
A Tool Concept for Execution Time Analysis of Legacy Systems

Johan Erikson, Peter Funk, Jan Gustafsson and Björn Lisper

Mälardalen University, Department of Computer Engineering
P.O. Box 883, Västerås, Sweden

johan.erikson@mdh.se, peter.funk@mdh.se, jan.gustafsson@mdh.se, bjorn.lisper@mdh.se

Abstract
In industry, real-time requirements sometimes arise a long

time after the system was initially developed. The systems
can be large, and the code may be unstructured. This makes
it hard to use existing execution time estimation methods and
it may not be economically feasible to rewrite the code.
These features of the code, together with the complexity of
the systems, also complicate program comprehension.

 In this paper we present a tool concept based on a novel
combination of DJ graphs, execution time estimates and a
graphical notation. The method enables analysis and visuali-
zation of the above mentioned systems and is intended to
give programmers a good overview of execution paths and
their corresponding execution time estimates. The analysis
consists of loop identification and execution time estimation.
A graphical viewer uses output from the compile-time
analysis.

The tool concept has been partly implemented, and it has
been used to analyse a part of a large telecommunication leg-
acy sy stem.

I. Introduction
In the development of new systems, real-time require-

ments can be considered already during the design phase,
e.g. by using special real-time languages. But if the re-
quirements arise in legacy systems, there are a number of
possible solutions. For example to rewrite the system, re-
move unstructured code, add manual annotations and per-
form WCET analysis as proposed by e.g., [PS95, LM95], or
to use ad hoc methods such as programmer guidelines.

Telecommunications systems are often legacy systems,
and they tend to be too large to be rewritten or annotated
by hand. A typical telecommunication system can have
more than 10 million lines of code [HM01]. This is in stark
contrast to embedded system codes, which are the usual
candidates for execution time analysis.

Legacy code typically has to be maintained and updated
to meet new functional requirements. When the code is
large and unstructured it can be very hard to ensure also
that non-functional properties, such as real-time properties,
are met. Tools that help understanding the structure of the
code and estimating its execution time are thus sorely
needed.

In this paper we present a tool concept consis ting of a
number of components that enable execution time estima-
tion and loop identification in legacy systems implemented

with unstructured code1. We particularly target systems
that do not allow a complete WCET calculation with current
methods, due to unstructured code or size. The a pproach is
not restricted to a particular hardware configuration since
the analysis works on a higher level as shown in Section
III-B (Execution Time Estimation). The tool concept con-
sists of an analysis part, where loops in the code are identi-
fied in a hierarchical manner and given symbolic execution
times parameterised in loop counts, and an interactive
graphical environment which gives developers a hierarchi-
cal view over the system in terms of the control flow of the
code, with the identified loops and their es timated execu-
tion times.

In Section II we discuss related work. Section III de-
scribes the different components and the approach ena-
bling execution time estimation using a control flow graph
produced by a compiler back-end as input. Section IV dis-
cusses future work. The paper is wrapped up in Section V
with a summary and conclusions.

II. Related Work

In [HM01], code abstraction and reverse engineering is
dealt with and the same target system as ours is explored,
but execution time analysis is not addressed.

The graph-theoretical method, [SGL96], used in our
framework has been discussed in [UM01] where it is ex-
plored as a tool for an optimising compiler to handle irre-
ducibility. The method has also been compared with other
methods to handle irreducibility [Ram00]. But to our knowl-
edge, it has not been used in the context of WCET analysis.

The idea of showing execution time characteristics in a
graphical environment and enable users to change between
different abstraction levels has been presented by Pospis-
chil, Puschner, Vrchoticky and Zainlinger in the Mars pro-
ject [PPVZ92]. The main difference to the approach pro-
posed in this paper is our need to handle unstructured
code, a necessity in the class of systems we target.

1 This research was partly funded by Ericsson AB and the Swed-
ish Knowledge Foundation. The prototype tool components are
implemented for the PLEX language used in the AXE telecommu-
nication system. The AXE system and the language PLEX are
introduced in [HM01].

Traditional WCET Methods

The basic methods how to calculate a safe and tight

WCET using static analysis for imperative programming
languages (like C) and simple hardware (like MC68000) was
presented around 1990 [PK89, PS91]. The Timing Schema
approach used in these methods assumes a structured
program. It basically assigns a constant execution time for
each atomic statement in the language. The WCET for a
program is found by recursively combining these execution
times in the language constructs.

In the presence of loops and recursion, finite loop or re-
cursion bounds must be given to the Timing Schema
method. Most often, they are given as manual annotations
by the programmer. Optional annotations (like information
on infeasible paths) may also be given, to reduce the over-
estimation of the calculated WCET. The annotations can be
written as comments in a special format or in a separate
information file. A limitation of the annotation method is
that correct annotations require good knowledge of the
structure of the code. If the code is unstructured, with
many jumps, then it can be hard to even identify the loops
that are to be annotated with bounds. This is particularly
true if legacy code is analysed.

During the 90-ies, WCET research has concentrated on
the following areas:
• Flow analysis to replace manual annotations in the

code with automatically calculated values for, e.g., loop
bounds and infeasible paths.

• New methods that cope with modern, complex hard-
ware properties like pipelines, caches, and branch pre-
diction which introduce new difficulties in the WCET
calculation.

• Different approaches to calculate the WCET for opti-
mized code.

• Powerful methods, like ILP, for WCET calculation.
A recent overview of WCET research can be found in

[Pusch00].
When Integer Linear Programming (ILP) was introduced

as a tool for WCET calculation [PS95, LM95], also unstruc-
tured code could be handled. But still, the programmer had
to provide some kind of manual annotations to bound the
number of loop iterations. There is also a practical limit to
how big codes can be to be analyzed in this way, since ILP
is an NP-complete problem.

Unfortunately, in the targeted application domain it is
economically infeasible to provide manual annotations for
more than a few critical sections. Our aim is to do a kind of
re-engineering of the code, present the loop structure to the
programmer, and aid in estimating the execution time with-
out requiring manual annotations.

III. Proposed Tool Concept

The tool concept comprises three components:
• Loop identification

• Execution time estimation

• Visualisation of results

In the current implementation, the loop identification and
execution time estimation is an extension to the back-end of
the PLEX compiler for the AXE system. They both use the
internal control flow graph representation in the back-end.
The graphical environment is a stand-alone comp onent that
uses the output from the extended compiler back-end and
source code as shown in Fig. 1.

Loop
identification

Execution time
estimation

Extended compiler back end

Interactive
visualization

Compiler front
end

Optimisation
and target code

production

Target system
executable

System
source code

 Fig. 1 Organisation of the system.

A. Loop Identification

The loop identification component identifies all loops in
the system. This is achieved by using the control flow
graph from the compiler back-end, which represents the
true control flow in the resulting code, after possible com-
piler optimizations.

A limitation of all analyses based on static control flow
graphs is that they cannot describe execution flows with
dynamic jump addresses, like calls to subroutines and func-
tions. However, if the language under consideration disal-
lows recursion, then this limitation can always be overcome
by inlining the control flow graphs for all subroutines at
each call site, (at the expense of some code expansion).

The loop identification component uses DJ graphs
[SGL96]. The advantage with DJ graphs is that they can
describe irreducible loops. The method repeatedly col-
lapses each identified loop into a single node. By this, the
input to the second phase of the framework, the execution
time estimation, is a “de-loopified” control flow graph with
loops hierarchically hidden in single nodes. Fig. 2 illustrates
the concept.

A B

C

D A B´ D

Fig. 2 The identified loop B→C→B at the left side is repre-
sented by B´ (right side).

This hierarchical hiding is also planned to be used in the
graphical visualisation as an abstraction of the system, see
section C.

B. Execution Time Estimation

The execution time estimation yields information about
how the execution time varies with the maximal number of
iterations for the loops in the analysed program/system.

 The analysis does not take hardware aspects, such as
caches and pipelines, into account even if these mainly
affect the execution time. The reason is that programmers
maintaining the target system claims that the formulas pre-
sented are valuable and sufficient information even if no
exact WCET calculation is performed. But, as will be men-
tioned in Section IV (Future Work), these aspects could be
considered at a later stage.

The control flow graph is traversed and minimum and
maximum execution times are assigned to every node (i.e.,
to every basic block). In the current prototype, the execu-
tion time for a node is calculated in a rudimentary way:

• If the node corresponds to straight-line code, the
minimum and maximum time will equal the number
of statements in the basic block.

• If the node represents a collapsed loop, then the
minimum time will be the time for the loop header
(i.e., the original basic block), as calculated above.
The maximum time will be the estimated time for
the nodes that constitute the loop body. It will be
presented as a formula with the execution time of
one iteration multiplied with an unknown variable
(i.e., the number of iterations).

 C. The Graphical Environment

 The task for the graphical component is to give the pro-
grammer visual information on execution paths, loops and
execution time estimates 2. A prototype is implemented
which displays the “de-loopified” control flow graph and
allows one level of “zoom”, i.e. the user may select and
open a node to see the possibly hidden nodes inside.

The programmer can use the graphical information and
the estimated execution time information in a number of
ways:

• To get an overview of the program structure to
identify parts that needs optimisation.

• To see the symbolic formula for the execution time
estimates for the basic blocks and the inner loops.

• To calculate execution time estimates, assuming
the iteration counts are known.

IV. Future Work

We plan to evaluate our approach together with program-
mers to get an estimate of its efficiency and quality im-
provements. In order to do so, we have to:

• Extend the current prototype with a more detailed
and fine-grained execution time estimation. Cur-
rently some coarse simplifications are made (e.g. in
the case of if-then-else statements).

• Decide the graphical notation that is to be used
and extend the implemented zoom function to
handle several levels of abstraction.

• Perform a full integration of the execution time cal-
culation component with the interactive graphical
visualisation component (today a stand-alone
Java application).

Possible extensions
Abstract interpretation as used by [Gus00] is an interest-

ing extension since this method can calculate the maximum
number of iterations automatically (i.e., the unknown vari-
able mentioned in Section III-B).

Data flow analysis may be used to detect value depend-
ent constraints [HW99]. These constraints make it possible
to identify the maximum number of times a certain path can
be executed in a loop, which can be used to increase the
accuracy in execution time estimations for some loops. We
see this as a possible extension to our approach.

2 The development of the graphical environment is described in
[AGG99].

Cache dependencies and processor pipelines have not
been considered so far (as mentioned in Section III-B). An
obvious extension is to take these issues into account to
make the execution time estimation tighter.

V. Conclusion

In industry, real-time requirements sometimes arise a long
time after the system is implemented. It is not always eco-
nomically feasible to reengineer the systems to make them
amenable to WCET analysis.
This paper presents a tool concept that offers a solution in
providing basic execution time estimates without requiring
reprogramming or source-code annotation.

 A number of programmers maintaining the target system
have been interviewed, and they claim that such a tool
would enable large improvement on system quality and
efficiency if used during the maintenance, of source code.
 The method gives an overview of execution paths and
the corresponding execution time. By using the internal
control flow graphs from the compiler, all loops are identi-
fied and therefore the estimated execution time also takes
compiler optimisations into account. The prototype has
been used to explore a number of modules for a large tele-
communication system with about 10 million lines of code
and more than 1000 modules.

References

 [AGG99] A. Arnström, C. Grosz and A. Guillemot. GRETA: a
tool concept for validation and verification of signal based sys-
tems (e.g., written in PLEX). Master’s thesis, Mälardalen
University, Sweden, 1999.

[Gus00] J. Gustafsson. Analysing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation. PhD thesis,
Uppsala University, Sweden, 2000.

 [HM01] D. Herzberg and A. Marburger. E-CARES research
project: understanding complex legacy telecommunication sys-
tems. In Proceedings of the IEEE Fifth European Conference
on Software Maintenance and Reengineering, 2001. Also
http://hobbes.informatik.rwthaachen.de/research/projects/ecare
s/Main.html

 [HW99] C. Healy and D. Whalley. Tighter timing prediction by
automatic detection and exploitation of value-dependent con-
straints. In Proceedings of the Fifth IEEE Real-Time Technol-
ogy and Applications Symposium, 1999.

[LM95] Y-T.S. Li and S. Malik. Performance analysis of embed-
ded software using implicit path enumeration. In Proceedings
of the ACM Workshop on Languages, Compilers and Tools
for Real-Time Systems, May 1995.

[PB00] P. Puschner and A. Burns. A Review of Worst-Case
Execution-Time Analysis (Editorial). The Journal of Real-Time
Systems, 18(2/3), 2000.

[PK89] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs. The Journal of Real-Time Sy s-
tems, 1(2):159-176, September 1989.

[PPVZ92] G. Pospischil, P. Puschner, A. Vrchoticky and R.
Zainlinger. Developing Real-Time Tasks with Predictable Tim-
ing. IEEE Software, 9(5), 1992.

[PS91] C.Y. Park and A.C. Shaw. Experiments with a program
timing tool based on a source-level timing schema. IEEE Com-
puter, 24(5):48-57, 1991.

[PS95] P. Puschner and A. Schedl. Computing Maximum Task
Execution Times with Linear Programming Techniques.
Technische Universität, Institut für Technische Informatik,
Wien, 1995.

[Ram00] G. Ramalingam. On loop, dominators, and dominance
frontier. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 233-241, 2000.

[SGL96] V.C. Sreedhar, G.R. Gao and Y-F Lee. Identifying Loops
Using DJ Graphs. ACM Transactions on Programming Lan-
guages and Systems, 18(6), 1996.

 [UM01] S. Unger and F. Mueller. Handling Irreducible Loops:
 Optimized Node Splitting vs. DJ Graphs. Technical Report,
 Humbolt-University, 2001.

