
Prediction of fault count data using genetic
programming

Wasif Afzal, Richard Torkar and Robert Feldt
Blekinge Institute of Technology,

S-372 25 Ronneby, Sweden
{waf,rto,rfd}@bth.se

Abstract—Software reliability growth modeling helps in decid-
ing project release time and managing project resources. A large
number of such models have been presented in the past. Due to
the existence of many models, the models’ inherent complexity,
and their accompanying assumptions; the selection of suitable
models becomes a challenging task. This paper presents empirical
results of using genetic programming (GP) for modeling software
reliability growth based on weekly fault count data of three
different industrial projects. The goodness of fit (adaptability)
and predictive accuracy of the evolved model is measured using
five different measures in an attempt to present a fair evaluation.
The results show that the GP evolved model has statistically
significant goodness of fit and predictive accuracy.

I. INTRODUCTION

Software has become a key element in the daily life of
individuals and societies as a whole. We are increasingly
dependent on software and because of this ever-increasing
dependency, software failures can lead to hazardous circum-
stances. Ensuring that the software is of high quality is thus
a high priority. A key element of software quality is software
reliability, defined as the ability of a system or component to
perform its required functions under stated conditions for a
specific period of time [11]. If the software frequently fails to
perform according to user-specified behavior, other software
quality factors matters less [20].

Software reliability growth models (SRGMs) that are based
on the time domain,1 describe the behavior of software failures
with respect to time. Specifically, reliability growth modeling
performs curve fitting of observed time-based failure data by
a known model formula, where the parameters of the model
are found by statistical techniques such as the maximum
likelihood method [21]. The model then estimates reliability
or predicts future reliability by different forms of extrapola-
tion [16]. After the first software reliability growth model was
proposed by Jelinski and Moranda in 1972 [12], there have
been numerous reliability growth models following it. These
models come under different classes [15], e.g., exponential
failure time class of models, Weibull and Gamma failure
time class of models, infinite failure category models and
Bayesian models. The existence of a large number of models
requires a user to select and apply an appropriate model. For
practitioners, this may be an unmanageable selection problem

1There are also software reliability growth models based on the coverage
of a testing criterion.

and there is a risk that the selected model is unsuitable to
the particulars of the project in question. Some models are
complex with many parameters. Without extensive mathemat-
ical background, practitioners cannot determine when it is
applicable and when the model diverges from reality. Even
if the dynamics of the testing process are well known, there is
no guarantee that the model whose assumptions appear to best
suit these dynamics will be most appropriate [22]. Moreover,
these parametric software reliability growth models are often
characterized by a number of assumptions, e.g., an assumption
that once a failure occurs, the fault that caused the failure is
immediately removed and that the fault removal process will
not introduce new faults. These assumptions are often unreal-
istic in real-world situations (see, e.g., [29]), therefore, causing
problems in the long-term applicability and validity of these
models. Under these constraints, what becomes significantly
interesting is to have modeling mechanisms that can exclude
the pre-suppositions about the model and are based entirely on
the fault data. In this respect, genetic programming (GP) can
be used as an effective tool because, being a non-parametric
method, GP does not conceive a particular structure for the
resulting model and GP also does not make any assumptions
about the distribution of the data.

In this paper, we present an experiment where we apply
GP to evolve a model based on weekly fault count data.
The contribution of this work is exploring the use of GP
as a potential method for software fault count predictions.
We use five different measures to evaluate the adaptability
and predictive ability of the GP-evolved model on three sets
of fault data that corresponds to three projects carried out
by a large telecommunication company. The results of the
experiment indicate that software reliability growth modeling
is a suitable problem domain for GP as the GP evolved model
gives statistically significant results for goodness of fit and
predictive accuracy on each of the data sets.

The remainder of this paper is organized as follows. Sec-
tion II describes related work, including differences between
this study and previous works. Section III presents a brief
introduction to genetic programming. In Section IV we detail
our research method along with a discussion of evaluation
measures used. Section V and VI comprises of experimental
setup and results respectively. Validity evaluation is given in
Section VII while the discussion and future work appears in
Section VIII.

II. RELATED WORK

Within the realm of machine learning algorithms, there has
been work exploring the use of artificial neural networks for
software reliability growth modeling (e.g., [25]), but our focus
here is on the research done using GP for software reliability
growth modeling.

Studies reporting the use of GP for software reliability
modeling are few and recent. Costa et al. [5] presented the
results of two experiments exploring GP models based on time
and test coverage. The authors compared the results with other
traditional and non-parametric artificial neural network (ANN)
models. For the first experiment, the authors used 16 data
sets containing time-between-failure (TBF) data from projects
related to different applications. The models were evaluated
using five different measures, four of these measures repre-
sented different variants of differences between observed and
estimated values. The results from the first experiment, which
explored GP models based on time, showed that GP adjusts
better to the reliability growth curve. Also GP and ANN
models converged better than traditional reliability growth
models. GP models also showed lowest average error in 13 out
of 16 data sets. For the second experiment, which was based
on test coverage data, a single data set was used. This time the
Kolmogorov-Smirnov test was also used for model evaluation.
The results from the second experiment showed that all metrics
were always better for GP and ANN models. The authors later
extended GP with boosting techniques for reliability growth
modeling [23] and reported improved results. A similar study
by Zhang and Chen [30] used GP to establish a software
reliability model based on mean time between failures (MTBF)
time series. The study used a single data series and used six
different criteria for evaluating the GP evolved model. The
results of the study also confirmed that in comparison with
the ANN model and traditional models, the model evolved by
GP had higher prediction precision and better applicability.

There are several ways in which the present work differs
from the aforementioned studies. Firstly, none of the previous
studies used data sets consisting of weekly fault count data.
In this study, our aim is to use the weekly fault count data
as a means to evolve the reliability growth model using GP.
Secondly, we have avoided performing any pre-processing of
data to avoid chances of incorporating bias. Thirdly, we remain
consistent with using 2/3 of the data to build the model and
use the rest 1/3 of the data for model evaluation for all of
our data sets. Perhaps the most important difference between
prior studies and the study in this paper is that previous studies
have focused on comparative accuracy with traditional and
ANN models, rather than on the suitability of the approach
of using GP for building software reliability growth models
which is the focus of this study. In an attempt to provide a
fair evaluation, we also remain consistent with using the same
set of five different measures for evaluating GP evolved models
for all the data sets.

III. BACKGROUND TO GENETIC PROGRAMMING

GP is an evolutionary computation technique (first results
reported by Smith [26] in 1980) and is an extension of
genetic algorithms. Genetic algorithms are search methods
based on the principles of natural selection and genetics [8]. As
compared with genetic algorithms, the population structures
(individuals) in GP are not fixed length character strings, but
programs that, when executed, are the candidate solutions to
the problem. GP is a systematic, domain-independent method
for getting computers to solve problems automatically starting
from a high-level statement of what needs to be done [24].
Programs are expressed in GP as syntax trees, with the nodes
indicating the instructions to execute and are called functions,
while the tree leaves are called terminals which may consist of
independent variables of the problem and random constants.
In Figure 1(a), variables x, y and constant 3 are the terminals
while min, ∗, + and / are the functions. There are five
preparatory steps for a basic GP [2]:

1) Specifying the set of terminals.
2) Specifying the set of functions.
3) Specifying the fitness measure.
4) Specifying the parameters for controlling the run.
5) Specifying the termination criterion and designating the

result of run.
The first two steps define the search space that will be explored
by GP. The fitness measure guides the search in promising
areas of the search space and is a way of communicating
problems requirements to GP. The fitness evaluation of a
particular individual is determined by the correctness of the
logical output produced for all of the fitness cases [1]. The last
two steps are administrative. The control parameters limit and
control how the search is performed like setting the population
size and probabilities of performing the genetic operations.
The termination criterion specifies the ending condition for
the GP run and typically includes a maximum number of
generations [2].

GP iteratively transforms a population of computer pro-
grams into a new generation of programs using various genetic
operators. Typical operators include crossover, mutation and
reproduction. The crossover operator recombines randomly
chosen parts from two selected programs and creates new
program(s) for the new population (Figure 1(b)). The mutation
operator selects a point in a parent tree and generates a new
random sub-tree to replace the selected subtree, while the
reproduction operator simply replicates a selected individual
to a new population.

The evolution of software reliability growth models using
GP is an example of a symbolic regression problem. Symbolic
regression is an error-driven evolution as it aims to find a
function, in symbolic form, that fits (or approximately fits)
data from an unknown curve [14]. In simpler terms, symbolic
regression finds a function whose output matches some target
values. GP is well-suited for symbolic regression problems as
it does not make any assumptions about the structure of the
function.

(a) Tree structured
representation showing
min(x ∗ x, y + 3/x).

(b) Crossover in GP, dotted line showing the subtrees exchanged
between (i) first parent and (ii) second parent, to create offspring
program (iii).

Fig. 1. Tree structured representation and crossover operation in GP.

IV. RESEARCH METHOD

In this section we outline the research method used in
this paper. We describe the data sets used, the formulated
hypotheses and a description of the evaluation measures.

A. Fault count data sets

The data sets used in this study are based on the weekly
fault count data collected during the testing of three large-scale
software projects at a large telecom company. The motivation
for selecting the fault count data from an industrial context
is to be representative of real-world problem domain. The
projects are targeted towards releases of three mature systems
that have been on the market for several years. These projects
followed an iterative development process which means that
within each iteration, a new system version, containing new
functionality and fixes of previously discovered faults, is
delivered to test. These iterations occurred on weekly basis or
even more frequently, while testing of new releases proceeded
continuously. In this scenario, it becomes important for project
managers to estimate the current reliability and to predict
the reliability ahead of time, so as to measure the quality
impact with continuous addition of new functionality and
fixes of previously discovered faults. The three projects are
similar in size, i.e., they have approximately half a million
lines of code. There are, however, minor differences with
respect to the projects duration. The first project lasted 26
weeks, whereas the second and third projects lasted 33 and
30 weeks respectively. Appendix A shows the data sets used
in the study, but due to the proprietary nature of data, the
number of faults are multiplied by a factor and are given
for illustrative purposes only. Nevertheless, we believe that
making the data sets available allows the research community
to replicate results and to perform additional studies. The

results of the evaluation measurements in the rest of the paper
are, however, based on original data sets.

The independent variable in our case was the week number
while the corresponding dependent variable was the count of
faults. We used 2/3 of the data in each data set for building
the model and 1/3 of the data for evaluating the model
according to the five different measures (Subsection IV-C).
This implies that we are able to make predictions on several
weeks constituting 1/3 of the data.

B. Hypothesis

The purpose of this experiment is to evaluate the predictive
accuracy and goodness of fit of GP in modeling software reli-
ability using weekly fault count data collected in an industrial
context. In order to formalize the purpose of the experiment,
we define the following hypotheses:

H0−acc: GP model does not produce significantly accurate
predictions.

H1−acc: GP model produces significantly accurate predic-
tions.

H0−gof : GP model does not fit significantly to a set of
observations.

H1−gof : GP model fits significantly to a set of observations.
In order to test the above hypotheses, we use five measures

for evaluating the goodness of fit and predictive accuracy as
detailed in the next section.

C. Evaluation measures

It is usually recommended to use more than one measure
to determine model applicability, as in [22], because reliance
on a single measure can lead to making incorrect choices. The
deviation between observed and the fitted values was, in our
case, measured using a goodness-of-fit test. We selected two
measures for determining the goodness of fit, the two-sample
two-sided Kolmogorov-Smirnov (K-S) test and the Spearman’s
rank correlation coefficient. For measuring predictive accuracy,
we used prediction at level l, mean magnitude of relative error
(MMRE) and a measure of prediction stability. What follows
is a brief description of each of these measures.

a) Kolmogorov-Smirnov: The K-S test is a commonly
used statistical test for measuring goodness of fit [3], [19].
The K-S test is a distribution-free test for measuring general
differences in two populations. The statistic J for the two-
sample two-sided K-S test is given by,

J =
mn

d
max

−∞<t<+∞
{| Fm(t)−Gn(t) |} (1)

where Fm(t) and Gn(t) are the empirical distribution func-
tions for the two samples respectively, m and n are the two
sample sizes and d is the greatest common divisor of m and
n. The null hypothesis of interest here is that the two samples
have the same probability distribution and represents the same
population.

H0 : [F (t) = G(t), for every t] (2)

We have used the significance level α = 0.05 and if the K-S
statistic J is greater than or equal to the critical value Jα, the
null hypothesis is rejected in favor of the alternate hypothesis,
otherwise we conclude that the two samples have the same
distribution. For detailed description of the test, see [10].

b) Spearman’s rank correlation coefficient: Spearman’s
rank correlation coefficient ρ is the non-parametric counterpart
of the parametric linear correlation coefficient, r. Spearman’s
rank correlation coefficient ρ is independent of the assumption
of linear relationship and bivariate normal population distri-
bution as required in the case of linear correlation coefficient.
Moreover, the data for each variable is converted into ordinal
values (ranks) such that for n number of values in each
variable, we have n pairs of ranks. The rank correlation
coefficient is then given by,

ρ = 1−
6

n∑
i=1

D2
i

n(n2 − 1)
(3)

where Di is the difference between the ith pair of ranks.
We use hypothesis testing to determine the strength of

relationship between observed and estimated model values.
If the absolute value of the computed value of ρ exceeds the
critical values of ρ for α = 0.05, we conclude that there is
a significant relationship between the observed and estimated
model values. Otherwise, there is not sufficient evidence to
support the conclusion of a significant relationship between
the two distributions.

c) Prediction at level l: Prediction at level l, pred(l),
represents the count of the number of predictions within l% of
the actuals. We have used the standard criterion for considering
a model as acceptable which is pred(0.25) ≥ 0.75 which
means that at least 75% of the estimates are within the range
of 25% of the actual values [6].

d) Mean magnitude of relative error: Mean magnitude
of relative error (MMRE) is the most commonly used accuracy
statistic and is defined as,

MMRE =
1
n

n∑
i=1

| ei − e
′

i

ei
| (4)

where ei is the actual fault count data and e
′

i is the estimated
value of the fault count data. If we have a small MMRE, then
we have a good set of predictions. Conte et al. [4] consider
MMRE ≤ 0.25 as acceptable for effort prediction models; we
use the same custom measure for our study as well.

e) Measure of prediction stability: The predictions of a
model should not vary significantly and should remain stable
to denote the maturity of the model. We use here a good rule
of thumb given in [28] for prediction stability which says that
a prediction is stable if the prediction in week i is within 10%
of the prediction in week i− 1.

V. EXPERIMENTAL SETUP

In this study we used MATLAB version 7.0 [18] and
GPLAB version 3.0 [9] (a GP toolbox for MATLAB).

TABLE I
MAIN CONTROL PARAMETERS USED FOR THE GP SYSTEM.

Control Parameter Value
Population size 30
Number of generations 200
Termination condition 200 generations
Function set (for project 1 & 3) {+,−, ∗, sin, cos, log}
Function set (for project 2) {+,−, ∗, /, sin, cos, log}
Terminal set {x}
Tree initialization ramped half-and-half
Initial maximum number of
nodes

28

Maximum number of nodes af-
ter genetic operations

512

Genetic operators crossover, mutation, repro-
duction

Selection method lexictour
Elitism replace

A. Control parameter selection for GP

GPLAB allows for different choices of tuning control
parameters. We were able to adjust the control parameters
after certain amount of experimentation. We experimented
with different function sets and terminal sets by fixing the
rest of the control parameters like population size, number of
generations and sampling strategy. Initially we experimented
with a minimal set of functions by keeping the terminal set
containing the independent variable only. We incrementally
increased the function set with additional functions and later
on also complemented the terminal set with a random constant.
For each data set, the best model having the best fitness was
chosen from all the runs of the GP system with different
variations of function and terminal sets. The function set for
project 1 and project 3 data sets were the same, while a slightly
different function set for project 2 gave the best fitness. The
GP programs were evaluated according to the sum of absolute
differences between the obtained and expected results in all
fitness cases,

n∑
i=1

| ei − e
′

i | (5)

where ei is the actual fault count data, e
′

i is the estimated
value of the fault count data and n is the size of the data set
used to train the GP models. The control parameters that were
chosen for the GP system are shown in Table I.

VI. RESULTS

In this section, we describe the results of the evaluation
measurements to assess the adaptability and predictive accu-
racy of the GP evolved model.

A. Adaptability of the model

Table II shows the statistic J for the K-S test performed
on the validation fault count data (1/3 of the original data
set) and the estimated fault count data provided by the GP
evolved model for each of the data sets. The critical values
Jα for α = 0.05 are also given. We selected the significance

TABLE II
RESULTS OF APPLYING TWO-SAMPLE TWO-SIDED

KOLMOGOROV-SMIRNOV TEST.

J Jα=0.05 Sample size J < Jα

Project 1 0.40 0.70 10
√

Project 2 0.27 0.64 11
√

Project 3 0.10 0.70 10
√

TABLE III
RESULTS OF APPLYING SPEARMAN’S CORRELATION COEFFICIENT TEST.

ρ rα=0.05 Sample size ρ >
rα=0.05

Project 1 0.99 0.65 10
√

Project 2 0.93 0.62 11
√

Project 3 1.00 0.65 10
√

level (α) of 0.05 as it is common in practice [13]. We see that
in each data set, J < Jα; therefore the null hypothesis for K-
S test statistic (Eq. 2) holds. This suggests that the estimated
fault count data, as provided by the GP model, fits quite well
to the set of observations in all three data sets.

We additionally calculated the Spearman’s rank correlation
coefficient ρ for determining the relationship between actual
and estimated model values (Table III). At significance level
α = 0.05, computed values of ρ exceeds the critical values
rα=0.05 for every data set. This indicates that there is a strong
relationship between actual values and estimated model values.

Based upon the results of applying Kolmogorov-Smirnov
and Spearman’s rank correlation coefficient, we are able to
reject the null hypothesis, H0−gof in support of the alternative
hypothesis, H1−gof .

B. Measuring predictive accuracy

Table IV presents the results of measuring pred(0.25) for
the three data sets where ei denotes the actual fault count data
and e

′

i is the estimated value of the fault count data. In all the
data sets, the measurement pred(0.25) ≥ 0.75 holds true. The
bold values in Table IV illustrate the cases when the model
underestimates the actual fault count data.

We also calculated the MMRE for each of the data sets. The
MMRE values for the three data sets were 0.0992, 0.06558 and
0.0166, respectively. Each of these values satisfy the criterion
of MMRE ≤ 0.25, therefore we have confidence that we have a
good set of predictions. For evaluating the prediction stability,
we calculated whether the prediction in week i is within 10%
of the prediction in week i− 1. The results (Table V) indicate
that the predictions are indeed stable.

The results of applying pred(l), MMRE and the measure of
prediction stability show that the GP model is able to produce
significantly accurate predictions. We can, thus reject the null
hypothesis, H0−acc in favor of the alternative, H1−acc.

Figure 2 shows the comparison of actual and predicted fault
count data for the three projects. The actual and predicted fault
count data is multiplied by a constant factor due to proprietary
concerns. The difference between the actual and predicted fault
count is the least for data from project 3, which also has the

TABLE IV
TESTING FOR pred(0.25) ≥ 0.75.

Week i 25% of ei e
′
i e

′
i within range
of 25% of ei?

Project 1
19 25± 6.25 25

√

20 27± 6.75 26.23
√

21 30± 7.5 27.53
√

22 33± 8.25 28.83
√

23 34± 8.5 30.10
√

24 35± 8.75 31.28
√

25 36± 9 32.38
√

26 40± 10 33.44
√

27 40± 10 34.51
√

28 41± 10.25 35.58
√

Project 2
23 69± 17.25 75.82

√

24 70± 17.5 77.30
√

25 74± 18.5 74.69
√

26 78± 19.5 76.40
√

27 79± 19.75 84.14
√

28 83± 20.75 88.64
√

29 85± 21.25 94.28
√

30 93± 23.25 96.48
√

31 102± 25.5 93.36
√

32 109± 27.25 102.56
√

33 110± 27.5 102.91
√

Project 3
21 153± 38.25 148.54

√

22 162± 40.5 159.07
√

23 173± 43.25 167.06
√

24 180± 45 174.67
√

25 184± 46 181.04
√

26 190± 47.5 189.07
√

27 196± 49 196.18
√

28 204± 51 203.80
√

29 208± 52 207.65
√

30 210± 52.5 216.32
√

best MMRE value of 0.0166. These charts show that the GP
evolved curve is able to learn the pattern in failure count data
and adapts reasonably well.

VII. VALIDITY EVALUATION

There can be different threats to the validity of experimental
results.

Conclusion validity refers to the statistically significant
relationship between the treatment and the outcome [27]. For
K-S test and Spearman’s rank correlation coefficient, we used
hypothesis testing with 0.05 level of significance to identify
significance of relationship between observed and estimated
values. For pred(0.25), MMRE and prediction stability, we
used custom thresholds that have proven to be applicable in
different predictive studies. One of the threats to conclusion
validity is the use of MMRE which has been criticized in [7]
for being unreliable. We have used an additional measure
(Spearman’s rank correlation coefficient) for measuring the
strength of the relationship to minimize this threat.

Internal validity refers to a causal relationship between
treatment (independent variable) and outcome (dependent vari-
able) [27]. In this paper, the GP algorithm is controlled by
different parameters, all of which are configurable, therefore
we are sure that there are no other influences affecting the
independent variable with respect to causality.

TABLE V
TESTING FOR PREDICTION STABILITY.

Week i Prediction
in week i

10% of the
prediction in
week i− 1

Prediction
stability

Project 1
19 25 − −
20 26.23 25± 2.5

√

21 27.53 26.23± 2.62
√

22 28.83 27.53± 2.75
√

23 30.10 28.83± 2.88
√

24 31.28 30.10± 3.01
√

25 32.37 31.28± 3.12
√

26 33.44 32.37± 3.23
√

27 34.50 33.44± 3.34
√

28 35.57 34.50± 3.45
√

Project 2
23 75.81 − −
24 77.30 75.81± 7.58

√

25 74.69 77.30± 7.73
√

26 76.39 74.69± 7.46
√

27 84.14 76.39± 7.63
√

28 88.64 84.14± 8.41
√

29 94.28 88.64± 8.86
√

30 96.48 94.28± 9.42
√

31 93.35 96.48± 9.64
√

32 102.56 93.35± 9.33
√

33 102.91 102.56± 10.25
√

Project 3
21 148.53 − −
22 159.06 148.53± 14.85

√

23 167.06 159.06± 15.90
√

24 174.66 167.06± 16.70
√

25 181.04 174.66± 17.46
√

26 189.07 181.04± 18.10
√

27 196.18 189.07± 18.90
√

28 203.80 196.18± 19.61
√

29 207.65 203.80± 20.38
√

30 216.32 207.65± 20.76
√

Construct validity is concerned with the relationship be-
tween the theory and observation [27]. Our objective in this
study is to measure the adaptability and predictive accuracy
of GP evolved model. We used two measures for adaptability
or goodness of fit and three for predictive accuracy. Also we
used three data sets to have a reasonable representation of
treatments.

External validity is concerned with generalization of results
outside the scope of the study. The experiment is conducted
on three different data sets taken from an industrial setting.
However, these projects are carried out by one organization
following similar development methods. The generalizability
of the research can be improved by experimenting with data
sets taken from diverse projects employing different develop-
ment methodologies. Also, as we described in related work
(Section II), the study is carried out with the objective of
evaluating the suitability of GP for building software reliability
growth models, rather than comparing the accuracy with tradi-
tional and artificial neural network models. We acknowledge
that the generalizability of the research can be improved
further by having such a comparison.

(a) Project 1—Predicted and actual fault count data.

(b) Project 2—Predicted and actual fault count data.

(c) Project 3—Predicted and actual fault count data.

Fig. 2. Actual and predicted fault count data for three projects.

VIII. DISCUSSION AND FUTURE WORK

The hypothesis to be tested was that GP could be a suitable
approach for evolving a SRGM based on fault count data.
The results of applying the evaluation criteria, as described
in Subsection IV-C, confirmed that GP represents a suitable
approach for modeling software reliability growth based on
fault count data, both in terms of goodness of fit and predictive
accuracy. In terms of goodness of fit, the K-S test statistic
for all three data sets showed that at significance level of

0.05, the GP model fits well to the set of observations. We
also calculated the Spearman’s rank correlation coefficient
to determine the strength of the relationship between actual
values and and estimated model values. The results showed
that at significance level of 0.05, there exists a strong relation-
ship between the two distributions. The results obtained are
also promising in terms of predictive accuracy. The custom
measures of MMRE ≤ 0.25 and pred(0.25) ≥ 0.75, as
indicative of a good prediction system, holds true in all the
three data sets. However, we noted a considerable variation in
MMRE values for the three validation data sets. This indicates
the sensitivity of GP to changes in the training set and is
indicative of the adaptive nature of GP algorithm to deal with
heterogeneous data. To have a degree of confidence about the
accuracy of future estimates, we resorted to a good rule of
thumb for evaluating predictive stability (Subsection IV-C).

In our case, we had one independent and one dependent
variable. Hence, the GP algorithm generated good models
efficiently within the termination criterion of 200 generations.
However, it is common that efficiency and effectiveness of GP
drops if the data tables contain hundreds of variables as the
GP algorithm then can take a considerable amount of time in
isolating the key features [24].

While measures of goodness of fit and predictive accuracy
are important, we agree with Mair et al. [17] that these
measures are not enough for a practical utility of a prediction
system. Therefore, the explanatory value (transparency of
solution) and ease of configuration are also important aspects
that require discussion. Since the output of a GP system is an
algebraic expression, it has the potential of generating trans-
parent solutions; however the solutions can become complex
as the number of nodes in the GP solution increases. There
is a trade-off in having more accurate predictions and less
simplicity of the algebraic expressions but we believe that this
tradeoff is manageable as achieving accurate models within
acceptable thresholds is possible. In terms of ease of configura-
tion, we found that configuring GP control parameters requires
considerable effort. Different facets need to be determined,
e.g., evaluation function, genetic operators and probabilities,
population size and termination criterion to name a few. The
parameter tuning problem is time consuming because the
control parameters are not independent but interact in complex
ways and trying all possible combinations of parameters is
practically infeasible [24].

In order to have more confidence in the use of GP for fault
count modeling, we like to add comparisons with existing
statistical and machine learning models as a future work. We
also intend to validate the results in a practical setting where a
development team can actually use such predictions to improve
the quality of operational software and in this respect, we
believe that using the data sets from an industrial context is a
step in the right direction. Another interesting future work is
to explore the relationship between end-user (estimator) and
the prediction system to assess if the combination outperforms
the individual estimations by either estimator or GP prediction
system. Another possible area of future research is to use a

different evaluation function (e.g., correlation coefficient) or a
multi-objective fitness function that combines both error-based
fitness function and correlation coefficient. We also feel that
the search for more robust control parameters for tuning the
GP algorithm should continue.

IX. CONCLUSIONS

This paper presented the results of using genetic pro-
gramming for modeling software reliability growth based on
weekly fault count data of three different industrial projects.
The results have been evaluated in terms of goodness of
fit and predictive accuracy. For evaluating goodness of fit,
the K-S statistic and Spearman’s rank correlation coefficient
gives statistically significant results in favor of adaptability
of GP evolved model. The resulting statistics for evaluating
predictive accuracy are also encouraging with pred(0.25),
MMRE and measure of prediction stability offering results in
favor of statistically significant prediction accuracy. However,
GP is found to require high set-up times and some degree
of experimentation in configuring control parameters. The
algebraic expression can also get complex as the number of
nodes in the GP solution increases. Therefore, we believe that
the practitioners need to be aware of the apparent trade-off
between ease of configuration, transparency of solutions and
acceptable accuracy of predictions provided by the GP evolved
model.

REFERENCES

[1] T. Bäck, D. Fogel, and T. Michalewicz. Evolutionary computation 1—
basic algorithms and operators. Taylor Francis Group, New York, USA,
2000.

[2] E. K. Burke and G. Kendall. Search methodologies--introductory
tutorials in optimization and decision support techniques. Springer
Science and Business Media, New York, USA, 2005.

[3] C. Stringfellow and A. Amschler Andrews. An empirical method
for selecting software reliability growth models. Empirical Software
Engineering, 7(4):319–343, 2002.

[4] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software engineering
metrics and models. Benjamin/Cummings, 1986.

[5] E. O. Costa, S. R. Vergilio, A. Pozo, and G. Souza. Modeling
software reliability growth with genetic programming. In ISSRE ’05:
Proceedings of the 16th IEEE International Symposium on Software
Reliability Engineering, pages 171–180, Washington, DC, USA, 2005.
IEEE Computer Society.

[6] J. J. Dolado. A validation of the component-based method for soft-
ware size estimation. IEEE Transactions on Software Engineering,
26(10):1006–1021, 2000.

[7] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation
study of the model evaluation criterion MMRE. IEEE Transactions on
Software Engineering, 29(11):985–995, 2003.

[8] D. E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley Publishing Company, Inc., 1989.

[9] GPLAB—A genetic programming toolbox for MATLAB. http://gplab.
sourceforge.net. (Last checked 20 April 2008).

[10] M. Hollander and D. A. Wolfe. Non-parametric statistical methods.
John Wiley and Sons, Inc., 1999.

[11] IEEE Std 610.12-1990. IEEE standard glossary of software engineering
terminology, 1990.

[12] Z. Jelinski and P. Moranda. Software reliability research. In Statistical
Computer Performance Evaluation, Ed. W. Freiberger, pages 465–497.
Academic Press, New York, USA, 1972.

[13] N. Juristo and A. M. Moreno. Basics of software engineering experi-
mentation. Kluwer Academic Publishers, 2001.

[14] J. R. Koza. Genetic programming: on the programming of computers
by means of natural selection. MIT Press, 1992.

[15] M. R. Lyu. Handbook of software reliability engineering. IEEE
Computer Society Press and McGraw-Hill, 1996.

[16] M. R. Lyu. Software reliability engineering: A roadmap. In FOSE ’07:
2007 Future of Software Engineering, pages 153–170, Washington, DC,
USA, 2007. IEEE Computer Society.

[17] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd,
and S. Webster. An investigation of machine learning based prediction
systems. Journal of Systems and Software, 53(1):23–29, 2000.

[18] The MathWorks, Inc. http://www.mathworks.com. (Last checked 20
April 2008).

[19] K. Matsumoto, K. Inoue, T. Kikuno, and K. Torii. Experimental evalu-
ation of software reliability growth models. In Eighteenth International
Symposium on Fault-Tolerant Computing, FTCS-18, Digest of Papers,
pages 148–153, Jun. 1988.

[20] J. D. Musa. Software reliability engineering: more reliable software
faster and cheaper. AuthorHouse, 2nd edition, 2004.

[21] I. J. Myung. Tutorial on maximum likelihood estimation. Journal of
Mathematical Psychology, 47(1), 2003.

[22] A. P. Nikora and M. R. Lyu. An experiment in determining software
reliability model applicability. In Proceedings of the 6th International
Symposium on Software Reliability Engineering, pages 304–313, Oct.
1995.

[23] E. Oliveira, A. Pozo, and S. R. Vergilio. Using boosting techniques
to improve software reliability models based on genetic programming.
In ICTAI ’06: Proceedings of the 18th IEEE International Conference
on Tools with Artificial Intelligence, pages 643–650, Washington, DC,
USA, 2006. IEEE Computer Society.

[24] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at http:
//www.gp-field-guide.org.uk, 2008.

[25] R. Sitte. Comparison of software reliability growth predictions: neural
networks vs. parametric recalibration. IEEE Transactions on Reliability,
48(3):285–291, Sept. 1999.

[26] S. F. Smith. A learning system based on genetic adaptive algorithms.
PhD thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1980.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[28] A. Wood. Predicting software reliability. Computer, 29(11), 1996.
[29] A. Wood. Software reliability growth models: assumptions vs. reality.

In ISSRE ’97: Proceedings of the 8th IEEE International Symposium on
Software Reliability Engineering, Los Alamitos, CA, USA, 1997. IEEE
Computer Society.

[30] Y. Zhang and H. Chen. Predicting for MTBF failure data series of
software reliability by genetic programming algorithm. In ISDA ’06:
Proceedings of the Sixth International Conference on Intelligent Systems
Design and Applications (ISDA’06), pages 666–670, Washington, DC,
USA, 2006. IEEE Computer Society.

APPENDIX

Project 1 Project 2 Project 3
Week Fault

Count
Week Fault

Count
Week Fault

Count
1 9 1 15 1 3
2 9 2 18 2 12
3 24 3 24 3 18
4 24 4 30 4 30
5 27 5 39 5 60
6 27 6 60 6 93
7 39 7 69 7 138
8 45 8 72 8 186
9 54 9 87 9 210
10 54 10 126 10 240
11 54 11 129 11 258
12 57 12 132 12 279
13 57 13 144 13 297
14 57 14 147 14 312
15 57 15 156 15 348
16 66 16 162 16 357
17 66 17 171 17 372
18 69 18 171 18 399
19 75 19 174 19 414
20 81 20 180 20 429
21 90 21 186 21 459
22 99 22 192 22 486
23 102 23 207 23 519
24 105 24 210 24 540
25 108 25 222 25 552
26 120 26 234 26 570
27 120 27 237 27 588
28 123 28 249 28 612

29 255 29 624
30 279 30 630
31 306
32 327
33 330

