The Third International Conference on Software Engineering Advances

A comparative evaluation of using genetic programming
for predicting fault count data

Wasif Afzal, Richard Torkar
Blekinge Institute of Technology,
S-372 25 Ronneby, Sweden
{waf,rto} @bth.se

Abstract

There have been a number of software reliability growth
models (SRGMs) proposed in literature. Due to several rea-
sons, such as violation of models’ assumptions and com-
plexity of models, the practitioners face difficulties in know-
ing which models to apply in practice. This paper presents
a comparative evaluation of traditional models and use of
genetic programming (GP) for modeling software reliability
growth based on weekly fault count data of three different
industrial projects. The motivation of using a GP approach
is its ability to evolve a model based entirely on prior data
without the need of making underlying assumptions. The
results show the strengths of using GP for predicting fault
count data.

1. Introduction

A key element of software quality is software reliability,
defined as the ability of a system or component to perform
its required functions under stated conditions for a specific
period of time [13]. If the software frequently fails to per-
form according to user-specified behavior, other software
quality factors matter less [19].

Software reliability growth modeling helps in deciding
project release time and managing project resources. After
the first software reliability growth model was proposed by
Jelinski and Moranda in 1972 [14], there have been numer-
ous reliability growth models following it. The existence of
a large number of models requires a user to select and ap-
ply an appropriate model. For practitioners, this may be an
unmanageable selection problem and there is a risk that the
selected model is unsuitable to the particulars of the project
in question. Some models are complex with many param-
eters. Without extensive mathematical background, practi-
tioners cannot determine when it is applicable and when the
model diverges from reality. Moreover, these parametric

software reliability growth models are often characterized
by a number of assumptions [9] which are necessary to de-
velop a mathematical model. These assumptions are often
violated in real-world situations (see e.g. [26]), therefore,
causing problems in the long-term applicability and validity
of these models. Even if the dynamics of the testing process
are well known, there is no guarantee that the model whose
assumptions appear to best suit these dynamics will be most
appropriate [20].

Under this scenario, what becomes significantly interest-
ing is to have modeling mechanisms that can exclude the
pre-suppositions about the model and are based entirely on
the fault data. In this respect, genetic programming (GP)
could be used as an effective tool because, being a non-
parametric method, GP does not conceive a particular struc-
ture for the resulting model and GP also does not take any
assumptions about the distribution of the data.

In an earlier study, we investigated the suitability of
using GP for building software reliability growth mod-
els [2]. In this paper, we present the results of compari-
son between models evolved using GP and three other tra-
ditional SRGMs based on weekly fault count data of three
projects carried out by a large telecommunication company.
We compare the models using measures of model valid-
ity, goodness of fit and residual analysis. The compara-
tive results indicates that in terms of model validity, two
out of three measures favored GP evolved models. The GP
evolved model also represented comparatively better good-
ness of fit, while residual analysis showed that the predic-
tions from the GP evolved model are comparatively less bi-
ased.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 presents a brief in-
troduction to genetic programming. In Section 4 we detail
our research method along with a discussion of evaluation
measures used. Sections 5 and 6 are comprised of exper-
imental setup and results respectively. Validity evaluation
is given in Section 7 while the discussion and future work
appears in Section 8.

978-0-7695-3372-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ICSEA.2008.9

IEEE
407 computer
® psouety

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

2 Related work

Studies reporting the use of GP for software reliability
modeling are few and recent. Costa et al. [8] presented the
results of two experiments exploring GP models based on
time and test coverage. The authors compared the results
with other traditional and non-parametric artificial neural
network (ANN) models. The results from the first experi-
ment, which explored GP models based on time-between-
failure (TBF) data, showed that GP adjusts better to the re-
liability growth curve. The results from the second experi-
ment, which was based on test coverage data, showed that
all metrics were always better for GP and ANN models. The
authors later extended GP with boosting techniques for reli-
ability growth modeling [21] and reported improved results.
A similar study by Zhang and Chen [28] used GP to estab-
lish a software reliability model based on mean time be-
tween failures (MTBF) time series. The results of the study
also confirmed that in comparison with the ANN model and
traditional models, the model evolved by GP had higher pre-
diction precision and better applicability.

There are several ways in which the present work dif-
fers from the aforementioned studies. Firstly, none of the
previous studies used data sets consisting of weekly fault
count data. In this study, our aim is to use the weekly fault
count data as a means to evolve the reliability growth model
using GP and perform comparisons with traditional reliabil-
ity growth models. Secondly, we have avoided performing
any pre-processing of data to avoid chances of incorporat-
ing bias. Thirdly, we remain consistent with using first 2/3
of the data to build the model and use the rest 1/3 of the data
for model evaluation for all of our data sets. Lastly, in an at-
tempt to provide a fair evaluation, we also remain consistent
with using the same set of evaluation measures to compare
GP evolved models with traditional models for all the data
sets.

3 Background to genetic programming

The evolution of software reliability growth models us-
ing GP is an example of a symbolic regression problem.
Symbolic regression is an error-driven evolution as it aims
to find a function, in symbolic form, that fits (or approxi-
mately fits) data from an unknown curve [16]. In simpler
terms, symbolic regression finds a function whose output
matches some target values. GP is well-suited for symbolic
regression problems as it does not make any assumptions
about the structure of the function.

GP is an evolutionary computation technique (first re-
sults reported by Smith [24] in 1980) and is an extension of
genetic algorithms. As compared with genetic algorithms,
the population structures (individuals) in GP are not fixed
length character strings, but programs that, when executed,

408

are the candidate solutions to the problem. GP is a sys-
tematic, domain-independent method for getting computers
to solve problems automatically starting from a high-level
statement of what needs to be done [23]. Programs are ex-
pressed in GP as syntax trees, with the nodes indicating the
instructions to execute and are called functions (e.g. min,
*, +, /), while the tree leaves are called terminals which
may consist of independent variables of the problem and
random constants (e.g. z, y, 3). The fitness evaluation of
a particular individual is determined by the correctness of
the logical output produced for all of the fitness cases [3].
The control parameters limit and control how the search is
performed like setting the population size and probabilities
of performing the genetic operations. The termination cri-
terion specifies the ending condition for the GP run and typ-
ically includes a maximum number of generations [7]. GP
iteratively transforms a population of computer programs
into a new generation of programs using various genetic op-
erators. Typical operators include crossover, mutation and
reproduction.

4 Research method

In this section we outline the research method used in
the paper. We describe the data sets used, selection of tra-
ditional SRGMs for comparison, the formulated hypotheses
and a description of the evaluation measures.

4.1 Fault count data sets

The data sets used in this study are based on the weekly
fault count data collected during the testing of three large-
scale software projects at a large telecom company. The
motivation for selecting the fault count data from an in-
dustrial context is to be representative of real-world prob-
lem domain. The projects are targeted towards releases of
three mature systems that have been on the market for sev-
eral years. These projects followed an iterative development
process. In this scenario, it becomes important for project
managers to estimate the current reliability and to predict
the reliability ahead of time, so as to measure the quality
impact with continuous addition of new functionality and
fixes of previously discovered faults. Appendix A shows
the fault count data sets used in the study, but due to the pro-
prietary nature of data, the number of faults are multiplied
by a constant factor and are given for illustrative purposes
only. Nevertheless, we believe that making the data sets
available allows the research community to replicate results
and to perform additional studies. The results of the eval-
uation measurements in the rest of the paper are, however,
based on original data sets.

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

The fault count data from the three projects is divided
into two portions. The first portion comprises of first 2/3
data from each data set and is used for calibrating the soft-
ware reliability model under consideration. The second por-
tion comprises of later 1/3 data from each data set and
is used for comparing the predictions from each individ-
ual model according to the five different statistics (Subsec-
tion 4.4). This implies that we are able to make predictions
on several weeks constituting 1/3 of the data.

4.2 Selection of traditional SRGMs

Since we are interested in comparing predictions of
weekly fault count data, therefore we selected three tra-
ditional SRGMs that represent the fault count family of
models [9]. These three models are Goel-Okumoto non-
homogeneous poisson process model (GO-NHPP) [10],
Brooks and Motley’s poisson model (BM) [5] and Yamada’s
S-Shaped growth model (YAM) [27]. We selected them
because these models present a fair representation of fault
count family of models and represents different forms of
growth curves. In particular, GO-NHPP and BM are con-
cave (or exponential) while YAM is S-shaped. Also we
had limitations in terms of information requirements of
certain models, so they were not selected for comparison,
like Shooman exponential model’s hazard function requires
knowing the parameters of total number of instructions in
the program and debugging time since the start of system
integration [9].

4.3 Hypothesis

In order to formalize the purpose of this experiment, we
define the following hypotheses:

Ho_vai: The predictions of the GP evolved model are
not significantly more valid as compared with traditional
models.

Hi_va: The predictions of the GP evolved model are
significantly more valid as compared with traditional mod-
els.

Ho_gor: The GP evolved model does not give signifi-
cantly higher goodness of fit as compared with traditional
models.

H;_gor: The GP evolved model gives significantly
higher goodness of fit as compared with traditional models.

Ho_res: There is no significant difference between the
residuals of the GP evolved model as compared with tradi-
tional models.

H;_,es: There is a significant difference between the
residuals of the GP evolved model as compared with tra-
ditional models.

409

In order to test the above hypotheses, we use different
evaluation measures as detailed in the next section.

4.4 Evaluation measures

It is usually recommended to use more than one mea-
sure to determine model applicability, as in [20], because
reliance on a single measure can lead to making incor-
rect choices. We used measures of model validity, model
goodness of fit and distribution of residuals to compare GP
evolved model with traditional reliability growth models.

Model validity is measured in terms of prequential likeli-
hood ratio (PLR), the Braun statistic and the adjusted mean
square error (AMSE). The PLR of two prediction systems,
A and B, is the running product of ratio of their succes-
sive on-step ahead predictions fjA (t;) and ij (t;) respec-
tively [4]:

j=i

PLR} =]

j=s

FA)
fE(t))

In our case, we select the actual time distribution of
weekly fault count data as a reference and conduct pair-
wise comparisons of all other models’ predictions against
it. Then the model with the relatively smallest prequential
likelihood ratio can be expected to provide the most trust
worthy predictions. For further details on PLR, see [1, 4].
We complement the measure of prequential likelihood ratio
with two measures of variability, namely the Braun statis-
tic and AMSE. The Braun statistic can be used to measure
the accuracy of fault count predictions and is give by the
following formula [4]:

r

> (i — E[Nk])

Braun statistic{ E[Ny]; k = s, ...

Z(nk — ﬁ)Ql'k

k=s

Where n;, is the actual fault count within successive time
intervals, 2, k = s,...,r. E[N] represents the predicted
fault count data and 7 represents the mean of the actual fault
count data. AMSE is a simple measure based on the mean
square error which takes into account the mean of the data
sets and is given by the following formula [6]:

AMSE = i (?i —

i—1 (Ey) *

Where F; is the actual fault count data and EZ is the
predicted fault count data.

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

To measure a particular model’s bias, we examine the
distribution of residuals to compare models as suggested
in [15, 22]. The model’s goodness of fit in our case was
measured using Kolmogorov-Smirnov (K-S) test [12]. For
K-S test, we used the significance level, « = 0.05 and if the
K-S statistic .J is greater or equal than the critical value .J,,
the null hypothesis of two samples having the same prob-
ability distribution is rejected in favor of the alternate hy-
pothesis.

S Experimental setup

In this study we used MATLAB version 7.0 [18] and
GPLAB version 3.0 [11] (a GP toolbox for MATLAB).

GPLAB allows for different choices of tuning control pa-
rameters. Initially we experimented with a minimal set of
functions by keeping the terminal set containing the inde-
pendent variable only. We incrementally increased the func-
tion set with additional functions and later on also comple-
mented the terminal set with a random constant. For each
data set, the best model having the best fitness was chosen
from all the runs of the GP system with different variations
of function and terminal sets. The function set for project 1
and project 3 data sets were the same, while a slightly differ-
ent function set for project 2 gave the best fitness. The GP
programs were evaluated according to the sum of absolute
differences between the obtained and expected results in all
fitness cases, Y ., | €; — e; |, where e is the actual fault
count data, e; is the estimated value of the fault count data
and n is the size of the data set used to train the GP models.
The control parameters that were chosen for the GP system
are shown in Table 1.

6 Results

Figure 1 shows the PLR analysis for the three data sets.
The log(PLR) of actual time distribution of weekly fault
count data is chosen as the the reference; and it is indicated
as a straight line in the plots of Figure 1. It can be seen
that the curve for the PLR of the GP model with the actual
fault count data (GP:Actual) is closer to the straight line as
compared with the same curves for the traditional models;
confirming that GP predictions are better approaching real-
ity as compared with traditional reliability growth models.

The variability measures of Braun statistic and AMSE
obtained for each data set of all models were compared us-
ing matched paired two-sided ¢-test at significance level, o
= 0.1. We compared the variability measures of the GP
model with each of the traditional models. The null hypoth-
esis was formulated as that there was no difference between
the variability statistics of GP and that of the particular tra-
ditional model under comparison. The alternate hypothesis

410

T
YAM:Actual —+—
GO-NHPP:Actual ---x---
BM:Actual ---%--
GP:Actual &

log(PLR)

Weeks

(a) Log(PLR) plots for Project 1.

T
YAM:Actual —+—
GO-NHPP:Actual ---x---
BM:Actual ------
GP:Actual &

log(PLR)

L L L L L
22 24 26 28 30 32 34

(b) Log(PLR) plots for Project 2.

T
YAM:Actual —+—
GO-NHPP:Actual ---x---
BM:Actual ---*---
GP:Actual &

log(PLR)

20 2‘2 2‘4 2‘6 2‘8 C;O
(c) Log(PLR) plots for Project 3.

Figure 1. Log(PLR) plots for three projects.

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

Table 1. GP control parameters.

Control Parameter Value
Population size 30
Number of generations 200
Termination condition 200 generations
Function set (for project 1 | {+, —, %, sin, cos, log}
& 3)
Function set (for project 2) | {4+, —, *, /,
sin, cos, log}
Terminal set {z}
Tree initialization ramped half-and-half
Initial maximum number | 28
of nodes
Maximum number of | 512
nodes after genetic opera-
tions
Genetic operators crossover, mutation,
reproduction
Selection method lexictour
Elitism replace

Table 2. Statistical results for Braun statistic
and AMSE.

Comparative t-statistic
models

Braun statistic, t,=12.42
GP:BM —-3.97
GP:.YAM —4.80
GP:GO-NHPP —1.64

AMSE statistic, t,=42.42
GP:BM —1.23
GP:YAM —1.39
GP:GO-NHPP —1.03

to test was then that there existed such a difference. Us-
ing normal quantile plot of the samples’ variability differ-
ences to assess any radical departures from normal distribu-
tion showed that they had approximately normal distribu-
tion. The results of applying the matched paired two sided
t-test are shown in Table 2.

The critical values of ¢ for a=0.1 and degrees of freedom
n — 1is t, = £2.92. If the calculated t-statistic lied in the
critical region, we were able to reject the null hypothesis of
no difference between the samples.

We can observe from Table 2 that there is a statistical
difference between GP and two of the traditional models
(BM and YAM) for the Braun statistic. However, for the
AMSE statistic, there is no statistical difference between
GP and traditional models. This shows that the GP model,

411

Table 3. Results of applying K-S test.

Jaop | JBMm | Jyam| Jeco—NHPP
Proj. 1, J,=0.70 | 0.40 | 0.70 | 1.00 | 0.8
Proj. 2, J,=0.64 | 0.27 | 0.73 | 0.82 | 0.54
Proj. 3, J,=0.70 | 0.10 | 0.30 | 0.70 | 0.20

while optimizes the Braun statistic, degrades AMSE. This
result strengthens the viewpoint of Mair et al. [17] that using
a fitness function for GP that is not specifically tied to a
single measure but takes into account multiple objectives
may give overall better results for the GP model. Based
on the results of applying PLR and Braun statistic, we are
able to reject the null hypothesis, Hy_,1 in support of the
alternative hypothesis, Hi_y,;. On the other hand, using
AMSE, we are not able to demonstrate the rejection of the
null hypothesis, Hy_va1.

Table 3 shows the statistic J for the two sample K-S test
performed on the validation fault count data (1/3 of the
original data set) and the predictions by the GP and tradi-
tional reliability growth models. For project 1, we see that
Jap < Jq, suggesting that the predicted fault count data,
as provided by the GP model, fits quite well to the set of
observations. On the other hand, the J statistic for all other
traditional models are either equal to or greater than .J,. For
project 2, the GP model along with GO-NHPP model have
K-S statistic J less than J,; and for project 3, GP model
along with BM and GO-NHPP provide K-S statistic .J less
than J,. While we see the traditional models giving statisti-
cally significant goodness of fit for project 2 and 3 on three
occasions, neither of them gave statistics that were lower
than the corresponding K-S statistic for the GP model. We
can, thus reject the null hypothesis, Hy_go¢ in favor of the
alternative, Hq_gof.

Figure 2 shows the box plots of the residuals for all the
models for the three projects. For project 1 (Figure 2(a)),
all the box plots show the tendency of under-estimating;
with the length of the box and tails of the GP model and
BM model being smaller, indicating that the prediction bias
is not severe. The tendency of the GP model incase of
project 2 (Figure 2(b)) is to over-estimate but the bias is
smaller as compared to other models. In case of project 3
(Figure 2(c)), all box plots represent a tendency to under-
estimate while the GP model presents relatively less bias
with residuals both above and below 0.

Since the box plots in Figure 2 are not significantly
skewed, we applied matched paired ¢-tests of the residuals
for each data set to compare the GP model with each of the
traditional models. The results are presented in Table 4 and
show that the residuals from the GP model are significantly
different and less variable from the residuals for traditional
models for each data set at «=0.05. Therefore, we are able
to reject the null hypothesis, Hy_ s in support of the alter-

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

40

30

Residual values

40

30

Residual values

40

30

Residual values

Figure 2. Charts showing box plots of residu-

—T
— L ==
B‘M VA‘M GOVI\‘IHPP G‘P

(a) Box plots of residuals for Project 1.

1

L L L L
BM YAM GO-NHPP GP

(b) Box plots of residuals for Project 2.

%%

L
BM YAM GO-NHPP GP

(c) Box plots of residuals for Project 3.

als for three projects.

412

Table 4. t-test results for residuals.

tap.BM| tapP:y AM| taP.GO-NHPP
Proj. 1, t,=%2.42 | —32.18 | —6.42 —6.59
Proj. 2,t,=%+2.23 | —7.76 | —7.11 —7.53
Proj. 3, t,=£2.26 | —23.43 | —7.92 —4.56

native hypothesis, Hy _¢s.

7 Validity threats

Conclusion validity refers to the statistically significant
relationship between the treatment and the outcome [25].
One of the threats to conclusion validity is that we might
have missed applying a more suitable evaluation measure.
However, to the authors’ knowledge, the evaluation mea-
sures used in the study reflect the ones commonly used
for evaluating prediction models. External validity is con-
cerned with generalization of results outside the scope of
the study [25]. The experiment is conducted on three dif-
ferent data sets taken from an industrial setting. However,
these projects are carried out by one organization follow-
ing similar development methods. We acknowledge that the
generalizability of the research can be improved by experi-
menting with data sets taken from diverse projects employ-
ing different development methodologies. Also the signif-
icance of results can further be improved using larger data
sets, thus giving an opportunity to evaluate the GP evolved
models on greater number of data items.

8 Discussion and future work

In this paper, we compared the predictions of fault count
data from models evolved using GP with three other tradi-
tional fault count software reliability growth models. The
evaluation results show that prediction of fault count data
using genetic programming is a promising approach.

We observed a considerable variation in the values of
Braun statistic and AMSE for the GP model in three data
sets; which can be attributed to the sensitivity of GP algo-
rithm to changes in the training set. GP, being an adaptive
algorithm, is able to discover pattern from a set of hetero-
geneous fitness cases.

In our case, we had one independent and one dependent
variable. Hence, the GP algorithm generated good mod-
els efficiently within the termination criterion of 200 gen-
erations. However, it is common that efficiency and effec-
tiveness of GP drops if the data tables contain hundreds of
variables as the GP algorithm then can take a considerable
amount of time in isolating the key features [23].

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

While measures of goodness of fit and predictive accu-
racy are important, we agree with Mair et al. [17] that these
measures are not enough for a practical utility of a predic-
tion system. The explanatory value (transparency of solu-
tion) and ease of configuration are also important aspects
that require discussion. Since the output of a GP system
is an algebraic expression, it has the potential of gener-
ating transparent solutions; however the solutions can be-
come complex as the number of nodes in the GP solution
increases. There is a trade-off in having more accurate pre-
dictions and less simplicity of the algebraic expressions but
we believe that this tradeoff is manageable as achieving ac-
curate models within acceptable thresholds is possible. In
this respect, we also intend to evaluate GP evolved models
against simpler regression models to compare predictions.
In terms of ease of configuration of GP algorithm, differ-
ent facets need to be determined, e.g. evaluation function,
genetic operators and probabilities, population size and ter-
mination criterion to name a few. The parameter tuning
problem is time consuming because the control parameters
are not independent but interact in complex ways and try-
ing all possible combinations of parameters is practically
infeasible [23]. One possible way to reduce the effort is us-
ing adaptive parameter control during genetic programming
run. Our future work intends to explore this possibility fur-
ther.

An interesting area of future work is to compare the rela-
tive short-term and long-term predictive strength of the GP
evolved model with traditional reliability growth models for
different lengths of training data. Another possible dimen-
sion to explore is using a model that combines the results of
GP evolved model and traditional SRGMs.

9 Conclusions

This paper presented the results of comparative evalu-
ation of fault count data predictions from models evolved
by genetic programming and traditional reliability growth
models. Weekly fault count data of three different indus-
trial projects was used in the study. The results have been
evaluated in terms of model validity, goodness of fit and dis-
tribution of residuals. For evaluating model validity, the re-
sults of using prequential likelihood ratio and Braun statis-
tic show favorability of the GP model. However, the results
of AMSE did not show a statistically significant difference
between the GP model and traditional software reliability
growth models. The GP model was also found to have ei-
ther an equivalent or better goodness of fit as compared to
traditional models. The visual inspection of the box plots of
residuals and matched paired ¢-tests further showed the GP
model predictions to be less biased than traditional models.

413

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood. Eval-
uation of competing software reliability predictions. /EEE
Transactions on Reliability, 12(9):950-967, 1986.

W. Afzal, R. Torkar, and R. Feldt. Prediction of fault count
data using genetic programming. Submitted to ISSRE’08:
The 19th International Symposium on Software Reliability
Engineering, WA, USA.

T. Bick, D. Fogel, and T. Michalewicz. Evolutionary com-
putation 1—basic algorithms and operators. Taylor & Fran-
cis Group, New York, USA, 2000.

S. Brocklehurst and B. Littlewood. Techniques for predic-
tion analysis and recalibration. In Handbook of software
reliability engineering, Editor M. R. Lyu, Hightstown, NJ,
USA, 1996. McGraw-Hill, Inc.

W. D. Brooks and R. W. Motley. Analysis of discrete soft-
ware reliability models. Technical report, IBM FEDERAL
SYSTEMS, 1980.

C. J. Burgess and M. Lefley. Can genetic programming
improve software effort estimation? a comparative evalu-
ation. Information and Software Technology, 43(14):863—
873, 2001.

E. K. Burke and G. Kendall. Search Methodologies—
Introductory Tutorials in Optimization and Decision Sup-
port Techniques. Springer Science and Business Media,
New York, USA, 2005.

E. Costa, S. Vergilio, A. Pozo, and G. Souza. Modeling
software reliability growth with genetic programming. In IS-
SRE ’05: Proceedings of the 16th IEEE International Sym-
posium on Software Reliability Engineering, Washington,
USA, 2005. IEEE Computer Society.

A. L. Goel. Software reliability models: Assumptions, lim-
itations, and applicability. [EEE Transactions on Software
Engineering, SE-11(12):1411 — 1423, 1985.

A. L. Goel and K. Okumoto. Time dependent error detection
rate model for software reliability and other performance
measures. [EEE Transactions on Reliability, R-28(3):206
- 211, 1979.

GPLAB—A genetic programming toolbox for MATLAB.
http://gplab.sourceforge.net.

M. Hollander and D. A. Wolfe. Non-parametric statistical
methods. John Wiley and Sons, Inc., 1999.

IEEE Std 610.12-1990. IEEE standard glossary of software
engineering terminology, 1990.

Z. Jelinski and P. Moranda. Software reliability research.
In Statistical Computer Performance Evaluation, Ed. W.
Freiberger. Academic Press, USA, 1972.

B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and
M. J. Shepperd. What accuracy statistics really measure.
IEE Proceedings - Software, 148(3):81-85, 2001.

J. Koza. Genetic programming: on the programming of com-
puters by means of natural selection. MIT Press, 1992.

C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield,
M. Shepperd, and S. Webster. An investigation of machine
learning based prediction systems. Journal of Systems and
Software, 53(1):23-29, 2000.

The MathWorks, Inc. http://www.mathworks.com.
(Last checked 20 April 2008).

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

J. Musa. Software reliability engineering: more reliable
software faster and cheaper. AuthorHouse, 2004.

A. P. Nikora and M. R. Lyu. An experiment in determin-
ing software reliability model applicability. In Proceedings
of the 6th International Symposium on Software Reliability
Engineering, pages 304-313, Oct. 1995.

E. Oliveira, A. Pozo, and S. Vergilio. Using boosting tech-
niques to improve software reliability models based on ge-
netic programming. In ICTAI "06: Proceedings of the 18th
IEEE International Conference on Tools with Artificial Intel-
ligence, Washington, USA, 2006. IEEE Computer Society.
L. Pickard, B. Kitchenham, and S. Linkman. An investi-
gation of analysis techniques for software datasets. In 6th
International Software Metrics Symposium, page 130, Los
Alamitos, USA, 1999. IEEE Computer Society.

R. Poli, W. B. Langdon, and N. F. McPhee. A field
guide to genetic programming. Published via http:
//lulu.com and freely available at http://www.
gp-field-guide.org.uk, 2008.

S. F. Smith. A learning system based on genetic adaptive
algorithms. PhD thesis, University of Pittsburgh, Pittsburgh,
PA, USA, 1980.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén. Experimentation in software engineer-
ing: an introduction. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.

A. Wood. Software reliability growth models: assumptions
vs. reality. In ISSRE '97: Proceedings of the Sth IEEE In-
ternational Symposium on Software Reliability Engineering,
Los Alamitos, CA, USA, 1997. IEEE Computer Society.

S. Yamada, M. Ohba, and S. Osaki. S-shaped reliability
growth modeling for software error detection. IEEE Trans-
actions on Reliability, R-32(5):475 — 478, 1983.

Y. Zhang and H. Chen. Predicting for MTBF failure data
series of software reliability by genetic programming algo-
rithm. In Proceedings of the Sixth International Conference
on Intelligent Systems Design and Applications, Washing-
ton, USA, 2006. IEEE Computer Society.

Data sets used in the study

414

Project 1 Project 2 Project 3
Week Fault | Week Fault | Week Fault
Count Count Count

1 9 1 15 1 3
2 9 2 18 2 12
3 24 3 24 3 18
4 24 4 30 4 30
5 27 5 39 5 60
6 27 6 60 6 93
7 39 7 69 7 138
8 45 8 72 8 186
9 54 9 87 9 210
10 54 10 126 10 240
11 54 11 129 11 258
12 57 12 132 12 279
13 57 13 144 13 297
14 57 14 147 14 312
15 57 15 156 15 348
16 66 16 162 16 357
17 66 17 171 17 372
18 69 18 171 18 399
19 75 19 174 19 414
20 81 20 180 20 429
21 90 21 186 21 459
22 99 22 192 22 486
23 102 23 207 23 519
24 105 24 210 24 540
25 108 25 222 25 552
26 120 26 234 26 570
27 120 27 237 27 588
28 123 28 249 28 612

29 255 29 624

30 279 30 630

31 306

32 327

33 330

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 08:43 from IEEE Xplore. Restrictions apply.

