
The Asterix real-time kernel

Henrik Thane, Anders Pettersson, Daniel Sundmark

Mälardalen Real-Time Research Centre, Sweden,
henrik.thane@mdh.se

1 Introduction
This paper describes a real-time kernel, Asterix, that in

a practical manner makes use of many of the recent
advances made in the real-time systems research
community. The basic ambition behind the development
of the Asterix real-time kernel was to pack state-of the art
research results into package such that it can be easily
used and understood by people in the embedded systems
industry. From an academic point of view the Asterix real-
time kernel fulfills all the basic requirements necessary for
facilitating different types of timing analyses. For a
software designer this signifies that the Asterix real-time
kernel has the means to satisfy engineering of real-time
software in the same fashion as civil engineers make use
of structural calculus when designing bridges or houses.
The Asterix real-time kernel is in combination with its
support environment in a unique position to provide the
embedded systems industry with a development kit that
can increase the reliability, safety, and testability of their
applications with several magnitudes compared to existing
development systems.

From the outset of the development project we decided
that the kernel would be distributed as an open source
program. For a customer this has several benefits: nothing
can be cheaper than free, and risks taken by relying on a
small company for providing a real-time kernel can be
minimized by having access to the source code. In
summary, the kernel packs state-of-the art features into a
package that is all free and open.

Although the Asterix real-time kernel defines the state-
of-the-art with respect to other real-time kernels its
greatest strengths lies in its open platform and its support
by extremely powerful development, and verification
tools.

Key features of the Asterix kernel are:

� The execution strategies. The Asterix real-time
kernel handles execution strategies ranging from
strictly statically scheduled systems via fixed
priority scheduled systems to event-triggered
systems, or any combination of them.

� Memory consumption. From an industrial point
of view we have during the design of the kernel
considered memory consumption and minimized
the kernel and the application memory footprints.

� Monitoring support. Built in monitoring support
makes it possible to use of state-of-the art testing,
and debugging tools like deterministic testing [14]
and deterministic replay debugging [15] and
visualization. The kernel also provides facilities
for measuring execution times of tasks with a high
resolution.

� Wait and Lock-free communication. The kernel
supports a communication type, using buffers, that
decreases the need for explicit synchronization
using e.g., semaphores. As a consequence blocking
times can be reduced as well as increasing the
analyzability of the entire real-time system [3][6].

� Execution time jitter reduction. The kernel
provides a mechanism for minimizing the
execution time jitter of individual tasks as well as
the jitter originating from the kernel it self. This
has been shown to increase the testability of the
application enormously, since all executions of the
target system will be reproducible [14]. It is also
very important for control applications in general
to minimize the jitter.

� Compiling kernel. The Kernel is compiling which
means that the kernel is very resource efficient in
terms of allocating memory only necessary for a
set of tasks. This means that if the target system
only contains 5 tasks, data is only allocated for 5
tasks. If the system contains 127 tasks data is only

mailto:hte@mdh.se

allocated for 127 tasks. The obvious benefits are
that we minimize the overhead, both in memory
and in execution time jitter. This overhead is
otherwise inherent to all kernels that handle an
arbitrary number of application tasks.

� Exception handling. The kernel has a well
defined exception handling architecture, with
different layers of abstraction, separating temporal
and functional error handling, as well as system
level and user level exceptions.

� Formally verified. The kernel design is also in the
process of being formally verified. This means that
we will be able to provide customers with verified
versions of the Asterix real-time kernel.

� Portable. The kernel design is such that it will be
easy to port to any processor. We will provide test
suites for validation of new implementations.

� Analyzable. Applications which employs the
services provide by the Asterix real-time kernel
will be possible to analyze with respect to temporal
behavior, synchronization correctness, and proper
use of communication mechanisms. This
analyzability is not only of importance when
developing safety critical application it is also a
desirable property which can be used to shorten
the time to market. The reason is that the Asterix
kernel enables analysis of designs in an early phase
of a project and thereby avoids costly and time-
consuming re-designs in a late phase of the project
because of lack of computational resources.

Document outline. We will in the remainder of this
document describe the key features of the Asterix real-
time kernel in more detail. We begin with the execution
strategy, and continue with monitoring mechanisms, and
jitter reduction.

2 The Asterix execution strategy
The execution strategy of the Asterix real-time kernel is

based on fixed priority scheduling with support for
preemption. This means that the kernel is multitasking,
i.e., multiple tasks can share the same computing resource
(CPU), where the task with the highest priority executes.
Preemption, or task interleaving, means that an executing
task can be preempted during its execution by another
task, and then allowed to resume after the completion of
the preempting task.

The kernel supports both periodic time triggered tasks
and aperiodic event triggered tasks. All tasks are of
terminating character, which means that when a task has
completed its execution, it terminates and waits until a

new period or a new event occurs. This has the benefit of
decreasing the coupling in the system by abstracting the
reactivation of the tasks away from the source code. The
responsibility for reactivation is left to the kernel and the

schedule

A task

� P

� T
is

� O
re

� B
ex

� D

Dependin
Asterix re
schedule,
periodic t
(Table 2
triggered
defining

strategy,
paradigm
systems w
priority s
tasks ev
robustnes
execution
berserk.
Table 2-1 A static schedule for a
period/LCM of 400 ms.
Task Period r priority Deadline
A 400 0 4 100
B 400 40 3 400
C 400 40 2 400
A 400 100 4 200
A 400 200 4 300
A 400 300 4 400
D 400 350 1 400
where analyses are easier to apply.

 in Asterix is defined by its:

– Priority (which is unique)

 – Periodtime. For aperiodic tasks the periodtime
 not defined.

 – Offset. A periodic task can delay its
activation with an offset relative its periodtime.

CET and WCET. The best case and worst case
ecution time.

L – Deadline.

g on how we define these task attributes the
al-time kernel can be configured to run a static

 i.e., a predefined timetable [18] (Table 2-1), or
asks according to Fixed Priority Scheduling [1]
-2). A system can also be defined as event
by not giving period times of the tasks and by

activator signals. Due to this general execution
Table 2-2 A Fixed Priority schedule. .
Same system as in table 2-2.
Task Period r priority Deadline
A 100 0 4 100
B 400 40 3 400
C 400 40 2 400
D 400 350 1 400
we can mix any of the different execution
s. We can for example have statically scheduled

here some tasks are event triggered or fixed
cheduled. The approach of assigning priorities to
en for statically scheduled timetables gives
s since lower priority tasks cannot disrupt the
 of higher priority tasks if they fail and run

Every tasks in the Asterix kernel can be in four states:
Waiting, Signal blocked, Ready, and Executing. The states
and valid transitions between them are illustrated in Figure
2-1 and exemplified in table 2-3.

2.1.1 Synchronization

In the Asterix real-time kernel we can synchronize
tasks in two distinct ways: on-line, in the source code,
using semaphores and signals, and off-line, in the
schedule, using offsets. The decision to allow both types
of synchronization mechanisms was that they have

mutually exclusive benefits depending on the type of
problem to be solved. That is for certain problems the
solution or analysis would be more complex if we used
e.g., offsets than semaphores and vice versa. In the Asterix
real-time kernel we allow both types of synchronization to
be used at the same time.

For multitasking systems the use of semaphores is
notorious due to the possibility of deadlocks and
starvation caused by priority inversion. Semaphores have
proven to cause many intricate problems and elusive bugs.
However, depending on the actual algorithm used to
implement the semaphore synchronization mechanism we
can eliminate deadlock and starvation situations. This can
be achieved by using priority-ceiling algorithms. In the
Asterix real-time kernel we have implemented a very
simple, memory conservative and predictable algorithm,
the Immediate Inheritance Protocol. Another benefit of
this protocol in conjunction with the terminating character
of all tasks is that we can make use of a single stack, and
thus decrease memory use.

2.1.2 Communication

In the Asterix real-time kernel we provide a mechanism
called wait and lock-free communication (WLFC). This
type of shared memory communication allows tasks to
communicate with each other without any blocking, that
is, the need for explicit synchronization using e.g.,
semaphores is eliminated. The shared memory
communication is of simplex type and based on a set of
buffers that can be read by a set of tasks and written to by
one task. The reading tasks are guaranteed that the value
they read is nonvolatile during their execution, i.e.,
atomicity is guaranteed. The writing task is also
guaranteed a free buffer for writing. The wait-free in
WLFC means that a reading task does not have to wait for
the latest produced value; it will always be available for
the receiver. When a task A, starts to execute it is given a
reference to the latest written value by a producer, P. This
value is guaranteed to be unmodified during the execution
of task A, even if it is preempted by the writer, P, and P
produces a new value. However if now a second reading
task, B, preempts A after P has written a new value, task B
will at its start receive a reference to this new latest value.

The cost for this type of communication is memory.
The number of buffers need for each wait and lock-free
communication channel is no_buffers = no_readers + 2. If
a software designer feels that the memory needed for
WLFC is too costly then the designer can resort to shared
memory and use semaphores for synchronization. Another
option is if the communicating tasks run with the same
periodicity then we can make use of offsets for
synchronization and just use one memory buffer.

Wait and lock-free communication is superior for
systems where communication between

Waiting Ready Executing
1 3

Signal
blocked

2

4

5

6

7

8

Figure 2-1. The states and transitions possible in
the Safe2Run real-time kernel.

Table 2-3. The transitions in the Safe2Run
real-time kernel.

Transition Cause
1 Periodic task starts
2 Aperiodic task starts
3 A task is ready to execute due

to period start
4 The scheduler decides to start

the highest priority task
available in ready and
Executing.

5 When a periodically executing
task has terminated

6 When the executing task is
preempted.

7 When an executing task is
suspended until a signal
occurred

8 When an aperiodic task is
triggered by a signal.

asynchronous/multi-rate tasks occur [3][6]. In addition
WLFC gives decreased blocking times and reduced
scheduling complexity. All data transfer is also performed
by the tasks themselves, not by the kernel, which
decreases kernel overhead and jitter. The data transfer
overhead is debited to the tasks involved in the
transaction, and therefore subject to execution time
estimation.

2.1.3 Hard and soft tasks

The tasks in the Asterix real-time kernel are divided
into two categories: Hard tasks and soft tasks. The
difference between the tasks are that the hard tasks are
required to have passed a schedulability analysis (see
Section 2.1.5), while the soft tasks have no such
requirement. Since we can mix both types of tasks in a
system we must guarantee that the soft tasks cannot disrupt
the execution of the hard tasks. This guarantee is fulfilled
by statically assigning priorities to soft tasks that are all
lower than the priorities of the hard tasks. In order to
guarantee that no soft task can block a hard tasks the
semaphore mechanism is devised such that the set of
semaphores used by the soft tasks are disjunct with the set
of semaphores used by the hard tasks. These sets are
defined off-line, and are actually required in order to set
the correct priority ceilings in the immediate priority
inheritance protocol. If a soft task under suspicious
circumstances still would access a hard semaphore an
exception handler would be invoked and the situation
would be detected.

2.1.4 Pre-runtime configuration

As the Asterix real-time kernel is compiling we need a
means to specify the constitution of the system and to
initialize all data structures describing the tasks and their
attributes. This is done in a configuration file, which upon
execution outputs the necessary data structures that can be
complied together with the application code and the
kernel. Figure 2-2 illustrates a configuration file.

2.1.5 Timing analysis

Timing analysis is performed at two levels, the task
level and the system level.

At the task level the worst case execution time for each
task is analyzed or estimated. This analysis is comparably
simple on Asterix compared to do on tasks running on
traditional RTOS such as WxWorks and QNX since
Asterix requires terminating tasks. Further, since a task
cannot be blocked after it has entered the state execution
(only pre-empted), the worst case execution time can be
calculated or measured for the code of task in isolation.

At system level we analyze if the composed system
fulfil its timing requirements by using either fixed priority

analysis or a pre-runt-time scheduler. Both kind of
analysis is mature and proven to be useful in industrial
applications [19][20].

When designing a system we can assign time budgets
to the tasks that are not implemented by intelligent guesses
based on experience. By doing this we gain two positive
effects. First, the system level timing analysis can be done
before implementation and hence we have a tool for
estimating the performance of the system. Second, the
time budgets can be used as an implementation
requirement.

By applying this approach we make the design process
less adhoc with respect to real-time performance. That is,
the first time one can find timing problems in traditional
system design is when the complete system or subsystem
has been implemented. If a timing problem is found adhoc
optimization starts which most surely will make the system
difficult to maintain.

SYSTEMMODE = NORMAL;
RAM = 512000;
MODE mode_1{

RESOLUTION = 1000;
HARD_TASK ht_1{

ACTIVATOR = 100; //period time
OFFSET = 0;
DEADLINE = 50;
PRIORITY = 10;
STACK = 50;
ROUTINE = ht_1_routine;
ARGUMENTS = "1, 2, 3";
ERR_ROUTINE = ht_1_error_routine;};

HARD_TASK ht_2{
ACTIVATOR = 50; //period time
OFFSET = 0;
DEADLINE = 20;
PRIORITY = 20;
STACK = 50;
ROUTINE = ht_2_routine;};

SOFT_TASK st_1{
ACTIVATOR = sig_1; //trigger signal
OFFSET = 0;
DEADLINE = 10;
PRIORITY = 10;
STACK = 50;
ROUTINE = st_1_routine;};

WAITFREE w_1{
WRITER = ht_1;
READER = ht_2;
NUM_BUF = 3;
TYPE = "my_type";};

SIGNAL sig_1{
USER = ht_1;
USER = st_1;};

SEMAPHORE sem_1{
USER = ht_1;
USER = ht_2;};

};

Figure 2-2. The Configuration of a system.

3 Monitoring
In the Asterix real-time kernel we have unique support

for observations of the target application. These
observations can be used for execution time measurements
of the application tasks, but most significantly these
observations can be used for visualization, deterministic
replay debugging and deterministic testing of the target
system.

3.1 Deterministic replay
Deterministic replay is a software based technique
proprietary to the Asterix development environment that
allows reproducible debugging of single tasking, multi-
tasking, and distributed real-time systems [15]. During
runtime, information is recorded with respect to interrupts,
task-switches, timing, and data. The system behavior can
then be deterministically reproduced off-line using the
recorded information. A standard debugger can be used
without the risk of introducing temporal side effects, and
we can reproduce interrupts, and task-switches with a
timing precision corresponding to the exact machine
instruction at which they occurred. The technique also
scales to distributed real-time systems, so that
reproducible debugging, ranging from one node at a time,
to multiple nodes concurrently, can be performed.

3.2 Deterministic testing
For testing of sequential software it is usually sufficient to
provide the same input (and state) in order to reproduce
the output. However, for real-time systems it is not
sufficient to provide the same inputs for reproducibility –
we need also to control, or observe, the timing and order
of the inputs and the concurrency of the executing tasks.
Based on the monitoring mechanisms built into the Asterix
real-time kernel and a proprietary testing method found in
the Asterix development environment deterministic testing
of the target application can be easily performed. The
testing method includes an analysis technique that given a
set of tasks and a schedule derives all execution orderings
that can occur during run-time [14]. The method also
includes a testing strategy that using the derived execution
orderings can achieve deterministic, and even
reproducible, testing of real-time systems. Each execution
ordering can be regarded as a sequential program and thus
techniques used for testing of sequential software can be
applied to real-time system software. The analysis and
testing strategy can also be extended to encompass
interrupt interference, distributed computations,
communication latencies and the effects of global clock
synchronization.

TASK
Recorder

Time stamps

External process

I/O

Activation
Preemptions
Termination
Interrupt hits
System calls

RT-kernel
monitor

Figure 3-1. Kernel monitoring and recording.

Figure 3-2. Offline kernel with debugger.

TASK

Recorder

I/O

Activation
Preemptions
Termination
Interrupts
System calls

 RT-kernel
off-line

DEBUGGER

4 Jitter reduction
The kernel provides a mechanism for minimizing the

execution time jitter of individual tasks as well as the jitter
originating from the kernel it self. This has been shown to
increase the testability of the application enormously,
since all executions of the target system will be
reproducible [14][13]. It is also very important for control
applications in general to minimize the jitter.

Figure 4-1 illustrates the possible execution orderings
for a schedule running on the Asterix real-time kernel
without jitter reduction. That is all the possible task starts,
task preemptions and task terminations yielded by the
varying execution times of tasks and their varying start
times due to delay caused by higher priority tasks. Figure
4-2 illustrates the same system with jitter reduction turned
on.

From a verification perspective the fewer the scenarios
the system exhibit the better the possibilities are for testing
and debugging the system since the number of behaviors
to consider is reduced. In fact there is an exponential
relation between the jitter in the system and the number of
execution scenarios. In other words the testability of a
system is enormously influenced by the jitter. The
potential testability, and therefore indirectly the reliability,
of the system benefits greatly by the jitter reduction
techniques used in the Asterix real-time kernel. Typical
testability gains are in the range of billions for an
industrial application with modest complexity and even
more for more complex systems.

This feature makes the Asterix real-time kernel suitable
for use in mission critical, and safety critical applications,
or simply in applications where the funds are limited but
the desire is to get more-bang-for-the-buck (reliability).

5 Conclusions
In this paper have we presented a novel real-time

kernel Asterix which support development of hard real-
time systems.

We have presented the supported execution strategy,
the monitoring and testing facilities, and a mechanism for
jitter reduction. We are currently in the process of
adopting Asterix to different micro controllers.

(Figure 4-1. The possible execution order
scenarios for a system with jitter.

Figure 4-2. No jitter.

6 References
[1] Audsley N. C., Burns A., Davis R. I., Tindell K. W. Fixed Priority

Pre-emptive Scheduling: A Historical Perspective. Real-Time
Systems journal, Vol.8(2/3), March/May, Kluwer A.P., 1995.

[2] Audsley N. C., Burns A., Richardson M.F., and Wellings A.J.
Hard Real-Time Scheduling: The Deadline Monotonic Approach.
Proc. 8th IEEE Workshop on Real-Time Operating Systems and
Software, pp. 127-132, Atlanta, Georgia, May, 1991.

[3] Chen J. and Burns A. Asynchronous Data Sharing in
Muliprocessor Real-Time Systems Using Process Consensus. 10th

Euromicro Workshop on Real-Time Systems, June 1998.
[4] Eriksson C., Mäki-Turja J., Post K., Gustafsson M., Gustafsson J.,

Sandström K., and Brorsson E. An Overview of RTT: A design
Framework for Real-Time Systems. Journal of Parallel and
Distributed Computing, vol. 36, pp. 66-80, Oct. 1996.

[5] Joseph M. and Pandya P. Finding response times in a real-time
system. The Computer Journal – British Computer Society, 29(5),
pp.390-395, October, 1986.

[6] Kopetz H. and Reisinger J. The Non-Blocking Write Protocol
NBW: A Solution to a Real- Time Synchronization Problem. In
Proceedings of he 14th Real-Time Systems Symposium, pp. 131-
137, 1993.

[7] Kopetz H. Sparse time versus dense time in distributed real-time
systems. In the proceedings of the 12th International Conference
on Distributed Computing Systems, pp. 460-467, 1992.

[8] Kopetz H., Damm A., Koza Ch., Mulazzani M., Schwabl W.,
Senft Ch., and Zainlinger R.. Distributed Fault-Tolerant Real-
Time Systems: The MARS Approach. IEEE Micro, (9):25-40,
1989.

[9] Kopetz H.. Event-Triggered versus Time-Triggered Real-Time
Systems. Lecture Notes in Computer Science, vol. 563, Springer
Verlag, Berlin, 1991.

[10] Lui C. L. and Layland J. W.. Scheduling Algorithms for
multiprogramming in a hard real-time environment. Journal of
the ACM 20(1), 1973.

[11] Puschner P. and Koza C. Calculating the maximum execution time
of real-time programs. Journal of Real-time systems, Kluwer
A.P., 1(2):159-176, September, 1989.

[12] Sandström K., Eriksson C., and Fohler G. Handling Interrupts
with Static Scheduling in an Automotive Vehicle Control System.
In proceedings of the 5th Int. Conference on Real-Time
Computing Systems and Applications (RTCSA’98). October
1998, Japan.

[13] Thane H. and Hansson H. Handling Interrupts in Testing of
Distributed Real-Time Systems. In proc. Real-Time Computing
Systems and Applications conference (RTCSA’99), Hong Kong,
December, 1999.

[14] Thane H. and Hansson H. Towards Systematic Testing of
Distributed Real-Time Systems. Proc. 20th IEEE Real-Time
Systems Symposium, Phoenix, Arizona, December 1999.

[15] Thane H. and Hansson H. Using Deterministic Replay for
Debugging of Distributed Real-Time Systems. In proceedings of
the 12th Euromicro Conference on Real-Time Systems
(ECRTS’00), Stockholm, June 2000.

[16] Thane H. Design for Deterministic Monitoring of Distributed
Real-Time Systems. Technical report, Mälardalen Real-Time
Research Centre, Dept. Computer Engineering, Mälardalen
University, 1999.

[17] Tindell K. W., Burns A., and Wellings A.J. Analysis of Hard
Real-Time Communications. Journal of Real-Time Systems, vol.
9(2), pp.147-171, September 1995.

[18] Xu J. and Parnas D. Scheduling processes with release times,
deadlines, precedence, and exclusion, relations. IEEE Trans. on
Software Eng. 16(3):360-369, 1990.

[19] Christer Norström, Kristian Sandström, Mikael Gustafsson, Jukka
Mäki-Turja, and Nils-Erik Bånkestad. Experiences from
Introducing State-of-the-art Real-Time Techniques in the
Automotive Industry. In proceedings of 8th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS01), Washington, US, April
2001. IEEE Computer Society.

[20] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg Volcano a
revolution in on-board communications. Volvo Technology
Report. 98-12-10.

