
Modeling and Analysis of Message-Queues in Multi-
Tasking Systems

Thomas Nolte, Hans Hansson

Mälardalens Högskola/IDT
thomas.nolte@mdh.se, hans.hansson@mdh.se

This paper presents work in progress on an analysis method for message queues
in a real-time multi-tasking system. This analysis will later be compared with
simulation results, in which variations/distributions of execution times, task
periods etc will be considered. The intention is to evaluate the level of
pessimism in the analytical worst-case analysis, compared to the execution
scenarios that actually occur in the real system. We will use these results as a
basis for future work in the ARTES project RATAD, which aims at developing
schedulability analysis with a wider applicability, by integrating reliability into
real-time scheduling theory. What we want is a method for integrating
reliability into classical real-time scheduling, so that we can guarantee, up to
some level, that our system is working properly. This is to be compared with
the classical 0/1 results of the schedulability theory.

1. Introduction

There is hardly any published work on schedulability analysis of message queues.
There is however related work on scheduling messages in communication networks,
including [2]. These models are however different from those needed for modeling
standard multi-tasking operating system message queues (e.g. those proposed for
POSIX [3]), in that the networking queues are separately scheduled resources,
whereas the handling of the OS queues is performed by a CPU shared by many types
of tasks, as well as the OS kernel.
Outline: In Section 2 we present our model and in Section 3 the method used for
analysis is described. Finally our conclusion and future work is described in Section
4.

2. Problem formulation and model

We are assuming a producer-consumer scenario with a pre-emptive fixed priority task
model. The inter-process communication is performed using message queues. Initially
we assume the queues to be FIFO, but later we will extend the model to also cover
priority queues.
The consumer has the following behavior

while(1){
É

receive(É); //blocking
É

}

Hence the consumer is blocked if nothing is to be received from the message queue.
When the consumer is allowed to execute, it will (in the worst case) execute for Cc

time units. This is repeated for every message that it consumes.
The producers are assumed to (in the worst case) behave as periodic tasks that at

the end of their execution queue a message.
This paper is restricted to a scenario where all communication and execution is

performed locally on a single node. We will for such a system consider a set of
message queues, each handled by a single consumer, to which a set of associated
producers queue messages as can be seen in Fig 1.

Producer

ConsumerProducer

Producer

Queue

Fig. 1. System containing a set of producers and consumers that are communicating via a
message queue.

The problem is here to calculate the worst-case end-to-end delay in a producer –
message – consumer transaction. We will additionally calculate an upper bound of the
message queue size.

The following terminology is used in this paper:

· T – The period of a task
· C – The worst case execution time of a task
· J – The jitter of a task. J = rmax – rmin, where r is the release time relative to the start

of the period associated with each task. If rmin = 0 then J = rmax, which is what we
will assume in the following.

· P – The priority of a task
· r – The release time
· #p – A term associated with the producer
· #c – A term associated with the consumer
· queuesize – The maximum buffer need for the queue
· R – The worst case end-to-end response time associated with a producer – queue –

consumer transaction

· { }n
cR
L0 – The response time to handle the n first messages in a busy period (a busy

period being a time period during which the queue is continuously non-empty).

3. Analysis of message queues

We are about to analyse message queues for inter-task communication on a single
node. We start this by a simple scenario, which we then extend to be more general
and more complex. We have a producer-consumer scenario, where initially the
consumer is blocked, waiting for a message to arrive in the message queue. Following
standard fixed-priority schedulability analysis practice [4] we assume the producer to
be released at most every Tp time units.

We will now derive some simple schedulability criteria and more detailed analysis
for the above type of systems. The formulas presented here may not terminate unless
load is less than 100%.

We begin with a single producer per queue and then extend to multiple producers
per queue.

3.1. Single producer

First, we assume that we have a producer with a period, T, a certain amount of release
jitter, J, execution time, C, and a priority, P. Further on we have a consumer with
execution time and a priority as can be seen in Fig 2.

Consumer
C, P

Producer
T, J, C, P

Queue

Fig. 2. The properties of the producer and the consumer task used in our model.

What we do now is to find out the worst end-to-end response time for this scenario. In
order to find this response time we have to find the maximum response time of all
messages produced within a Busy Period, i.e., the time it takes to completely empty
the queue in a worst case scenario.

If we use Rn to denote the response time for the consumer to consume the n:th
message, then the worst case end-to-end response time, R, is

)(max n
MBPn

RR
Î

= (1)

where MBP is the set of messages sent by all producers of a queue within the Busy
Period.
What we need to do is to calculate the end-to-end response times for all the messages
sent within the busy period. In order for the busy period to terminate, we require a
load that is less than 100%. We use an approach similar to the iterative method used
for analysis of task response times when deadline exceeds period [5] to iteratively

search for the maximum response time of the messages queued during the busy
period. This amounts to initially assume that a single message is queued, and then
calculate the response time for this message. If a second message has been queued
during this response time we can calculate the response time for this message by
analyzing the (in the response time sense) equivalent scenario when both messages
are queued initially (i.e. when the consumer needs to be executed twice). If a third
message is queued during the response time of the two messages, then we repeat the
procedure for three messages. This continues for four, five, etc. messages until we
reach a point when no new message is queued during the response time. That such a
situation exists follows by the assumption that we have a utilization that is less than 1.

In the worst case scenario we will number consecutive messages in increasing
order, starting with message 0.

We define the release time for a message as r. Then we assume that the message is
released as soon as the producer is activated. In this way we cover all cases of
messages being sent. The release time of message n is given by

() pp JTnr -= * (2)

Then we calculate the response time for the consumer using traditional exact analysis
methods [1].

()

{ }
c

n
c

j
taskshpj j

jc
c

c

wR

C
T

Jw
Cw

CnC

=

ú
ú
ú

ù

ê
ê
ê

é +
+=

+=

å
Î

L0

)(

*1

(3)

When we have the response time for the handling of the n first messages, { }n
cR
L0 , we

can calculate the response time associated with message n simply by subtracting the
release-time of the current message from the total response time.

{ } rRR n
cn -= L0 (4)

We have now gathered the response times for the n first messages and we must
investigate whether or not we have emptied the queue, since this is our termination
criterion for the busy period. To do this we investigate whether or not the following
condition is met, i.e., if the queue is not empty or not. If the following is true, (2)-(4)
is repeated for the next message.

()
{ }

ú
ú
ú

ù

ê
ê
ê

é +
<+

p

p
n

c

T

JR
n

L0

1 (5)

When we have emptied the queue we use (1) to find out the maximum response time
present in the Busy Period. When we have the maximum response time we can use it
to calculate the buffer need for the queue. The maximum queue size will be

ú
ú
ú

ù

ê
ê
ê

é +
=

p

p
size T

JR
queue (6)

Intuitively, this captures that the maximum queue size occurs when the worst-case
end-to-end response time for a message is present.

3.2. Multiple producers

We have now looked at scenarios where we have a single producer feeding the queue
with messages. We now extend this to handle multiple producers to a single queue.
We introduce a set M containing all producers associated with each queue, that is all
producers belonging to a certain queue. The procedure behaves the same as in the
single producer scenario. The only difference is that the queue is receiving messages
from multiple producers. If we first try to extract the worst end-to-end response time,
we do as in the single producer scenario. What we need to handle is the scenarios
where preemption involving several producers occurs, i.e., producers that gets
preempted by other producers. If we want to calculate the worst end-to-end response
time regardless of producer, all producers that are preempting us will in the worst case
always manage to send their messages before us, as illustrated in Fig 3. Here we can
see that if all higher priority producers will send their messages before us, we will be
consumed as the last one, and therefore we will experience the longest end-to-end
response time.

Task A

Task B

Task C t

First message

Second message

Third message

Preemption occurs

Fig. 3. The worst-case scenario regardless of which producer that is belongs to is always the
one created for the producer with the lowest priority.

In this way, it is always the producer, which has the earliest release time of its current
message that is interesting. What we need to do though, is to investigate whether or
not some other producers will preempt this producer. If this is the case, then we
always assume that the other producers, the ones that are preempting us, will produce
their message before us. That is, we will always produce the worst scenario this way.
If we do this, we can use similar methods to the ones used in the single producer
scenario.

The situation becomes slightly more complicated when we are to extract the
maximum end-to-end response time associated with a certain producer. This will
force us to produce different execution scenarios depending on which producer we are
interested in, since the actual time that each message is sent will influence the order of
messages in the queue. The different scenarios, when having three producers
associated with a queue, is the one described in Fig 3 (which is the worst case
scenario for Task C) and the ones described in Fig 4 and Fig 5.

Task A

Task B

Task C t

First message

Second message

Third message

Preemption occurs

Fig. 4. The worst-case scenario for producer B is that all task with lower priority that we are
preempting for the moment, actually has been able to already produce their messages. As usual,
all preempting producers with higher priority than us will produce their messages before us.

Task A

Task B

Task C t

First message

Second message

Third messagePreemption occurs

Fig. 5. The last scenario of our task set is when calculating the worst-case for the producer with
the highest priority. Here all producers that we have preempted will produce their messages
before us.

When we have taken these precautions, we need to modify our formulas used as the
termination criteria, i.e., when the queue is empty, and our formula used for
calculating the buffer need. What we will do is similar as for the single producer
scenario, i.e., we extract all response-times until (5) is not met anymore, but in order
to handle multiple producers we need to extend (5) to the following

()
{ }

å
Î ú

ú
ú

ù

ê
ê
ê

é +
<+

Mj j

j
n

c

T

JR
n

L0

1 (7)

When we are done, we can extract R using (1) in order to extract the maximum end-
to-end response time so that we can calculate the required queue size. We need to
modify (6) to handle multiple producers.

å
Î ú

ú
ú

ù

ê
ê
ê

é +
=

Mj j

j
size T

JR
queue (8)

4. Conclusion and future work

We have presented preliminary results from on-going work on including message
queues in schedulability modeling and analysis. Our initial experiments indicate that
it is not trivial to construct the worst-case scenario, especially when we are to collect
worst-case end-to-end response time associated with each producer. When this is
done though, we will extend the model to also cover messages with different
priorities. This is essential, since many of the operating systems used in industry
today, e.g. those that are POSIX compliant, support priority queues. When we have a
good analysis method we will compare the results with simulation results. These
results will then be integrated with some probabilistic model making it possible to
integrate reliability theory with schedulability analysis.

References

[1] M. Joseph and P. Pandya. “Finding response times in a real-time system”, BCS Computer
Journal, 29(5): 390-395, 1986

[2] Mikael Sjödin, “Predictable High-Speed Communications for Distributed Real-Time
Systems”, Ph.D. Thesis, Uppsala university, Information Technology, Department of
Computer Systems, May 2000

[3] IEEE Standard for Information Technology - Test Methods Specifications for Measuring
Conformance to POSIX/sup R/ - Part 1: System Application Program Interface [API] -
Amendment 1: Realtime Extension [C Language] IEEE Std 2003.1b-2000 , 2000

[4] Audsley, N.; Burns, A.; Richardson, M.; Tindell, K.; Wellings, A.J., “Applying new
scheduling theory to static priority pre-emptive scheduling”, Software Engineering Journal ,
Volume: 8 Issue: 5 , Sept. 1993, Page(s): 284 –292

[5] Tindell K, Hansson H, “Real Time Systems by Fixed Priority Scheduling”, Department of
Computer Systems, Uppsala University, 1996

