
Technical Report

Department of Computer Science and Engineering

Mälardalen University, Sweden

Theories for Estimating Execution Times

in Soft Real-Time Systems Applied in the

Telecommunication Domain

Jouni Axelsson

Department of Computer Science and Engineering

Mälardalen University

Johan Erikson

Department of Computer Science and Engineering

Mälardalen University

October 25, 2001

Abstract

Real-time systems are normally divided into two classes: Hard and Soft.

The di�erence lies in how critical it is to meet the systems timing constraints.

In a hard real-time system, every deadline must be met. If not, the conse-

quences to the environment is above an accepted level. On account of this,

the Worst Case Execution Time is in focus for a number of proposed ap-

proaches.

A soft real-time system, on the other hand, is characterized by the fact that a

missed deadline do not cause system failure and do not cause damage to the

environment. This is most likaly the reason why timing constraints in soft

real-time systems are handled by di�erent ad hoc solutions. (E.g. Do not

write more than k lines of code in one block.) But even if a missed deadline

is not directly dangerous, the consequences may indirectly be serious.

In this report, we propose a more systematic approach to handle execution

times in soft real-time systems. A combination of graphical representation

of the system together with information on loops, gives the developers a pic-

ture of the execution time which enable identi�cation of critical areas and

parts that use much time relative other parts of the system. The graphical

representation is annotated with estimated execution times. Loop detection

is based on DJ graphs and processes the control �ow graph of the program

which, in our case, is extracted from the back end of the compiler.

The theories is applied in the telecommunication domain where the targeted

system (the AXE telecommunication system from Ericsson) has about 10

milion lines of code spread over about 1000 executable units, continously

developed during 25 years.

i

Acknowledgments

Parts of this research project was carried out as a Masters Thesis project

and was written during the period spring to autumn 2000, partly at Eric-

sson Research and Development AB and partly at Mälardalen University,

Västerås, Sweden. It is part of a research project on execution time analysis

and system understanding in Soft Real-Time Systems.

The authors would like to thank Janet Wennersten and Anton Massoud

at Ericsson Research and Development AB, and Peter Funk at Mälardalen

University for supervising this work.

Contents

List of Figures vi

List of Tables viii

I Context 1

1 Introduction 2

1.1 Background . 2

1.2 Aim . 2

1.3 Related work . 3

1.4 Limitations . 3

1.5 Summary of contributions . 4

1.6 Structure of this report . 4

2 Problem de�nition 6

II General background theory for Worst Case Execution

Time estimation 8

3 Foundations for Worst Case Execution Time estimation 9

3.1 The importance of Execution Time Analysis 9

3.2 Decisions on Execution Time Analysis 11

4 Loops and SCC:s 12

4.1 De�nitions and Notations . 12

4.2 Strongly Connected Components - SCC's 14

4.3 Natural Loops . 14

4.4 Other types of Loops . 15

iii

4.5 Reducibility . 16

5 Basic Block 18

5.1 Example . 20

III Background analysis of PLEX and the compiler 24

6 Signals in PLEX 25

6.1 Signals and Block Interaction 25

7 Code item 30

7.1 Code-Items and Jobs . 30

8 Loops and SCC's in PLEX 32

8.1 Iterations . 32

8.2 Jump statements . 32

8.3 Signals and Block Interaction 34

9 The Compiler 35

9.1 The internal structure of the PLEX-C compiler 35

9.1.1 Front End . 35

9.1.2 Back End . 38

9.1.3 Maxi ObjecT . 42

9.2 Code Expansion . 42

9.2.1 The IF statement . 43

9.2.2 The FOR statement 44

9.2.3 The ON statement . 48

9.2.4 DO Statements . 50

9.3 Optimization . 50

9.3.1 Labels . 51

9.3.2 GOTO-statements . 52

9.3.3 IF-statements . 53

9.4 Control Flow Analysis in the PLEX compiler 55

10 Basic Blocks in PLEX 59

iv

IV WCET Estimation and implementation 61

11 Applying the theories - The ESEX prototype 62

11.1 Execution time estimation . 62

11.1.1 Questions and Answers 62

11.1.2 Assumptions and Generalizations 64

11.2 Detection of loops . 64

11.3 Signals . 66

11.4 Identi�cation of code-items 67

11.5 ESEX - The prototype tool 67

11.5.1 Implementations made in the back-end 67

11.6 Implementations and pseudo code for loop detection 68

11.6.1 Classi�cation of edges 68

11.6.2 Computing the dominance relation 69

11.6.3 Building the DJ graph 69

11.6.4 The loop detection algorithm 70

11.7 A general example . 71

12 Evaluation of approach 81

12.1 Example . 81

12.1.1 clear_assign.program 81

V Conclusions 85

13 Future work 86

14 Summary 88

Index 90

VI APPENDIX 93

A 94

A.1 �b.program . 94

A.2 test1.program . 97

v

B 98

B.1 Output for the clear_assign.program 98

B.1.1 Prolog �le output . 98

B.1.2 Information �le output 99

List of Figures

3.1 Di�erent times in WCET-calculations. 10

4.1 An example of a multi-entry loop. The picture is from [Muc97] 15

5.1 The graph for the Fibonacci code. 22

5.2 The �ow-graph for �g 5.1 . 23

6.1 The execution of a job. Some di�erent kinds of communi-

cations within and between blocks. Signals 1,3,4,5,6 could be

either direct or bu�ered, signal 2 is bu�ered (execution con-

tinues after SEND) and signals 7 and 8 are combined. The

jumps to and from the subroutine are not signals but jumps. . 26

6.2 Unique and multiple signal. 27

6.3 Bu�ered and direct signal. 27

6.4 Combined and single signal. 28

9.1 The structure of the compiler. Input: PLEX code (written by

the programmer or compiled HL-PLEX code) 36

9.2 The structure of the back end. Input: PIL 39

9.3 A DO Statement block with multiple entries (from other Basic

Blocks (BB)) and multiple exits (to other BB). The notation

A! C indicates that the edge is a path from A to C. 51

9.4 The basic blocks are traversed and marked if visited. F - vis-

ited on forward traversal, B - visited on backward traversal.

Dashed basic blocks constitute dead basic blocks. 56

9.5 The control �ow-graph before the handling of destructive state-

ments. 57

9.6 The control graph in 9.5 after the destructive statements have

been handled. 58

vii

11.1 Loop graph - before elimination 65

11.2 Loop graph - after elimination 65

11.3 Organization of the successor relationship. 73

11.4 The assumed input graph. 74

11.5 The depth-�rst numbered input graph. 75

11.6 The corresponding depth-�rst spanning tree. 76

11.7 The depth-�rst spanning tree with the remaining edges added. 77

11.8 The dominance tree built from the input graph. 78

11.9 The DJ graph (built from the input graph). 78

11.10The DJ graph after the �rst loop is collapsed. 79

11.11The DJ graph after the nodes at level 2 is processed. 79

11.12The DJ graph after termination of the algorithm. 80

12.1 The control �ow-graph before loop elimination for program:

clear_assign.program. 83

12.2 The control �ow-graph after loop elimination for program: clear_assign.program. 84

A.1 The control �ow-graph before loop elimination for program:

�b.program. 95

A.2 The control �ow-graph after loop elimination for program: �b.program. 96

A.3 The control �ow-graph for program: test1.program. 97

List of Tables

6.1 The di�erent types of signals in PLEX. Marked boxes in the

table indicates a legal combination, while unmarked boxes in-

dicates illegal ones . 25

7.1 A PLEX source code �le consists of code-items.The row 'CUSE-

LESS = 0;' will never be executed because it is not inside an

ENTER-EXIT block. 31

8.1 PLEX-C iteration statements - a comparison. 33

9.1 Examples of the PIL format and the matching source code

(PLEX-C). 37

Part I

Context

Chapter 1

Introduction

1.1 Background

Programming Language for Exchanges, PLEX, is the programming language

used by Ericsson in their AXE system, a system that has been classi�ed as

a soft real-time system [AGG99]. A soft real-time system is characterized

by the fact that a missed deadline do not cause system failure and do not

cause damage to the environment. This is most likaly the reason why timing

constraints in soft real-time systems are handled by di�erent ad hoc solutions.

(E.g. Do not write more than k lines of code in one block.) But even if a

missed deadline is not directly dangerous, the consequences may indirectly

be serious. (Imagine a failing telephone system in an emergency situation.)

1.2 Aim

The main task in this report is to explore possible methods for estimating

execution times in soft real-time systems (e.g. the AXE system) and propose

a more systematic approach than the ad hoc methods mostly used today.

A secondary task is to extract the data needed as input input to GRETA1,

and annotate the graphical representation with estimated execution times.

1The graphical prototype developed by Arnström et. al. [AGG99]

CHAPTER 1. INTRODUCTION 3

1.3 Related work

� [AGG99] made an analysis of PLEX and the AXE system, a visual tool

to represent the structure of PLEX and also brie�y discussed execution

time calculations for PLEX. This thesis discusses some theories and

possible ways to go, while we show a applicable approach. Also [KO00]

has looked at PLEX. Here the approach was towards register allocation.

� The E-CARES research project, [MH01], deals with code abstraction

and reverse engineering and explores the same target system as we (i.e.

the AXE switching center). The E-CARES project started at the same

time (1999) as the [AGG99] master thesis project and there were some

contacts between the projects at this time. The similarity between our

projects is the possibility to explore the system graphically. The main

di�erence is that the E-CARES project do not discuss execution times,

their focus is on system understanding.

� A lot of work has been done in the area of loops in graphical represen-

tations. In this work, the DJ graph approach developed in [SGL96] is

one of the fundamental parts in the prototype tool. ([SGL96] is a gen-

eralization of Tarjan's algorithm for handling �ow graph reducibility

[Tar74].)

1.4 Limitations

We restrict our results to systems/programs where a control �ow graph is

available or can be constructed. This is because the loop detection phase is

based on the DJ graph (see section 4.1 for an explenation and section 11.7

for an example) of the given program and the input for constructing the DJ

graph is the control �ow graph.

Much of the work has been focused on loop detection since these constructs

have a major impact on the total runningt time of the program. We have

not, however, tried to �nd the number of iterations for a given loop. (We

explain why in section 11.1.1.)

Regarding execution times, some generalizations and overestimations have

been made. For example, we assume that the execution time for a single

statement is one time unit.

CHAPTER 1. INTRODUCTION 4

1.5 Summary of contributions

Execution times and time restrictions in soft real-time systems are today

mostly handled by di�erent ad hoc solutions. In this report we show a

more systematic approach to estimate execution times. This, together with

the graphical environment developed in the [AGG99] master thesis, give

developers a picture of the execution characteristics of the analyzed program

which in turn enables identi�cation of critical areas and parts that use much

time relative other parts of the program and system.

1.6 Structure of this report

This report is organized in three main parts:

General background theory for Worst Case Execution Time estimation

Chapter 3 - 5 covers theory in general. In chapter 3 we brie�y discuss

some aspects of worst case execution time estimation. Chapters 4 and 5

are introductory to general loop and basic block theory, which are very

common in compiler theory.

Background analysis of PLEX and the compiler The chapters in the

second part relates the theory described in part I to PLEX and also

give a description of the PLEX compiler and those steps performed by

the compiler that are relevant for this thesis. Some basic properties

of PLEX are discussed in chapters 6 to 8 and 10. In chapter 9, the

structure of the (PLEX) compiler and some of the tasks of the back-end

are presented.

WCET Estimation and implementation is a description of our contri-

bution to the analysis of PLEX programs. Chapter 11 is a presentation

of our work while chapter 12 is an evaluation of our approach.

The report ends with a summary and a description of (possible) future work.

To get a short introduction and understanding of our work, we recom-

mend the reader to read chapters 11 and 14.

The uninitiated reader should read part II to part IV to get a good

picture of our work. Part II is an introduction to the theories in real-time,

worst case execution time calculation (WCET) and basic compiler theory.

CHAPTER 1. INTRODUCTION 5

For the initiated reader who has knowledge of compiler theory, chapters 6

to 10 can be of interest. Here the basic theories in PLEX are discussed. Also

chapter 3 can be interesting for those not initiated in real-time and worst

case execution time calculations.

Chapter 2

Problem de�nition

Calculating the Worst Case Execution Time, WCET, of a (real-time) pro-

gram is a �eld of intensive research. The research, however, is mainly focused

on hard real-time systems where calculating a correct WCET is critical to

the systems correctness. The methods developed in this �eld could be ap-

plied on soft systems (e.g. AXE) as well, but with soft real-time systems

the demands are di�erent. In soft real-time programs, it is often su�cient

to get a picture (or an estimation) of the run time of the program and in-

dividual jobs1 than calculating a safe WCET. Estimating the run time of

a program enables a better control of di�erent series of jobs that each are

servicing di�erent requests at the same time (which is the case in a system

like AXE). Also, identi�cation of the possible loops is an important issue

for the analyses since one job should not take a disproportionate amount of

time. Even if it may be theoretically impossible to give an exact execution

time for a loop, the run time for one iteration is useful information. What

methods should be used if we want to provide developers with a picture of

the program behavior?

The AXE10 software system comprises approximately 10 milion lines of

code spread over circa 1000 executable units.[MH01]. To get an overall pic-

ture of the entire system, graphical representation is a possible approach.

[AGG99] has developed a tool for representing the blocks in the AXE sys-

tem graphically. But to be able to do this, some basic information is needed;

The signals sent and received in a block. This information makes it possible

to relate the blocks to each other. This is done by extracting information

1A job is de�ned in section 7.1

CHAPTER 2. PROBLEM DEFINITION 7

from the control-�ow graph which is generated by the compiler (see 11.3).

Part II

General background theory for

Worst Case Execution Time

estimation

Chapter 3

Foundations for Worst Case

Execution Time estimation

This section will treat some background on execution time analysis in general

and discuss some of the related questions.

3.1 The importance of Execution Time Analysis

For a Real-Time system, functional correctness is equally important as tem-

poral correctness. What this means is that not only is the correctness of the

system dependent on correct computations. Equally important is that the

answers are delivered within a predictable time. In other words, predictabil-

ity is one of the key words in a real-time system1.

To achieve a predictable system, execution time analysis is one of the

fundamental parts. The simple reason for this is that if we can not tell for

how long a piece of code will execute, we can not guarantee that the answer

will be delivered before the deadline2.

There are di�erent kinds of real-time systems, namely hard and soft.

What it means by a hard real-time system is that the deadlines can not be

violated. This may lead to catastrophic consequences while the deadlines in a

soft real-time system can be violated on a few occasions without endangering

the system or the surroundings.

1which is the case with AXE/PLEX [AGG99]
2The deadline of an answer is the speci�ed time that the answer must be delivered

within. If an answer is delivered after its deadline, we have no use for that answer. This

is thoroughly described in several books, one example is [But97]

CHAPTER 3. FOUNDATIONS FORWORST CASE EXECUTION TIME ESTIMATION10

Some of the more important factors that have an impact on the execution

time, are [Gus00]:

� The input data.

� The behavior of the program (as de�ned by the program source code).

� The compiler (the mapping from the source code to the object code).

� The processor, memory and other hardware.

The ultimate goal in execution time analysis, is to �nd out exactly how

long it takes to execute a piece of code in all di�erent cases. This however is

very di�cult, if not impossible, due to a number of reasons (e.g. hardware

that is very hard to predict how they behave (pipes, caches and out-of-order

exertion etc) and the fact that a program can consist of n lines of code and

the execution paths are xn, where n can be several million). One approach

is to run the program and see how long it takes for di�erent input. The

problem here is to �nd the appropriate input (relevant to the program) and

to know if all possible paths have been found.

The approach to calculate the worst execution time (WCET) is a safe

but not perfect way to �nd the WCET. The calculations are conservative3.

Figure 3.1 shows the di�erence between the actual times and the calculated.

The di�erent times are: WCETC - Calculated WCET, WCETA - Actual

WCET, BCETC - Calculated Best Case Execution Time, BCETA - Actual

BCET, AVET - Average Execution Time

execution time0

BCETC

WCET A

WCET C

BCETA

AVET

Figure 3.1: Di�erent times in WCET-calculations.

3We do not guarantee too much. Sometimes the WCET-calculation shows that it is

going to miss its deadline when in fact it is not.

CHAPTER 3. FOUNDATIONS FORWORST CASE EXECUTION TIME ESTIMATION11

3.2 Decisions on Execution Time Analysis

Execution time analysis is usually divided into two parts: high-level analysis

and low-level analysis4. In a general way, we can say that low-level analysis

means counting the number of clock cycles for each assembly instruction and

taking into account how the hardware acts (i.e. pipes, caches), while high-

level analysis deals with things like �nding all the loops in a given program

and to estimate the maximum number of iterations in the loops. So, the

�rst decision that has to be made is if the analysis should work on a high-

or low-level.

Another decision that has to be made concerns the code level. Should

the analysis work on source code level, on intermediate level or on assembly

level? Each level has its own advantages (and disadvantages). Working

on assembly (or object) code level has the advantage that the analysis is

working with the �nal5 code. The disadvantage is that it could be di�cult

to understand what the programmers intention is and to give feedback to the

programmer. Working on an intermediate level has the advantage that the

analysis could be independent of the source code (at least up to some point)

and that some optimizations are performed on the code. The disadvantage is

that this approach demands a close co-operation with the compiler and that

many compilers, in an optimization attempt, can change the structure and

execution characteristics of the program by something called code motion6.

Finally, working on the source code level has the advantage that much of

the program information is explicit on this level and it is also easier to give

feedback to the programmer. The obvious disadvantage is that parts of

the program may never be executed or that parts of the program may be

syntactically wrong7.

A third point concern loop detection. One way is to use syntactic struc-

tures (e.g. for, while, etc.), another to use �ow-graphs. Using �ow-graphs

is a more general method since it can detect loops in programs that use

GOTO statements.

4This division is also described in [AGG99]
5Final in the meaning that optimizations are performed and the current code is the

one that will really execute.
6Code motion is a technique to move code from inside a loop to outside the loop in an

attempt to minimize the execution time of the loop.
7The above advantages and disadvantages is mainly from [Gus00]

Chapter 4

Loops and SCC:s

In static program analysis, and calculation of the worst case execution time,

the detection of loops is an important topic. The reason for this is that the

total running time of the program, as well as other characteristics, is mainly

a�ected by loops (and the number of iterations in the loop). But what is a

loop?

In data processing, a basic concept in computer programs. A part of a

program is repeated, iterated, a number of time until a logical expression1

changes its value. [NE93]

This is, however, only a brief/general description of what a loop is and in

this chapter, we will study the loop concept in more detail (since detection

of loops is one of our primary goals). But before we do that, we need to give

some de�nitions.

4.1 De�nitions and Notations

� Dominators A node x of a �ow-graph is said to dominate a node y, x

dom y, if every path from the initial node of the �ow-graph to y goes

through x. (By this de�nition, every node dominates itself and the

entry of a loop dominates all nodes in the loop2). [ASU86]

� Strict dominator Node x strictly dominates y, denoted by x stdom y

i�3 x dom y and x 6= y. [SGL96]

1True or False
2i.e. if the loop is a natural loop, see 4.3
3if and only if

CHAPTER 4. LOOPS AND SCC:S 13

� Immediate dominators A node y is said to immediately dominate

another node x, denoted by y = idom(x), if y stdom x and if there is

no other node z such that y stdom z stdom x. [ASU86, SGL96]

� Back edge A back edge is an edge whose head dominate its tail. (If

a ! b is an edge, b is the head and a is the tail.) [ASU86]

The dominance relation is re�exive and transitive and can be represented by

a tree, called the dominator tree.

� DJ Graph The DJ graph of a �ow-graph combines the �ow-graph and

its dominator tree in a single representation[SGL96].

The vertices in the DJ graph are the same as in the �ow-graph and

the edges in the DJ graph are of two types: D and J edges. D edges

are dominator tree edges (i.e. they point out the dominance relation

among the nodes/vertices) and J edges are edges in the �ow-graph

(e.g. x ! y) which ful�lls the condition x 6= idom(y). (J edge is an

abbreviation for join edge.) Constructing a DJ graph of a �ow-graph

is very straightforward:

First compute the dominance relation (and build the dominance tree)

of the �ow-graph. Algorithms for computing the dominance relation

in a given graph is given in for instance [ASU86](algorithm 10.16, pps

670-671) and [App98]. Then, for each J (join) edge x ! y in the

�ow-graph, insert the edge x! y in the dominator tree.

(An alternative approach for constructing the DJ graph of a �ow-graph

is by inserting the D edges into the �ow-graph.) When the DJ graph

is constructed, the J edges are determined as one of two kinds: back

J (BJ) edges and cross J (CJ) edges. A BJ edge (x ! y) is a J edge

which ful�lls the condition y dom x. If not, the J edge is an CJ edge.

� A subgraph of a graph G is a graph H whose vertices4 and edges are

all in G. [GY99]

� A subgraph H is said to span a graph G if VH = VG
5. [GY99]

� A spanning tree of a graph is a spanning subgraph that is a tree. [GY99]

4vertices = nodes
5The notation VG is used for the vertex-set of the graph G

CHAPTER 4. LOOPS AND SCC:S 14

� Depth-First Ordering The depth-�rst ordering is created by starting

at the initial node and searching the entire graph, trying to visit nodes

as far away from the initial node as quickly as possible (depth �rst).

[ASU86]

� The depth-�rst spanning tree The depth-�rst spanning tree S of a graph

G is the spanning tree of G with root(S) = initNode(G). [GY99]

The depth-�rst spanning tree (of a �ow-graph) can be derived by performing

a depth-�rst search on the �ow-graph. This search classi�es each edge x! y

in the �ow-graph as one of four types [SGL96]:

� sp-back edge, if y = x or y is an ancestor of x in the spanning tree.

� sp-tree edge, if x is the parent of y in the spanning tree.

� sp-forward edge, if x is an ancestor but not the parent of y in the

spanning tree.

� sp-cross edge, if x and y have no ancestor-descendant relationship.

Besides the given de�nitions, the term reducibility is used frequently in the

literature (when discussing �ow-graphs and loops). We devote section 4.5 to

this concept.

4.2 Strongly Connected Components - SCC's

The most general looping structure of a �ow-graph is a strongly connected

component, which is a subgraph Gs = (Ns; Es)
6 such that every node in Ns

is reachable from every other node by a path that includes only edges in Es

[Muc97].

4.3 Natural Loops

A natural loop has two essential properties [ASU86]:

� The loop must have a single entry point, called the "header". This

entry point dominates all nodes in the loop, or it would not be the sole

entry to the loop.

6N=the nodes in G, E=the edges in G

CHAPTER 4. LOOPS AND SCC:S 15

B1

B2 B3

Figure 4.1: An example of a multi-entry loop. The picture is from [Muc97]

� There must be at least one way to iterate the loop, i.e., at least one

path back to the header.

Another way of saying this is that given a back edge m ! n, the natural

loop of m ! n is the subgraph consisting of the set of nodes containing n

and all the nodes from which m can be reached in the �ow-graph without

passing through n and the edge set connecting all the nodes in its node set.

Node n is the loop header.

4.4 Other types of Loops

Although other types of loops, non-natural loops7, seldom occur in practice,

they do exist which means that they must not be forgotten in the discussion.

One example of such a construct is the multi-entry loop in �g 4.1.

In section 11.6 we show that we can handle these kinds of loops. In

optimization theory these constructs has the property that they make their

�ow-graphs irreducible (see 4.5).

7Strongly connected components that are not natural loops. (Our de�nition)

CHAPTER 4. LOOPS AND SCC:S 16

4.5 Reducibility

Reducibility is a very important property of a �ow-graph. The term reducible

results from several kinds of transformations that can be applied to �ow-

graphs that collapse subgraphs into single nodes and reduce the �ow-graph

successively to simpler graphs. A �ow-graph is considered to be reducible if

applying a sequence of such transformations ultimately reduces it to a single

node.

Formally, a �ow-graph G = (N,E) is reducible i� E can be partitioned

into disjoint sets EF , the forward edge set, and EB, the back edge set, such

that (N,EF) forms a DAG (Directed Acyclic Graph) in which each node can

be reached from the entry node, and the edges in EB are all back edges as

de�ned in 4.1.

Another way of saying this is that if a �ow-graph is reducible, then all

the loops in it are natural loops characterized by their back edges and vice

versa. It follows from this de�nition that in a reducible �ow-graph there are

no jumps into the middle of loops - each loop is entered only through its

header [Muc97].

To partition the edges into the two subsets forward and backward, one

can perform a depth-�rst search on the �ow-graph, which will classify the

edges into sp-back, sp-tree, sp-forward and sp-cross edges as mentioned in

4.1.

But, the depth-�rst ordering has one important property: It is not unique

[Muc97]! Does this matter, then? The answer, actually, depends on the loop.

If the loop is reducible, no matter what the depth-�rst ordering is, the same

set of sp-back edges will be found and, for a reducible graph, all sp-back

edges are back edges. This property allows for a straightforward way to

determine the body of a reducible loop since the entry node of a reducible

loop is unique (i.e. it dominates every node in the loop)8.

If, on the other hand, the �ow-graph contains irreducible loops, di�erent

depth-�rst search orderings can result in di�erent sets of sp-back edges. This

means that the body of an irreducible loop can not be found in the same way

as the body of a reducible loop. The reason for this is that an irreducible loop

contains more than one entry node and that an entry node of an irreducible

8An algorithm for constructing the natural loop of a back edge is given in

[ASU86](Algorithm 10.1, page 604)

CHAPTER 4. LOOPS AND SCC:S 17

loop does not dominate every node in the loop.9

9According to this, the multi-entry loop in �g 4.1 is an example of an irreducible loop.

Chapter 5

Basic Block

To use basic blocks is a common technique in compiler theory. The code is

broken down into basic blocks in the back-end of the compiler. These are

used to build a �ow-graph which in turn is used to analyze the control �ow

and also the data �ow. The control �ow analysis is used for optimization

and the data �ow analysis is used for assigning variables to registers.

The basic blocks are the nodes in a �ow-graph, which "explains" the

program structure. First we give a formal de�nition of a �ow-graph [Wol92]:

A �ow graph is the tuple G = hV; E; Entry; Exiti, where V is the set of

vertices corresponding to basic blocks, (alternatively, the vertices in V may

correspond to statements or operations), E is a set of directed edges E =

{(m;n)jm;n 2 V and m is a �ow predecessor of n}, Entry 2 V and Exit 2

V are distinguished vertices. We will write m ! n to mean there is an edge

(m,n) 2 E. A path in a �ow-graph from vertex m to vertex n is a length k

sequence of vertices (v0; v1; v2; : : : ; vk), with vi 2 V 8i; 0 � i � k and v0 = m

and vk = n, such that v0 ! v1; v1 ! vv; : : : ; vk�1 ! vk. By convention, we

say there is always a lenght-0 path from a vertex to itself. G is connected

with a path from Entry to any vertex n 2 V in G and with a path from any

vertex n 2 V to Exit in G.

The de�nition of basic blocks is [Muc97]:

(Formally) "A maximal sequence of instructions that can be entered only

at the �rst of them and exited only from the last of them. Thus, the �rst

instruction in a basic block may be the entry point of the routine, a target of

a branch, or an instruction immediately following a branch or a return. Such

CHAPTER 5. BASIC BLOCK 19

instructions are called leaders. To determine the basic blocks that compose a

routine, we �rst identify all the leaders and then, for each leader, include in

its basic block all the instructions from the leader to the next leader or the

end of the routine, in sequence."

(Informally) "A straight-line sequence of code that can be entered only at

the beginning and exited only at the end."

To visualize what leaders and enders are we give a general example below:

� Leader

A general example in C:

x = 2; /* first statement -> LEADER*/

y = x + 1;

if(z < x) {

y = y + 1; /* statement following IF -> LEADER*/

x = x - 1;

} /* end if */

z = 0; /* statement following IF -> LEADER*/

m = z + x;

� Ender

A general example in C:

x = 2;

y = x + 1;

if(z < x) { /* conditional jump -> ENDER */

y = y + 1;

x = x - 1; /* last statement before the

next basic block -> ENDER */

} /* end if */

z = 0;

m = z + x; /* last statement -> ENDER */

CHAPTER 5. BASIC BLOCK 20

For each leader, its basic block consists of the leader and all statements

up to and including the ender or the end of the program.

When the �ow-graph is constructed (from the basic blocks), the relations

predecessor and successor are introduced. A predecessor is the basic block

that is preceding the current, and the successor is the basic block following

the current basic block. A branch node has more than one successor while

a join node has more than one predecessor. Or formally (we write the edge

from a to b as a! b):

G = f< N;E > jN is a set of nodes; E is a set of edges such that E � N �Ng

Succ(b) = fn 2 N j 9e 2 E such that e = b! ng

Pred(b) = fn 2 N j 9e 2 E such that e = n! bg

To create a graph which can be analyzed for the whole block, two extra

nodes are introduced into the graph. These are the INITIAL and TERMI-

NAL1 nodes.

The purpose of the INITIAL node is to represent a single point of entry

into the graph. Similarly the purpose of the TERMINAL node is to get a

single point of exit from the graph2.

5.1 Example

For better understanding the �ow-graph, an example is given:

Consider the following C-code which computes, for a given m � 0, the

mth Fibonacci number.

1In compiler literature mostly called the ENTER and EXIT node. Here (in PLEX) the

ENTER and EXIT node have a di�erent meaning, e.g. the ENTER/EXIT statement.
2this is further discussed in the Basic Block in PLEX section 10

CHAPTER 5. BASIC BLOCK 21

unsigned int fib(m) /* m is a unsigned int */

{

unsigned int f0=0, f1=1, f2, i;

if(m <= 1) {

return m;

} else {

for(i=2; i<=m, i++) {

f2=f0+f1;

f0=f1;

f1=f2;

}

}

return f2;

}

From this code we get a graph (�g 5.1).

If we convert this into a �ow-graph, where the nodes constitutes of basic

blocks, with additional entry (INITIAL) and exit (TERMINAL) nodes (to

get a graph with only one entry and exit), we get a �ow-graph (shown in

�gure 5.2).

CHAPTER 5. BASIC BLOCK 22

N

12

receive m

f0=0

f1=1

m<=1

return m i=2

i<=m

return f2 f2=f0+f1

f0=f1

f1=f2

i=i+1

Y N

Y

1

2

3

4
5

6

7 8

9

10

11

Figure 5.1: The graph for the Fibonacci code.

CHAPTER 5. BASIC BLOCK 23

INITIAL

B1

B2

B3

B4

B6

TERMINAL

Y

N

Y

N

B5

Figure 5.2: The �ow-graph for �g 5.1

Part III

Background analysis of PLEX

and the compiler

Chapter 6

Signals in PLEX

6.1 Signals and Block Interaction

Signals are very important in PLEX because these make up the back-bone

of the entire system. All communication is handled by signals, everything is

more or less dependent on signals. A job (an execution from start till end) is

invoked by a signal (see �gure 6.1). A job may run in only one block or even

in only one code-item although it usually traverses lots of di�erent pieces of

code in di�erent blocks. Transitions from one block to another is handled by

signals of di�erent kinds such as e.g. direct unique, direct multiple, combined

forward and backward (see �gure 6.1).

The signal concept in PLEX/AXE is described in [AGG99]. We will

recall that the di�erent function blocks in AXE communicate by the means

of signals and that the signals could be of di�erent types:

Signal Type Direct Bu�ered

Single unique X X

multiple X X

Combined unique X

multiple X

Table 6.1: The di�erent types of signals in PLEX. Marked boxes in the table

indicates a legal combination, while unmarked boxes indicates illegal ones

Unique / Multiple signals: A unique signal (�gure 6.2) can only be re-

ceived by one particular block, while multiple signals can be received

CHAPTER 6. SIGNALS IN PLEX 26

ENTER sig 2:
...
SEND sig 7 WAIT
FOR sig 8;
RETRIEVE sig 8;
...
EXIT (job finished)

External
signal 1

External
signal 2

(buffered)

External
signal 3

ENTER sig 1:
 .
 .
 .
SEND sig 5

ENTER sig 3:
...
SEND sig 2;
...
SEND sig 4

Subroutine

ENTER sig 4:
 .
 .
 .
SEND sig 5

sig 1

sig 2

sig 5

sig 3

"Return"

sig 4

code
item

External
signal 5

External
signal 6

PLEX
block

.

.

.

sig 8

sig 7
RECEIVE sig 4:
 .
 .
 .
RETURN sig 5sig 2

.

.

.

Figure 6.1: The execution of a job. Some di�erent kinds of communications

within and between blocks. Signals 1,3,4,5,6 could be either direct or bu�ered,

signal 2 is bu�ered (execution continues after SEND) and signals 7 and 8 are

combined. The jumps to and from the subroutine are not signals but jumps.

by several blocks. (However, it is not possible to send a multiple signal

to more than one block simultaneously, only to choose the block to

which the signal will be sent. This is done with REFERENCE in the

signal sending statement.)

CHAPTER 6. SIGNALS IN PLEX 27

A B

A

B

C

D

Unique signal

Multiple
signal

Figure 6.2: Unique and multiple signal.

Direct / Bu�ered signals: Direct signals are sent immediately to another

block while bu�ered signals (�gure 6.3) are queued in a job bu�er1. The

meaning of this is that by a direct signal, the programmer maintains

control over the execution sequence, while with bu�ered signals, the

control is returned to the operating system.

A B Direct signal

A BJob buffer Buffered signal

Figure 6.3: Bu�ered and direct signal.

Single / Combined signals: The di�erence between these two types is

that a combined signal (�gure 6.4) demands an immediate answer,

while single signals do not require such feedback. For this reason,

1Actually, there are di�erent kinds of job bu�ers.

CHAPTER 6. SIGNALS IN PLEX 28

combined signals can never be bu�ered (as shown in table 6.1).

(The signal descriptions from [AB98]).

A B Combined signal

A B Single signal

Figure 6.4: Combined and single signal.

Besides these types of signals, there are some constructs of signals that

have an impact on the path of execution.

� A bu�ered signal can be made direct (implicitly) by adding the keyword

HURRY to the signal sending statement. This means that the signal

is sent as a 'direct bu�ered signal' which can be seen as a temporarily

direct signal that is usually bu�ered.

� LOCAL signals are always direct and sent within the same block. It is

very similar to a GOTO statement. A LOCAL signal can be received

by a PLEX sector or by an ASA2 sector3.

LOCAL PLEX signals are sent in the same manner as 'usual' signals,

i.e. with SEND and RECEIVE while LOCAL signals to ASA sectors

are sent with TRANSFER and ENTRANCE.

If the local signal is sent to another PLEX sector, the receiving sec-

tor is linked as a successor to the senders basic block (as if it were a

GOTO).

There are also di�erent kinds of signals in respect to where they are

used. Some signals are used between functions in central processor units 4.
2The assembler code used.
3signals sent to ASA sectors will not be handled in this thesis.
4called CP-CP signals

CHAPTER 6. SIGNALS IN PLEX 29

Others are sent from regional processor units to the central processor units5

or between regional processor units6.

CP-RP signals and RP-CP signals enables concurrency and are explicit.

AXE contains many regional processors so RP-RP signals may result in

concurrency if they are di�erent regional processors.

5RP-CP/CP-RP signals, these will not be handled in this thesis.
6RP-RP signals, these are very rare and will not be handled here.

Chapter 7

Code item

7.1 Code-Items and Jobs

A code-item starts with a signal receiving statement and ends with an EXIT

statement. (The code that is executed between these two statements belongs

to the code-item.) Code-items are sometimes referred to as subprogram. A

PLEX source code �le consists of one or several code-items. A skeleton of a

PLEX source code �le is given in table 7.1. Here, the code-items are:

CI1 = ENTER SIGNAL1; . . . SEND SIGNAL2; EXIT;,

CI2 = ENTER SIGNAL3; . . . SEND SIGNAL4; EXIT;,

CI3 = ENTER SIGNAL5; . . . SEND SIGNAL6; EXIT; and

CI4 = ENTER SIGNAL7; . . . EXIT;

The PLEX source code �le constitutes a SPI (Source Program Informa-

tion). The SPI, together with a SS (Signal Survey), which is a description

of the signals sent and received, forms a PLEX unit. (Actually, a PLEX

unit also consist of a parameter list. However, the parameter �le is added

after the control �ow has been analyzed in the back end of the compiler. See

�g 9.1 in section 9.1.) It is the PLEX unit (i.e. the SPI (Source Program

Information) and the SS (Signal Survey)) that is analyzed in the compiler.

A Job is de�ned in the following way: A job is a continuous sequence of

statements executed in the processor. A job begins with an ENTER state-

ment for a bu�ered signal (or with a COMMAND statement) and ends with

an EXIT. A job may send zero or more bu�ered signals. So, a job consists

of one or several code-items.

CHAPTER 7. CODE ITEM 31

PROGRAM; PLEX;

ENTER SIGNAL1;

. . .

SEND SIGNAL2;

EXIT;

ENTER SIGNAL3;

. . .

SEND SIGNAL4;

EXIT;

CUSELESS = 0;

ENTER SIGNAL5;

. . .

SEND SIGNAL6;

EXIT;

ENTER SIGNAL7;

. . .

EXIT;

. . .

END PROGRAM;

Table 7.1: A PLEX source code �le consists of code-items.The row 'CUSE-

LESS = 0;' will never be executed because it is not inside an ENTER-EXIT

block.

Chapter 8

Loops and SCC's in PLEX

In section 4 we discussed loops and similar structures in general, but what

about loops in PLEX? We have found three di�erent ways to construct a

loop in PLEX. By iterations, by jump statements and by signals. (All three

will be discussed below.)

8.1 Iterations

PLEX o�ers three di�erent statements for iteration; ON, FOR ALL and

FOR FIRST. All of them behave like ordinary FOR-loops in other pro-

gramming languages. In PLEX, iterations are used for scanning �les or

indexed variables between given start and stop values. The ON-statement is

the only one that can scan from the highest to lowest, or from the lowest to

the highest value. Both FOR-statements scan from the highest to the lowest

value. The di�erence between the two FOR-statements is that in FOR ALL

it is possible to state a condition under which the DO-part is executed, where

in the FOR FIRST it is mandatory to give the condition. Another di�erence

is that the FOR FIRST-statement is left as soon as the condition is met. A

comparison between the three statements is shown in table 8.1.

8.2 Jump statements

The second approach for constructing loops in PLEX is by using jump state-

ments1. There are two types of jump statements:

1The jump have to be made backwards, otherwise there is no loop.

CHAPTER 8. LOOPS AND SCC'S IN PLEX 33

Criterion ON FOR ALL FOR FIRST

Ascending or descending order Yes Always descending

Several statements in action part Yes No, except in statement

blocks, IF, CASE and

loop statements

Condition in iteration statements NO Possible Always

Iteration ends after matching

condition once and handling one

individual

Not applicable No Yes

Iteration variable/pointer after

loop

Unde�ned Unde�ned De�ned if

matching

individ-

ual/condition

Generates high-speed loop No Possible Possible

Table 8.1: PLEX-C iteration statements - a comparison.

� Unconditional jump statements

� Conditional jump statements

The unconditional jump statement always perform a jump to the indi-

cated program label, where the conditional jump statement �rst check if the

given condition is met (and, if so, performs the jump).

Since no code expansion is performed on jump statements, we show their

syntax below (with the unconditional jump statement speci�ed �rst):

�

(
GO TO

GOTO

)
label;

� IF [NOT] condition [PROCEED ELSE]

(
GO TO

GOTO

)
label;

It should also be noted that there is another, more �exible, conditional IF

statement which can be used to construct loops. (As can be seen in its syn-

tax, this depends on its action part.)

IF [[NOT] condition THEN sequence of statements]1:::ELSIF
[ELSE sequence of statements] FI;

CHAPTER 8. LOOPS AND SCC'S IN PLEX 34

8.3 Signals and Block Interaction

The signal concept in PLEX/AXE is described in section 6, here we only

state that since the di�erent function blocks in AXE communicate by the

means of signals, signals may be used to create loops both between function

blocks and internally within a function block.

Chapter 9

The Compiler

In section 3.2 we mentioned that when doing static program analysis (which

estimation of the execution time are a part of) a number of questions has to

be answered and we recall that one of these concern the code level. Then, in

section 11.1.1, we will show that working with the intermediate code was a

natural choice. This, together with the following quotation [Gus00]:

Analysis on the intermediate level obviously demands a close cooperation

between the compiler and the WCETC tool.

demands a description of the PLEX-C compiler together with those sub parts

that are of interest for us.

9.1 The internal structure of the PLEX-C compiler

The compiler consists of a separate front-end (FE), a back-end (BE) and

an object code handler (MOT). These are divided into sub programs. The

input to the compiler is PLEX-code and the output is a text-�le that is

loaded into the APZ1. A number of intermediate representations are used

during the compilation (see �g. 9.1). Here the di�erent parts of the compiler

and some of the intermediate representations are explained brie�y.

9.1.1 Front End

The input to the front-end is the PLEX code (which can be written directly

by the programmer or compiled from HL-PLEX2), a signal survey (a list of

1the control part including the central and regional processors.
2High Level PLEX

CHAPTER 9. THE COMPILER 36

PLEX code

PLEX Compiler
front-end (PFE)

Object
code

Text file

APZ

PLEX
Compiler
back-end

(PBE)

PIL
PLEX

Intermediate
Language

ASA

Maxi Code
Generator

(MCG)

Assembler

Signal
libraries

Prameter
file

symbol table (variables signals, labels, constants)
administrative information (version, host)
extern form for Plex-statements ("intermediary code")
resembling LISP-notation.
Example: A=B -> (assign (var A) (var B))
where A and B holds references to the Plex-code.

Binary code
Binary Code
Generator

(BCG)

MOT
Maxi ObjecT

Binary code

Figure 9.1: The structure of the compiler. Input: PLEX code (written by the

programmer or compiled HL-PLEX code)

CHAPTER 9. THE COMPILER 37

all signals a unit sends and receives in alphabetical order) and a parameter

�le. The output is a so called PIL-�le (PLEX Intermediate Language). The

structure of this �le resembles LISP-syntax (for an example, see table 9.1).

The PIL-�le holds:

� a symbol-table (holding information about e.g. variables, signals, la-

bels and constants)

� administrative information (e.g. version, host)

� an intermediate code on extern form for PLEX-statements.

PLEX PIL - extern format comment

X = A + B
(ASS

(ID X + + +)

(PLUS

(ID A <24 17> + +)

(ID B <24 21> + +)

<24 19> + +) + <25 7> +)

where A, B and X are

references to the PLEX-

code

IF A = B

(IF

(COND_LIST

(COND

(EQ

(ID A <13 14> + +)

(ID B <13 29> + +)

<13 27> + +))))

the numbers within

'<>' are references to

the source code position

Table 9.1: Examples of the PIL format and the matching source code (PLEX-

C).

CHAPTER 9. THE COMPILER 38

9.1.2 Back End

The back end of the compiler takes the PIL-�le as input. The structure

of the back end system is a chain of di�erent processes or "modules" (see

�g. 9.2). The back end consists of two subsystems, the MCG (MAXI Code

Generator) and the BCG (Binary Code Generator). The output from the

MCG is input to the BCG, which converts ASA-code to binary code which

is then handled by the MOT (Maxi ObjecT)3 before being loaded down to

the APZ.

The Maxi Code Generator � Module description

Here we shortly describe the di�erent modules in the back end to show what

the system looks like today. Some changes will be made in the work with

our system. Changes will be made to the back-end (see 11.5). To get an

understanding about why we do the changes we will do, it is good to know

the structure of the system.

Each module is performed in di�erent passes.

CX (Code generator eXecutive) The module supervises processing of

the other modules within subsystem MGG. CX initiates the di�erent

modules in the MCG, therefore it can be seen as the �main� method

for the MCG.

CI (Code generator Initialization) part of the MAXI CODE GENER-

ATOR (MCG). The module reads the external form (PIL) of the pro-

gram and block document. This module also initializes the symbol

table with connected code attributes.

CE (Code generator Expansion module) The modules main task is to

convert the statements of PLEX program sectors in PIL internal format

to SPIL (Simple PIL) internal format. This is done for statement

blocks, structured statements and expressions (see chapter 9.2).

All structured and nested statements are removed except special FOR

statements. The statement blocks are inserted in-line or linked at the

activation point. The structured statements (IF, CASE, ON, FOR) are

for instance expanded to a sequence of simple statements (assignment,

3see section 9.1.3

CHAPTER 9. THE COMPILER 39

Code
Selector

(CS)

ASA
generation

(CA)

Local
Register

Allocation
(CL)

PIL

Read (CI)

Expansion
(CE)

SPIL -
optimization

(CG)

Flow
analysis

(CB)

Register
allocation

(CT)

Local ASA
Code

Optimazitaion
(CO)

ASA

SPIL

SPIL

SPIL
(Simplified

PIL)

(regenerate datastructures from FE)

(expands the code i.e.
IF statements to IF THEN
ELSE GOTO statements)

(temp registers)

(including TMD - Target
Machine Code)

LPIL
(Linear PIL)

ASA

Globas ASA
Code

Optimazitaion
(CR)

ASA Binary Code
Generator (BCG)

MCG
CX

(From FE)

Code Formatting
(CF)

Figure 9.2: The structure of the back end. Input: PIL

CHAPTER 9. THE COMPILER 40

GOTO, simple IF). Some other statements (JOBTABLE, CONVERT

and Forlopp-statements) are expanded to a sequence of simple PLEX

statements. The signals used in I/O-statements and Forlopp state-

ments are introduced in the symbol table. The I/O-statements are ex-

panded to signal statements. Some Forlopp statements are expanded

to signal statements. The called ASA sectors are expanded to in-line

code. Symbolic names in expressions are changed to their numerical

values. Strings and string symbols are changed to generated variables.

Global number symbols and expressions with global number symbols

are changed to generated variables.

CG (Code Generator optimization module) Here simple and local (peep-

hole) optimizations are made on SPIL (see chapter 9.3). Bad code gen-

erated in CE is removed and some code is replaced by more e�cient

code. The optimizations lead to fewer basic blocks (in CB) and the

connections between them (predecessors/successors) are reduced.

CB (Code generator Basic block analyzer) This module constitutes the

part in the MCG that performs the global �ow analysis and invokes

the Temporary Variable Allocator (the CT module) in order to obtain

information on in which register each temporary variable resides in

each domain in the PLEX program. The domains represent the PLEX

program without any dead code.

Both global data �ow analysis, using use-de�nition chaining and de�nition-

use chaining, and control �ow analysis, analyzing the basic blocks and

creating a depth-�rst ordering, are performed here.

The CB module is invoked by the Code Generator Executive (CX mod-

ule). Its input data is the SPIL code.

CT (Code generator Temporary variable allocator) The part of the

MCG that performs the register allocation. The CT is invoked by the

CB.

CF (Code Formatting) The SPIL format, which is a textual representa-

tion of a tree structure, is converted into LPIL (Linear PIL) format.

The LPIL is a linear representation of a tree structure in pre�x order.

CS (Code Selector) The main task of this module is to de�ne the se-

quence of ASA assembler code to be generated by other modules. The

CHAPTER 9. THE COMPILER 41

target machine description is a part of the speci�cation module for a

speci�ed target machine.

CA (Code generator ASA intermediate form) ASA PIL format is gen-

erated. The module is called when some other module need to generate

ASA PIL statement modes or statement lists.

CL (Code generator Local register allocator) Performs the local reg-

ister allocation for indexes, pointers, expressions etc.

CO (Code generator local ASA code Optimization) Performs peep-

hole optimizations on the ASA code.

CR (Code Generator Global ASA Optimizer) The global ASA opti-

mizer module is divided into three major parts, basic block partition-

ing, propagation of the content of the registers all over the �ow-graph

and �nally the optimization of the code using the produced information

about the registers.

The Binary Code Generator

The main purpose of the Binary Code Generator subsystem is to generate

binary code from the assembled internal records. The generated code may

contain gaps for signal number, signal group number and global number

symbols.

Furthermore the following functions are performed:

� The variables are allocated to base addresses.

� Label addresses and local signals are handled.

� Code-attributes for signal sending and signal distribution tables are

created.

� Handles initial data.

� The binary code is assembled.

� The output �le is created.

CHAPTER 9. THE COMPILER 42

9.1.3 Maxi ObjecT

The main function of the Maxi ObjecT subsystem is to assemble load infor-

mation. This information consists of data for program, reference and data

memories in APZ and signal information.

The subsystem uses code generation result, MARSHAL information or

signal survey, parameter list and BAT document as inputs. The purpose of

this subsystem is the creation of a load �le for an APZ together with list

�les describing initial data and signal information.

9.2 Code Expansion

The �rst things that are done in the back-end of the compiler, is to read

the input (PIL format), which is done in the CI (see 9.1.2) module, and

then to expand it to SPIL format, in the CE (see 9.1.2) module. As this is

done, some PLEX constructs in the code are expanded (transformed). The

constructs that are handled are ([LAB98]):

� EXPRESSIONS - the expressions in the statements are checked. Some

global symbols and symbol values are replaced by their numerical val-

ues4. Some other variables and string symbols are also handled.

� LABELS - new labels are created from the old.

� Statement blocks - a decision is made for every statement block whether

it is going to be linked or expanded in-line (copied).

� The following constructs are expanded to a list of statements:

� IF

� FOR

� ON

� BRANCH ON

� CASE

� SEND

� ENTER

� DO Statements
4this is done for some processors

CHAPTER 9. THE COMPILER 43

� ASA Sectors

� I/O Statements

� JOBTABLE

� CONVERT

All the constructs above have an impact on the control �ow. The constructs

marked in bold text are the once that are interesting to us. These are

especially interesting because they can be used to create implicit loops.

PLEX has three iteration, or loop, constructs: FOR FIRST, FOR ALL

and ON (as was also mentioned in 8.1). These are expanded to IF-statements

in most cases 5. A loop can also include a DO statement which is a form of

a subroutine.

Below the di�erent expansions, that we are interested in, are described.

9.2.1 The IF statement

The IF statements are transformed into GOTO-statements as follows:

IF conditional-expression THEN

statement-list

[ELSE IF conditional-expression THEN

statement-list] �

[ELSE

statement-list]

FI;

are expanded into:

5some IF, FOR and ON constructs are not expanded. See 9.2.1, 9.2.2 and 9.2.3

CHAPTER 9. THE COMPILER 44

IF conditional-expression_1 GOTO hlabel_1i

IF conditional-expression_2 GOTO hlabel_2i

� � �

GOTO hlabel_ki /* The ELSE label */

hlabel_1i) statement-list_1 ;

GOTO hend_labeli;

hlabel_2i statement-list_2 ;

GOTO hend_labeli;

� � �

hlabel_ki statement-list_k ; /* The END clause */

hend_labeli;)

where the angle brackets ([]) denote conditional syntax and the asterisk (*)

denotes that the construct can occur zero times or more. The hlabel_xi is

a created label.

The IF-statement is however not expanded if it is on the form:

IF conditional-expression GOTO hlabeli;

9.2.2 The FOR statement

This PLEX construct is actually two types of FOR statements, FOR FIRST

and FOR ALL. Both statements are loops that scans from the highest to the

lowest value (FROM - UNTIL). The di�erence is that the FOR FIRST loop

ends after �nding the �rst value that makes the condition6 true while the

FOR ALL loop goes through all values a�ecting those values that make the

condition true. Note that the WHERE part is mandatory for FOR FIRST.

The construct:

6<conditional-expr> is true OR the <variable> IS CHANGED TO <�eld-expr>.

CHAPTER 9. THE COMPILER 45

FOR

(
FIRST

ALL

)
control-entity

FROM start-expr

[UNTIL stop-expr]"
WHERE

(
variable IS CHANGED TO �eld-expr

condidional-expr

)(
GOTO hlabeli

DO statement

)#

is transformed according to the (generated) code layout below. The FOR

statement is expanded as a loop with IF statements, except for two special

cases.

Type 1

FOR

(
ALL

FIRST

)
s FROM expr1 [UNTIL expr2]

(
DO statement

GOTO label

)
;

Is replaced by the equivalent code:

var = expr2 ;

s = expr1 + 1 ;

hloopi)

IF s =! var GOTO hexiti; or

IF s =! cv GOTO hexiti;

s = s - 1 ;(
DO statement

GOTO hlabeli

)
;

GOTO hloopi; (not generated for FIRST case)

hexiti)

s = s - 1 ;

CHAPTER 9. THE COMPILER 46

Where `<var>' is a generated temporary variable and `cv' is a constant

value.

Type 2

FOR

(
ALL

FIRST

)
s FROM expr1 [UNTIL expr2]

WHERE lexpr relop rexpr(
DO statement

GOTO hlabeli

)
;

Is replaced by the equivalent code:

var = expr2 ;

s = expr1 + 1 ;

hloopi)

IF s =! var GOTO hexiti; or

IF s =! cv GOTO hexiti;

s = s - 1 ;

IF not (lexpr relop rexpr) GOTO hloopi;(
DO statement

GOTO hlabeli

)
;

GOTO hloopi; or (ALL case)

GOTO hdonei; (FIRST case)

hexiti)

s = var - 1 ; or

s = H'FFFF; (if constant stop value)

hdonei) (FIRST case)

Where `<var>' is a generated temporary variable and `cv' is a constant

value,

CHAPTER 9. THE COMPILER 47

Type 3

FOR

(
ALL

FIRST

)
s FROM expr1 [UNTIL expr2]

WHERE v IS CHANGED TO cexpr(
DO statement

GOTO hlabeli

)
;

Is replaced by the equivalent code:

var = expr2 ;

s = expr1 + 1 ;

hloopi)

IF s =! var GOTO hexiti; or

IF s =! cv GOTO hexiti;

s = s - 1 ;

IF v = cexpr GOTO hloopi;

v = v - 1 ;

IF v =! cexpr GOTO hloopi;(
DO statement

GOTO hlabeli

)
;

GOTO hloopi; or (ALL case)

GOTO hdonei; (FIRST case)

hexiti)

s = var - 1 ; or

s = H'FFFF; (if constant stop value)

hdonei) (FIRST case)

Where `<var>' is a generated temporary variable and `cv' is a constant

value. The two special cases described below will not be expanded.

Special loop constructs

There are three kinds of FOR loops that are not expanded or tampered with

at all. These are constructs that under certain conditions generate special

CHAPTER 9. THE COMPILER 48

high-speed ASA instructions. In these cases, the FOR statement remains as

it is after the code expansion. They are handled, the ASA code is generated,

in the CS7 module.

9.2.3 The ON statement

The ON statement can scan from either the highest value to the lowest or

from the lowest value to the highest. Pointers are used as iteration vari-

ables when scanning �les and �eld variables are used when scanning indexed

variables. The construct:

ON variable FROM �eld-expression_1(
UPTO

DOWNTO

)
�eld-expression_2

DO statement-list

NO;

is expanded in the following cases:

1. The loop variable is a temporary variable ascending through an interval

(i.e. UPTO some expression). The new code is:

temp-var = �eld-expression_2 ;

variable = �led-expression_1 ;

IF (variable > temp-var) GOTO hexiti;

hloopi)

statement-list ;

IF (variable <= temp-var) GOTO hloopi;

hexiti)

where '<temp-var>' is a generated temporary variable.

2. The loop variable is a temporary variable descending through an in-

terval (i.e. DOWNTO some expression). The new code is the same as

in 1 except that the signs in the IF statements are changed:

7Code Selection, see 9.2 and 9.1.2.

CHAPTER 9. THE COMPILER 49

'IF (variable > temp-var) GOTO hexiti;'

)

'IF (variable < temp-var) GOTO hexiti;'

and

'IF (variable <= temp-var) GOTO hloopi;'

)

'IF (variable >= temp-var) GOTO hloopi;'

3. The loop variable is a stored variable ascending through an interval

(i.e. UPTO some expression). The new code is:

temp-var = �eld-expression_2 ;

variable = �led-expression_1 ;

IF (variable > temp-var) GOTO hexiti;

hloopi)

statement-list ;

variable = variable + 1, ON CARRY GOTO hexiti;

IF (variable <= temp-var) GOTO hloopi;

hexiti)

where '<temp-var>' is a generated temporary variable.

4. The loop variable is a temporary variable descending through an in-

terval (i.e. DOWNTO some expression). The new code is the same as

in 3 except that the addition is changed to a subtraction:

'variable = variable + 1, ON CARRY GOTO hexiti;'

)

'variable = variable - 1, ON CARRY GOTO hexiti;'

� note 1 The ending IF statement is represented as an IF statement

with code attributes. This statement is both an IF statement and

an assignment.

CHAPTER 9. THE COMPILER 50

� note 2 If <�eld-expression_2> is a constant expression its value

will be used directly instead of using `<temp-var>'. If both

<�eld-expression_1> and <�eld- expression2> are constant ex-

pressions their values will be used directly instead of using <vari-

able> and `<temp-var>'.

9.2.4 DO Statements

The DO statement is equivalent to subroutines (without input and out-

put parameters) in other languages. There are two kinds of DO constructs

(statement block and assembly language sector). We are only interested in

the statement block construct. 8

A DO statement block can be either linked or in-lined:

Linked No expansion is needed.

In-line For each place where the statement block code should be inserted,

produce a new instance of the code containing unique labels.

If the DO statement is linked, it may be linked to multiple basic blocks. In

these cases, the true execution paths can be / are lost. Figure 9.3 shows such

a situation. The actual execution paths are A! C ! D and B ! C ! E.

This information can not be seen in the �ow-graph. In the analysis we do

not know which paths are valid and which are not (i.e. A ! C ! E and

B ! C ! D). The problem is further discussed in section 13.

9.3 Optimization

Some statements are optimized in the Code Generator Optimization Module

(CG). This is done to remove bad code generated by the CE9. The code im-

provement made by this module on SPIL reduce the number of basic blocks

and the connections between them (predecessors and successors) which de-

crease the amount of the host computer memory needed and makes the

execution time faster.

Optimizing on SPIL instead of ASA makes the optimization module ma-

chine independent and improve the generated code.

8Because we do not handle assembly code constructs.
9Code Generator Expansion module

CHAPTER 9. THE COMPILER 51

BB A BB B

BB C
(Statement

Block)

BB EBB D

A -> C B -> C

C -> D C -> E

Figure 9.3: A DO Statement block with multiple entries (from other Basic

Blocks (BB)) and multiple exits (to other BB). The notation A! C indicates

that the edge is a path from A to C.

The statements that are optimized in the CG are:

� labels

� GOTO-statements

� IF-statements

When performing the optimization, the (SPIL) code is traversed and

every statement is examined if it is one of the statement-kinds above. This

is done repeatedly until no more optimizations can be done (one optimization

can lead to additional improvements).

If the statement is an IF-statement derived from an ON-statement or from

any other kind of SPIL-statement except the IF or GOTO-statements, no

optimization is done.

9.3.1 Labels

The optimization done here, is mainly meant to remove unnecessary (super-

�uous) labels. The three ways to optimize labels are shown below:

� Unreferenced labels.

(0) <statement>

(1) <label> ')'

CHAPTER 9. THE COMPILER 52

The label <label> is never referred to, which makes it unnecessary.

Remove the <label>.

� Multiple labels.

(0) <statement>

(1) <label-1>

(2) <label-2>

Remove all references that are multiple (replace all occurrences of

<label-2> with <label-1>.

� Multiple jumps.

(0) <statement>

(1) <label>_1

(2) 'goto' <label>_2

Replace the multiple jumps ((1)-(2)) with a direct jump to <label>_2.

9.3.2 GOTO-statements

There are three di�erent GOTO-statements that are optimized. One of them

is not used in the system today (GOTO - label followed by exit). They are:

� Non-executable GOTO-statements.

(0) <statement>

(1) 'goto' <label>_1;

(2) 'goto' <label>

Statement (2) can never be executed because it is preceded by another

GOTO-statement. The second GOTO-statement (2) is deleted.

� Successive GOTO and label

(0) <statement>

(1) 'goto' <label>;

(2) <label>

CHAPTER 9. THE COMPILER 53

The GOTO-statement is a jump to the next statement in the code

(which is unnecessary). The second statement (1) is removed.

� GOTO - label followed by exit.

(0) <statement>

(1) 'goto' <label>;

(2) <statement-list>

(3) <label-list>

(4) 'exit'

The label referenced is directly followed by a label-list10 and an exit-

statement. The GOTO-statement should be removed and replaced by

an exit-statement.

This pattern can not be used at the moment in statement blocks be-

cause it modi�es the return from the statement block by introducing

new exits.[AB98]

9.3.3 IF-statements

There are �ve di�erent IF-statements that can be optimized.

� IF-statements evaluated at compile time.

(0) <statement>

(1) 'if' <cond-expr> 'goto' <label>;

If the <cond-expr> can be evaluated at compile time, the IF-statement

is deleted and replaced by a GOTO-statement (if the <cond-expr> is

evaluated as true).

� Successive IF and label.

(0) <statement>

(1) 'if' <cond-expr> 'goto' <label>;

(2) <label>

10a sequence of consecutive labels with empty statements.

CHAPTER 9. THE COMPILER 54

The label referenced in (1) is the next statement. In this case the

IF-statement has no meaning and can therefore be deleted.

� Successive jumps to the same label.

(0) <statement>

(1) 'if' <cond-expr> 'goto' <label>_1;

(2) 'goto' <label>_1

Here a jump is made to <label>_1 whether <cond-expr> is evaluated

as true or false. The IF-statement has no impact and can therefor be

removed.

� Successive jumps with a label-list.

(0) <statement>

(1) 'if' <cond-expr> 'goto' <label>_1;

(2) <label-list>

(3) 'goto' <label>_1

Here the situation is similar to "successive jumps to the same label"

above. The IF-statement does not have any impact and can be re-

moved.

� "Inverted" IF-statement.

(0) <statement>

(1) 'if' <cond-expr> 'goto' <label>_1;

(2) 'goto' <label>_2

(3) <label>_1

The IF-statement is "inverted", in the sense that the natural way to

write the statement would be to simplify the jumps to get only one

jump if the <cond-expr> is true.

Invert the operator in <cond-expr>, replace <label>_1 with <la-

bel>_2 and delete statement (2).

CHAPTER 9. THE COMPILER 55

9.4 Control Flow Analysis in the PLEX compiler

The main task the CB-module performs, is to get information for the register

allocation process (CT). The SPIL-code has already been optimized when

the CB-module starts.

The control �ow analysis, as it is performed today in the CB module, is

done in a number of steps [LAB97]:

1. CONTROL �ow-graph CONSTRUCTION is done by a single pass over

the BBR11. Each node in the graph corresponds to one basic block.

Information is picked up on the relation between the basic blocks so

that the control structure in the PLEX sector can be determined. (An

example of a control-�ow structure is shown in appendix A.2.)

2. DEAD CODE ELIMINATION is done as the Global Data Flow An-

alyzer controls the code generation by giving the Code Formatter the

statements. By passing over the control �ow graph forwardly and then

backwardly nodes are found that are not visited at the two traversals.

These basic blocks constitute dead code. (See �gure 9.4)

Basic blocks that are not visited in the forward traversal, are not pre-

decessors (because they can not be reached from the INITIAL-node)

and are removed from the set of predecessors in each of its successors.

The nodes that are not visited in the backward traversal are similarly

removed from the set of successors in each of its predecessors. These

events generate an error message to the programmer.

3. CONSISTENCY CHECK is done by checking that ENTER statements

in the PLEX-program are only reached from the INITIAL basic block.

If another basic block than the INITIAL basic block was found an error

message will be issued to the user.

4. DESTRUCTIVE STATEMENTS, i.e. statements that destroy all reg-

isters, need a special treatment. Usually all SEND ... WAIT state-

ments are re-linked to the TERMINAL-node (as its successor) and all

RETRIEVE statements are re-linked to the INITIAL-node (as its pre-

decessor)(see �gures 9.5 and 9.6). This is done to aid in the register

allocation process, because these statements lead to the "destruction"

11Basic Block Representation

CHAPTER 9. THE COMPILER 56

TERMINAL

INITIAL

ENTER ENTER

EXIT EXIT

F F

F F F

F F BB

B B

BBB

Figure 9.4: The basic blocks are traversed and marked if visited. F - visited

on forward traversal, B - visited on backward traversal. Dashed basic blocks

constitute dead basic blocks.

CHAPTER 9. THE COMPILER 57

of all registers.

INITIAL

SEND ...
WAIT

RETRIEVE RETRIEVE

EXITEXIT

TERMINAL

Figure 9.5: The control �ow-graph before the handling of destructive state-

ments.

5. Finally the DEPTH-FIRST ORDERING is determined for the control

�ow-graph, i.e. �nd the ordering between the nodes such that the

nodes as far away as possible from the INITIAL node, are traversed as

quickly as possible. This ordering is used in the chaining algorithm. It

can also be used when detecting loops in the control �ow-graph.

A DEPTH-FIRST SPANNING TREE can be built at the same time

as the depth-�rst ordering (or numbering) is determined. A depth-

�rst spanning tree is a representation of the control �ow-graph that

directly re�ects the depth-�rst ordering. This tree, together with the

depth-�rst ordering, can be used to determine the retreating edges in

CHAPTER 9. THE COMPILER 58

INITIAL

TERMINAL

SEND ...
WAIT

RETRIEVE RETRIEVE

EXIT EXIT

Figure 9.6: The control graph in 9.5 after the destructive statements have

been handled.

the control �ow-graph. This yields a possibility to detect loops in the

source program.

After the control �ow-graph has been constructed, a third pass is made

to discover and eliminate dead code (the basic blocks that are not marked

as visited in both the forward and backward traversal). This information is

then passed to the code selection process (CS).

Chapter 10

Basic Blocks in PLEX

The method to create the basic blocks and the control �ow-graph for PLEX

is [LAB97]:

� determine the leaders, the �rst statements of basic blocks. A leader is:

� the �rst statement in a PLEX program

� labeled statements

� statements following IF or assignment with carry

� ENTER, ENTRANCE, RETRIEVE and RECEIVE statements

� DO ASA statements where ASA contains local or global entries

� if a conditional GOTO is an ender, the following statement is a

leader

The leader is put into the BBR (Basic Block Representation)

which is a doubly linked list of basic blocks (which also contain a

reference to the SPIL statement and the source code position of

each statement and various information on the variables).

� determine the enders:

� conditional/unconditional jump (GOTO, IF, BRANCH ON an

assignment with carry)

� DO statement block, FOR statement, SEND statement (local or

global and combined), EXIT, TRANSFER, RETURN statements

CHAPTER 10. BASIC BLOCKS IN PLEX 60

� each DO ASA statement where the ASA sector contain local send-

ing statements or EP1

� last statement before the next basic blocks leader

� last statement in SPIL

� for each leader, its basic block consists of the leader and all statements

up to and including the ender or the end of the program.

The INITIAL node is created to get a single point of entry into the

code (it has no predecessors). It's successors are all basic blocks that has a

ENTER or RECEIVE statement as a leader.

The TERMINAL nodes purpose is to form a single point of exit for the

code. Similarly to the INITIAL node, it has only special nodes connected

to it (predecessors). Basic blocks with EXIT and RETURN (returning a

combined backward signal) statements as enders are connected to the TER-

MINAL node.

1EXIT statement for ASA code.

Part IV

WCET Estimation and

implementation

Chapter 11

Applying the theories - The

ESEX prototype

As was said in section 1.2, we had two aims with our work. The main

task was to explore possible methods for estimating execution times in soft

real-time systems. A secondary task was to extract the data needed as input

input to GRETA1, and annotate the graphical representation with estimated

execution times. In this chapter we describe the work that has been done in

these areas.

11.1 Execution time estimation

In section 3.2, we listed the decisions that has to be made when one tries to

estimate (or calculate) the (worst case) execution time. In this section we

repeat the questions and argue on our answers and solutions implemented

in the prototype. We also discuss the assumptions and generalizations that

have been made.

11.1.1 Questions and Answers

� High- or low-level analysis ?

An early decision was made, that the analysis should be focused on a

high level. The reasons for this were several. First, the AXE system

runs on a number of di�erent processors and we believed that it was

better to study a method which would be relevant for all current and

1The graphical prototype developed by Arnström et. al. [AGG99]

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE63

future kinds of processors. Another reason was that we were more

interested in the question Is it possible to estimate the execution time of

a PLEX program rather than the actual running time of the program.

� Code level

Our �rst demand on the input format was that it should have a correct

syntax. We also wanted to be independent of the source language (if

possible) in our method. Another point was that we soon realized that

we needed some kind of representation of the program to be analyzed.

The decision to work with the intermediate format was taken on the

basis of the following aspects: Our supervisors at Ericsson pointed to

the fact that a control �ow-graph for the compiled program was al-

ready available in the back end of the PLEX compiler and that we

would save a lot of time by using an existing representation. (By using

the intermediate format, we also ful�lled our demands on syntax.) An-

other important fact is that code motion2 is not allowed in the PLEX

compiler. This means that the underlying structure of the program is

not changed in the intermediate format.

� Loop detection

In section 4.5, we said that the body of an irreducible loop could not

be discovered in the same way as the body of a reducible loop and

since our aim was to discover all kind of loops in the control �ow-

graph, we looked for a method that would handle both reducible and

irreducible loops. This is the reason why we chose the method proposed

by Sreedhar, Gao and Lee in [SGL96]. The method use a DJ graph

to discover the loops and it is a generalization of Tarjans Strongly

Connected Component (SCC) algorithm, [Tar74]. The method will be

further investigated in section 11.2.

� Number of iterations

The reason why we have not tried to �nd the number of iterations for a

found loop (as we said in 1.4) is that the target system (i.e. the AXE

system) consists of approximately 10.000.000 lines of code which makes

it an unreasonable task to manual add annotations on loop counts. A

2This transformation takes an expression that yields the same result independent of

the number of times a loop is executed (a loop-invariant computation) and places the

expression before the loop. [ASU86]

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE64

second reason was that �nding the loops was considered su�cient in

a �rst phase. (Possible extensions are discussed in the Future Work

section 13.)

11.1.2 Assumptions and Generalizations

The following assumptions and generalizations has been made:

� Execution time

We said in 11.1.1 that the actual running time of the program (i.e.

the number of clock cycles) were of less interest for the prototype. For

that reason we assume that the running time of a single instruction is

equal to one time unit. This means that the running time for a basic

block (which is the smallest unit in the examined control �ow-graph) is

equal to the number of statements in that basic block and the running

time of a loop is equal to the number of statements in the loop body

multiplied by a constant (which is equal to the number of iterations in

the loop).

� Loops

We have focused on the detection of loops in the control �ow-graph and

on the execution time of the loop body. The number of iterations is left

as an unknown constant (which means that in the output format the

execution time is marked as loop dependent). We gave our argument

for this in the preceding section (11.1.1).

11.2 Detection of loops

Before the chosen loop detection method could be applied, some preparations

had to be done. To use the method proposed by Sreedhar, Gao and Lee,

[SGL96], we had to build the DJ graph from the given control �ow-graph.

To build the DJ graph, we needed the dominance tree (or the dominance re-

lation). To compute the dominance relation, we needed the depth �rst span-

ning tree. To build the depth �rst spanning tree, we �nally needed to classify

each edge in the control �ow-graph. These steps has all been performed and

the interested reader is referred to section 11.6 for more information on these

parts. We now continue with the loop detection algorithm.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE65

As we have already mentioned, the proposed algorithm is a generaliza-

tion of Tarjans interval �nding algorithm. (These intervals are single-entry

and strongly connected subgraphs.) The Tarjan method uses a technique

known as graph reduction and it works inside-out by processing back edges

in decreasing order of their destination nodes' depth �rst number. (Graph

reduction could also be seen as a kind of state elimination which is described

in [AGG99](page 36). See �g 11.1 and �g 11.2.) The Sreedhar, Gao and

Figure 11.1: Loop graph - before elimination

Figure 11.2: Loop graph - after elimination

Lee method follows the inside-out approach used by Tarjan but it operates

on the DJ graph instead of the �ow-graph and it uses the level information

of the DJ graph.3 To extend the Tarjan algorithm, two lemmas are used4:

LEMMA 3.2 A �ow-graph is irreducible if and only if there exist a simple

cycle in its DJ graph that does not contain a BJ (Back Join) edge (that

3the meaning of level information is that each node in the dominance tree is associated

with a level which tells the distance to the root node (in the dominance tree).
4Both lemmas as well as the proofs are found on page 653 in [SGL96]

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE66

is, the cycle is made of only D (Dominator) edges and CJ (Cross Join)

edges). 5

LEMMA 3.3 All the entry nodes of an irreducible loop have the same

immediate dominator.

What lemma 3.2 implies is that if a depth-�rst search is performed on such

a DJ graph, one will �nd at least one sp-back edge which is also a CJ edge.

This is a way to detect irreducibility.

To �nd the body of such a loop, the second lemma (3.3) is used in the

following way: What Lemma 3.3 implies is that when we are looking for the

body of an irreducible loop, we can look only at nodes that satisfy some level

constraint. More explicitly, we can identify irreducible loops with entry nodes

at level i by performing Tarjans Strongly Connected Component (SCC) al-

gorithm6 on only nodes x with x:level � i.

The pseudo code for the algorithm, as well as comments on the implementa-

tion, is found in section 11.6. There are also a few examples with the code

and corresponding control �ow-graphs before and after loop-elimination in

appendix A.

11.3 Signals

We have not attempted to trace all the signals in the system. However, all

signal sending and receiving statements are examined to gather information

about the signals. Direct signals are made in line in the sense that they

are linked in the control �ow-graph (if the signal receiving code-item is in

the same block). Bu�ered signals are found and executed by the operating

system, i.e. they are not linked directly (there is no direct jump from the

sending statement to the receiving code-item). Local signals are treated as

GOTO-statements, this means that the signal is in-lined. One problem is

when a local signal is combined. Several basic blocks may send the same

local combined signal. The problem that arises is similar to that of linked

DO-statement blocks (discussed in 9.2.4), the actual path of execution may

be lost.

The information about signals is extracted by performing a pass (travers-

ing) the control �ow graph. The information is written to a �le in pass after

5see section 4.1 for de�nition on the di�erent kind of edges.
6The mentioned algorithm is found in [Tar74]

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE67

all transformations have been performed.

11.4 Identi�cation of code-items

Code-items have been described in 7.1. And we recall that the entry of a

code-item is a signal receiving statement and we also recall from chapter 5

that the INITIAL node is created and inserted in the control �ow-graph

to connect all basic blocks that has a signal receiving statement as its �rst

statement. (This is to give the control �ow-graph a unique entry point.)

To identify the code-items from here is very straight forward: We sim-

ply look at each successor to the INITIAL node to identify the �rst basic

block in each code-item and then follow the edges in the graph down to the

TERMINAL node to �nd the other basic blocks. (What is actually done

is to traverse each code-item to gather the information we need, which is ex-

ecution time, signal sending/receiving statements, special FOR statements

etc.)

11.5 ESEX - The prototype tool

ESEX - EStimating EXecution times in soft real-time systems is the de-

veloped prototype tool. The prototype has been adjusted to PLEX, the

language used by Ericsson in the AXE system, and it is implemented as an

extension of the PLEX-C compiler. (An extension of the back end.)

11.5.1 Implementations made in the back-end

All the work we have done are made in the back-end (see 9.1.2). Some parts

have been added and some have been changed or deleted. Most work is

performed in the CB-module (see 9.1.2). When analyzing this module we

found that after the control �ow-graph is created, destructive statements

are handled, see 9.4. This means that all SEND / WAIT / RETRIEVE

statements (or combined signal sendings) are re-linked to the INITIAL node

(see �gures 9.5 and 9.6). These statements are handled to be able to use the

information in the control �ow-graph for register allocation. This however

destroys the control �ow-graph and information about the paths of execution

is lost. Because we are not interested in the register allocation (or data �ow

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE68

analysis) here, and because these transformations destroy the control �ow-

graph, we do not make these transformations. The destructive statements

handling process in the CB-module is removed.

The depth-�rst ordering is done in a di�erent manner than in the original

back-end. Originally the �ow-graph is traversed and the depth-�rst ordering

is done in a bottom up fashion. The depth-�rst list is then reversed. We

have chosen to create the depth-�rst ordering list in a top down fashion.

First the dominator tree is determined, then the loop elimination pro-

cess is performed (see section 11.6). When all loops have been collapsed

and removed from the control �ow-graph, the task of traversing the control

�ow-graph and gathering information is much simpler. The information or

output �le is created when traversing the graph.

Everything after the �ow analysis is removed in our prototype. Every-

thing performed after the CB-module handles register allocation, ASA-code

generation and optimizations on ASA. This is not interesting when doing

our analysis, especially considering the high-level approach we have chosen.

11.6 Implementations and pseudo code for loop de-

tection

In section 11.2, we said that some preparing work had to be done before

we could apply the algorithm found in [SGL96]. Here, we go through these

steps and also give the pseudo code for the loop detection algorithm.

11.6.1 Classi�cation of edges

A classi�cation of the edges in the control �ow-graph was necessary to

"build" the depth �rst spanning tree. Although a depth �rst search is per-

formed in the PLEX compiler, no explicit classi�cation of the edges is per-

formed and the reason for this is that there are no explicit edges! With each

node is associated a list of successor nodes. These successor nodes in turn

point to a basic block and this basic block is a successor to the �rst basic

block. (i.e. Each basic block know its successors only through the successor

item list and there is a unique successor list for every basic block.) (See

�g 11.3.) To solve this problem, we did two things: First we added a new

�eld to the basic block representation and then we modi�ed the depth �rst

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE69

search function. The new �eld added to the basic block representation is a

pointer to which an array is allocated. This array contains a number of slots

(of prede�ned size). Every slot in this array then represent a unique edge to

a successor. In this way we get explicit knowledge of each edge from a basic

block to its successors. The depth �rst search function was modi�ed to be

able to determine the di�erent kinds of spanning tree edges. The ideas we

used for this classi�cation is from [CLR90](section 23.3) and uses something

called time stamps. A nodes discovery time is set the �rst time the node is

visited and its �nishing time is set when there are no unexplored successors

left. (For a further description of this concept, we refer to [CLR90].)

11.6.2 Computing the dominance relation

The implementation of the dominance computation is based on the pseudo-

code in algorithm 19.9 in [App98]. To perform the computation some ad-

ditional pointers are added to the basic block representation. (The idom,

samedom and semiDominator �elds.)

11.6.3 Building the DJ graph

... one can also construct the DJ graph of a �ow-graph by appropriately

inserting some D7 edges into the �ow-graph, ...,[SGL96]. We use this and

insert this edges when we do the dominance computation, see 11.6.2. (Ac-

tually, what is done is that the dominance pointers in each node is set to

point to the dominator node.)

7Dominator tree edges

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE70

11.6.4 The loop detection algorithm

MainLoop()

{

1: Perform a depth-�rst search on the DJ graph and identify sp-back edges;

2: for(i = NumLevel - 1 downto 0) /* visit nodes in a bottom-up fashion */

3: IrreducibleLoop = False;

4: for each node n with n.level = i do

5: for each incoming edge m! n do

6: if m! n is both a CJ edge and an sp-back edge then

7: IrreducibleLoop = True /* n is in an irreducible loop */

8: endif

9: if m! n is a BJ edge then

10: Find ReachUnder(n) for all the BJ edges m1 ! n; : : : ;mk ! n;

11: Collapse the loop consisting of nodes in fng [ReachUnder(n);

12: endif

13: endfor

14: endfor

15: if(IrreducibleLoop) /* there exists an irreducible loop or loops */

16: Identify SCCs for the subgraphs induced by nodes at level � i;

17: Collapse each nontrivial SCC to a single node;

18: endif

19: endfor

}

Some explanations about the algorithm:

� If the destination node of any sp-back edge does not dominate the

source node, an entry node of an irreducible loop is found and the �ag

IrreducibleLoop is set to be true (step 7).

� The procedure ReachUnder(n) �nds all nodes that can reach the source

node of a sp-back edge incident on the entry node n, without going

through n. The implementation of this function is based on algorithm.

10.1, p.604 in [ASU86].

� In step 11 and step 17 the found loop is collapsed. The question we

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE71

asked ourselves at this point was How do we represent the collapsed

loop?. We solved this by letting the loop entry node (or in case of

an irreducible loop, the �rst discovered entry node) "represent" the

collapsed node in the following way: To each loop entry node is an array

of basic blocks allocated. The items in this array is the nodes in the

loop body. Then, for each successor of a node in the body we make it

a successor to the loop entry node. And, in case of an irreducible loop,

for those nodes in the body that has a predecessor outside the loop,

we redirect this predecessor to point to the loop entry node instead.

� In step 16 we identify the SCC's for the subgraphs induced by nodes

at level � i. What is used is Tarjans algorithm for �nding Strongly

Connected Components with the level constraint described in 11.2.

11.7 A general example

In this example [SGL96], which assumes the graph in �g 11.4, it is shown how

the loop detection algorithm works. When we perform a depth-�rst search

on this graph, we get the node numbered as in �g 11.5. (The corresponding

depth-�rst spanning tree is shown in �g 11.6 and with the remaining edges

added we get the graph shown in �g 11.7.) When the dominance relation

is computed, we have the dominance tree shown in �g 11.8 which in turn

yields the DJ graph in �g 11.9. After the DJ graph have been constructed,

the loop detection algorithm starts at level 3. At this level, nothing happens.

(The only nodes at level three is node number 4 and number 8, and there

is no loop between this two nodes.) On level 2, the edge from node 4 to

node 3 is identi�ed as a BJ edge (i.e. node three dominates node four). As

a consequence, the natural loop consisting of these two nodes is identi�ed

and collapsed. The new graph is shown �g 11.10. The algorithm proceeds

and identi�es the edge from node 7 to node 3 as CJ edge as well as a sp-back

edge. This sets the �ag IrreducibleLoop true. After all the nodes at level 2

are processed, the algorithm runs Tarjans SCC algorithm on nodes at level

2 and 3. (i.e. on nodes 2, 3, 5, 7, 8 and 9.) Here, the SCC consisting of

the nodes 3, 5, 7, 8 and 9 is identi�ed and collapsed (as shown in �g 11.11).

At level 1, another sp-back edge is discovered (from node 3 to node 1) and

the natural loop (with entry node 1) consisting of node 1, 2 and 3 is found.

Collapsing this loop yields the �nal graph in �g 11.12.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE72

It's easy to see that the complexity regarding execution paths has decreased

if we compare the graphs in �g 11.4 and �g 11.12.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE73

BBFORWARD
forward ptr in linked
list of basic blocks

BBBACKWARD
backward ptr in

linked list of basic
blocks

BB_PREDS
linked list of

predecessors

BB_SUCCS
linked list of
successors

Next Basic
Block

Successor
item

Successor
item

BBFORWARD
forward ptr in linked
list of basic blocks

BBBACKWARD
backward ptr in

linked list of basic
blocks

BB_PREDS
linked list of

predecessors
BB_SUCCS
linked list of
successors

BBFORWARD
forward ptr in linked
list of basic blocks

BBBACKWARD
backward ptr in

linked list of basic
blocks

BB_PREDS
linked list of

predecessors

BB_SUCCS
linked list of
successors

Figure 11.3: Organization of the successor relationship.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE74

START A

B C

D E

G F

HEND

Figure 11.4: The assumed input graph.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE75

0 1

2 7

3 8

4 9

56

Figure 11.5: The depth-�rst numbered input graph.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE76

0

3

2

1

4

5

76

9

8

Figure 11.6: The corresponding depth-�rst spanning tree.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE77

0

3

2

1

4

5

76

9

8

Figure 11.7: The depth-�rst spanning tree with the remaining edges added.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE78

0

48

2 5937

61

Figure 11.8: The dominance tree built from the input graph.

0

48

2 5937

61

Levels

0

 1

3

2

Figure 11.9: The DJ graph (built from the input graph).

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE79

0

8

2 5937

61

3 = {3, 4}

Figure 11.10: The DJ graph after the �rst loop is collapsed.

0

2 3

61

3 = {3, 5, 7, 8, 9}

Figure 11.11: The DJ graph after the nodes at level 2 is processed.

CHAPTER 11. APPLYING THE THEORIES - THE ESEX PROTOTYPE80

0

61

1 = {1, 2 , 3}

Figure 11.12: The DJ graph after termination of the algorithm.

Chapter 12

Evaluation of approach

Is it possible to perform execution time analysis for soft real-time applications

and in particular for telecommunications systems using PLEX? In this work

we show that execution time can be estimated for systems written in PLEX.

Not execution time in absolute measures, but estimation values su�cient for

soft real-time systems. The theoretical work in 11 is in critical parts veri�ed

by the prototype implementation, showing that the theories hold.

12.1 Example

In the following example the original PLEX code, the control-�ow graph

before and after loop elimination is shown. The two loops in the example

(see �g 12.1) are eliminated as shown in �g 12.2 (the eliminated edges and

nodes are marked with dashed lines). The output �les for this program

(Prolog �le for input to the GRETA tool and a textual information �le) are

found in B.

12.1.1 clear_assign.program

DOCUMENT BUFFCOPYUPROGRAM;

DECLARE;

RECORD combuf4kRec;
VARIABLE cb4kI COMMUNICATION BUFFER(4098);

END RECORD;
POINTER combuf4kRecP(combuf4kRec);

RECORD combuf8kRec;
VARIABLE cb8kI COMMUNICATION BUFFER(8192);

END RECORD;
POINTER combuf8kRecP(combuf8kRec);

VARIABLE cb4k COMMUNICATION BUFFER(4098);

CHAPTER 12. EVALUATION OF APPROACH 82

VARIABLE cb8k COMMUNICATION BUFFER(8192);
VARIABLE cb64 COMMUNICATION BUFFER(64);
VARIABLE J, I, tstart, tend;

END DECLARE;

PROGRAM; PLEX;

ENTER startcopy WITH
combuf4KRecP,
cb4kI,
combuf8KRecP,
cb8kI,
cb4k,
cb8k,
tstart,
tend;

!--------- COMMUNICATION BUFFER IS IN RECORD -------------------------!

FOR ALL J FROM tstart UNTIL tend DO
cb4k(J) = 0;

cb4k(tend - 1) = 1;
!--------- COMMUNICATION BUFFER IS NOT IN A RECORD -------------------!
FOR ALL J FROM tstart UNTIL tend DO

cb4k(J) = cb8k(J);

SEND startcopyR WITH
combuf4KRecP,
cb4kI,
combuf8KRecP,
cb8kI,
cb4k,
cb8k;

EXIT;

END PROGRAM;

END DOCUMENT;

ID BUFFCOPYUPROGRAM TYPE DOCUMENT;
CLA 19055;
NUM CAA 107 9999;
REV A;
DAT 99-11-25;
DES EED/U/TG AMB;
RES NOTME;
APP BYME;
END ID;

Another example (a self-reference) can be found in A.1.

CHAPTER 12. EVALUATION OF APPROACH 83

INIT
0

(0)

1
(1)

2
(2)

3
(8)

4
(3)

5
(4)

7
(5)

TERMINAL
999999

(6)

6
(7)

ENTER startcopy WITH
 combuf4KRecP, cb4kI, combuf8KRecP,

 cb8kI, cb4k, cb8k, tstart, tend;

!-- COMMUNICATION BUFFER IS IN RECORD --!

FOR ALL J FROM tstart UNTIL tend DO
cb4k(J) = 0;

cb4k(J) = 0;
cb4k(J) = 0;

cb4k(J) = 0;
cb4k(J) = 0;
cb4k(J) = 0;

cb4k(J) = 0;
cb4k(J) = 0;

cb4k(tend - 1) = 1;
!- COMMUNICATION BUFFER IS

NOT IN A RECORD -!
FOR ALL J FROM tstart UNTIL tend

DO cb4k(J) = cb8k(J);

cb4k(J) = cb8k(J);
cb4k(J) = cb8k(J);

cb4k(J) = cb8k(J);
cb4k(J) = cb8k(J);
cb4k(J) = cb8k(J);

cb4k(J) = cb8k(J);
cb4k(J) = cb8k(J);

SEND startcopyR WITH
combuf4KRecP, cb4kI,
combuf8KRecP, cb8kI,

cb4k, cb8k;

 EXIT;

Figure 12.1: The control �ow-graph before loop elimination for program:
clear_assign.program.

CHAPTER 12. EVALUATION OF APPROACH 84

INIT
0

1

2

34

5

7

TERMINAL
999999

6

Collapsed

Invisible

Figure 12.2: The control �ow-graph after loop elimination for program:
clear_assign.program.

Part V

Conclusions

Chapter 13

Future work

� Currently the estimated execution time for a analyzed program part is

the number of lines of code executed in this part. This is unreasonable

coarse grained and adding tables with individual �gures for di�erent

program statements (min, max, average) will increase accuracy consid-

erable when calculating the sums. These tables are also available for

di�erent processors. Including them in the prototype is planned.

� Full integration of the ESEX prototype tool (for estimate execution

times) with the prototype for graphical abstraction of existing code

(i.e. the GRETA prototype tool developed in [AGG99]) is planned,

and when completed, �eld trails with programmers will be performed.

This will give a basis for estimation on how big improvement such a

tool can bring. If e�ciency and quality improvements are large enough,

full scale implementation of such tools are considered.

� As we said in 1.4, we do not try to �nd the number of iterations

for a found loop (and we explained why in 11.1.1). This, however,

would most likely be valuable information for developers and we see

two possible extensions to deal with this.

� For any code that is added or modi�ed in the system, abstract in-

terpretation (as proposed by [Gus00]) is an interesting and power-

ful option for certain language constructs (i.e. the ON, FOR ALL

and FOR FIRST statements). A combination of the method used

in this report and abstract interpretation would probably comple-

ment each other and improve the accuracy of time estimations.

� Data �ow analysis is used in [HW99] to detect value dependent

CHAPTER 13. FUTURE WORK 87

constraints without the need of any manual annotation. These

constraints makes it possible to limit the number of times a cer-

tain path can be executed in a loop which, in turn, can be used

to increase the accuracy in execution time estimations. Since no

manual annotations are used, we see this work as a possible ex-

tension to our method.

� There are some constructs that have a great impact on the exact-

ness of the execution time estimation. One is the DO statement-block

discussed in 9.2.4. The consequence of this construct could be an over-

estimation of the execution time since, today, we do not separate valid

execution paths from those that are not. A solution to this problem

would be to always chose the in-line method (see 9.2.4).

� The GRETA tool is prepared for �nding connections between the an-

alyzed blocks. This analysis is made on the Prolog-intermediate form

that is generated from the compiler (i.e. our prototype tool). The ac-

tual connections between the di�erent blocks for a given call scenario

are found in the �nal linking process.

A possible approach to more accurately trace the execution could be

to emulate a running AXE system and hereby collect dynamic infor-

mation on which code parts is triggered by which signals in a given

scenario. (This method is used in the E-CARES project [MH01].)

Chapter 14

Summary

Soft real-time systems has the property that a missed deadline does not have

catastrophic consequences. However, there is still a need to get an estimation

of the execution time since the aim is to minimize the average execution time,

and even if missed deadlines do not cause disaster directly, the consequences

may be indirectly serious. In spite of this execution times and time restric-

tions are today mostly handled by di�erent ad hoc solutions (e.g. guidelines

such as Do not write more than k lines of code in one block). In this re-

port we show a more systematic approach applied in the telecommunication

domain (i.e. on the AXE system).

The methods used is an algorithm developed by [SGL96] and it operates

on a DJ graph, which is constructed from the control �ow graph for the

intermediate format of the compiled program. This, in combination with

scanning the source code for some additional looping structures1, gives us

su�cient information to estimate the running time of the input program.

This part of the report is (more or less) a general solution.

To be able to represent the (PLEX) program in a graphical way, the signal

information in the blocks has to be extracted. This is done by analyzing the

signal sending and receiving statements in the program.

To con�rm our approach we implemented a prototype integrated with

the compiler. The prototype has been used to estimate execution time and

detect loops for a number of test-examples of real blocks. It was also used to

extract information for the GRETA-tool developed by Arnström, Guillemot

and Grosz [AGG99].

1i.e. unexpanded FOR-statements

Bibliography

[AB98] Ericsson Telecom AB. PLEX-C 1, 1998.

[AGG99] A. Arnstrom, C. Grosz, and A. Guillemot. GRETA: a tool concept

for validation and veri�cation of signal based systems (e.g. written

in PLEX). Master's thesis, Mälardalen högskola, 1999.

[App98] Andrew W. Appel. Modern compiler implementation in C. CAM-

BRIDGE UNIVERSITY PRESS, 1998.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ulman. Compilers Principles,

Techniques and Tools. Addison-Welsey Publishing Company, 1986.

[But97] Giorgio C. Buttazzo. Hard Real-Time Computing Systems : Pre-

dictable Scheduling Algorithms and Applications. The Kluwer In-

ternational Series in Engineering and Computer sci, 1997.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms. MIT Press, 1990.

[Gus00] Jan Gustafsson. Analysing Execution-Time of Object-Oriented

Programs Using Abstract Interpretation. PhD thesis, Uppsala Uni-

versity, Sweden, 2000.

[GY99] J. Gross and J. Yellen. Graph Theory and its Applications. CRC

Press, 1999.

[HW99] C. Healy and D. Whalley. Tighter timing prediction by automatic

detection and exploitation of value-dependent constraints. In Fifth

IEEE Real-Time Technology and Applications Symposium. IEEE,

1999.

BIBLIOGRAPHY 90

[KO00] P. Karlsson and S. Ohlsson. Jämförelse av registerallok-

erigsstrategier för proggrammerinsspråket PLEX. Master's thesis,

Mälardalen högskola, 2000.

[LAB97] Ericsson SOFT LAB. Code Generation Basic Block Analyser Func-

tion, 1997.

[LAB98] Ericsson SOFT LAB. PIL - SPIL Translation Rules, 1998.

[MH01] A. Marburger and D. Herzberg. E-CARES Research Project: Un-

derstanding Complex Legacy Telecommunication Systems. In Fifth

European Conference on Software Maintenance and Reengineering,

pages 139 � 147, 2001.

[Muc97] S. Muchnick. Advanced Compiler Design & Implementation. Mor-

gan Kaufmann Publishers, 1997.

[NE93] NationalEncyklopedin, Band 12, 1993.

[SGL96] V C Sreedhar, G R Gao, and Y-F Lee. Identifying Loops Using

DJ Graphs. ACM Transactions on Programming Languages and

Systems, 18(6), 1996.

[Tar74] R. E. Tarjan. Testing �ow graph reducibility. J. Comput. Syst.

Sci, (9):355�365, 1974.

[Wol92] Michael Wolfe. Flow graph anomalies: What´s in a loop? Tech-

nical Report CS/E 92-012, Oregon Graduate Inst. for Science and

Technology, Portland, Oreg, 1992.

Index

APZ, 35

Back edge, 13

Back End, 35, 37

CA, 41

CB, 40

CE, 38

CF, 40

CG, 40, 50

CI, 38

CL, 41

CO, 41

CS, 40

CT, 40

CX, 38

Basic Block, 18

PLEX, 59

BCG, see Binary Code Generator

Binary Code Generator, 37, 41

Code Expansion, 42

DO, 50

Expressions, 42

FOR, 44

IF, 43

Labels, 42

ON, 48

Statement Blocks, 42

Code-item, 30

compiler

Back End, 37

Front End, 35

Consistency Check, 55

Control �ow-graph

Construction, 55

Dead Code Elimination, 55

Depth-First

Ordering, 14, 57

Spanning Tree, 14

Destructive Statements, 55

DJ Graph, 13

Dominator, 12

Immediate Dominator, 13

Strict Dominator, 12

Dominator Tree, 13

ender, 19

PLEX, 59

�ow-graph, 18

Front End, 35

high-level analysis, 11

HL-PLEX, 35

HURRY, 28

Immediate Dominator, 13

INITIAL, 20

Job, 30

leader, 19

PLEX, 59

INDEX 92

LOCAL signal, 28

low-level analysis, 11

Maxi Code Generator, 37

Maxi ObjecT, 35, 37, 42

MCG, see Maxi Code Generator

MOT, see Maxi ObjecT

multi-entry loop, 15

Natural loops, 14

non-natural loops, 15

Optimization

GOTO, 52

IF, 53

Labels, 51

PIL, 37

PLEX

Basic Block, 59

ender, 59

Iterations, 32

FOR, 44

Jump statements, 32

leader, 59

Signals, 25, 34

predecessor, 20

real-time system, 9

hard, 9

soft, 9

Reducibility, 16

SCC, 14

Signals, 25

Bu�ered, 26

Combined, 27

Direct, 26

HURRY, 28

LOCAL, 28

Multiple, 25

Single, 27

Unique, 25

sp-edges, 14

Strict Dominator, 12

Strongly Connected Components,

see SCC

successor, 20

TERMINAL, 20

WCET, 10

Part VI

APPENDIX

Appendix A

A.1 �b.program

DOCUMENT FIBPROGRAM;

DECLARE;

VARIABLE i 16;
VARIABLE f0 16;
VARIABLE f1 16;
VARIABLE f2 16;
VARIABLE m 16;

END DECLARE;

PROGRAM; PLEX;

RECEIVE sigName WITH
m;
f0=0;
f1=1;
IF m = 1
THEN
RETURN backSigName WITH
m;
ELSE
ON i FROM 2 UPTO m
DO
f2=f0+f1;
f0=f1;
f1=f2;
NO;
FI;
RETURN backSigName WITH
f2;

EXIT;
END PROGRAM;

END DOCUMENT;

APPENDIX A. 95

INIT
0

(0)

1
(1)

TERMINAL
999999

(4)

RECEIVE sigName
WIDTH m;
f0=0; f1=1;
IF m != 1
 GOTO ELSEL30

2
(2)

3
(3)

4 5RETURN sigName
 WITH m;
GOTO LABEL60

LABEL30
temp50=m;
i=2;
IF i > temp50
 GOTO LABEL60

LABEL70
f2=f0+f1;
f0=f1; f1=f2;
IF i <= temp50
 GOTO LABEL70

LABEL60
RETURN
backSigName
WITH f2;

Figure A.1: The control �ow-graph before loop elimination for program:
�b.program.

APPENDIX A. 96

INIT
0

1

TERMINAL
999999

2 3

4 5

Figure A.2: The control �ow-graph after loop elimination for program:
�b.program.

APPENDIX A. 97

A.2 test1.program

DOCUMENT TESTPROGRAM;

DECLARE;
VARIABLE x 16;
VARIABLE y 16;
VARIABLE z 16 DS;
VARIABLE m 16;
END DECLARE;

PROGRAM; PLEX;
ENTER sigName;
x=2;
y=x+1;
IF z>x THEN
y=y+1;
x=x-1;
FI;

z=0;
m=z+x;
EXIT;
END PROGRAM;

DATA;
z=1;
END DATA;

END DOCUMENT;

INIT
0

(0)

1
(1)

TERMINAL
999999

(4)

ENTER sigName;
 x=2; y=x+1;
 IF z<=x
 GOTO ELSEL30

LABEL ELSEL30
z=0;
m=z+x;
EXIT

2
(2)

3
(3)y=y+1;

x=x-1;

Figure A.3: The control �ow-graph for program: test1.program.

Appendix B

B.1 Output for the clear_assign.program

B.1.1 Prolog �le output

% Block information:
block(b-name("BUFFCOPYUPROGRAM"),
pos(X,Y),
opt([])
).
signal(io(in).
s-name("STARTCOPY").
from-blk(X).
to-blk().
type([initial_buffer]).
time(100).
pos(X,Y).
chosen(true).
opt([]).

).

signal(io(out).
s-name("STARTCOPYR").
from-blk(X).
to-blk().
type([initial_buffer]).
time(100).
pos(X,Y).
chosen(true).
opt([]).

).

code-item(b-name("BUFFCOPYUPROGRAM"),
start("STARTCOPY"),
out(),
exit("STARTCOPYR"),
opt([25, 25, LOOPS])
).

% Nr of code items: 1

APPENDIX B. 99

B.1.2 Information �le output
Signal info:
Pos: {26, 3}
[STARTCOPY, ENTER Single
INIT LOC
INIT BUFF

] End Signal

Signal info:
Pos: {45, 3}
[STARTCOPYR, SEND SPAR
Single
INIT LOC
NO MULT
INIT BUFF

] End Signal

Total number of combined signals sent: 0
Total number of local signals sent: 0

Total number of statements: 0

Loop info:
Loop detected:
nr of statements in loop:(21, 21)
Loop detected:
nr of statements in loop:(9, 9)
Nr of statements for code-item STARTCOPY (min, max): (25, 25)

% Nr of code items: 1

