the analysis methods
used are often well studies in the compiler world. Even
for machine code the semantics of instructions are rel-
atively simple and well defined, but unfortunately this
does not hold for the timing behavior. The calculation
part of a WCET tool is usually small and simple, and
thus easy to validate, while functions such as visualiza-
tion of results (see Section 7) are non-critical and do
not influence the correctness of the tool as such.

5.6 Supporting a New Target Architec-
ture

Compared to other types of programming tools like
compilers and functional simulators, a WCET analysis
tool requires much more work to support a new pro-
cessor, something which is reflected in the number of
processors supported by different tools and the price of
the tools.

The main bottleneck is the creation and validation
of the CPU timing model [42]. This has led to the
development of hybrid WCET analysis methods (see
Section 6), where measurements are used instead of a
static hardware model. Other approaches intended to
simplify the porting a WCET tools, is to reuse existing
cycle-accurate simulation models [2, 12, 66] or derive
models from VHDL code [60].

6 Hybrid Analysis Techniques

Hybrid analysis techniques use measurements and
static analyses in complement to each other. The basic
idea is the following: first, a model of the program is
constructed by static analysis of the code. The model
is then annotated with measurement points at suit-
able places, partitioning the program into a number
of smaller parts for measurement. The program, or
smaller parts of the program, is then executed a num-
ber of times and time measurements are performed.
For each measured program part, a worst measured
execution time is noted. The measured times are then
brought back into the static model and used to deduce
a WCET estimate [2, 63, 66].

Similar to static WCET analysis hybrid method re-
quires that all loops are bounded. These loop bounds
can either be derived using measurements (by keeping
track on the largest number of iterations for a loop
observed), through static analysis or by manual anno-
tation.

The main advantage of the hybrid method is that no
timing model of the processor needs to be created. In a
sense, the low-level analysis is replaced with structured
measurements. Furthermore, traditional test coverage
criteria can be used to show that the program has been
throughtly tested.

The main drawback to the method is that there are
no guarantees that the obtained WCET estimates are
safe. Timing for program parts are derived using mea-
surements on a subset of all program executions. Thus,
it is hard to guarantee that each program part has en-
countered its worst case timing. Moreover, it is possible
to add worst case timings for program parts which can
never occur together, potentially ruining the precision.

The user or the tool also has to somehow provide
suitable input data to ensure that all program parts are
executed. The method also requires that there exists
suitable measuring mechanisms to obtain the timing
for program parts, see Section 4.1.

7 Tools for WCET Analysis

During the last couple of years a number of
WCET analysis tools have been developed, both re-
search prototypes and commercial tools. The lat-
ter are all research projects that has evolved into
commercial products. Commercial tools include aiT
(www.absint.com) and Bound-T (www.tidorum.fi),
both static WCET analysis tools, and Rapitime
(www.rapitasystems.com), which is a hybrid analysis
tool. For a more detailed presentation of commercial
and research tools, we refer to [64].
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Figure 1.9. WCET analysis tool layout

The tools differ in the processors supported and the
types codes they can analyse. In general, all tools con-
tain the three analysis phase described in Section 5.
Normally, there is also a decoding phase, where the ex-
ecutable program is read and converted into an internal
representation for the analysis, The decoding phase can
be quite complicated depending on the instruction set
and the compiler used to generate the code (see Sec-
tion 5.4). Most tools also contain some form of visual-
ization of the results, e.g., a program flow graph where
different program parts have been annotated with the
number of times they are taken in the worst case exe-
cution.

Most tools allow the user to improve the results and
guide the analyses by various forms of manual anno-
tations. Certain annotations are mandatory, e.g., the
specific hardware configuration used, the start address
of the code that should be analyzed, possible values of
input data, and bounds for loops which cannot be de-
termined by the flow analysis. Some annotations are
optional, e.g., information on infeasible paths or the
memory area certain memory accesses go to, but may
give a tighter WCET estimate.

Some tools also provide other information that can
be obtained with a small extra effort, based on the anal-
ysis already made doing the WCET. A typical example
is the maximum stack depth a program can use, which
is useful for configuring certain operating systems.

8 Industrial Experience of WCET
Analysis Tools

As mentioned above, there are several commercially
available WCET analysis tools today. The tools has
been used to analyse software timing in avionics-,

space-, and car industry, e.g., aiT has been used dur-
ing the development of the software for the fly-by-wire
system in Airbus A380 [64]. There are published re-
ports about industrial [4, 15, 18, 28, 29, 50, 51, 52, 59]
and educational use [42] of these tools. The following
list summarizes some of the most important lessons re-
ported:

• Overall, it is possible to apply today’s WCET
analysis tools to a variety of industrial systems
and codes. The tools used derived safe WCET
estimates in comparasion to measured times and
received positive feedback regarding analysis time,
precision and usefulness.

• WCET analysis is today not yet a fully automated
’one-click’ analysis. Manual user interaction, typi-
cally annotations to describe the program flow and
bounds on input data, is required to obtain use-
ful results. This, in turn, requires a detailed un-
derstanding the analyzed code and its operating
environment [4, 15, 18, 51].

• A higher degree of automation and support from
the tools, e.g., automatic loop bound calculation,
would in most cases have been desirable. The tools
used todays are only able to handle a subset of the
loops encountered [4, 29, 48, 50, 52].

• The structure of the code of a system has sig-
nificant impact on the analyzability of a sys-
tem. Many small well-defined tasks scheduled by
a strict priority RTOS or a time-triggered sched-
ule is easier to analyze than monolithic interrupt-
driven programs based on an infinite main loop
[15, 51, 52].
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• Manual annotations can sometimes be burden-
some to generate, even when the code is well-
structured and easy to understand, due to the vol-
ume of annotations needed. For example, if a C
macro contruct requires an annotation to be ana-
lyzed, that macro requires an annotation for each
use [52].

• Once a static analysis tool is setup, reanalyzing
a system after changes is typically faster than
measuring it. This could potentially save large
amounts of time in development [29].

• Code should be written to facilitate timing analy-
sis, by adhering to strict coding rules. Typically,
you want all loops to be statically bounded, input-
data dependence minimized, pointer use mini-
mized, and code structure as simple and straight-
forward as possible. Such coding style is com-
monly recommended for safety-critical and real-
time systems programming [22, 31, 55].

• Presenting the results in a graphical user interface
is very valuable for obtaining a overview of the
analyzed code and to interpret and understand the
result of the analysis [4, 15, 18].

• A single WCET bound, covering all possible sce-
narios, is not always what you want. Sometimes
it is more interesting to have different WCET
bounds for different execution modes or system
configurations rather than a single WCET bound.
The latter would usually be an overapproximation.
In some cases, it was possible to manually derive a
parametrical formula [4, 15, 50], showing how the
WCET estimate depends on some specific system
parameters.

• Automatically generated code can be very
amenable to WCET analysis, provided the code
generator is designed with predictability and an-
alyzabilty in mind [52]. Generated code can also
be hard to analyze, if predictability and analyz-
ability were not designed into the code generator
since code generators can generate very convoluted
and complex code which is hard to understand for
both human programmers and automatic program
analyses.

• Not only application-level code is interesting to
analyze, but also other code like operating-system
services and interrupt handlers [6, 15, 50].

• The large diversity in processors used in embedded
systems hinders the deployment of static WCET

analysis. A tool often has to be ported to the par-
ticular processor(s) used in a project, which costs
both time and money [4, 42], see also Section 5.6.

• Measurements and static timing analysis should
not be seen as isolated tasks. Instead, they could
complement each other, together giving a better
understanding of the system timing and increase
the trust in the resulting timing estimates [15, 67].

9 Chapter Summary

This chapter has dealt with the problem of how to
estimate and analyze the execution time of programs.
Knowing the execution-time characteristics of a pro-
gram is fundamental to the successful design and execu-
tion of a real-time system. For hard real-time systems,
reliable WCET estimates are especially important.

A variety of methods are available to perform-
ing timing and WCET analysis, ranging from man-
ual measurements to automated static analyses. The
method(s) suitable for a particular application depends
in high degree on its real-time criticality and the avail-
ability of tools suited to the particular system.

For the static WCET estimation problem a lot of
research investment has been made, and today several
commercial WCET analysis tools are available. Indus-
trial usage of these and other WCET analysis tools
show very promising results in published case studies.
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