
4th ICSE Workshop on Component-Based Software
Engineering:

Component Certification and System Prediction
Ivica Crnkovic1, Heinz Schmidt2, Judith Stafford3, Kurt Wallnau3

1Mälardalen University, Department of Computer Engineering, Sweden, ivica.crnkovic@md h.se
2Monash University, Australia, Heinz.Schmidt@csse.monash.edu.au

3Software Engineering Institute, Carnegie Mellon University, USA, {jas, kcw}@sei.cmu.edu

Abstract

This paper gives a short overview of the 4th ICSE
Workshop on Component-based Software Engineering.
The workshop brought together researchers and
practitioners from three communities: component
technology, software architecture, and software
certification. The goal of the workshop was to find a
common understanding and to discuss the topics related to
the component composition. The workshop was divided
in eight sessions held in sequence, starting with invited
talks and ended with a final discussion. A model problem,
to be used for further research and work in future
workshops, was discussed and later selected. The paper
gives a comprehensive summary of the sessions and plans
for future work.

1 Introduction

Although recognized as an emerging sub-discipline
of Software Engineering in the late 90s, and widely
accepted by researchers and industry communities,
Component-based Software Engineering (CBSE) is still
an immature discipline: not yet defined by researches and
far away from fully explored by practitioners. CBSE
continues to build its profile as is evidenced by its
presence at many conferences of different types and the
numbers of workshops that address CBSE from different
points of view. The four CBSE workshops held at the
International Conference of Software Engineering (ICSE)
have similar objective: seeking the profile and boundaries
of CBSE, and building the CBSE community. The 4th
CBSE workshop focused on reasoning about properties of
assemblies of component. Researchers from three
communities: component technology, software
architecture, and software certification, joined the
workshop, resulting in lively discussion and increased
understanding of how the domains can be mutually
informing. A model problem, to be utilized for further
research of different aspects of CBSE, has been defined.

1.1 Previous CBSE Workshops

Since 1998, there have been four successive
workshops on Component Based Software held in
conjunction with the International Conference on

Software Engineering. The first ICSE workshop on CBSE
was held in Spring, 1998 in Kyoto, Japan [2]. This
workshop was small, but attracted senior researchers from
all points of the globe. The objectives of this gathering
were to develop a synopsis of the current state of CBSE in
research and practice, and to determine whether a
community of CBSE research could be established under
the auspices of the ICSE conferences. The results of the
workshop are summarized in a short paper by Brown and
Wallnau [1].

The second CBSE workshop was held at ICSE'99 in
Los Angeles, USA [3]. This workshop was much larger
and attracted researchers from a number of related but
distinct software research areas, such as software reuse
and software architecture. Over fifty attendees met for
two days in five breakout groups discussing a variety of
technical, process, and business issues. If anything,
though, the workshop was too diverse.

The third CBSE workshop was held in Limerick,
Ireland [4]. Partly as a response to the extreme diversity
of viewpoint evident in Los Angeles, the theme of this
workshop was a narrower reflection on practice, with
workshop participants asked to respond in their position
papers to several specific questions related to research and
practice. One of the key results of this more focused
workshop was a set of pressing research topics. Heading
the list were issues of predictable assembly and
component trust and certification. This led directly to the
4th ICSE workshop on CBSE.

1.2 Different aspects of CBSE

There are many areas covered by component-based
software engineering. First, CBSE is concerned with the
adaptation of methods from many areas software
engineering for application to component and component-
based development. Second, methods specific to
component-based development are close related to other
disciplines (for example, reuse, object-oriented
development, software architecture, etc.). Many problems
arising in CBSE have been discussed within other
communities, and in some cases the communities were
not aware of the results already achieved. For example,
software architecture and software certification, which

have been discussed in different communities, are
extremely important topics in CBSE.

The software architecture defines the components of
a software system as well as their interactions and can be
used to analyze its quality attributes. The software
architecting defines the components that make up the
system; the properties and functionality of the
components and their interactions define the overall
system functionality and behavior.

Component specification is crucial for successful
implementation of CBSE. This is also one of the most
important open topics. While different component
technologies have been successful the definition of
application programming interface (API) specification
(i.e. in specification of functional part of interface) is well
understood, there is a lack of understanding of what and
how to specify and verify extra-functional properties (also
known as non-functional) that leak through the
component’s interface and affect overall system behavior
and quality. Component certification is one way to make
possible the use of components to build systems that
behave in a predictable manner.

The workshop and the conference organizers have
realized that many benefits can be achieved if the three
communities, component technologies, software
architecture, and software certification, meet together,
share experiences and find common directions for future
research. The main challenge of the workshop was to
discover whether these three communities could find the
common language, identify the problems, and determine
directions for possible solutions?

This rest of this paper is organized as follows:
Section two gives an overview of the workshop purpose
and goal. Section three describes the workshop sessions.
The paper concludes with description of future plans.

2 The Aim of the Workshop

The aim of the workshop was to develop a shared
understanding of certifiable component properties and
predictable assembly of components. To achieve this the
Call for Papers included the following statements:

Papers should relate to the workshop objectives:

− Define the problem space, for example software
properties amenable to compositional analysis,
measurement, and prediction.

− Specify one or more open problems, "grand
challenges", or critical gaps that can provide a
cynosure for community development.

− Relate the research activities of targeted workshop
participants to community problems and identify
collaboration potential.

Papers should state a position with respect to the
following issues:

1. What do developers want to predict about component
assemblies?

2. What compositional reasoning techniques are
available to support prediction?

3. Which of these techniques benefit from knowledge of
component internals and what do they need to know?

4. What can be known about component properties in the
absence of knowledge of the context in which it will
be deployed and used?

5. How do we measure those properties and what degree
of precision is required?

6. How is this information made available by the
component?

3 Organization of the Workshop

According to the topics of interest, the workshop
was divided into eight sessions; six working sessions held
in sequence between a welcome session and a closing
session. In total 20 papers were selected and presented at
the workshop. The opening session was very important
since it had a goal to bring together the three
communities, to find the common language, recognize the
common problems and focus on the common goals. This
session included introductions to the three focus areas:
component trust and certification, component technology,
software architecture. Three keynote speakers gave a
short introduction to these areas. The six working sessions
discussed the six issues listed in the Call for Papers. Each
working session started with a short presentation by the
session chair describing the issue and its relationship to
the other five issues. The session continued with short
presentations of the papers and concluded with a
discussion related to the topics and to the papers. The
presentations and discussions varied from session to
session as it was up to each session chair to form the
session. In this way a better dynamics and focus on more
important aspects of the problem were achieved.

3.1 Keynote Speeches

3.1.1 Component Trust and Certification

Jeff Voas opened the session with a presentation
outlining his view of component trust and certification.
His position was: (1) Commercial software could be

tagged with certificates that define minimal guarantees
about how a software “unit” will behave in the future (and
under what assumptions it will behave in those manners
and (2) software vendors will never provide this. That is
why software quality certification is needed. A software
quality certificate is simply a fact sheet that spells out
known software output behaviors and under what
conditions these occur.

3.1.2 Component Technology

Clemens Szyperski motivated why component
paradigm is attractive, and then analyzed the basic
properties of software components (which are not the
same as other type of components, such as specification
components, architectural components, etc.), indicated the
differences and similarities between components and
objects or classes, as well as between components and
modules. Finally he pointed to strong the strong
relationship between component-oriented architecture and
architecture-aligned components.

3.1.3 Software Architecture

David Garlan summarized the nature and purpose of
work in the area of software architecture. He described
issues addressed in an architectural design, presented an
example architectural description, and reviewed several
architecture description languages (ADLs). He described
the elements of architectural description and explained
why it is important to describe not only the structure of a
system but also the behavior. He finished with a
description of the Aura project that is currently underway
at Carnegie Mellon University, which is concerned with
the mobile computing environments.

3.2 Session 2: Relevant System Properties,
Moderator George Heineman

In this session we focused on those relevant system
properties that meet the following criteria:

− The component producer can include specific
information regarding the desired property in the
component's descriptive documentation.

− The component assembler can verify at design time,
hopefully with tool assistance, that the resultant
composition of components ensures the system
property to an appropriate degree.

− Once the final system is complete, it must be possible
to verify the existence of the desired property.

The session included three papers:

• S. Ghosh and A. Mathur, “Certification of
Distributed Component Computing Middleware and
Applications.”

• D. Wile, “Ensuring General-purpose and Domain-
specific Properties using Architectural Styles.”

• J. Stafford and K. Wallnau, “Is Third-Party
Certification Necessary?”

 Sudipto Ghosh and Aditya Mathur discuss the
issues in certifying applications built to the CORBA
Component Model (CCM). There will certainly be a need
to reconcile local certification, the verification that an
individual component satisfies a specific property, with
middleware certification. Because CORBA has many
possible vendor implementations, it is possible that a
specific CORBA application will guarantee a property
with one vendor's implementation, but not another's.

David Wile raises the issue of validating a set of
desired properties in concert with each other, rather than
in isolation. He aims to identify composition principles
for software architectural styles, a common theme from
the software architecture community.

Judith Stafford and Kurt Wallnau propose that it
may not be necessary to vest a single dedicated
organization with the responsibility of certifying
properties of components. In their model, the component
itself is packaged within an "active component dossier"
that defines the component credentials and provides test
harnesses or benchmarking mechanisms to enable
unbiased observers to verify these properties.

Activity of this session centered on discussion of the
relationship between component properties and emergent
properties of assemblies of components. The group
discussed candidate properties to consider when reasoning
about the composition of components into systems. To
support compositional reasoning we must find properties
that satisfy the equation ρ1(A?B) = ? (ρ2(A), ρ2(B)). That
is, we must understand the way components A and B are
composed together (?) as well as how to specify property
independently for A and B. There was general agreement
that the property of composition might be based on other
types of properties of the components. In other words,
that ρ1 and ρ2. might be different types of properties. We
agreed there is a need for continued research on defining
properties.

3.3 Session 3: Properties of Separate
Components, Moderator Betty Cheng

Reasoning about functional and extra-functional
quality attributes of a component-based system generally
involves knowledge of specific properties of the

assembled components. Several questions come to mind
when discussing properties of the individual components
as well as properties resulting from their integration. For
example, what can we know about the properties of a
component when we do not have the context in which the
component will be deployed and used? Some properties,
such as end-to-end latency, require measurement in a test-
harness type environment. Others, such as encryption
strength, are properties of the algorithm used by the
component. While others, such as potential input-to-
output data and control pathways, must be identified from
the source code of the component.

Papers presented in this session were:

• P. Mohagheghi and R. Conradi, “Experiences with
Certification of Reusable Components in the GSN
Project in Ericsson, Norway.”

• P. Popov, L. Strigini, S. Riddle and A. Romanovsky,
“Protective Wrapping of OTS Components.”

• M. Woodman, O. Benediktsson, B. Lefever and F.
Stallinger, “Issues of CBD Product Quality and
Process Quality.”

• D. Garlan and B. Schmerl, “Component-Based
Software Engineering in Pervasive Computing
Environments.”

These four papers discuss a variety of aspects of
component reuse. The papers describe what information
needs to be known about components in order to facilitate
CBSD, how to obtain that information, the impact of that
information, how to encapsulate that information in terms
of wrappers, and how to adapt components to changing
environments. One paper also discusses the impact of the
software development process on the reusability and
composability of components. In this session we will
explore these and other issues surrounding our ability to
identify, analyze, and measure properties of components
in isolation so that they can be composed in predictable,
reusable, and useful ways. Three specific questions that
we will attempt to address are as follows. How can we
and should we certify reusable components (what are the
criterion)? What properties of a component will maximize
its reusability, composability, and adaptability? Which
approach has the most potential benefits in terms of costs:
domain-specific or domain-independent components?

3.4 Session 4: Compositional Reasoning –
Moderator: Murali Sitaraman

Compositional (or modular) reasoning is
fundamental for accomplishing the central workshop goal,
i.e., predictable assembly of component-based systems.
There is a near consensus on the meaning of

compositional reasoning in the group: It is reasoning
about the (functionality and performance) behavior of a
system using the (functionality and performance)
specifications of the components of the system, without a
need to examine or otherwise analyze the
implementations of those components. The ability to do a
priori compositional reasoning is essential for engineered
systems to work in predictable ways.

This session used a panel format. The following four
papers are represented in this session:

• B.W. Weide, “Modular Regression Testing:
Connections to Component-Based Software.”

• T. Genßler and C. Zeidler, “Rule-Driven Component
Composition for Embedded Systems.”

• D. Mason, “Probability Density Functions in
Program Analysis.”

• H. Schmidt, “Trusted Components: Towards
Automated Assembly with Predictable Properties.”

Here follows a summary of the presentations and key
topics of discussion.

The RESOLVE language and approach (presented
by Weide) is intended for developing component-based
systems with predictable behavior. In RESOLVE, all
components have formal specifications that serve as
contracts between developers and clients of components,
in the sense of Meyer’s design-by-contract principles.
Highly parameterized component implementations can be
written in RESOLVE programming language and can be
verified to be correct in a modular fashion. A novel
aspect of RESOLVE is the use of swapping as the basic
data transfer mechanism for passing objects as parameters
and for transferring values from one object to the other
Swapping avoids aliasing, and thus permits “value-based”
semantics in reasoning about objects while at the same
time allowing references to be used in the underlying
implementation for efficient data transfer.

The work of Schmidt’s group focuses on trusted
development and analysis of distributed systems. The
group has studied contract-based approaches with a view
to enrich common interface definition languages (IDLs)
and architecture definitions with behavioral specifications
to enable compositional reasoning about systems in-the-
very-large. As in the case of RESOLVE, Schmidt’s
approach relies on the central idea that requirements to
the (client) environment are explicitly stated to provide an
explicit separation between interacting components.
Component replacement in the environment must satisfy
the requirements and hence, preserve the stability of the
system that is already proved. Though the focus of this
work is on component-based concurrent, real-time

systems, Schmidt notes that most common contract-based
approaches (e.g., Eiffel) rely on global analysis to
establish system validity, making them non-compositional
even in the sequential case.

The objective of PECOS, presented by Genßler, is to
facilitate rule-driven component-based composition of
embedded systems. PECOS is a Prolog-based prototype
system and it emphasizes a “correct by construction”
approach where possible. In embedded systems (the
current focus of PECOS), the requirements are stringent
and correctness is even more important than in other
systems. Given the nature of the domain, PECOS does
not support dynamic creation of component instances.
While this allows for a number of static predictions about
the behavior of the system, it does limit the class of
systems that can be handled. However, this is not a
serious limitation because embedded systems usually
cannot tolerate dynamic component creation. This
observation raised an interesting discussion on the extent
to which predictability can be guaranteed in the presence
of dynamic changes in componentization. At the very
least, it appears that the scope of the changes would have
to be bounded statically to ensure any measure of
predictability.

All the three approaches discussed above involve
investigation of techniques for predictable composition of
non-functional behavior, with particular emphasis on time
and space aspects of performance. Mason’s work
suggests that that it may not be possible to compose
certain non-functional properties in a scalable fashion.
Using probability distribution functions (PDFs) as
examples, Mason’s work explains how component code
can be transformed into PDFs parameterized by
arguments to the component. In this analysis, property
specification of a component is exactly what is extracted
from its code (and it is usually not abstract).
Alternatively, the analysis of a component for certain
properties depends on the internal details of every
component it uses.

Given the background of Mason’s work, one of the
key discussion questions is what properties other than
functionality might be amenable to compositional
reasoning. A specific research question concerns whether
it is possible to have simultaneously abstract yet precise
specifications of performance behavior that make
compositional performance reasoning possible. The
difficulty and importance of this challenge for predictable
engineering of component-based systems is further
discussed in the summary of the session on Prediction and
Measurement.

3.5 Session 5: Internals versus Abstraction,
Moderator: Dave Wile

A primary reason component-based technologies are
adopted is that reasoning about component behaviors can
be raised to levels of abstraction above machine-, system-,
or programming language- representations. A second
useful abstraction lies in the definition hierarchy among
components. This session covered three innovative
approaches to abstract reasoning about component
structure and behavior.

Papers presented in this session were:

• K. Fisler, S. Krishnamurthi and D. Batory,
“Verifying Component-Based Collaboration
Designs.”

• D. Hamlet, “Component Synthesis Theory: The
Problem of Scale.”

• K. Lau ,“Component Certification and System
Prediction: Is there a Role for Formality?”

Fisler, Krishnamurthi and Batory are concerned with
the construction of systems as interacting layers or
“collaborations” whose contribution to the whole is
abstracted into features of the resulting system.
Collaborations provide a composition technology quite
orthogonal to conventional component decomposit ions.
The roles each actor in the system plays in the various
collaborations form the focus of their specification and
verification technology.

Hamlet argues that the mere fact that components
are used in truly large-scale systems changes the nature of
the properties one wishes to prove and/or measure. In
practice, substantially different abstraction mechanisms
are used in large-component reasoning, e.g. average
performance or worst-case analysis. This paper seeks a
theory for making the connection between the
macroscopic and microscopic views of components.

In his somewhat whimsically titled paper, Lau
argues that in some sense component reasoning has been
at too abstract a level, in that much information necessary
for the use of a component is not revealed by the
designers. Moreover, the abstraction process itself is often
an after-the-fact activity. As distinguished from hardware
components, software components are not designed to
well-elaborated principles of design and semantic
standards that manifest properties critical to a
component's use in a real system.

These papers have many common threads despite
little common terminology. Each takes a swipe at
conventional abstraction techniques and illustrates how

many problems with measuring, modifying, adapting, and
using today's technology arise from our overly simplistic
view of the nature of abstraction. Each proposes a unique
approach to solving these problems and should stimulate
lively discussion.

3.6 Session 6: Measurement and Prediction –
Moderator: Dimitra Giannakopoulou

A number of issues need to be resolved before a
component-based approach can make a significant impact
to software development. Methods must be developed that
allow measurement and prediction of the functional and
non-functional characteristics of a system based on
properties of system components. Component suppliers
must be able to inform consumers about properties of
components in a reliable fashion. What these properties
are, whether they are context -independent, how they
should be specified, and how precise measurements
should be, are all open questions.

Three position paper presentations initiated
discussions in this session:

• O. Preiss and A. Wegmann: “Towards a Composition
Model Problem Based on IEC61850.”

• M. Sitaraman: “Compositional Performance
Reasoning.”

• B. Councill: “Managing Software Component
Processes.”

The substation automation domain was proposed by
Otto Preiss as a model problem for research on
component assemblies. The standard IEC61850 defines
substation automation functionality based on
collaborations of atomic functional units. This application
domain provides concepts of system operations, including
Quality Attribute (QA) requirements such as
performance, reliability, and security. These requirements
must be guaranteed before such systems are assembled. If
functional units are realized as software components,
assembling automation applications with specific QAs
may be viewed as creating predictable component
compositions.

Otto concluded with the following observation.
Individual component properties are less of an issue when
constructing predictable assemblies; rather, it is the
infrastructure and the interactions between components
that play the main role.

Murali Sitaraman explained that performance
predictability refers to the ability to describe aspects of a
system’s performance before the fact, as opposed to
observation of performance on the final product.

Techniques for performance prediction can only scale if
they are compositional, i.e., if they reason about
performance of the system based on performance
characteristics of its components. However, performance
predictability is inherently hard, which is to be expected if
one considers that it is already hard to be exact about
performance of basic components. This claim was
substantiated by three examples.

Example 1: Assume a procedure P, which simply
makes a call to another procedure Q, whose worst-case
complexity is associated with parameter values that P
never passes to Q. Then predicting the performance of P
as that of Q is arbitrarily bad. Performance composition
therefore requires point-wise performance specifications
for reused components.

Example 2: How much time does it take to deep-
copy a stack? For the result to be useful, one needs to
factor in the values of objects that the stack contains,
rather than simply its size. Performance specification (and
reasoning) is therefore a meaningless exercise without
behavioral specifications (and reasoning).

Heinz Schmidt observed here that results in the
parallel computing field partly address the second
problem. Oblivious algorithms (whose performance
characteristics do not depend on values of objects
handled) are distinguished from non-oblivious ones. A
surprisingly large class of useful algorithms turns out fall
within the former category.

Example 3: Suppose the abstract model of some
container is “set”. Can we express the time taken to
search this structure using the abstract model? Abstract
models need to be augmented in order to specify
performance precisely.

The speaker concluded that such issues are just the
tip of the iceberg. In general, if we use parameterized
components then performance specifications need to be
parametric as well.

The last presentation was given by Bill Councill and
focused on the changes that need to be introduced to
traditional software processes in order to accommodate
new approaches such as Component-Based Software
Engineering (CBSE).

Standards are indispensable to facilitate the
establishment of contracts between component producers
and consumers, and should be associated with all phases
of the software lifecycle. Third-party certification was
also discussed as a method to establish conformance to
standards. This is particularly important for small
subcontractors that account for 99% of US businesses. It

was stressed that organizational certification such as
ISO9000 and CMM is organization/process related, not
product/project specific and may say little about the
meeting of specifications at the level of individual
products.

Such a systematic approach to component-based
software engineering can only be achieved by appropriate
education of the parties involved, and by a clear
assignment of their responsibilities. A new style of
management is required: project and product managers
should know —and should be able to perform— every
phase of the CB lifecycle.

Open Discussion

Following these presentations, the session chair
identified some drivers for metrics to be established for
component-based software engineering. These include the
possibility of evaluating the degree of trust that one may
place on a component, for example by metrics associated
with coverage achieved during testing with respect to a
specific coverage criterion. Metrics would also make it
possible to select among components with the same
specifications.

3.7 Session 7: Modeling and Specification,
Moderator: Clemens Szyperski

Software components seek to enable composition of
software out of independently provided parts. The
responsibility for the resulting compositions’ meeting of
requirements rests on multiple shoulders: each component
provider asserts meeting some level of specification and
the composer asserts that components were used
according to their documented requirements and
constraints. Proper modeling is at the heart of
understanding requirements; proper specification is at the
heart of sound assertions.

Papers presented in this session were:

• P. Kallio and E. Niemelä, “Documented Quality of
COTS and OCM Components.”

• M. Vieira, M. Dias, and D. Richardson, “Describing
Dependencies in Component Access Points.”

• D. Giannakopoulou and J. Penix, “Component
Verification and Certification in NASA Missions.”

This session focused on several modeling and
specification aspects germane to software components.
The session’s first half covered three presentations
ranging over a broad spectrum of topics; followed by a
second half of discussion.

Päivi Kallio and Eila Niemelä provide a general
template for documenting software components that
considers both the buyer’s and the provider’s view. The
template remains at an informal level, but encourages a
certain degree of completeness of information by
providing a checklist of points to consider. Information
items covered include a diverse range from a component’s
history to performance characteristics.

In the discussion a number of open questions were
raised by the audience and the presenter providing achors
for further research exploration for this work in progress:
relation to existing standards for component models and
their documentation, domain specific requirements for
documentation, and the need for separating
documentation from the user and the reuser perspectives,
given that reusers are typically developers.

Marlon Vieira, Marcio Dias, and Debra Richardson
discuss issues related to component dependencies and
introduce an approach to describe what can happen (in
term of actions/dependencies) after a particular
component’s access points (services) are called. Their
approach rests on formalizing certain dependency forms
in specifications of a component’s access points. Using
this information about the diverse components’ access
points, they propose to construct dependence graphs,
showing components in the nodes and actions in the
edges.

These are then decorated by assertions. The authors
identified as future steps for their ongoing research:
development of taxonomy of dependencies, further
extension of their proposed dependency definition
language and mining and correlating existing component
technologies with regard to elements of dependency
elicitation.

The subsequent discussion recognized the similarity
of some dependency definitions with assertions in
Meyer’s design-by-contracts approach and the need to
limit assertional elements of the dependency definitions
as the general problem of specification reengineering and
transformations of incomplete specifications are
notoriously hard.

Dimitra Giannakopoulou and John Penix discuss
applications for NASA missions that combine ambitious
scientific goals with requirements for high reliability. As
a result, verification technologies are therefore taken to
and pushed beyond their current limits. Also, to meet tight
deadlines, reuse and adaptation of software architectures
and components must be incorporated in software
development within and across mis sions. While still at an
early stage of their research, they already observe the
importance of modularity, an inherent property of truly

component-oriented architecture, for purposes of
verification.

At the end of the presentation the presenters raised a
number of open questions in particular relating to the
level of detail, specification models, and decomposition
suitable for hybrid military systems combining database
elements with autonomous agents, command and control,
and so forth. How for example should we certify a rover
control system including adaptive technology such as
neural networks.

3.8 Workshop Summary Session, Session
moderator Heinz Schmidt

The final session of the workshop began with
presentation of session summaries of each of the working
sessions. This was followed by energetic discussion of
where to go next. There was strong support for the
creation of a model problem to be used as a research
focus by the different communities represented at the
workshop (software architectures, component
technologies, formal methods, certification). The problem
should allow each to demonstrate the strengths and
weaknesses of their approaches on the model problem,
and identify open research issues.

 While time did not allow for the actual definition of the
model problem, six criteria for the problem were
identified.

• Amenable to custom as well as existing components

• Include extra-functional attributes

• Rich enough to demonstrate architectural prediction,
not just component but emergent properties

• Allow precision and approximation

• Dynamic extensibility and evolvability

• Hypothesis should be defined in a way that can be
validated.

Several model problems were proposed for consideration.
George Heineman set up and continues to manage a
discussion forum on his website at WPI. It was agreed
that a 5th CBSE should be held at ICSE in 2002 as well as
a mid-year workshop for the purpose of defining the
model problem.

4 Future Plans

Several workshop participants continued to
participate in the forum to the date of this writing and the
midyear workshop will be held on October 19, 2001 at the
Software Engineering Institute at Carnegie Mellon

University in Pittsburgh, Pennsylvania. The problem
presented by Otto Preiss “Towards a Composition Model
Problem Based on IEC61850” is being strongly
considered for use as the model problem because it is a
well-defined problem, with requirements involving
several quality attributes that need to be predicted on
assemblies. Selection of the model problem will be
finalized during the first session of the October workshop.

The workshop has been organized in order to
support our continued collaboration and development of
the model problem chosen after CBSE4. The workshop
will consist of group discussion of issues related to
predictable assembly and breakout groups to work on
specific research areas that can be explored in order to
contribute to a solution to the overarching problem.

The proceedings of the workshop are available on
the web[5][6] and will be made available in hard copy as
technical reports from the Software Engineering Institute
and Monash University. The proceedings and results of
the workshop are also being used as a basis for a special
issue of Journal of Systems and Software that is planned
for early 2002.

5 Acknowledgments

Many people have contributed to this report. Section
3.1 was written based on material and presentation of Jeff
Voas, David Garlan, and Clemens Szyperski. George
Heineman and Betty Cheng submitted the summaries
used for section 3.2. Section 3.4 is an extract of Murali
Sitaraman’s submission. Dave Wile contributed to
section 3.5. The section 3.6 is an extract of a submission
of Dimitra Giannakopoulou and Clemens Szyperski.
Finally, the summary report from Clemens Szyperski
was used in section 3.7.

6 References

[1] Alan Brown, Kurt Wallnau, “The Current State of
Component-Based”, Software Engineering (CBSE)
IEEE Software, September 1998, pg. 37-47.

[2] http://www.sei.cmu.edu/cbs/icse98/index.html

[3] http://www.sei.cmu.edu/cbs/icse99/index.html

[4] http://www.sei.cmu.edu/cbs/cbse2000/index.html

[5] http://www.sei.cmu.edu/pacc/CBSE4-Proceedings.html

[6] http://www.csse.monash.edu.au/dsse/CBSE4

