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Abstract

Genetic programming (GP) has been found to be ef-
fective in finding a model that fits the given data points
without making any assumptions about the model structure.
This makes GP a reasonable choice for software reliabil-
ity growth modeling. This paper discusses the suitability
of using GP for software reliability growth modeling and
highlights the mechanisms that enable GP to progressively
search for fitter solutions.

1. Introduction

In our modern society, we see software playing an impor-
tant role in various domains, for example, air traffic control
and automotive industry. The criticality of these applica-
tions demands that the software is reliable because software
failures can have dire consequences. It is, therefore, imper-
ative that the reliability of the software is determined before
making it operational.

Deciding upon when to release the software is also im-
portant because releasing software that contains errors will
result in high failures costs whereas, on the other hand, pro-
longed debugging and testing increases development costs.
Reliability growth model is an important criterion, which
helps in making an informed decision about when to re-
lease the software. A software reliability growth model
(SRGM) describes the mathematical relationship of find-
ing and removing faults to improve software reliability. A
SRGM performs curve fitting of observed failure data by a
pre-specified model formula, where the parameters of the
model are found by statistical techniques like maximum
likelihood method [11]. The model then estimates relia-
bility or predicts future reliability by different forms of ex-
trapolation [10]. After the first software reliability growth
model was proposed by Jelinski and Moranda in 1972 [6],
there have been numerous reliability growth models fol-
lowing it. These models come under different classes [9],
e.g. exponential failure time class of models, Weibull and

Gamma failure time class of models, infinite failure cate-
gory models and Bayesian models. These models are based
on prior assumptions about the nature of failures and the
probability of individual failures occurring [7]. Some of
these models are complex with many parameters. With-
out extensive mathematical background, practitioners can-
not determine when a model is applicable and when it di-
verges from reality. There is no reliability growth model
that can be generalized for all possible software projects,
although there is evidence of models that are better suited
to certain types of software projects [7]. Under this scenario
what becomes significantly interesting is to have modeling
mechanisms that can exclude the assumptions of the model
and is based entirely on the fault data. This kind of adaptive
model-building system can evolve a model from the actual
characteristics of the given data sets. In this respect, ge-
netic programming (GP) can be used as an effective tool
because, being a non-parametric method, GP does not con-
ceive a particular structure for the resulting model and GP
also does not make any assumptions about the distribution
of data.

2 Using GP for reliability growth modeling

GP can be used for modeling software reliability growth
e.g. [4, 12, 14, 1]. The evolution of software reliability
growth models using GP is an example of a symbolic re-
gression problem. Symbolic regression is an error-driven
evolution as it aims to find a function, in symbolic form,
that fits (or approximately fits) data from an unknown
curve [8]. In simpler terms, symbolic regression finds a
function whose output matches some target values. GP is
well suited for symbolic regression problems, as it does not
make any assumptions about the structure of the function.

There are five preparatory steps for GP [3]:

1. Specifying the set of terminals.

2. Specifying the set of functions.

3. Specifying the fitness measure.
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4. Specifying the parameters for controlling the run.

5. Specifying the termination criterion and designating
the result of run.

The set of terminals and functions make up a variety of pro-
grams in the population being searched by GP. For symbolic
regression, the set of functions may consist of arithmetic
functions while the terminal set may consist of independent
variables and random constants. The specification of fit-
ness measure specifies the desired objective of GP run. For
symbolic regression problems, the fitness measure includes
summing the errors measured for each record in the data
set [13]. The specification of control parameters adminis-
ters the GP run which includes setting different parameters
like population size and probabilities of performing the ge-
netic operations. The fifth preparatory step specifies the ter-
mination criterion (e.g. a maximum number of generations)
and selection of an individual as a result of the run.

3 Suitability of GP

The suitability of GP for modeling software reliability
growth is based on the identification of building blocks and
progressively improving overall fitness.

According to Koza, the GP population contains building
blocks, which could be any GP tree or sub-tree in the pop-
ulation. According to the building block hypothesis, good
building blocks improve the fitness of individuals that in-
clude them and these individuals have greater chance to be
selected for reproduction. Therefore, good building blocks
get combined to form better individuals [2]. This hypoth-
esis appears suited to adaptive model-building system that
can be used for predicting software reliability growth.

The evolution of better individuals using GP is shown in
Figure 1. The fitness of a GP solution is the sum of absolute
differences between the obtained and expected results in all
fitness cases. Suppose that during the fourth generation of
the GP run, two tree solutions have evolved (Figure 1a and
1b) which contain different building blocks for an optimum
solution. For tree 1 (Figure 1a), the sum of absolute dif-
ferences between the obtained and expected results in all
fitness cases was 31.34, while for tree 2 (Figure 1b), the fit-
ness measure was 28.9. By combining these two trees, two
new trees could emerge (Figure 1c & Figure 1d). The first
tree (Figure 1c) has a better fitness of 27.8 than any of its
parents, while the second tree (Figure 1d) produced a higher
fitness of 39.

In order to evolve a general function based on the fitness
cases, the search space of solutions can get complex. This
increase in complexity helps the GP programs to be able
to comply with all the fitness cases [13]. Evolutionary al-
gorithms have been found to be robust for complex search
spaces. In our work [1], we have used genetic programming
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Figure 1. Combination of trees containing
building blocks.

to evolve software reliability growth model because the suit-
ability of genetic programming has already been proven for
symbolic regression and curve fitting problems. Being a
stochastic search technique, the different runs of GP would
result in different trajectories [13]. Figure 3 shows how the
GP algorithm is searching the program space of solutions to
track the model to approximate. Figure 2 shows the Pareto
front when modeling software reliability growth for one of
the data sets. The Pareto front shows the set of solutions for
which no other solution was found which both has a smaller
tree and better fitness [5]. The Pareto front in the Figure 2
also shows how the fitness of different solutions fluctuates
as the number of nodes increases during the course of gen-
erations.

4 Conclusions

GP is based on the exploration of space of computer pro-
grams. This exploration starts from random programs and
through genetic operations of crossover, mutation and re-
production; a new generation of programs is evolved. This
process is repeated until the termination criterion is satis-
fied. Through visualization of space of solutions, we can
understand how GP is searching the space of solutions. GP
is suited to symbolic regression problems and software re-
liability growth modeling is one instance of it. The experi-
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Figure 2. Visualization of Pareto front for one set of industrial fault count data.

Figure 3. Several approximations to the original fault count data in different generations.
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ments of using GP for software reliability growth modeling
have indicated positive results, which warrant further inves-
tigation with larger real-world industrial data sets.
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