
Wind Turbine System : An Industrial Case Study in
Formal Modeling and Verification

Jagadish Suryadevara1, Gaetana Sapienza2,
Cristina Seceleanu1, Tiberiu Seceleanu2, Stein-Erik Ellevseth2, and Paul Pettersson1

1 Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden.
{jagadish.suryadevara,cristina.seceleanu,paul.pettersson}@mdh.se

2 ABB Corporate Research.
{gaetana.sapienza,tiberiu.seceleanu}@se.abb.com,

stein-erik.ellevseth@no.abb.com

Abstract. In the development of embedded systems, the formal analysis of sys-
tem artifacts, such as structural and behavioral models, helps the system engi-
neers to understand the overall functional and timing behavior of the system. In
this case study paper, we present our experience in applying formal verification
and validation (V&V) techniques, we had earlier proposed, for an industrial wind
turbine system (WTS). We demonstrate the complementary benefits of formal
verification in the context of existing V&V practices largely based on simulation
and testing. We also discuss some modeling trade-offs and challenges we have
identified with the case-study, which are worth being emphasized. One issue is
related, for instance, to the expressiveness of the system artifacts, in view of the
known limitations of rigorous verification, e.g. model-checking, of industrial sys-
tems.

Keywords: Industrial Case-Study, Wind Turbine System, MARTE/CCSL,
EAST-ADL, Verification, Model Checking, UPPAAL

1 Introduction

The increasing complexity and criticality of real-time embedded systems (RTES), in
domains such as industrial automation, automotive and avionics, stresses the need for
applying systematic design phases, combined with rigorous verification and valida-
tion (V&V) techniques, during system development [3]. A well-defined design process
with necessary tool support leads to ensuring system predictability, w.r.t intended func-
tional and timing behavior. Nevertheless, meeting such a clear objective has several
challenges. One of pre-requisites is well-defined system artifacts representing system
structure as well as behavior with reactive, continuous, discrete, and real-time fea-
tures, or a combination thereof, at suitable levels-of-abstraction. For complex industrial
systems, the above design by-products, while necessary, may lead to additional issues
such as ensuring traceability, analyzability as well as reusability of the system artifacts.
In this context, model-based development approaches, which enable continuous V&V
throughout the development process, have become a feasible solution to tackle some of
the challenges. However, formal verification techniques such as model checking, while

useful for the exhaustive analysis of system behavior, are challenging to apply for com-
plex system models. A related issue is choosing a suitable level of granularity and ex-
pressiveness for system artifacts, given the well-known limitations of model-checking,
such as the state-space explosion problem. In this paper, we address some of these chal-
lenges in the context of applying modeling and formal verification techniques using a
wind turbine system case-study, a complex industrial RTES.

The Unified Modeling Language (UML) provides a modeling profile called
MARTE (Modeling and Analysis of Real-Time and Embedded systems) [7] to support
the performance and schedulability analysis of system models. MARTE also includes
CCSL – a time model and a clock constraint specification language [1] for specifying
logical and chronometric constraints for system models. On the other hand, EAST-ADL
[2], an emerging standard for automotive systems, provides an integrated model-based
development for RTES, through well-defined phases, as well as support for traceability.
Recently, EAST-ADL has been integrated with model-checking support for component-
based designs, e.g. the ViTAL tool [4] based on the timed automata technology for
verification [5,11,10].

In this paper, we target the verification of functionality and timing behavior of a
wind turbine system developed in the context of the iFEST (industrial Framework for
Embedded Systems Tools), a ARTEMIS project. In Section 2.2, we overview a simpli-
fied version of the wind turbine system (WTS), and describe its functionality and timing
behavior. Rest of the paper is organized as follows: In Section 3, we briefly recall CCSL
and timed automata. In Section 4, we describe a modeling methodology for the WTS to
enable verification using model checking. The analysis results of simulating, as well as
model checking the WTS model are presented in Section 5. In Section 6, we discuss our
experience with the case study with respect to the challenges and limitations in applying
formal techniques to complex industrial systems. We conclude the paper in Section 7.

2 Windturbine System (WTS) : An overview

Wind energy sources are fast-growing and in line with the technological advancement.
Modern wind turbine systems require sophisticated and effective control functionalities
in order to fulfill performance, safety, and maintainability requirements. The main pur-
pose of a wind turbine system is to convert the rotational mechanical energy of the rotor
blades (i.e. mechanical components of a wind turbine) caused by the wind into electri-
cal energy to be redistributed via a power grid. Given the system’s complexity, the
iFEST (industrial Framework for Embedded Systems Tools) project3 aims at providing
a model-based approach for system development, to ensure the system predictability
w.r.t the specified functional and timing behavior.

2.1 Development Process and Environment

In the iFEST project, we have carried out the system development by adopting the V-
model based software development approach, as follows:

3 http://www.artemis-ifest.eu/

During Requirement and Analysis phase, we have documented the WTS require-
ments, both functional and extra-functional including timing behavior. For the Design
phase, we have combined component- and model-based approaches, keeping in view
the overall system analyzability and reusability requirements. During the Implementa-
tion phase, we have applied automatic code generation technologies.Subsequently, the
implemented system, a combined FPGA and CPU solution, has been deployed on a het-
erogenous hardware platform (XilinX ZynQ 7000 product family). For the Verification
and Validation (V&V), we have used model-based techniques as follows: (i) simula-
tion of the WTS functionality using Simulink and related toolboxes, and (ii) automatic
model-based test-case generation with MaTeLo tool. However, the above techniques
are not sufficient to ensure system predictability w.r.t to all possible system executions,
hence formal verification is desirable to complement the current analysis methods. To
address the above open issue, in this paper, we present a verification technique towards
enhanced system validation. And, our contributions are as below:

– As enhanced system validation, we apply verification technique to establish sys-
tem properties, (partially) based on simulation results of Simulink-based system
models.

– We are able to verify safety requirements that involve timing behavior (e.g. “the
wind turbine moves to Park mode, within 30s of detecting that the wind speed has
crossed the upper limit of 20m/sec”).

2.2 The Wind Turbine System Model

The wind turbine system is modeled as a closed-loop control system, as shown in Fig-
ure 1. The key components are the Plant and the Controller subsystems. The Controller
dynamically regulates the rotor blades of the wind turbine w.r.t the specified wind pro-
file, to maximize the generation of electrical energy and also to avoid damage to the
plant in case of turbulent wind scenarios. It automatically changes the Controller Out-
put signal to regulate the plant, based on the wind and the plant’s actual conditions,
which are received by the Controller via the Sensor Input signals. The Wind Profile
and the Resistive Load are used to simulate and test the behavior of the plant and the
controller, under specific wind and resistive load conditions. Further details of the plant
and controller subsystems are described below.

2.2.1 Plant model. As shown in Figure 2 (in Section 4), it consists of three main
components; Servo, Rotor, and Generator. The pitch of the turbine, determined by the
Controller (described below), is actuated by the Servo. The Rotor produces the required
torque to maximize the angular speed of the Generator (which produces the final volt-
age), based on the pitch value as well as the current wind speed (we assume a fixed
resistive load). The Rotor optimizes the produced torque value based on the current
angular speed of the Generator.

2.2.2 Controller model. As shown in Figure 3 (in Section 4), it consists of four
main components: the Filter, the Main Controller, the Pitch Controller, and the Park

Fig. 1. Wind Turbine System Model

and Brake Controller. The Filter Subsystem is responsible for transducing, filtering
and scaling the wind signal and plant signal (for instance the rotational speed of the
turbine), which are used by the Main Controller and the Pitch Controller. Based on the
inputs received through the Filter, the Main Controller directs the overall control. It
oversees the performance and operations of the turbine in order to maximize the energy
production and prevent any damage to the plant. Based on the wind and plant state, the
controller determines the operational mode (i.e. park, start-up, generating, or brake) of
the turbine. The Pitch Control calculates the proper pitch i.e. angle to steer the rotor
blades when the turbine starts up or generates power. The Pitch and Brake controller
determines if the turbine needs to brake or park, to ensure the safety of the wind turbine,
for instance, during wind turbulances.

3 Preliminaries

In this section, we present an overview of the preliminaries needed for modeling of
the wind turbine system. We have used EAST-ADL modeling framework for structural
modeling of the WTS. The timed causality behavior of the system is specified using
CCSL. To provide the verification using the UPPAAL, a model checking tool, we have
develop the timed automata based semantic models of the system, based on the corre-
sponding EAST-ADL models and the CCSL specifications.

3.1 EAST-ADL

The modeling process in EAST-ADL framework, developed in the context of the EAST-
EEA project, is structured into different abstraction levels such as feature level, anal-
ysis level, design level etc. At both analysis and design levels, the system is described
by a FunctionalArchitecture that consists of a number of inter-connected FunctionPro-
totypes (instantiation of FunctionType components). FunctionProtoype components are
either event- or time-triggered. The execution semantics of the EAST-ADL components
is as follows; components interact through single buffer, rewritable, non-consumable
ports, and execute in read-execute-write phases in run-to-completion fashion. The de-
tailed timing behavior as well as timing constraints for an EAST-ADL model can be
specified using TADL2, the Timing Augmented Description Language (ver 2), cur-
rently being integrated with EAST-ADL framework [8]. In related works, we have pro-
posed verification techniques for TADL2-based EAST-ADL models [5,11,10].

3.2 CCSL

CCSL is used to specify the constraints imposed on the logical clocks (activation con-
ditions) of a model. A CCSL clock is defined as a sequence of instants (event occur-
rences). CCSL constraints are of three kinds: (i) Synchronous constraints rely on the
notion of coincidence. For example, the constraint “a coincidesWith b”, denoted
by a = b, specifies that each instant of a coincides with the corresponding instant of
b. Another example of a synchronous constraint is “a isPeriodicOn b period
n” , which specifies the subclock a whose ‘ticks’ correspond to every nth ‘tick’ of
b. (ii) Asynchronous constraints are based on instant precedence; the constraint “a
isFasterThan b” (denoted by a 4 b) specifies that clock a is (non-strictly)
faster than clock b. (iii) Mixed constraints combine coincidence and precedence; the
constraint “c = a delayedFor n on b” specifies that c ‘ticks’ synchronously with
the nth ‘tick’ of b following a ‘tick’.

3.3 Timed Automata

A timed automaton is a tuple < L, l0, C,A,E, I >, where L is a set of locations,
l0 ∈ L is the initial location, C is the set of clocks, A is the set of actions, synchroniza-
tion actions and the internal τ -action, E ⊆ L× A× B(C)× 2C × L is a set of edges
between locations with an action, a guard, a set of clocks to be reset, and I : L→ B(C)
assigns clock invariants to locations. A location can be marked urgent (u) or commit-
ted (c) to indicate that the time is not allowed to progress in the specified location(s), the
latter being a stricter form indicating further that the next transition can only be taken
from the corresponding location(s) only. Also, synchronization between two automata
is modeled via channels (e.g., x! and x?) with rendezvous or broadcast semantics.

The UPPAAL model-checker extends the timed automata language with a number
of features such as global and local (bounded) integer variables, arithmetic operations,
arrays, and a C-like programming language. The tool consists of three parts: a graphical
editor for modeling timed automata, a simulator for trace generation, and a verifier for
the verification of a system modeled as a network of timed automata. A subset of CTL
(computation tree logic) is used as the input language for the verifier. For further details,
we refer to UPPAAL tutorial [6].

4 WTS: Formal Specification and Modeling

In this section, we present a formal specification and modeling approach for WTS,
an aposteriori modeling technique, that is, the specification and modeling artifacts are
based on existing design artifacts such as Simulink models, requirements documents
etc. However, we apply an abstraction strategy to obtain the corresponding real-time
semantic models that represent the system functionality as well as the timing behav-
ior. Further, the strategy attempts to preserve the models’ tractability to make the ex-
haustive verification feasible. The overall modeling strategy, based on design principles
such as separation-of-concerns and correctness-by-construction, captures the underly-
ing model-of-computation and the execution behavior of the WTS. Below, we outline
some generic views/assumptions on which we base our formal modeling:

– Plant models and Instantaneous executions. A Plant model represents phys-
ical devices such as sensors and actuators with the corresponding model-of-
computation based on reactivity and instantaneity.

– Controller models and Timed executions. Controllers contain software compo-
nents based on timed model-of-computation, with explicit timing aspects, such as
delay, execution time, end-to-end deadline etc, to be formally specified and mod-
eled.

– Time and event triggering. The activation or triggering of RTES components is
generally based on specific time or event4 occurrences. Plant components are event-
triggered (i.e. in response to occurrence of input data), whereas controller compo-
nents are time- or event-triggered, this primarily being a design-choice.

– Run-to-completion. RTES components execute in run-to-completion steps, that is,
in terms of read-execute-write cycles.

– Data and value semantics. Due to the associated models-of-computation, as de-
scribed above, a data entity at a given ‘instant’, in the Plant or Controller, may
correspond to two distinct value instants.

– Real-time features. The structural and behavioral models of RTES often fail to
model real-time features, such as urgency, priority, and synchrony (explained later)
w.r.t to the underlying execution model.

– Environment modeling. An environment is external to the system, representing
physical parameters such as temperature, pressure, wind speed etc. To support for-
mal verification, a modeling strategy based on non-determinism as well as the prop-
erties to be verified, is needed.

To obtain an expressive and verifiable semantic model of the WTS, we employ a
component-based modeling approach, based on real-time formalisms such as CCSL
and timed automata.The overall modeling approach is as follows:

– Data and event representations are made based on the structural models.
– The timed causality behavior of the system components, w.r.t the associated model-

of-computation, is formally specified using CCSL constraints.
– The functional behavior of the components is modeled using an abstract finite-state-

machine notation, and transformed into timed automata.
– The CCSL constraints are transformed into timed automata, and composed using

the notion of synchronization product (described later).

Finally, a real-time semantic model of the overall system is obtained as a network (i.e.,
a parallel composition) of timed automata described above.

Fig. 2. Structural modeling: a plant model for the WTS.

4 While time is also an ‘event’, we differentiate this in this paper explicitly.

In Figure 2, we present the structural model of plant and controller for the WTS
(based on the corresponding Simulink models), using the EAST-ADL modeling
framework (in MetaEdit+5). The main components of the plant, that is SERVO,
ROTOR, and GENERATOR are modeled as FunctionalDevice prototypes in
EAST-ADL. In Figure 3, we present the structural model of the Controller. It models
the three sub-controllers MainControl, PitchRegulation, and ParkBrake, modeled
as AnalysisFunctionTypes. For further details of the functionality of these
components, we refer to Section 2.2. We demonstrate the overall modeling approach
for WTS, using the ROTOR and the MainControl components, below. We will also
discuss some related modeling issues.

Fig. 3. Structural modeling: a controller model of the WTS.

4.1 Data and Events

As shown in Figure 2, the ROTOR prototype, denoted by RT, receives input pitch
(theta), turbine speed (omega), and wind speed (ws) and produces the correspond-
ing torque value as the output. Hence, we define the local variables thetal, omegal,
and wsl and the corresponding global variables wsg , omegag , thetag . The local vari-
ables are updated at the activation of the RT using the corresponding global values. This
is consistent with the data semantics discussed previously.

1 CCSLclock RT in ; / / r e a d (i n p u t) i n s t a n t s
CCSLclock RT out ; / / w r i t e (o u t p u t) i n s t a n t s

3 CCSLclock RT omega ; / / a c t i v a t i o n (t r i g g e r) i n s t a n t s

5 C C S L c o n s t r a i n t
RT omega = RT in ; / / RT omega coincidesWith RT in

7 RT in = RT out ; / / RT in coincidesWith RT out

Listing 1.1. CCSL specification of ROTOR component.

4.2 Specification of timed causality behavior

The timed causality behavior of real-time components, w.r.t the corresponding
model-of-computation, can be specified precisely using CCSL logical clocks and
CCSL constraints. We use CCSL (logical) clocks to represent events corresponding
to ‘read’, ‘execute’, and ‘write’ instants of a component. In Listing 1.1 and Listing
1.2, we present the CCSL specification of ROTOR (RT) and MainControl (MC)

5 www.metacase.com

Table 1. Timing attributes of Controller components.

Min Max
Component Period Execution Time Execution Time

(ms) (ms) (ms)

MainControl 100 10 15
PitchRegulation 50 35 45
ParkBrake 50 15 20
Filter – 20 25

prototypes, respectively. The constraints specify the timed causality behavior of the
components w.r.t to the corresponding model-of-computation. For instance, the CCSL
constraints for RT specify the reactivity and instantaneity behavior of RT execution
within the Plant model. On the other hand, the CCSL constraints for MC specify
the time-triggered behavior of the controller execution. The timing attributes of the
controller components are given in Table 1. The CCSL specifications provide a basis
for constructing real-time semantic models e.g. timed automata based models, as well
as observers to establish the system properties, as presented later in this section.

1 CCSLclock MC in / / r e a d (i n p u t) i n s t a n t s
CCSLclock MC out / / w r i t e (o u t p u t) i n s t a n t s

3

C C S L c o n s t r a i n t

5 MC in delayedFor 10 on SysClk 4 MC out / / Minimum e x e c u t i o n t ime

MC out 4 MC in delayedFor 15 on SysClk / / Maximum e x e c u t i o n t ime
7 MC in isPeriodicWith period 100 on SysClk / / Time t r i g g e r i n g

Listing 1.2. CCSL specification of MainControl component.

4.3 Modeling functional behavior of real-time components

In Figure 4, we present the behavior modeling for the MainControl protoype (based
on the corresponding Simulink model). The behavior is specified using a finite-state-
machine (FSM) notation. It represents the overall system behavior (stateful) in terms
of control states PARK, START, BRAKE, and GENERATE. The states represent the
operational modes of the WTS, based on the wind speed and the turbine speed; the
mode transitions corresponding to mode-change behavior are triggered by boolean
conditions (guards) g1, g2, .. etc. Further, we simply annotate the behavior model to
denote the execution semantics such as run-to-completion (R-T-C) and history (denoted
by the control node H). The functionality of other components in the WTS are stateless
computations, that is partial functions between input and corresponding output values,
for instance as represented by the writeTorque() function of the ROTOR.

4.4 Formal modeling of Plant components

In this subsection, we present formal modeling approach, based on CCSL, for the
plant components of the WTS. We had earlier proposed, in a previous work [10],

Park

Start

Brake

Generate[g1]
[g5]

[g3]

[g2] [g4]

[g6]

H

R-T-C

Fig. 4. Functional behavior of the MainControl component.

transformation of CCSL constraints into timed automata. The transformations can be
used to derive timed automata based models that represent the timed causality behavior
of the system. For instance, in Figure 5.(a) and 5.(b), we present the timed automata
semantics of CCSL constraints that specify the timed causality behavior of ROTOR
executions (see Listing 1.1), using events RT in and RT out representing component
activation and termination respectively. Note that an event e.g. RT in is modeled
using synchronization channels i.e. send/receive signals RT in! and RT out!. Also
note that the synchronous occurrence of event signals, e.g. GR out? and RT in! in
Figure 5.(a), is specified using committed locations. A committed location indicates
that the corresponding enabled transitions from the location are ‘forced’ before time
can progress. This facilitates precise modeling of overall timing behavior of the system.

(b) (c)(a)

Fig. 5. Timed automata modeling: (a) RT omega = RT in (b) RT in = RT out (c)
Computation RT.

The above automata can be composed, using the notion of synchronization product
(based on common labels or synchronization signals), as shown in Figure 6.(a). For
instance, locations B and C in the automata in Figure 5.(a) and Figure 5.(b) respectively,
are mapped to the location BC in Figure 6.(a), due to the synchronization of signals
RT in! and RT in?.

(a) (b)

Fig. 6. Timed automata model for (event-triggered) ROTOR.

It can be noted that the composed location ‘BD’ is not possible in the synchronized
product automaton, as the location is non-reachable due to the synchronization at
B and C, leading to location AD (i.e. location A, and D simultaneously in resp.
automata) in the synchronized product, instead. Further, as shown in Figure 6.(a), we

associate the transitions corresponding to component activation, with data updates and
the corresponding computation; the RT in event denotes input as well as execution
of the corresponding functionality, during a transition from location BC to location
AD. However, to make the overall automata model of the WTS system tractable
(time-wise), and hence formally verifiable, we need to relax the notion of instantaneity
for the automata models of the Plant components. This can be done by introducing
a minimum time delay for each component, if not specified already. This is done by
assigning a timing invariant, the delay of one time unit, for instance at location AD in
Fig.6.(b).

(a) (b) (c)

Fig. 7. Semantic modeling: (a) Periodic triggering (b) Min. exec. time (c) Max. exec. time

4.5 Formal modeling of Controller components

In this subsection, we describe the timed automata modeling of the Controller
components for the WTS. In Figure. 7, we present the timed automata semantics of
the CCSL constraints (Listing 1.2) that specify the time-triggered execution behavior
of the MainControl (MC) prototype. We have composed these automata, as shown
in Figure 8.(a), based on the notion of synchronization product (as described in the
previous subsection). This consists of following steps; we have composed the automata
in Figure 7.(b) and 7.(c), and then finally with the automaton in Figure 7.(a) (note the
invariant y ≤ 100 at every location in the product automaton).

(a) (b)

Fig. 8. Timed automata modeling of MainControl: (a) time-triggering (b) functional behavior.

As shown in Fig.8.(b), we have also transformed the behavior (functional) model
of the MainControl (Fig.4) component into corresponding timed automaton, following
the mapping techniques proposed previously [9]. We briefly outline the transformation
as follows; we have mapped the control states to automaton locations. Further, using
additional locations Init and Final and the history variable ‘h’, we have modeled the
execution semantics, that is, run-to-completion, and preserving the history. For model

readability, we have not shown the data updates for the transitions; also, the boolean
guards of the form ‘eij’ correspond to actual expression (¬gi && ¬gj). It can be
noted that all the locations of the transformed automaton are marked ’urgent’ indicat-
ing the behavior model does not consume time, which has been separately modeled
using the timed causality model discussed above. Finally, we ‘connect’ the transformed
behavior model of the MainControl prototype, as described above, with the automata
model of the corresponding timing behavior (Fig.8.(b)), using synchronization channel
‘execute’.

4.6 Modeling the WTS system

Following the modeling strategy presented in the previous subsections, we can obtain
the timed automata models for all the WTS components, and form a network (parallel
composition) of these automata to obtain a timed automata based semantic model for
the complete system. However, some issues exist as discussed below:

Modeling the Environment: The plant model described previously, models the com-
ponents such as sensors and actuators constituting an environment model for the WTS
controller. However, this is not sufficient to obtain a ‘closed’ model of the system that is
necessary to enable exhaustive verification of the WTS model. For instance, modeling
external parameters such as WindSpeed, while necessary, is not feasible using timed
automata. In view of this, as well as the hybrid nature of the plant components e.g. RO-
TOR, GENERATOR etc, we choose to integrate the simulation data of the correspond-
ing Simulink models, to construct the partial functions that represent the computations
of the components.

Modeling ‘observer’ automata: The formal specification of complex properties of the
system, while possible using CTL (the property specification formalism of UPPAAL),
may not be directly verifiable. Instead, these can be intuitively modeled as observer
automata, (parallel) composed with the main system model, and can be efficiently ver-
ified.

5 WTS Analysis

In this section, we present both simulation as well as the verification results for the
WTS, and their correlation in verifying functional and safety-critical properties w.r.t
the overall timing behavior of the system.

5.1 Simulation

The main purpose of simulating the WTS, using the MathWorks Simulink and
StateFlow6, is to analyze the system behavior under normal operating conditions, and
to validate the system (in particular the Controller) when the wind speed exceeds the

0 10 20 30 40 50 60 70 80
0

20
40

Wind Speed

m
/s

ec

0 10 20 30 40 50 60 70 80
-2
0
2

Rotor Torque

N
m

0 10 20 30 40 50 60 70 80
0

20
40

Rotor Speed

ra
d

/s
ec

0 10 20 30 40 50 60 70 80
-100

0
100

Servo Motor Angle
D

eg

0 10 20 30 40 50 60 70 80
-100

0
100

Pitch

D
eg

0 10 20 30 40 50 60 70 80
0
2
4

Turbine State

Time (sec)

S
ta

te

Fig. 9. Simulation Results

designed limit. The simulation results are presented in Figure 9.

The simulation time is step-wise incremented from 0 up to 80 sec., with a fixed
sample time equal to 1 msec. For the simulation, a specific wind speed profile has been
created. According to this, the system is simulated for normal operating limits, i.e., 5
- 20 m/sec up to 30 sec, then up to 30m/sec above 43 sec. The simulation results are
analyzed w.r.t the turbine control states representing the operational modes (i.e. 0:park,
1:start, 2:generate, 3:brake).

While the simulation provides rich data representing the computation and control
of the WTS w.r.t complex environment behavior, system properties however can not be
established without analyzing the data. In the next subsection, we present a verification
technique to ‘exhaustively’ analyze the simulation data, w.r.t the overall system timing
and causality behavior, towards establishing the system properties. Below, we describe
some verification results for the WTS system.

5.2 Verification

For WTS, a formal modeling of the corresponding plant and the environment param-
eters is not possible. Hence, we use simulation data and construct partial functions
(input to output values) that represent the computations of the plant components, for
instance ROTOR. Also, we use simulation values corresponding to the environment
parameters e.g. wind-profile of the WTS. In the next section, we will discuss some
aspects about the construction of the relevant partial functions.

Verification of functional properties: Verification of functional properties gives insight
into the overall system (architectural) design. For instance, in the WTS case, it is useful
to verify the following property: “if the wind speed is within the prescribed limits, the

6 http://www.mathworks.se/products/stateflow/

controller eventually moves to Generate mode”. The property can be formulated as
a liveness property or leads to property (denoted by , implemented as --> in
UPPAAL), as below.

(ws>=5 && ws<=20) --> state==2 (1)

Verification of safety-critical properties: One of the safety-critical requirements for the
WTS is to fulfill the following property: “the wind turbine moves to Parkmode, within
30s from detecting that the wind speed has crossed the upper limit of 20m/sec”. To
verify the property (w.r.t to simulation data), we construct an observer automata for the
property as shown in Fig.10, compose the observer with the system model, and verify
that the corresponding invariant, the Property (2), holds for the composed model. Note
that the urgent channel ‘U!’ forces the transition from location B to A without any
further delay, when the corresponding transition is enabled.

A� obs.B implies x <= 30 (2)

x=0

x=0 BA

U!state==3

ws>20

Fig. 10. An observer automata to verify the safety-property: A[] obs.B implies x<=30

Verifying reachability properties: We can verify reachability of specific control states
or computation. For instance, using the Property 3, a reachability property, we can
verify that the control state ‘Park’ (Figure 8.(b)) has been reached (at least once) during
the simulation of the WTS. While this may be easily validated using the simulation
trace, we can use similar properties to verify specific ‘error’ states e.g. by extending
the behavior model with special ‘locations’ that are reached if the corresponding ‘error’
is detected. The presence of these error locations in the simulation data can then be
‘exhaustively’ verified.

∃ <> MC.Park (3)

Verifying deadlock-freeness: Using the Property 4, we can verify that the system is
deadlock-free, w.r.t overall timed causality behavior of the WTS, as modeled by the
corresponding timed automata model. The property is an important validation of the
system, which can not be achieved using simulation only, as the corresponding Simulink
model does not represent the timing behavior of the system explicitly. Also, the prop-
erty, when satisfied, verifies the correctness (i.e. consistency) of the timing attributes
(Table 1) associated with the system (architectural) design.

A� (not deadlock) (4)

6 Discussion and Lessons-learned

In this paper, we have presented a formal modeling and verification approach for an
industrial system, namely a wind turbine system. The main goal of the work has been to
provide formal verification as a complementary analysis method to existing validation
techniques based primarily on simulation. We have successfully addressed the follow-
ing challenges:

– Abstract but expressive system models: Using real-time formalisms such as CCSL
and timed automata, we were able to construct intuitive system models amenable
for exhaustive verification (w.r.t to timing). With the separation of timing and
functional modeling, the technique is scalable to complex system models.

– Verification as complementary analysis to simulation: The verification is based on
‘exhaustively’ analyzing the simulation data w.r.t the timing behavior of the sys-
tem. While verification models are expressive in terms of system structure and
precise timing behavior, simulation models are suitable to specify plant and the
environment, e.g. ‘wind profile’ modeling in the case of WTS simulation. Thus, the
verification approach provides an enhanced simulation-based validation.

However, some limitations of our approach do exist. The exhaustiveness of the veri-
fication is limited to partial functions constructed using specific instance(s) of simula-
tion. Hence, the approach may be similar to testing-based analysis (albeit model-based).
Hence, we need strategies, e.g. choosing suitable simulation step and data profiles, to
generate simulation data w.r.t the system properties to be verified. Further, it may be
noted that the simulation-extended verification approach presented above may be suit-
able for data-intensive control systems (e.g. hybrid systems), such as the wind turbine
system case study presented in the paper. On the other hand, control-intensive systems
may be exhaustively modeled and verifiable using model-checking independent of sim-
ulation.

7 Conclusion

In this paper, we have presented a formal modeling and verification approach for an
industrial case-study, namely an example wind turbine system. The architectural and
behavioral modeling, partially based on the existing system artifacts such as Simulink-
models, additionally captures precise timing behavior of the system. The modeling ap-
proach, based on the real-time formalisms such as CCSL and timed automata, also
integrates simulation data to model plant and environment behavior. Based on this, the
proposed verification technique using model-checking, enhances the simulation-based
system validation. Besides verifying functional properties that validate correctness of
the system design, safety-critical properties w.r.t the overall system timing behavior
can also be verified. This is clearly an important analysis step forward within existing
validation approaches for industrial applications. Thus the paper addresses V&V chal-
lenges in the industrial context, by combining both simulation and verification tech-
niques, paving the way towards scalable application of model-checking for an enhanced

validation process. As future work, we intend to investigate requirement-driven strate-
gies to derive the simulation criteria for generating relevant partial functions. This leads
to enhanced validation process that can verify useful classes of system properties.

Acknowledgment

This work was partially funded by Swedish Research Council (project ARROWS) and
Mälardalen University (Sweden).

References

1. André, C., Mallet, F., de Simone, R.: Modeling Time(s). In: Models’07. LNCS, vol. 4735,
pp. 559–573. Springer (2007)

2. ATESST (Advancing Traffic Efficiency through Software Technology): East-ADL2 specifi-
cation (March 2008), http://www.atesst.org, 2008-03-20

3. Bouyssounouse, B., Sifakis, J.: Embedded Systems Design: The ARTIST Roadmap for Re-
search and Development (Lecture Notes in Computer Science). Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2005)

4. Enoiu, E.P., Marinescu, R., Seceleanu, C., Pettersson, P.: Vital : A verification tool for east-
adl models using uppaal port. In: ICECCS’12 (July 2012)

5. Goknil, A., Suryadevara, J., Peraldi-Frati, M.A., Mallet, F.: Analysis Support for TADL2
Timing Constraints on EAST-ADL Models. In: ECSA 2013 : 7th European Conference on
Software Architecture. p. 10 pages. LNCS, Montpellier, France (Jul 2013)

6. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Software Tools
for Technology Transfer 1(1–2), 134–152 (Oct 1997)

7. OMG: UML Profile for MARTE, v1.0. Object Management Group (November 2009),
formal/2009-11-02

8. Peraldi-Frati, M.A., Goknil, A., DeAntoni, J., Nordlander, J.: A Timing Model for Specifying
Multi Clock Automotive Systems: The Timing Augmented Description Language V2. In:
ICECCS 2012. pp. 230–239 (2012)

9. Slutej, D., Håkansson, J., Suryadevara, J., Seceleanu, C., Pettersson, P.: Analyzing a pattern-
based model of a real-time turntable system. In: Jens Happe, B.Z. (ed.) 6th Interna-
tional Workshop on Formal Engineering approaches to Software Components and Architec-
tures(FESCA), ETAPS’09, York, UK, March. pp. 161–178. Electronic Notes in Theoretical
Computer Science (ENTCS), Vol 253, Elsevier (September 2009)

10. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL mode
behaviors using UPPAAL. In: 11th International Conference on Software Engineering and
Formal Methods (SEFM 2013) (September 2013)

11. Suryadevara, J.: Validating EAST-ADL timing constraints using UPPAAL. In: 39th Euromi-
cro Conference on Software Engineering and Advanced Applications SEAA 2013) (Septem-
ber 2013)

