
Towards Implementation of Virtual-Clustered
Multiprocessor Scheduling in Linux

Syed Md Jakaria Abdullah, Nima Moghaddami Khalilzad, Moris Behnam, Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden
nima.m.khalilzad@mdh.se

Abstract—Cluster based multiprocessor scheduling can be seen
as a hybrid approach combining benefits of both partitioned
and global scheduling. Virtual clustering further enhances it
by providing dynamic cluster resource allocation and applying
hierarchical scheduling techniques. Over the years, the study of
virtual cluster scheduling has been limited to theoretical analysis.
In this paper, we present our initial ideas on implementing virtual
cluster scheduling in Linux. The purpose of this implementation
is twofold: (i) we would like to demonstrate the feasibility of
its implementation in an operating system, without modifying
the kernel source code, (ii) we present practical insights on the
overhead of implementing this framework.

I. INTRODUCTION

In recent years, we have witnessed a major paradigm shift
in the computing platform design. Single-core chip designs
suffer from many physical limitations such as excessive energy
consumption, chip overheating, memory size and memory
access speed which can be reduced by placing multiple
processing cores that share some levels of cache memories on
the same chip. As a result, the hardware vendors now prefer to
increase the number of processors available in a single chip.

The study of real-time scheduling in multiprocessors dates
back to early 70s [1], even before the appearance of the actual
hardware. Recent advancement of the processing platform
architectures led to a regain of interest for the multiprocessor
real-time scheduling theory during the last decade. The two
most popular scheduling approaches in multiprocessors are
global and partitioned scheduling [2]. In partitioned scheduling
a task set is partitioned into disjoint partitions and each of the
partition is independently scheduled in its assigned processor.
In contrast, global scheduling uses only one global scheduler to
schedule all the tasks in all the available processors. However,
partitioned scheduling suffers from inherent algorithmic com-
plexity of partitioning, and global scheduling is not scalable
due to scheduler overhead [2].

Recently, a number of hybrid approaches combining the
partitioned and global scheduling methods have been proposed,
e.g, semi-partitioned [3] and cluster based scheduling [4]. The
main idea of cluster based scheduling is to divide m processors
into dm

c
e sets of c processors each. Both partitioned and

global scheduling can be seen as extreme cases of clustering
with c = 1 and c = m, respectively. Clustering reduces the
partitioning problem by reducing the number of partitions,
and distributes the overhead of the global scheduler into per-
cluster schedulers. The notion of physical cluster of processors
has been enhanced by Shin et al. [5] using Virtual Clusters

(VCs). VCs are dynamically mapped into a set of available
processors via a resource interface. Therefore, virtual clustered
scheduling appears to be more flexible than the original physical
clustering [4]. Although Easwaran et al. [6] provided a complete
hierarchical scheduling framework for implementing virtual
clustering, there is no experimental implementation of it to the
best of our knowledge.

In this paper, we present our work towards the implementa-
tion of a Virtual-Clustered Hierarchical Scheduling Framework
(VC-HSF) in Linux without modifying the base Linux kernel.
This work includes our design of the framework and related
implementation challenges. To avoid modification of the Linux
kernel, we intend to use the ExSched framework [7].

II. RELATED WORK

In this section, we present related work in clustered and
hierarchical multiprocessor scheduling.

A. Clustered Multiprocessor Scheduling

In LITMUSRT , the Clustered EDF (C-EDF) algorithm is
implemented to compare its performance with respect to other
multiprocessor algorithms [8]. The main idea of C-EDF is
to group multiple processors that share a cache (either L2 or
L3) into one cluster and to assign tasks to the cluster off-line.
Each cluster has a separate runqueue and during run-time it
uses a global scheduling algorithm within the cluster. Tasks
can only migrate between the processors of their own cluster
and different clusters do not share processors. Lelli et al. [9]
also implemented C-EDF in a multiprocessor extension of
the customized Linux scheduling class SCHED_DEADLINE
[10]. Both of these implementations of C-EDF are examples
of physical clustered scheduling for multiprocessors and they
rely on patch based modification of the Linux kernel.

However, the focus of our work is on virtual clustered
scheduling which differs from C-EDF in several aspects. Firstly,
unlike physical clusters, VCs can share processors. Secondly,
instead of assigning processors to a cluster off-line, virtual
clustering can assign them on-line using global scheduling.
Finally, the task migration is not limited to a set of processors
(like clustered processors of C-EDF), as processors assigned
to a cluster can change dynamically.

B. Hierarchical Multiprocessor Scheduling

Two-level hierarchical scheduling [11] that has been intro-
duced for uniprocessor platforms provides a temporal isolation



mechanism for different components (subsystems). This is
increasingly becoming important due to the component-based
nature of systems’ software development. There are several
models to abstract the resource requirements of components
such as the bounded delay model [12] and the periodic resource
model [13]. These resource models are extended to hierarchical
multiprocessor scheduling such as the Multiprocessor Periodic
Resource (MPR) model [5] and the Bounded-Delay Multiparti-
tion (BDM) [14] model. Both the MPR and BDM models are
proposed as part of a hierarchical scheduling framework which
comprises schedulabilty analysis, resource interface generation
and run-time allocation. As shown in the BDM, in the original
MPR it is assumed that the servers on different processors are
synchronized. However, this assumption is relaxed in [15]. To
the best of our knowledge none of these frameworks is actually
implemented in a multiprocessor platform.

Different implementation schemes for hierarchical schedu-
ling for multiprocessors are analyzed in [16]. Checconi et
al. [17] have implemented a two-level hierarchical scheduling
for multiprocessors in Linux. Their implementation exploits the
hierarchical resource management and task group scheduling
support in Linux via cgroups and throttling mechanisms.
However, their implementation of hierarchical scheduling
requires multiple global schedulers and each of the subsystem
can access all processors. Additionally, this implementation is
patch based, thus it requires modification of the base Linux
kernel.

Hierarchical compositional scheduling has been realized in
[18] and [19] through virtualization. However, our work is
different from these papers in two aspects. Firstly, we intend to
implement the complete hierarchy of schedulers within a single
operating system. Secondly, none of the previous works [18],
[19] addressed the MPR interface as the resource interface
model.

III. BACKGROUND

A. System Model

In this paper, we consider a simple sporadic task model
τ ji (T j

i , E
j
i , D

j
i ) where T j

i is the minimum inter-arrival time,
Ej

i is the worst-case execution time requirement, and Dj
i is

the relative deadline (0 < Ej
i ≤ D

j
i ≤ T

j
i ). The superscript in

the task notation represents the cluster id. The set of all tasks
is denoted by Γ(Γ = τ ji |∀i = 1, .., n) where n is the number
of tasks. We assume that all tasks are independent of each
other and each job of τ ji must be supplied with Cj

i units of
the processor capacity non-concurrently within Dj

i time units
after its release.

A time-driven periodic server [20] is defined as PSi(Pi, Qi),
where Pi is the server period, and Qi is the server budget which
represents the number of CPU time units that has to be provided
by the server every Pi time units. The periodic servers idle
their budget if there is no active task running inside the server.

B. Virtual Cluster Scheduling

The virtual cluster scheduling framework [5] is a genera-
lization of physical clustering with a new feature of sharing

processors between different clusters. Unlike physical clusters,
where processors are dedicated to a cluster off-line, VC-HSF
allows allocation of physical processors to the clusters during
run-time. This dynamic allocation scheme requires an interface
to capture the execution and concurrency requirements within a
cluster to use hierarchical scheduling techniques. The interface
proposed by Shin et al. [5] which is known as the MPR model
is:

Definition 1. The MPR model µ =< Π, θ,m′ > where θ ≤ Π
specifies a unit capacity, identical multiprocessor platform
with at most m′ processors can collectively supply θ units of
execution resource in every Π time units. At any time instance
at most m′ processors are allocated concurrently to µ where
θ/Π denotes the bandwidth of model µ [5].

In VC-HSF, a sporadic task set Γ is assigned to a set
of clusters and for each cluster Ci an MPR interface µi is
generated using the schedulability analysis method presented
by Shin et al. [5]. Then each of these interfaces is transformed
into a set of implicit deadline periodic servers for inter cluster
scheduling. The result of this transformation is one to m′

periodic servers with a common period equal to Π. All of the
periodic servers associated with each cluster can collectively
consume θ time units which is called the total budget. The
total budget is reduced when any of the servers is running. One
example for mapping the cluster interface to periodic servers
is the method proposed by Easwaran et al. [6] which works
as follows. Given an MPR interface µj =< Πj , θj ,m

′
j > for

cluster Cj , it creates a set of implicit deadline periodic servers
PSj

1, . . . , PS
j
m′j

, where,

PSj
1 = PSj

2 = . . . = PSj
m′j−1

= (Πj ,Πj) (1)

PSj
m′j

= (θi − (m′j − 1).Πj ,Πj). (2)

The servers PSj
1, . . . , PSm′j−1

are full budget servers, while
PSm′j

is a partial budget server.
Once all the interfaces are transformed into the periodic

servers, VC-HSF uses hierarchical scheduling to schedule
servers and tasks. There are two levels of scheduling described
in VC-HSF, namely inter-cluster scheduling and intra-cluster
scheduling. Here the inter-cluster scheduler refers to the global
scheduler of the hierarchical scheduling while the notion of
intra-cluster scheduler is similar to the local scheduler in
hierarchical scheduling.

In hierarchical scheduling, the global scheduler schedules
the servers representing the subsystem. The same is true for
the inter-cluster scheduler of VC-HSF except that each cluster
can have up to m′ active servers. All the servers from all
the clusters are queued according to the global scheduling
policy. However, tasks are not assigned to any particular server,
rather these only belong to a specific cluster. The intra-cluster
executes tasks of the cluster by consuming the budgets of its
scheduled servers. Unlike regular hierarchical scheduling, the
local or intra-cluster scheduler also has to use a multiprocessor
global scheduling algorithm as there can be multiple active
servers of a cluster. As a result, VC-HSF can be described as



global scheduling in two level.

C. ExSched

ExSched [7] is a scheduling framework that can be used to
implement custom schedulers as plug-ins for different operating
systems without changing the kernel of the operating system.
It consists of three major components: a core kernel module,
a set of scheduler plug-ins and a library for the user space
programs.

The key component of the ExSched framework is its core
module. It is a character-device module which can be loaded
into kernels which support loadable modules. The core module
is accessed by the user space programs through I/O system
calls such as ioctl(). To determine the scheduling decisions
for the user program, the core module invokes a set of callback
functions implemented by the specific scheduler plug-in. To
develop a plug-in in ExSched, the designer has to implement
these callback functions that will be used by the core module.
Finally, the core module implements custom scheduling deci-
sions from the plug-ins via original scheduling primitives of the
host operating system. For example, in Linux, the ExSched core
uses SCHED_FIFO policy of the real-time scheduling class
rt_sched_class to implement the scheduling decisions
from the plug-ins. It uses scheduling functions provided by the
Linux kernel such as schedule, sched_setscheduler
and set_cpus_allowed_ptr to implement real-time sche-
duling. In case of multiprocessors, task migration is done in
two ways. The migrate_task(task,cpu) function of
the core can migrate a task running in the thread context by
simply calling the set_cpus_allowed_ptr. However, in
case of task running in the interrupt context, the core module
has to create a high priority real-time kernel thread to migrate
the task.

IV. DESIGN OF VC-HSF

In this section we describe different components of the
design of VC-HSF.

A. Inter-cluster Scheduling

The single inter-cluster scheduler of VC-HSF is similar to
the global scheduler of the conventional hierarchical scheduling
approach. To implement global scheduling, the inter-cluster
scheduler needs to use two queues to manage servers. These
are a global release queue for servers waiting to be released
and a global ready queue for all the ready servers. Different
inter-cluster scheduling algorithms can be implemented by
manipulating the management of these queues.

Each of the servers in a cluster needs its own server descriptor
defined by the structure vc server t. There are two major
differences in server descriptors of VC-HSF compared to the
server descriptor of any other hierarchical scheduling. Firstly, as
tasks are not linked to a server in VC-HSF, there is no relation
between server descriptors with the queues of tasks. Instead,
the server descriptor only needs a reference to the descriptor of
its cluster. Secondly in VC-HSF, servers can migrate from one
processor to another, so the server descriptor needs to keep
information about the processor where it is running. In addition,

similar to other server descriptors, vc server t contains general
server parameters such as the server period and deadline.

The functions of the inter-cluster scheduler can be summari-
zed as following: whenever it is invoked, either the total budget
is expired or it gets replenished via activation. If a server is
released as the highest priority one in the server ready queue,
then the scheduler first has to check for an idle processor
where it can run that server. If there is no idle processor then
it has to check all the busy processors to find if there is a
server running with a lower priority that it can preempt. In
case of server preemption, it should manage the remaining
budget of the preempted server’s cluster and it should insert
the server into a proper place in the server ready queue. If both
attempts fail, the server remains in the ready queue. When
the total budget of a cluster expires, the inter-cluster scheduler
inserts the descriptor of its associated servers in the server
release queue. If the server ready queue is not empty then the
scheduler picks the highest priority ready server to run on the
idle processor. It invokes the intra-cluster scheduler whenever a
server of that cluster either gets a new budget, gets preepmted
or depletes its budget. The inter-cluster scheduler also migrates
the server by changing the processor id of the server when a
server is scheduled on a different processor, than its previous
run.

In [6], the McNaughton’s algorithm is proposed for inter-
cluster scheduling. However, as this off-line algorithm requires
the same period for all the clusters, we want to use another
general global scheduling algorithm such as the global EDF
(gEDF) algorithm for inter-cluster scheduling.

B. Intra-cluster Scheduling

The VC-HSF needs one intra-cluster (local) scheduler per
cluster instead of one local scheduler per server of the
conventional hierarchical scheduling. Each cluster needs its
own release queue and ready queue for managing its tasks. All
the servers in a single cluster share task queues of that cluster.
However, the intra-cluster scheduler employs a multiprocessor
global scheduling algorithm to schedule tasks into processors
as there can be more than one processor available for the
cluster. The inter-cluster scheduler works in the following way:
it is invoked by the inter-cluster scheduler whenever one of
its server’s total budget is replenished or it is depleted or an
associated server gets preempted by the other servers of a
different cluster. It is also invoked when a new task job of its
cluster becomes ready or completes its execution. If a newly
released job of the cluster is the highest priority one in the
ready queue then the scheduler first has to check for an idle
server within its own cluster to run that job using its budget. If
there is no idle server, then it has to check all the busy servers
of its cluster to find if there is a task job running with lower
priority that it can preempt. If there is no task to preempt, the
new job should remain in the ready queue of its cluster. It
inserts released and preempted task jobs into the task ready
queue of the cluster. The completed jobs are also inserted into
the cluster wise release queue for subsequent release. The intra-
cluster scheduler migrates a task to a new processor whenever



the server running that task is migrated by the inter-cluster
scheduler.

Each cluster requires a cluster descriptor vc cluster t. The
descriptor contains a reference to the task queues of the cluster
and also a list of its active running servers. The original task
descriptor provided by the ExSched also needs to be extended
such that vc task t assigns each task to a cluster. As the
processors are assigned to the clusters dynamically, and a
single cluster can have more than one processor, the cluster
task queues of clusters are implemented globally. A brief
overview of the framework is illustrated in Figure 1.

CPU 0

Server 0

CPU 1

Server 1

CPU 2

Server 2

CPU 3

Server 3

Inter-cluster Scheduler

Virtual Cluster 0

Intra-cluster scheduler

Virtual Cluster 1

Intra-cluster scheduler

τ0

0
τ0

1
τ0

2
τ1

1
τ1

2
τ1

0

Cluster 0 Cluster 0 Cluster 1 Cluster 0

Figure 1. Design overview of VC-HSF

V. FUTURE WORK

Currently we are working on the following three aspects
of the virtual clustered hierarchical scheduling framework
implementation using ExSched [7].

• We are investigating the best way to implement inter-
cluster and intra-cluster scheduling using plug-in functions
of ExSched. For this work, we are reusing some available
functionalities of the ExSched’s uniprocessor hierarchical
scheduling plug-in.

• We are investigating how to efficiently implement both
server and task migration mechanisms using ExSched.

• In the virtual cluster hierarchical scheduling framework,
the inter-cluster scheduler needs to check all busy proces-
sors to find a server to preempt. Similarly, the intra-cluster
scheduler needs to check all running servers in its cluster
to find a task to preempt. We are investigating how to
implement this searches efficiently using ExSched.

ACKNOWLEDGMENT

The authors would like to thank Mikael Åsberg for helping
with knowledge related to ExSched.

REFERENCES

[1] C. L. Liu, “Scheduling Algorithms for Multiprocessors in a Hard Real-
Time Environment,” JPL Space Programs Summary 37-60, vol. II, pp.
28–31, 1969.

[2] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys, vol. 43, no. 4, pp.
1–44, 2011.

[3] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions,” in 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’06), August
2006, pp. 322–334.

[4] J. Calandrino, J. Anderson, and D. Baumberger, “A hybrid real-time
scheduling approach for large-scale multicore platforms,” in 19th
Euromicro Conference on Real-Time Systems (ECRTS’07), April 2007,
pp. 247–258.

[5] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework for
virtual clustering of multiprocessors,” in 20th Euromicro Conference on
Real-Time Systems (ECRTS’08). IEEE Computer Society, April 2008,
pp. 181–190.

[6] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-based
multiprocessor scheduling,” Real-Time Systems, vol. 43, no. 1, pp. 25–59,
2009.

[7] M. Åsberg, T. Nolte, S. Kato, and R. Rajkumar, “Exsched: An external
cpu scheduler framework for real-time systems,” in 18th IEEE conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA’12), August 2012, pp. 240–249.

[8] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An empirical
comparison of global, partitioned, and clustered multiprocessor edf
schedulers,” in 31st IEEE International Real-Time Systems Symposium
(RTSS’10), December 2010, pp. 14–24.

[9] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta, “An efficient and
scalable implementation of global edf in linux,” in 7th annual workshop
on Operating Systems Platforms for Embedded Real-Time applications
(OSPERT’11), July 2011.

[10] D. Faggioli, M. Trimarchi, F. Checconi, and S. Claudio, “An edf
scheduling class for the linux kernel,” in 11th Real-Time Workshop
(RTLW’09), October 2009.

[11] Z. Deng and J. W. S. Liu, “Scheduling real-time applications in an open
environment,” in 18th IEEE Real-Time Systems Symposium (RTSS’97),
December 1997, pp. 308–319.

[12] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time systems,”
in 7th Real-Time Technology and Applications Symposium (RTAS’01),
May 2001, pp. 75–84.

[13] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE Real-Time Systems Symposium (RTSS’03),
December 2003, pp. 2–13.

[14] G. Lipari and E. Bini, “A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation,”
in 31st IEEE Real-Time Systems Symposium (RTSS’2010), December
2010, pp. 249–258.

[15] N. M. Khalilzad, M. Behnam, and T. Nolte, “Exact and approximate
supply bound function for multiprocessor periodic resource model: Un-
synchronized servers,” in 5th International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (CRTS’12),
December 2012, pp. 1–8.

[16] M. Åsberg, T. Nolte, and S. Kato, “Towards hierarchical scheduling
in linux/multi-core platform,” in 15th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA’10), September 2010, pp.
1–4.

[17] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
multiprocessor CPU reservations for linux kernel,” in 5th annual
workshop on Operating Systems Platforms for Embedded Real-Time
applications (OSPERT’09), July 2009.

[18] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin, “Implementation of
compositional scheduling framework on virtualization,” SIGBED Review,
vol. 8, no. 1, pp. 30–37, March 2011.

[19] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
O. Sokolsky, “Realizing compositional scheduling through virtualization,”
in 18th IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS’12), April 2012, pp. 13–22.

[20] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedu-
ling,” in 26th IEEE Real-Time Systems Symposium (RTSS’05), December
2005, pp. 10–398.


