
Lessons from applying experimentation in
software engineering prediction systems

Wasif Afzal, Richard Torkar
Blekinge Institute of Technology,

S-372 25 Ronneby, Sweden
{waf,rto}@bth.se

Abstract

Within software engineering prediction systems, ex-
periments are undertaken primarily to investigate re-
lationships and to measure/compare models’ accuracy.
This paper discusses our experience and presents useful
lessons/guidelines in experimenting with software engineer-
ing prediction systems. For this purpose, we use a typical
software engineering experimentation process as a base-
line. We found that the typical experimentation process in
software engineering is supportive in developing prediction
systems and have highlighted issues more central to the do-
main of software engineering prediction systems.

1 Introduction

Software development process is costly and therefore de-
mands efficient allocation of resources. Measurement dur-
ing the different phases of a software development process
makes different activities visible and hence provides oppor-
tunities for making efficiency gains, not necessarily limited
to resource allocation. There has been significant interest
in the software engineering research community to make
use of these measures for predicting the future outcomes,
in the form of prediction systems and models. Models act
as a substitute for the complex real-world systems, to help
us better represent the realities [12]. Statistical models are
more common to software engineering whereby they are
utilized for prediction of probabilistic future behavior of
a system using prior data and extrapolation or interpola-
tion of data based on a mathematical fit. There have been
many published results on software effort/cost estimation
and software fault/fault count predictions. With so many
studies, the problem of reliable predictions is still largely
unsolvable as we are not able to reach a general conclusion
due to contradicting empirical results. This shows that there
is enough uncertainty in the software prediction process that

hampers reaching consistent and reliable results.One of the
obvious reasons for having such a variation in the predic-
tion results is that the software development process is sel-
dom repeatable. Each new software project is innovative
and many times solves new problems. Therefore, we have
to deal with complex relationships among several variables
and the interaction of application with its environment [14].
However, this is not the only problem facing inaccurate pre-
dictions in software engineering.

This study, in addition to summarizing some of the key
reasons for inaccurate and contradictory prediction results,
presents lessons/guidelines based on our experience in ex-
perimenting with prediction systems and related literature
investigation. We use the typical experimentation process
(given in [35]) as a baseline to the process of building soft-
ware engineering prediction systems and to present critical
issues specific to software prediction studies. The motiva-
tion for using a process-centric approach is that the research
procedure quality is bound to impact the conclusions of a
study. Myrtveit et al. [26] argues that lack of convergence
of studies on software prediction models is partly attributed
to variation in their quality of execution. Therefore, by im-
proving the experimentation process we can achieve better
convergence of results and improve validity of conclusions.

2 Experimental software engineering

Experiments in software engineering is part of a wider
context i.e. empiricism in software engineering. The im-
portant reasons for undertaking quantitative empirical stud-
ies (i.e. experiments and case studies) are summarized by
Wohlin et al. [35] as, “to get objective and statistically
significant results regarding the understanding, controlling,
prediction and improvement of software development”.

In software engineering, the steps required to perform
experiments have been documented in a dedicated book to
help software engineers in performing experiments [35].
According to this book, the steps constituting the process



of experimentation include: definition; planning; operation;
analysis and interpretation; presentation and package.

The representation of the experimental process in above
steps manifest that experimentation is a formal and con-
trolled activity [35]. There are few studies that report ex-
perimentation in software engineering, Sjøberg et al. [31]
found 103 papers out of 5453, taken from 12 conferences
and journals, that could be categorized as being experi-
ments [18]. Similar results are also reported by [33].

Following is a summary of different experimental
steps [35]:

Definition: The definition step helps defining the goals
and objectives of the experiment. This is one of the foun-
dation steps for experimentation. Planning: The planning
step includes determination of experiment context, formal
statement of hypothesis, selection of variables and subjects,
selecting experimental design, instrumentation and validity
evaluation. Operation: The experiment operation consists
of preparation, execution and data validation. Analysis and
interpretation: The first step in analysis is to use descrip-
tive statistics to provide a visualization of data. The sec-
ond step is data reduction and the third step is hypothesis
testing. Presentation and package: This step concerns the
documentation of the experimental process and final results.

We use this experimentation process as a baseline to
present the association with prediction studies in software
engineering.

3 Software engineering prediction systems

There are many opportunities of making use of pre-
diction systems in software engineering. Fenton and
Pfleeger [11] show that predictions are needed through-
out the software development life cycle, from feasibility
through maintenance. The two most commonly targeted ar-
eas of prediction in software engineering are project effort
and faults [29].

Software engineering literature has established several
benefits out of accurate predictions and estimates:

1. Accurate cost estimation eliminates chances of over-
run budgets and schedules. Similarly, overestimation
can be avoided to achieve time and resource efficien-
cies [16].

2. Timely identification of fault-prone modules assists in
an efficient allocation of testing resources [20] and pri-
oritization of efforts [17].

3. The identification of fault-prone modules may trigger
more thorough design of risky components, thus im-
proving software architecture [20].

4. The prediction of fault count data helps predicting the
quality to be achieved from a software [10].

5. “A good defect prediction model is an important first
step towards pricing maintenance contracts, estimating
support costs such as maintenance staffing, and creat-
ing software insurance” [21].

6. Software reliability prediction in terms of prediction
of faults is indispensable with respect to determining
optimal time to stop testing [32].

In short, accurate predictions are helpful for “. . . tendering
bids, monitoring progress, scheduling resources and evalu-
ating risk factors” [21].

Keeping in view the above benefits, there are several pre-
dictive models proposed in software engineering literature.
These models range from traditional statistical (regression)
models to machine learning models and models making use
of both traditional and machine learning techniques. De-
spite the presence of these many models, there has not been
consensus in the research community regarding which ap-
proach is the most suitable one. “Indeed, very contradictory
results have been reported in studies comparing an arbitrary
function approximator (or machine learning model) with a
function. Furthermore, the performance of arbitrary func-
tion approximators varies widly across studies” [26].

The most recent study that we know of, related to fault
predictions, is by Lessmann et al. [20], who established that
metric-based classification is useful. But still the authors
suggest more research to improve convergence across stud-
ies.

There has been considerable interest in understanding
the reasons behind contradicting results in software engi-
neering prediction studies. Several studies have identified
various reasons attributed to diverging results of software
engineering prediction studies [26, 20, 16, 9]. A brief sum-
mary of such reasons is given below.

Nature of software engineering data sets. Software en-
gineering data sets have properties that challenge effec-
tive analysis and modeling. These properties include miss-
ing data, presence of many explanatory variables (both
continuous and discrete), complex interdependencies and
collinearity between the variables, heteroscedasticity, pres-
ence of outliers (or atypical variable values) and small size
of data [4, 29, 30]. Although some of these issues can be
reduced to some extent (discussed later in Section 4), oth-
ers cannot be and thus any model derived using such data
would be less reliable.

Incomplete understanding of software development pro-
cess. Since software data is complex and have many vari-
ables, we possess a poor understanding of the software de-
velopment process. Therefore, “. . . it is very difficult to
make valid assumptions about the form of the functional re-
lationship between the variables” [4]. Since variables selec-
tion is an important part of experiment planning, any short-



coming at this step is expected to bias the experimental re-
sults.

Misleading accuracy indicators. The software engineer-
ing research community has realized that there are certain
accuracy indicators that are not only invalid but also unreli-
able. There are studies indicating that there is no consensus
among use of various accuracy indicators and the choice of
indicator determines the preferred prediction system which
is of course not desirable [19, 25, 29].

4 Lessons learned and guidelines

In this section, we summarize our experiences and
present useful lessons with respect to the different steps in
the typical software engineering experimental process (Sec-
tion 2) and the predictive modeling studies.

4.1 Definition

This step defines the basic purpose of the experiment and
guides rest of the experimentation process. We found the
use of the goal definition template [35] as a useful first step
in experimenting with prediction models because it takes
into account important aspects of objects, purpose, quality
focus and perspective. We summarize one of our studies [3]
in the goal definition template:

“Analyze the traditional and genetic programming (GP)
techniques [objects]
for the purpose of evaluation [purpose]
with respect to model validity, goodness of fit and model
bias [quality focus]
from the point of view of the researcher [perspective]
in the context of fault count data from three industrial
projects [context]”

We found the definition step to be as important in exper-
imenting with predictive models as generally in software
engineering experimentation.

4.1.1 Useful lessons

1. The objects define the scope of the experiment [35],
therefore a background in related literature helps to
clarify the need of an experiment, such as the expected
contribution of the experiment in increasing our under-
standing of the trade-offs among different prediction
systems.

2. The definition step is expected to be refined and re-
vised before experiment operation due to a gradual in-
crease in problem understanding during planning.

4.2 Planning

Once the need of an experiment is identified, it is impor-
tant to properly plan the experiment. Context selection [35]
is one of the steps in experiment planning. With respect
to context, we were engaged in performing experiments in
an on-line situation, which in our case, meant that the ex-
periments were based on the data collected from real-world
projects. On the other hand, other context are also possible,
like making use of replication and simulation.

Simulation can be a possible way out of the problem of
having limited data. Pickard et al. [28] were the first to
propose the use of simulation for evaluating software mod-
els [30]. Simulation can be used in different situations, i.e.
a large number of values can be created that follow a par-
ticular data distribution e.g. Gaussian. It is also lot easier
to compare a true distribution of data against another one
and it enables study of complex phenomenon where analyt-
ical solutions are difficult to reach [13]. Shepperd et al. [29]
also recommend simulation, as a way to counter difficulties
when collecting large industrial data sets.

We also consider replication of studies as an important
research methodology to better understand and generalize
the study results. A replicated study helps to identify any
anomaly or similarity among study results and an insight
into the factors causing it. Especially with contradicting re-
sults in prediction studies in software engineering, replica-
tion would contribute to possibly present different perspec-
tives on the problem for an increased understanding.

Within selecting context for an experiment, it is often re-
quired to select models or methods for comparison. Within
prediction studies in software engineering, it is important
to select a representative set of models for comparisons.
Having a representative set of comparative models would
increase generalizability of results and conclusion validity.
There can be several motivations of selecting comparative
models which are largely derived by the research hypoth-
esis. As an example, in one of our studies [3], three fault
count models were selected for comparison as the goal was
to compare a family of fault count models. Also, these
models presented a fair representation in terms of different
forms of the growth curve.

After context selection, a hypothesis is formally stated
which is later validated using statistical tests. We formu-
lated the following null and alternative hypotheses in [3]:

H0−gof : The GP evolved model does not give signifi-
cantly higher goodness of fit as compared with traditional
models.

H1−gof : The GP evolved model gives significantly
higher goodness of fit as compared with traditional models.

We also need to select the independent and dependent
variables. Independent variables are those that are manipu-
lated and controlled; and their effect is measured in depen-



dent variables [35]. This is an important step in experimen-
tal planning, especially in metric-based regression models.

The selection of subjects [35] is also an important step in
experimental planning. In prediction studies, subjects might
vary; e.g., in one of our studies [3], we used weekly fault
count data sets collected during the testing of three large
scale software projects as the subjects. Since selection of
subjects is related to the ability to generalize the results [35],
we are not certain in stating what is a reasonable level of
generalizability. We plan to investigate this aspect further
in future studies.

The planning of an experiment also include selecting
an experimental design that is suitable for using statistical
analysis [35]. We used one factor with two treatments in
one of our studies [3] which compared fault prediction us-
ing GP with three traditional fault prediction models. So
in this case, factor is the fault prediction method and the
treatments are use of GP and traditional models. As part
of design, the hypothesis should be analyzed to select ap-
propriate statistical analysis method [35]. In the formulated
hypotheses in our study (H0−gof , H1−gof ), it is evident that
we need to use a goodness of fit test for testing the stated
hypotheses.

It is also important to select instrumentation (objects,
guidelines and measurement instruments) [35] for the ex-
periment. The object in the case of prediction studies in
software engineering might be fault data sets, while there
needs to be some preparation (guidelines) if new methods
are to be experimented. If there is a need for data collec-
tion, measurement instruments need to be developed, e.g.,
use of forms [35]. In building prediction systems, data col-
lection might be in the form of model outputs on validation
portion of the data set.

The last step with experiment planning is validity evalu-
ation which is discussed in much detail in [35] along with
the validity threats for conclusion, internal, construct and
external validity. We realized that these validity threats are
equally applicable to prediction studies in software engi-
neering as in experimental software engineering in general.

4.2.1 Useful lessons

1. Data sets required for experimentation are difficult to
get due to several reasons, e.g., data being confidential
and lack of enough information to be extracted from
the data. Simulation can be used to generate data that
follows a particular distribution and may help reaching
valid conclusions [28, 13, 29]. It is also possible to
get publicly available data sets, e.g., PROMISE data
sets [2] and from NASA IV&V Tools Lab [1].

2. Some considerations in selecting models for compari-
son are helpful:

(a) Availability of software implementing the model
algorithms.

(b) Active research in a particular modeling mecha-
nism (as in [30]).

(c) Specific data requirements of a particular model,
e.g. Shooman’s exponential model’s hazard func-
tion requires knowing the parameters of total
number of instructions in the program and debug-
ging time since the start of system integration.

3. The stated hypotheses need to be specific so that it can
either be refuted or accepted using statistical tests.

4. It is also important to understand the process variables
and their alignment with the context in focus so as to
identify the correct experimental factors.

5. The decisions regarding the selection of variables, their
scale type, stated hypotheses and types of statistical
tests to perform are not independent but inter-related.

4.3 Operation

In the operational step, the subjects are exposed to treat-
ments [35]. The operation step consists of three further
steps of preparation, execution and data validation [35]. In
the context of experimental software engineering in gen-
eral, the preparation step would mean dealing effectively
with human subjects on most of the occasions. On the other
hand, it is not necessary in prediction studies in software en-
gineering to involve human subjects. Thus the preparation
step here would resemble the instrumentation step in the
planning phase of experimental software engineering which
includes choosing objects, guidelines and measurement in-
struments.

As part of the preparation steps, especially in prediction
studies in software engineering, it might be a reasonable
approach to do data preprocessing. Within machine learn-
ing techniques, data preprocessing may lead to improved
results. The preprocessing of data using attribute selection,
attribute discretization, data transformation and data cleans-
ing [34] increases chances of improved results. Attribute
selection works to eliminate irrelevant attributes and can be
done both manually and automatically. Attribute discretiza-
tion is a kind of data transformation that involves converting
numeric attributes into small number of distinct ranges [34]
to make them suitable for some classification algorithms
and finally, data cleansing refers to various ways to make
data noise-free. Therefore, it seems useful to analyze the
data sets to avail opportunities to make the data more suit-
able for different techniques. For example, factor analysis
can be used to remove multicolinearity which causes incor-
rect statistical tests and misleading coefficient signs.



In the execution step of experiment operation, a typical
software engineering experiment would collect experimen-
tal data to be used for statistical analysis. But as mentioned
earlier, the execution step of experiments in predictive mod-
els mostly deals with model outputs on validation part of
the data set. This also serves the purpose of data validation
which is the third step in the experimental operation [35].

It is common in research on prediction models to divide
the data set into training (or fix) and test set. To increase ex-
pectancy of unbiased results, an impartial data splitting or
cross-validation technique is desirable. There are typically
two types of cross-validation, n-fold (leave-one-out) and v-
fold [26], where n is the number of instances in the data
set and v is some number smaller then n. In n-fold cross-
validation, the learning method is trained on all, except one,
instances. The model’s correctness is then evaluated on the
remaining instance. In this way the results for all n mem-
bers of the data set are averaged to present a final error esti-
mate [34]. In v-fold cross-validation, the data set is split in
to v partitions and each partition in turn is used for testing
and the remainder is used for training. Standard practice
is to use v = 10 for a 10-fold cross-validation. There is
still no consensus on which cross-validation method is the
most suitable. Myrtveit et al. [26] describes n-fold as be-
ing more practically suited to real-world software develop-
ment situations than v-fold, but on the other hand, v-fold is
less computationally intensive. However, any form of cross-
validation will increase the transparency and unbiasedness
of model results.

4.3.1 Useful lessons

1. Preprocessing of data might help a machine learning
algorithm in converging to a suitable solution.

2. It is important to keep the training and test sets as in-
dependent because the validation of the learned model
on an independent test set is expected to closely match
the fresh data that will be applied in practice [34].

3. Within machine learning and evolutionary computa-
tion approaches to prediction studies, it is expected that
some experimentation at the operational step might be
required for adjusting the algorithmic parameters.

4. For machine learning approaches to predictive models,
it is especially important to document the algorithmic
settings and control parameters during the operation
so as to serve as a basis for reaching optimal tuning of
these parameters in future comparative studies.

4.4 Analysis and interpretation

Once data is collected during experiment operation,
analysis and interpretation step can begin. Analysis and

interpretation is done in three steps: descriptive statistics,
reducing the data set and hypothesis testing [35].

Descriptive statistics are used for knowing the data distri-
bution. Graphical visualization in the form of scatter plots,
box plots and histograms illustrates the properties of data
sets [35]. Therefore, descriptive statistics represent useful
tools for data exploration.

Data set reduction deals with detecting outliers; while
hypothesis testing makes use of parametric and non-
parametric methods to test the formulated hypotheses.

Earlier studies on predictive accuracy of competing mod-
els did not use to test results for statistical significance
and drew conclusions without reporting significance lev-
els. This is, however, now less practiced as more and more
studies report statistical tests of significance, e.g. in [15]
one-way ANOVA and Tuckey’s multiple comparison tests
were used to analyze the predictive performances of the dif-
ferent methods with respect to the absolute average error
(AAE) and absolute relative error (ARE) values. Statisti-
cal tests of significance are important since it is not reli-
able to draw conclusions merely on observed differences in
means or medians because the differences could have been
caused by chance alone [25]. The use of statistical tests of
significance comes with its own share of challenges about
which tests are suitable for a given problem. A study by
Demšar [8] recommends non-parametric tests for statistical
comparisons of classifiers; while elsewhere in [5] paramet-
ric techniques are seen as robust to limited violations in as-
sumptions and as more powerful (in terms of sensitivity to
detect significant outcomes) than non-parametric.

As we discussed earlier in Section 3, there is no consen-
sus with regards as to which accuracy indicator is the most
suitable for the problem at hand. Commonly used indica-
tors suffer from different limitations, for details see [13, 29].
One intuitive way out of this dilemma is to employ more
than one accuracy indicator, so as to better reflect on a
model’s predictive performance in light of different limi-
tations of each accuracy indicator. This way the results
can be better assessed with respect to each accuracy indi-
cator and we can better reflect on a particular model’s reli-
ability and validity. However, reporting several measures
that are all based on a basic measure like mean relative
error (MRE) would not be useful [13]. In [27], measures
for the following characteristics are proposed: Goodness of
fit (Kolmogorov-Smirnov test), Model bias (U-plot), Model
bias trend (Y-plot) and Short-term predictability (Prequen-
tial likelihood). These measures, although providing a thor-
ough evaluation of a model’s predictions, lacks a suitable
measure for variable-term predictability. In [15, 24], av-
erage relative error is used as a measure of variable term
predictability. To our knowledge, we are not aware of any
critique of such an approach for variable-term predictabil-
ity.



As an example of applying multiple measures, one of our
recent studies [3] used measures of prequential likelihood,
Braun statistic and adjusted mean square error for evaluat-
ing model validity. Additionally we examined the distribu-
tion to residuals from each model to measure model bias.
Lastly, the Kolmogorov-Smirnov test was applied for eval-
uating goodness of fit. More recently, analyzing distribution
of residuals is proposed as an alternative measure [19, 29].
It has the convenience of applying significance tests and
visualizing differences in absolute residuals of competing
models using box plots.

We see examples of studies in which the authors use a
two-prong evaluation strategy for comparing various mod-
eling techniques. They include both quantitative evaluation
and subjective qualitative criteria based evaluation because
they consider using only empirical evaluation as an insuf-
ficient way to judge a model’s output accuracy. Qualita-
tive criterion-based evaluation evaluates each method based
on conceptual requirements [16]. One or more of these re-
quirements might influence model selection. Examples of
qualitative criteria include [6, 16, 22, 23]:

1. Does the model require specification of the form of re-
lationship between the variables or does it determine
its own structure?

2. How robust is the model in dealing with outliers (in-
sensitivity to noise)?

3. Is the model’s output affected by small data sets, and
if yes, how much?

4. Can the model adjust to incorporate additional data or
does the model require regeneration on the combined
data set?

5. Is the process of model building transparent and rea-
soning process visible?

6. Is the model able to capture complex relationships in
data?

7. Is the model capable of including known facts to im-
prove and refine its output?

8. How easy is it to configure the technique used for mod-
eling (ease of configuration)?

9. What time and memory resources are required for
model building?

10. What is the extent of generality of model results for
diverse data sets?

11. What is the applicability of the model in different life-
cycle phases?

We can assign subjective ratings to above mentioned cri-
teria to better explain the trade-offs in selecting a particu-
lar model. We argue that both quantitative and qualitative
factors play an important part to establish the validity of a
model. Therefore it should be possible to give a definite
structure to these concepts to develop a multidimensional
model evaluation system which gives proportionate weigh-
ing to empirical and qualitative factors for model assess-
ment.

4.4.1 Useful lessons

1. It is important to satisfy the assumptions of statistical
tests before considering to apply them in practice. Ac-
cording to Fenton et al. [9], one of the main reasons of
invalid conclusions in empirical studies is not satisfy-
ing the assumptions of a statistical technique. One of
the important assumptions of using appropriate statis-
tics is the scale type of measure. As pointed out in [5],
it is not always easy to figure out the scale type of
measures in software engineering. This complicates
the decision of applying parametric vs. non-parametric
tests; but Briand et al. [5] demonstrates that if a re-
searcher is confident that the scale type is between or-
dinal and interval, then it could be treated as being on
an interval scale because commonly used parametric
tests are robust to non-linear (not exponential) trans-
formations of the interval scale.

2. Another decision to take is to select a suitable sig-
nificance level (α) for hypothesis testing, though the
most commonly used significance levels in software
engineering are 0.01 and 0.05. The significance level
shows the probability of committing a Type I error (in-
correct rejection of null hypothesis). The test is more
sensitive if lower values of α are chosen and chances
of finding significant results are more. Also lower val-
ues of α requires less magnitude of effect size, which is
important with respect to software engineering where
collecting large data sets is not always possible.

3. Using multiple accuracy indictors, that measure the
same property, might help increase the conclusion va-
lidity of an experimental study.

4. Analysis of differences in absolute residuals of com-
peting models is a useful way of comparison, allowing
an experimenter to check for model bias as well as to
apply significance tests.

5. Use of qualitative criteria based evaluation is a use-
ful way to complement the quantitative evaluation of
model outputs.



4.5 Presentation and package

The final step in the process of experimental software
engineering is to decide upon the experiment report out-
line [35]. Wohlin et al [35] provides with a generic struc-
ture for such a report, containing an introduction; problem
statement; experiment planing; experiment operation; data
analysis; data analysis and interpretation. This structure fa-
cilitates reporting both general software engineering exper-
iments and also prediction studies in software engineering.

4.5.1 Useful lessons

1. The reporting structure, if followed with all its con-
stituents, supports replication which is one of the im-
portant aims of experimental software engineering.

5 Discussion

Evaluation of software engineering prediction systems
makes up an important field in experimental software engi-
neering. In part, issues faced by software engineering pre-
diction systems are similar to the broader issues in experi-
mental software engineering. We often encounter noisy and
incomplete data, definition of appropriate measures is diffi-
cult and there are trade-offs in applying statistical analysis.
There are alternatives to select at different stages of the ex-
perimentation process when evaluating prediction systems.
With so many factors that might influence the credibility of
prediction results, it is sensible to make use of best practices
and recommendations at various stages of the experimenta-
tion process.

We also observe that data set characteristics have a sig-
nificant impact on getting results with a particular predic-
tion system. Shepperd et al. [30] showed that step-wise re-
gression produced the most accurate predictions for normal
and normal+outlier data sets, and machine learning tech-
niques showed better predictive performance on data sets
having collinearity, outliers and normal distribution. Also
the data splitting scheme into training and test sets and
size of training set had significant impact on a model out-
come. This supports using cross-validation and preprocess-
ing wherever feasible.

The inherent problems in software engineering data sets
have encouraged non-traditional modeling mechanisms but
each one of them come with inherent limitations and require
further experimentation. Various alternative models offer
a choice to the end user in selecting the most appropriate
alternative, especially when there is no significant trend in
accuracy prediction of a particular model [7].

More and more studies on software fault predictions
are making use of an analytical approach that comple-
ments the statistical evaluation. There is a realization that

“. . . statistics on its own does not provide scientific explana-
tions” [9].

We believe that it is useful to investigate the model-
ing of long term behavior, which would validate the true
potential of a model on practical grounds. Also, models
should ideally be validated to a wide range of commer-
cial software systems (e.g. operating systems, servers, web
browsers) [21] as they represent suitable variations in their
respective operational profiles. Moreover, there is a need to
design new software metrics that incorporate both quantita-
tive and qualitative criteria. Another potential area of future
work includes investigating the impacts of cross-validation
method chosen on the predictive model’s performance.

6 Conclusion

The problems faced by prediction studies in software en-
gineering are not new but interestingly still pose threats to
the validity of these studies. One way to move towards
better convergence of study results is to follow a process-
oriented approach. We found that the basic steps of experi-
mentation in software engineering are relevant to prediction
studies; while there are issues specific to each step in the
experimentation process which might require more atten-
tion with respect to prediction studies.

References

[1] NASA IV&V facility. http://mdp.ivv.nasa.gov/, (10 Oct 08).
[2] Promise repository. http://promisedata.org/, (10 Oct 08).
[3] W. Afzal and R. Torkar. A comparative evaluation of using

genetic programming for predicting fault count data. In Pro-
ceedings of the Third International Conference on Software
Engineering Advances. IEEE Computer Society, 2008.

[4] L. Briand, V. Basili, and W. Thomas. A pattern recogni-
tion approach for software engineering data analysis. IEEE
Trans. SW. Eng., 18(11), 1992.

[5] L. Briand, K. Emam, and S. Morasca. On the application of
measurement theory in software engineering. ISERN-95-04.

[6] C. Burgess and M. Lefley. Can genetic programming im-
prove software effort estimation? IST, 43(14), 2001.

[7] V. Challagulla, F. Bastani, I.-L. Yen, and R. Paul. Empirical
assessment of machine learning based software defect pre-
diction techniques. Object-Oriented Real-Time Dependable
Systems, 2005. 10th IEEE International Workshop on, 2005.

[8] J. Demšar. Statistical comparisons of classifiers over multi-
ple data sets. J. Mach. Learn. Res., 7, 2006.

[9] N. Fenton and M. Neil. A critique of software defect predic-
tion models. SW Eng., IEEE Trans., 25(5), Sep/Oct 1999.

[10] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and
P. Krause. On the effectiveness of early life cycle defect
prediction with bayesian nets. Emp. SW Eng., 2008.

[11] N. Fenton and S. Pfleeger. Sofware Metrics–A Rigorous and
Practical Approach, 2nd Edition. International Thomson
Computer Press, Boston, USA, 1996.



[12] A. Ford. Modeling the environment: an introduction to
system dynamic modeling of environmental systems. Island
Press, Washington DC, USA, 1999.

[13] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A
simulation study of the model evaluation criterion MMRE.
IEEE Trans. SW. Eng., 29(11), 2003.

[14] C. Furia, M. Rossi, and D. Mandrioli. Modeling the envi-
ronment in software-intensive systems. In Proceedings of
the International Workshop on Modeling in Software Engi-
neering, Washington, USA, 2007. IEEE Computer Society.

[15] K. Gao and T. Khoshgoftaar. A comprehensive empirical
study of count models for software fault prediction. Relia-
bility, IEEE Trans., 56(2), June 2007.

[16] A. Gray and S. MacDonell. A comparison of techniques for
developing predictive models of software metrics. Informa-
tion and Software Technology, 39(6), 1997.

[17] T. Khoshgoftaar, N. Seliya, and N. Sundaresh. An empirical
study of predicting software faults with case-based reason-
ing. Software Quality Control, 14(2), 2006.

[18] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox,
J. Keung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu.
Evaluating guidelines for empirical software engineering
studies. In ISESE ’06: Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineer-
ing, NY, USA, 2006. ACM.

[19] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shep-
perd. What accuracy statistics really measure. Software,
IEE Proceedings, 148(3), Jun 2001.

[20] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Bench-
marking classification models for software defect predic-
tion: A proposed framework and novel findings. IEEE
Trans. SW Eng., 34(4), 2008.

[21] P. Li, M. Shaw, and J. Herbsleb. Selecting a defect predic-
tion model for maintenance resource planning and software
insurance. In EDSER-5 affiliated with ICSE, 2003.

[22] M. R. Lyu and A. Nikora. Applying reliability models more
effectively. IEEE Softw., 9(4), 1992.

[23] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield,
M. Shepperd, and S. Webster. An investigation of machine
learning based prediction systems. J. Syst. Softw., 53(1),
2000.

[24] Y. Malaiya, N. Karunanithi, and P. Verma. Predictability
measures for software reliability models. COMPSAC 90.

[25] I. Myrtveit and E. Stensrud. A controlled experiment to as-
sess the benefits of estimating with analogy and regression
models. SW Eng., IEEE Trans., 25(4), July-Aug. 1999.

[26] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and
validity in comparative studies of software prediction mod-
els. SW Eng., IEEE Trans., 31(5), May 2005.

[27] A. Nikora and M. Lyu. An experiment in determining soft-
ware reliability model applicability. ISSRE, Oct 1995.

[28] L. Pickard, B. Kitchenham, and S. Linkman. An investiga-
tion of analysis techniques for software datasets. In Pro-
ceedings of the 6th International Symposium on Software
Metrics, Washington, DC, USA, 1999. IEEE Comp. Soc.

[29] M. Shepperd, M. Cartwright, and G. Kadoda. On building
prediction systems for software engineers. Empirical SW
Eng., 5(3), 2000.

[30] M. Shepperd and G. Kadoda. Comparing software predic-
tion techniques using simulation. IEEE Trans. Softw. Eng.,
27(11), 2001.

[31] D. Sjoeberg, J. Hannay, O. Hansen, V. Kampenes, A. Kara-
hasanovic, N. Liborg, and A. Rekdal. A survey of controlled
experiments in software engineering. SW Eng., IEEE Trans.,
31(9), Sept. 2005.

[32] L. Tian and A. Noore. Computational intelligence methods
in software reliability prediction. In Computational Intelli-
gence in Reliability Engineering, pages 375–398. Springer
Berlin / Heidelberg, 2007.

[33] W. Tichy. Should computer scientists experiment more?
Computer, 31(5), May 1998.

[34] H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2005.

[35] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in software engineering:
an introduction. Kluwer Academic Publishers, USA, 2000.


