
Search-Based Prediction of Fault Count Data

Wasif Afzal∗, Richard Torkar and Robert Feldt
Blekinge Institute of Technology,

S-372 25 Ronneby, Sweden
{waf,rto,rfd}@bth.se

Abstract

Symbolic regression, an application domain of genetic
programming (GP), aims to find a function whose out-
put has some desired property, like matching target val-
ues of a particular data set. While typical regression in-
volves finding the coefficients of a pre-defined function,
symbolic regression finds a general function, with coef-
ficients, fitting the given set of data points. The concepts
of symbolic regression using genetic programming can
be used to evolve a model for fault count predictions.
Such a model has the advantages that the evolution is
not dependent on a particular structure of the model
and is also independent of any assumptions, which are
common in traditional time-domain parametric soft-
ware reliability growth models. This research aims at
applying experiments targeting fault predictions using
genetic programming and comparing the results with
traditional approaches to compare efficiency gains.

1. Introduction to the research problem

A software fault is a defect in an executable prod-
uct that causes system failures during operations [11].
The number of faults in a software module or particu-
lar release of a software system represents the quanti-
tative measure of software quality. A fault prediction
model then uses previous software quality data in the
form of metrics (including software fault data) to pre-
dict the number of software faults in a module or re-
lease of a software system [12]. The practical aspect of
such models has strong implications on the quality of
the software project. The information gained from such
models can be an important decision making tool for the

∗Wasif Afzal is a PhD student, advised by Richard Torkar and
Robert Feldt, at the Department of Systems and Software Engineer-
ing, Blekinge Institute of Technology, Sweden. This paper is written
specifically for the PhD forum.

project managers to make better decisions in uncertain
situations. A fault prediction model helps a software
development team in prioritizing the effort to be spent
on a software project. If the predictions forecasts a high
number of faults in the coming release of a project, then
the management has the option of investing required
levels of effort to circumvent possible failures in opera-
tion. Proper allocation of resources for quality improve-
ment might cause considerable savings for a software
project. The development of large software systems is
costly therefore even small gains in prediction accuracy
should be appreciable [10]. Apart from the efficiency
gains, architectural improvements can be made by bet-
ter designing high-risk segments of the system [14].

There have been a number of software fault pre-
diction and reliability growth modeling techniques pro-
posed in software engineering literature [9, 5]. De-
spite the presence of large number of models, there
is no agreement within the research community about
the best model. One of the reasons for such a situ-
ation is that models exhibit different predictive accu-
racies across different data sets. Therefore, the quest
for a consistently accurate predictor model is continu-
ing. The result is that the prediction problem is seen
as being largely unsolvable and NP-hard: the ability to
build prediction systems for software engineers remains
an important but largely unsolved problem. . . due to the
fact that the problem is NP-hard [23] . . . this problem
is largely unsolvable [5].

2. Genetic programming for predictions

The use of statistical regression analysis (e.g., lin-
ear, logarithmic and logistic) for software fault predic-
tions may not be the best approach. This argument
is supported by the fact that software engineering data
come with certain characteristics that creates difficulties
in making accurate software prediction models. These

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.17

35

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.17

35

1st International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.17

35

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:22 from IEEE Xplore. Restrictions apply.

characteristics include missing data, large number of
variables, strong collinearity between the variables, het-
eroscedasticity1, complex non-linear relationships, out-
liers and small size [10]. Therefore, it is not surpris-
ing that we possess an incomplete understanding of the
phenomenon under study, so it is very difficult to make
valid assumptions about the form of the functional rela-
tionship between the variables [4]. This reason is also
highlighted by [21]. This argument strengthens earlier
established results that show program metrics to be in-
sufficient for accurate prediction of faults. Moreover,
the acceptability of models has seen little success due
to lack of meaningful explanation of the relationship
among different variables and lack of generalisabilty
of model results [10]. Additionally, these parametric
models are often characterized by a number of assump-
tions [9] that are necessary for developing a mathemati-
cal model. These assumptions are often violated in real-
world situations (see e.g. [24]), therefore, causing prob-
lems in the long-term applicability and validity of these
models.

Under this scenario, what becomes significantly in-
teresting is to have modeling mechanisms that can ex-
clude the pre-suppositions about the model and is based
entirely on the fault data. This is where the applica-
tion of symbolic regression using genetic programming
(GP) becomes feasible. The advantages of using GP for
symbolic regression problems are [20]:

1. GP, being a non-parametric method, does not con-
ceive a particular structure for the resulting func-
tion. Therefore, the evolved model truly represents
the data, be it linear or non-linear.

2. The model and the associated coefficients are
evolved based on the fault data collected during the
initial test phase.

3. The equations are derived according to the fitness
evaluation criterion of the individuals only, since
GP does not make any assumptions about:

(a) The distribution of the data.
(b) Relationship between independent and de-

pendent variables.
(c) The stochastic behavior of software failure

process.
(d) The nature of software faults.

3. Related work

Studies reporting the use of GP for software fault
prediction are few and recent. Costa et al. [6] presented

1A sequence of random variables with different variances.

results of two experiments exploring GP models based
on time and test coverage. The authors compared the re-
sults with other traditional and non-parametric artificial
neural network (ANN) models. For the first experiment,
the authors used 16 data sets containing time-between-
failure (TBF) data from projects related to different ap-
plications. The models were evaluated using five differ-
ent measures, four of these measures represented dif-
ferent variants of differences between observed and es-
timated values. The results from the first experiment,
which explored GP models based on time, showed that
GP adjusts better to the reliability growth curve. Also
GP and ANN models converged better than traditional
reliability growth models. GP models also showed the
lowest average error in 13 out of 16 data sets.

For the second experiment, which was based on
test coverage data, a single data set was used. This
time the Kolmogorov-Smirnov test was also used for
model evaluation. The results from the second exper-
iment showed that all metrics were always better for
GP and ANN models. The authors later extended GP
with boosting techniques for reliability growth model-
ing [19] and reported improved results. A similar study
by Zhang and Chen [25] used GP to establish software
reliability model based on mean time between failures
(MTBF) time series. The study used a single data se-
ries and used six different criteria for evaluating the GP
evolved model. The results of the study also confirmed
that in comparison with the ANN model and traditional
models, the model evolved by GP had higher prediction
precision and better applicability.

Our research using GP extends these previous stud-
ies. We focus on using cumulative fault count data for
modeling and investigate different ways to adapt the use
of modeling in current trend of multi-release software
development. We focus on using proven experimen-
tal design practices in our research work. We intend
to increase the comparison groups and also make use
of larger, real-world data sets to question the generaliz-
ability of our results.

3.1. Authors’ contribution and preliminary
work

In the preliminary stage of our research, we evalu-
ated the use of GP for fault predictions in two studies
([3, 1]). In the very first study [3], we evaluated the re-
sults of using GP for modeling weekly fault count data
of three industrial projects in terms of goodness of fit
and predictive accuracy. The results found were statis-
tically significant in favor of GP. We later extended the
scope and included comparisons with three traditional
reliability growth models [1]. In terms of evaluating

363636

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:22 from IEEE Xplore. Restrictions apply.

model validity, three measures were used; two of them
showed favorability of GP model, while the goodness of
fit of the GP evolved model was also found to be either
equivalent or better than the traditional models. Lastly,
the predictions of the GP evolved model was found to be
less biased than traditional models. We later on, in [2],
highlighted the underlying mechanisms that allows GP
to progressively search for fitter solutions.

4. Methodology

The overall methodology is discussed in terms of
data requirements, GP design and statistical hypothesis
testing.

4.1. Fault count data sets

Fault count data sets are required to train the GP
evolved models and to evaluate their applicability using
various evaluation measures. The fault count data sets
resembles a time-series, with faults aggregated either on
weekly or monthly basis. The week/month number can
be regarded as the independent variable (being control-
lable) and the corresponding count of faults as the de-
pendent variable in which the effect of the treatment is
measured. The data sets needs to be split in to training
and test sets. We resort to a typical mechanism, with
first 2

3 of data in each data set for building the model
and later 1

3 of the data for evaluating the model. Such
a choice of split preserves the chronological time series
occurrence of faults.

4.2. GP design

The representation of solutions in the search space
is a symbolic expression in the form of a parse tree,
which is a structure having functions and terminals.
The quality of solutions is measured using an evaluation
function. A natural evaluation measure for symbolic re-
gression problems is the calculation of the difference
between the obtained and expected results in all fitness
cases, ∑

n
i=1 | ei − e

′
i | where ei is the actual fault count

data, e
′
i is the estimated value of the fault count data and

n is the size of the data set used to train the GP mod-
els. Various variation operators can be used to grow or
shrink a variable length parse tree. Similarly, there are
various selection mechanisms that can be used to deter-
mine individuals in the next generation. The effective-
ness of these operators is problem-dependent [16]. In
our experiments, we have used cross-over with branch
swapping by randomly selecting nodes of the two par-
ent trees. We have also used mutation in which a ran-
dom node from the parent tree is substituted with a new

random tree created with the available terminals and
functions. A small proportion of individuals were also
copied into the next generation without any action of
operators. The selection mechanism selected a random
number of individuals from the population and chose
the best of them; if two individuals were equally fit, the
one having the less number of nodes was chosen as the
best.

4.3. Statistical hypothesis testing

It is important to test results for statistical signif-
icance because it is not reliable to draw conclusions
merely on observed differences in means or medians be-
cause the differences could have been caused by chance
alone [17]. Prior to applying statistical testing, suit-
able accuracy indicators are required. However, there
is no consensus with regards as to which accuracy in-
dicator is the most suitable for the problem at hand.
Commonly used indicators suffer from different lim-
itations (for details see [7, 22]). One intuitive way
out of this dilemma is to employ more than one accu-
racy indicator, so as to better reflect on a model’s pre-
dictive performance in light of different limitations of
each accuracy indicator. This way the results can be
better assessed with respect to each accuracy indicator
and we can better reflect on a particular model’s reli-
ability and validity. However, reporting multiple mea-
sures that are all based on a basic measure like mean
relative error (MRE) would not be useful because all
such measures would suffer from common disadvan-
tage of being unstable (see [7]). In [18], measures for
the following characteristics are proposed: Goodness
of fit (Kolmogorov-Smirnov test), Model bias (U-plot),
Model bias trend (Y-plot) and Short-term predictability
(prequential likelihood). These measures, although pro-
viding a thorough evaluation of a model’s predictions,
lacks a suitable measure for variable-term predictabil-
ity.

In [8, 15], average relative error is used as a mea-
sure of variable term predictability. To our knowledge,
we are not aware of any critique of such an approach for
variable-term predictability. As an example of applying
multiple measures, one of our recent studies [1] used
measures of prequential likelihood, Braun statistic and
adjusted mean square error for evaluating model valid-
ity. Additionally we examined the distribution of resid-
uals from each model to measure model bias. Lastly, the
Kolmogorov-Smirnov test was applied for evaluating
goodness of fit. More recently, analyzing distribution of
residuals is proposed as an alternative measure [13, 22].
It has the convenience of applying significance tests and
visualizing differences in absolute residuals of compet-

373737

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:22 from IEEE Xplore. Restrictions apply.

ing models using box plots.

5. Conclusions

This paper presented the synopses of the research
conducted so far that evaluates the use of genetic pro-
gramming for predicting fault count data. Initial stud-
ies have produced better or comparable results to tradi-
tional models (see [1]). This encourages further testing
the use of GP for larger data sets and to increase com-
parisons with other machine learning/traditional ap-
proaches. Future work includes evaluating the use of
GP for cross-release predictions using extensive data
sets covering both commercial and open source soft-
ware systems. Going further, the applicability of the
approach will be assessed in an on-going project in an
industrial context.

References

[1] W. Afzal and R. Torkar. A comparative evaluation of us-
ing genetic programming for predicting fault count data.
In Proceedings of the Third International Conference on
Software Engineering Advances. IEEE Computer Soci-
ety, 2008.

[2] W. Afzal and R. Torkar. Suitability of Genetic Program-
ming for Software Reliability Growth Modeling. In The
2008 International Symposium on Computer Science
and its Applications. IEEE Computer Society, 2008.

[3] W. Afzal, R. Torkar, and R. Feldt. Prediction of fault
count data using genetic programming. In Proceedings
of the 12th IEEE International Multitopic Conference.
IEEE, 2008.

[4] L. C. Briand, V. R. Basili, and W. M. Thomas. A pattern
recognition approach for software engineering data anal-
ysis. IEEE Trans. Softw. Eng., 18(11):931–942, 1992.

[5] V. Challagulla, F. Bastani, I.-L. Yen, and R. Paul. Em-
pirical assessment of machine learning based software
defect prediction techniques. 10th International Work-
shop on Object-Oriented Real-Time Dependable Sys-
tems, 2005.

[6] E. Costa, S. Vergilio, A. Pozo, and G. Souza. Modeling
software reliability growth with genetic programming.
International Symposium on Software Reliability Engi-
neering, 2005.

[7] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit.
A simulation study of the model evaluation criterion
MMRE. IEEE Transactions on Software Engineering,
29(11), 2003.

[8] K. Gao and T. Khoshgoftaar. A comprehensive empiri-
cal study of count models for software fault prediction.
IEEE Transactions on Reliability, 56(2), June 2007.

[9] A. L. Goel. Software reliability models: Assumptions,
limitations, and applicability. IEEE Transactions on
Software Engineering, SE-11(12):1411–1423, 1985.

[10] A. Gray and S. MacDonnell. A comparison of

techniques for developing predictive models of soft-
ware metrics. Information and Software Technology,
39(6):425–437, 1997.

[11] T. Khoshgoftaar, N. Seliya, and N. Sundaresh. An em-
pirical study of predicting software faults with case-
based reasoning. Software Quality Control, 14(2), 2006.

[12] T. M. Khoshgoftaar and N. Seliya. Tree-based software
quality estimation models for fault prediction. In MET-
RICS ’02: Proceedings of the 8th International Sympo-
sium on Software Metrics, Washington, DC, USA, 2002.
IEEE Computer Society.

[13] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shep-
perd. What accuracy statistics really measure. IEE Pro-
ceedings Software, 148(3), Jun 2001.

[14] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software de-
fect prediction: A proposed framework and novel find-
ings. IEEE Transactions on Software Engineering,
34(4):485–496, 2008.

[15] Y. Malaiya, N. Karunanithi, and P. Verma. Predictability
measures for software reliability models. COMPSAC 90.

[16] Z. Michalewicz and D. Fogel. How to Solve It: Modern
Heuristics. Springer-Verlag, second edition, 2004.

[17] I. Myrtveit and E. Stensrud. A controlled experiment
to assess the benefits of estimating with analogy and re-
gression models. IEEE Transactions on Software Engi-
neering, 25(4), July-Aug. 1999.

[18] A. Nikora and M. Lyu. An experiment in determining
software reliability model applicability. ISSRE, 1995.

[19] E. Oliveira, A. Pozo, and S. R. Vergilio. Using boosting
techniques to improve software reliability models based
on genetic programming. IEEE International Confer-
ence on Tools with Artificial Intelligence, 2006.

[20] R. Poli, W. Langdon, N. McPhee, and J. Koza. Genetic
Programming: An Introductory Tutorial and a Survey of
Techniques and Applications. Technical Report CES-
475, ISSN: 1744-8050, 2007.

[21] M. Reformat, W. Pedrycz, and N. Pizzi. Software qual-
ity analysis with the use of computational intelligence.
Fuzzy Systems, 2002. FUZZ-IEEE’02. Proceedings of
the 2002 IEEE International Conference on, 2:1156–
1161, 2002.

[22] M. Shepperd, M. Cartwright, and G. Kadoda. On build-
ing prediction systems for software engineers. Empirical
Software Engineering, 5(3), 2000.

[23] M. Shepperd and G. Kadoda. Comparing software pre-
diction techniques using simulation. IEEE Transactions
on Software Engineering, 27(11):1014–1022, 2001.

[24] A. Wood. Software reliability growth models: assump-
tions vs. reality. In ISSRE ’97: Proceedings of the
8th IEEE International Symposium on Software Relia-
bility Engineering, Los Alamitos, CA, USA, 1997. IEEE
Computer Society.

[25] Y. Zhang and H. Chen. Predicting for MTBF failure
data series of software reliability by genetic program-
ming algorithm. 6th International Conference on In-
telligent Systems Design and Applications (ISDA ’06),
2006.

383838

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:22 from IEEE Xplore. Restrictions apply.

