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Software verification and validation (V&V) activi-
ties are critical for achieving software quality; ho-
wever, these activities also constitute a large part 
of the costs when developing software. Therefore 
efficient and effective software V&V activities are 
both a priority and a necessity considering the 
pressure to decrease time-to-market and the in-
tense competition faced by many, if not all, compa-
nies today. It is then perhaps not unexpected that 
decisions that affects software quality, e.g., how to 
allocate testing resources, develop testing schedu-
les and to decide when to stop testing, needs to 
be as stable and accurate as possible.

The objective of this thesis is to investigate how 
search-based techniques can support decision-
making and help control variation in software V&V 
activities, thereby indirectly improving software 
quality. Several themes in providing this support 
are investigated: predicting reliability of future 
software versions based on fault history; fault pre-
diction to improve test phase efficiency; assignme-
nt of resources to fixing faults; and distinguishing 
fault-prone software modules from non-faulty 
ones. A common element in these investigations 
is the use of search-based techniques, often also 
called metaheuristic techniques, for supporting 
the V&V decision-making processes. Search-based 
techniques are promising since, as many problems 

in real world, software V&V can be formulated as 
optimization problems where near optimal so-
lutions are often good enough. Moreover, these 
techniques are general optimization solutions that 
can potentially be applied across a larger variety 
of decision-making situations than other existing 
alternatives. Apart from presenting the current 
state of the art, in the form of a systematic lite-
rature review, and doing comparative evaluations 
of a variety of metaheuristic techniques on large-
scale projects (both industrial and open-source), 
this thesis also presents methodological investiga-
tions using search-based techniques that are rele-
vant to the task of software quality measurement 
and prediction.

The results of applying search-based techniques 
in large-scale projects, while investigating a variety 
of research themes, show that they consistently 
give competitive results in comparison with ex-
isting techniques. Based on the research findings, 
we conclude that search-based techniques are via-
ble techniques to use in supporting the decision-
making processes within software V&V activities. 
The accuracy and consistency of these techniques 
make them important tools when developing fu-
ture decision-support for effective management 
of software V&V activities. 
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To my father

There is no such thing as a failed experiment,
only experiments with unexpected outcomes.

Richard Buckminster Fuller (1895–1983)
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ABSTRACT

Software verification and validation (V&V) activities are critical for achieving software
quality; however, these activities also constitute a large part of the costs when devel-
oping software. Therefore efficient and effective software V&V activities are both a
priority and a necessity considering the pressure to decrease time-to-market and the
intense competition faced by many, if not all, companies today. It is then perhaps not
unexpected that decisions that affects software quality, e.g., how to allocate testing re-
sources, develop testing schedules and to decide when to stop testing, needs to be as
stable and accurate as possible.

The objective of this thesis is to investigate how search-based techniques can sup-
port decision-making and help control variation in software V&V activities, thereby
indirectly improving software quality. Several themes in providing this support are
investigated: predicting reliability of future software versions based on fault history;
fault prediction to improve test phase efficiency; assignment of resources to fixing
faults; and distinguishing fault-prone software modules from non-faulty ones. A com-
mon element in these investigations is the use of search-based techniques, often also
called metaheuristic techniques, for supporting the V&V decision-making processes.
Search-based techniques are promising since, as many problems in real world, software
V&V can be formulated as optimization problems where near optimal solutions are of-
ten good enough. Moreover, these techniques are general optimization solutions that
can potentially be applied across a larger variety of decision-making situations than
other existing alternatives. Apart from presenting the current state of the art, in the
form of a systematic literature review, and doing comparative evaluations of a variety
of metaheuristic techniques on large-scale projects (both industrial and open-source),
this thesis also presents methodological investigations using search-based techniques
that are relevant to the task of software quality measurement and prediction.

The results of applying search-based techniques in large-scale projects, while in-
vestigating a variety of research themes, show that they consistently give competitive
results in comparison with existing techniques. Based on the research findings, we
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conclude that search-based techniques are viable techniques to use in supporting the
decision-making processes within software V&V activities. The accuracy and consis-
tency of these techniques make them important tools when developing future decision-
support for effective management of software V&V activities.
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Chapter 1

Introduction

1.1 Preamble
The IEEE Standard Glossary of Software Engineering Terminology [301] defines soft-
ware engineering as: “(1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the ap-
plication of engineering to software. (2) The study of approaches as in (1)”. Within
software development different phases constitutes a software development life cycle,
with the objective of translating end user needs into a software product. Typical phases
include concept, requirements definition, design, implementation and test. During the
course of a software development life cycle, certain surrounding activities [273] occur,
and software verification and validation (V&V) is the name given to one set of such
activities. The collection of software V&V activities is also often termed as software
quality assurance (SQA) activities.

Software verification consists of activities that check the correct implementation
of a specific function, while software validation consists of activities that check if the
software satisfies customer requirements. The IEEE Guide for Software Verification
and Validation Plans [299] precisely illustrates this as: “A V&V effort strives to ensure
that quality is built into the software and that the software satisfies user requirements.”
Boehm [34] presented another way to state the distinction between software V&V:

Verification: “Are we building the product right?”
Validation: “Are we building the right product?”

Example software V&V activities include formal technical reviews, inspections,
walk-throughs, audits, testing and techniques for software quality measurement.
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Another possible way to understand software V&V activities is to categorize them
into static and dynamic techniques complemented with different ways to conduct soft-
ware quality measurements. Static techniques examine software artifacts without ex-
ecuting them (examples include inspections and reviews) while dynamic techniques
(software testing) executes the software to identify quality issues. Software quality
measurement approaches, on the other hand, helps in the management decision-making
process (examples include assistance in deciding when to stop testing [141]).

The overarching purpose of software V&V activities is to improve software product
quality. At the heart of a high-quality software product is variation control [273]:

From one project to another, we want to minimize the difference be-
tween the predicted resources needed to complete a project and the actual
resources used, including staff, equipment and calendar time. In general,
we would like to make sure our testing program covers a known percent-
age of the software, from one release to another. Not only do we want to
minimize the number of defects that are released to the field, we’d like to
ensure that the variance in the number of bugs is also minimized from one
release to another.

It is then reasonable to argue that controlling variation in software V&V activities
increases our chances of delivering quality software to end-users. Efficient and cost-
effective management of software V&V activities is one of the challenging tasks of
software project management and considerable gains can be made when considering
that software V&V activities constitute a fair percentage of the total software devel-
opment life cycle costs; according to Boehm and Basili, around 40% [36], while My-
ers [247] argues that detection and removal of faults constitutes around 50% of project
budgets.

There are other reasons to motivate a better management of V&V activities. We
live today in a competitive global economy where time-to-market is of utmost impor-
tance [275]. At the same time, the size and complexity of software developed today, is
constantly increasing. Releasing a software product then has to be a trade-off between
the time-to-market, cost-effectiveness and the quality levels built into the software. We
believe that efficient and cost-effective software V&V activities can help management
make such a trade-off. The aim of this thesis is to help management decision-making
processes in controlling variation during software V&V activities, thereby supporting
software quality. We expect management to, by part through our studies, gain support
in decision-making, regarding an assessment of the quality level of the software under
test. This can in turn be used for assessment of testing schedule slippage, decisions
related to testing resource allocation and reaching an agreement on when to stop test-
ing and preparing for shipping the software. Our argument for such a decision-support
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is based on measures that support software quality. To achieve this, we investigate
multiple related themes in this thesis:

• The possibility of analyzing software fault1 history as a measurement technique
to predict future software reliability.

• Using measures to support test phase efficiency.

• Using measures to support assignment of resources to fix faults.

• Using measures to classify fault-prone parts of the software from non fault-prone
parts.

Apart from the above themes being within the domain of software V&V, one other
common element, in the investigation of the above themes, is the use of search-based
techniques. These techniques represent computational methods that iteratively try to
optimize a candidate solution with respect to a certain measure of quality and rep-
resent an active field of research within the broad domain of artificial intelligence
(AI) [57]. Examples of such techniques include simulated annealing, genetic algo-
rithms, genetic programming, ant colony optimization and artificial immune systems.
The focus on search-based techniques also grows out of an increasing interest in an
emerging field within software engineering called search-based software engineering
(SBSE) [128, 131]. SBSE seeks to reformulate software engineering problems as
search-based problems, thereby facilitating the application of search-based techniques.
Investigating such techniques is useful since they represent general optimization so-
lutions that can potentially be applied across a larger variety of decision-making sit-
uations. This thesis, in essence, is an evaluation of the use of such techniques for
supporting the decision-making processes within software V&V activities. Figure 1.1
presents an overview of the major concerns addressed in this thesis.

This thesis consists of either published or submitted research papers that have been
edited for the purpose of forming chapters in this thesis. This editing includes removing
repetitions only, except for Chapter 3, which is an aggregation of three research papers
and involve changes in the structure and discussion of results. The introductory chapter
is organized as follows. Section 1.2 introduces the concepts and related work for this
thesis. Section 1.3 describes the application of search-based software engineering in
our work. Section 1.4 presents the research questions that were posed during the work
on this thesis. This section also covers the main contributions of the thesis. Section 1.5
presents the research methodology as used in this thesis. Section 1.6 lists the papers

1The IEEE definition of error, fault and failure is used throughout this thesis.
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AI Search-Based V&V
Measurements 

for decision-
support

research focus
(Search-based techniques for supporting 

decision-making within software V&V)

Figure 1.1: Cross-connecting concerns addressed in this thesis.

which are part of this dissertation. Section 1.7 provides a short summary of papers that
have been published but are not included in this thesis. Finally, Section 1.8 presents a
summary of the chapter.

1.2 Concepts and related work
Software engineering data, like any other data, becomes useful only when it is turned
into information through analysis. This information can be used to support investigat-
ing different themes in this thesis; thus forming a potential decision-support system.
Such decisions can ultimately affect scheduling, cost and quality of the end product.
However, it is worth keeping in mind that the nature of typical software engineer-
ing data2 is such that different machine learning techniques [20, 57] might be helpful
in understanding a rather complex and changing software engineering process. The
following subsections describe the concepts and their use in this thesis. We discuss
the concepts of software engineering measurement, software quality measurement and
search-based software engineering.

1.2.1 Software engineering measurement
The importance of measurement in software engineering is widely acknowledged, es-
pecially in helping management in decision-making activities, such as [112]: estimat-
ing; planning; scheduling; and tracking.

In formal terms, measurement is the process by which numbers or symbols are
assigned to attributes of entities (e.g., elapsed time in a software testing phase) in the

2Software engineering data is normally characterized by collinearity, noise, large number of inputs and
changing input-generating processes.
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real world in such a way as to describe them according to clearly defined rules [102,
162]. The numbers or symbols thus assigned are called metrics that signify the degree
to which a certain entity possesses a given attribute [302]. The scope of measurement
in software engineering can include several activities [102]:

• Cost and effort estimation.

• Productivity measures and models.

• Data collection.

• Quality models and measures.

• Reliability models.

• Performance evaluation and mod-
els.

• Structural and complexity metrics.

• Capability-maturity assessment.

• Management by metrics.

• Evaluation of methods and tools.

These activities are supported by a range of software metrics; a common catego-
rization is based on the management function they address, i.e., project, process or
product metrics [102, 104]:

• Project metrics — Used on a project level to monitor progress, e.g., number of
faults found in integration testing.

• Process metrics — Used to identify the strengths and weaknesses of processes,
and to evaluate processes after they have been implemented or changed [141],
e.g., system test effort.

• Product metrics — Used to measure and assess the artifacts produced during the
software life cycle. Product metrics can further be differentiated into external
product metrics and internal product metrics. External product metrics measure
what we commonly refer to as quality attributes (behavioral characteristics, e.g.,
usability, reliability, portability, efficiency). Internal product metrics measure the
software attributes itself, e.g., lines of code.

These categories of metrics are related, e.g., a process has an impact on project
outcomes. Figure 1.2 depicts that relationship [141].

1.2.2 Software quality measurement
The notion of software quality is not easy to define. There can be a number of desired
qualities relevant to a particular perspective of the product, and these can be required
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Process Process outcomes

Context

Process metrics

Project metrics

Product metrics

Figure 1.2: The three categories of metrics are related.

to a greater or lesser degree [141].
Software quality metrics focus on measuring the quality of the product, process

and project. They can further be divided into end-product quality (e.g., mean time
to failure) and in-process (e.g., phase-based fault inflow) quality metrics according to
Kan [162]:

The essence of software quality engineering is to investigate the re-
lationships among in-process metrics, project characteristics, and end-
product quality, and, based on the findings, to engineer improvements in
both process and product quality.

Software quality evaluation models are often applied to aid the interpretation of
these relationships. One classification of software quality evaluation models has been
presented by Tian [310] and will be discussed briefly in the following subsection.

Tian’s classification of quality evaluation models

This section serves as a summary of the classification approach given by Tian [310].
This approach divides the quality evaluation models into two types: generalized models
and product-specific models.

Generalized models are not based on project-specific data; rather they take the form
of industrial averages. These can further be categorized into three subtypes:

• An overall model. Providing a single estimate of overall product quality, e.g., a
single defect density estimate [162].
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• A segmented model. Providing quality estimates for different industrial seg-
ments, e.g., defect density estimate per market segment.

• A dynamic model. Providing quality estimates over time or development phases,
e.g., the Putnam model [274] which generalizes empirical effort and defect pro-
files over time into a Rayleigh curve3.

Product-specific models are based on product-specific data. These types of models
can also be divided into three subtypes:

• Semi-customized models: Providing quality extrapolations using general char-
acteristics and historical information about the product, process or environment,
e.g., a model based on fault-distribution profile over development phases.

• Observation-based models: Providing quality estimates using current project es-
timations, e.g., various software reliability growth models [223].

• Measurement-driven predictive models: Providing quality estimates using mea-
surements from design and testing processes [325].

Software fault prediction models, a form of quality evaluation models, are of par-
ticular relevance for this thesis and are discussed in the next subsection.

Software fault prediction

Errors, faults, failures and defects are inter-related terminologies and often have con-
siderable disagreement in their definitions [100]. However, making a distinction be-
tween them is important and therefore for this purpose, we follow the IEEE Standard
Glossary of Software Engineering Terminology [301]. According to this, an error is
a human mistake, which produces an incorrect result. The manifestation of an error
results in a software fault which, in turn, results into a software failure that, translates
into an inability of the system or component to perform its required functions within
specified requirements. A defect is considered to be the same as a fault [100] although
it is a term more common in hardware and systems engineering [301].

In this thesis, the term fault is associated with mistakes at the coding level. These
mistakes are found during testing at unit and system levels. Although the anomalies
reported during system testing can be termed as failures, we remain persistent with
using the term fault since it is expected that all the reported anomalies are tracked

3Traditionally, a Rayleigh curve indicates the relationship between effort and time-to-market.
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down to the coding level. In other words the faults we refer to are pre-release faults, an
approach similar to the one taken by Fenton and Ohlsson [101].

Software fault prediction models belong to the family of quality evaluation models.
These models are used for objective assessments and problem-area identification [310],
thus enabling dual improvements of both product and process. Presence of software
faults is usually taken to be an important factor in software quality, a factor that shows
generally an absence of quality [134]. A fault prediction model uses previous software
quality data in the form of software metrics to predict the number of faults in a com-
ponent or release of a software system [178]. There are different types of software
fault prediction models proposed in software verification and validation literature, all
of them with the objective of accurately quantifying software quality. From a holistic
point of view, fault-prediction studies can be categorized as making use of traditional
(statistical regression) and machine learning (ML) approaches. (The use of machine
learning approaches for fault prediction modeling is more recent [354].)

Machine learning is a sub-area within the broader field of artificial intelligence (AI),
and is concerned with programming computers to optimize a performance criterion
using example data or past experience [20]. Within software engineering predictive
modeling, machine learning has been applied for the tasks of classification and regres-
sion [354]. The main motivation behind using machine learning techniques is to over-
come difficulties in making trustworthy predictions. These difficulties are primarily
concerned with certain characteristics that are common in software engineering data.
Such characteristics include missing data, large number of variables, heteroskedastic-
ity4, complex non-linear relationships, outliers and small size of the data sets [113].
Various machine learning algorithms have been applied for software fault prediction;
a non-exhaustive summary is provided in Section 4.2 of this thesis. Apart from the
classification based on the approaches, Fenton and Neil [100] presents a classification
scheme of software fault prediction studies that is based on the different kinds of pre-
dictor variables used. The next subsection discusses this classification.

Fenton and Neil’s classification of software fault prediction models

Fenton and Neil [100] views the development of software fault prediction models as
belonging to four classes:

• Prediction using size and complexity metrics.

• Prediction using testing metrics.

• Prediction using process quality data.
4A set of random variables with different variances.
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• Multivariate approaches.

Predictions using size and complexity metrics represent the majority of the fault
prediction studies. Different size metrics have been used to predict the number of
faults, e.g., Akiyama [15] and Lipow [213] used lines of code. There are also studies
making use of McCabe’s cyclomatic complexity [232], e.g., as in [192]. Then there
are studies making use of metrics available earlier in the life cycle, e.g., Ohlsson and
Alberg [259] used design metrics to identify fault-prone components.

Prediction using testing metrics involves predicting residual faults by using faults
found in earlier inspection and testing phases [54]. Test coverage metrics have also
been used to obtain promising results for fault prediction [325].

Prediction using process quality data relates quality to the underlying process used
for developing the product, e.g., faults relating to different capability maturity model
(CMM) levels [152].

Multivariate approaches to prediction use a small representative set of metrics to
form multilinear regression models. Studies report advantages of using such an ap-
proach over univariate fault models [175, 244, 245].

1.2.3 Search-based software engineering (SBSE)
Search-based software engineering (SBSE) is a name given to a new field concerned
with the application of techniques from metaheuristic search, operations research and
evolutionary computation to solve software engineering problems [127, 128, 131].
These computational techniques are mostly concerned with modeling a problem in
terms of an evaluation function and then using a search technique to minimize or maxi-
mize that function [57]. SBSE treats software engineering problems as a search for
solutions that often balances different competing constraints to achieve an optimal
or near-optimal result. The basic motivation is to shift software engineering prob-
lems from human-based search to machine-based search [127]. Thus the human ef-
fort is focussed on guiding the automated search, rather than actually performing
the search [127]. Certain problem characteristics warrant the application of search-
techniques, which includes a large number of possible solutions (search space) and
no known optimal solutions [130]. Other desirable problem characteristics suitable to
search-techniques’ application include low computational complexity of fitness evalu-
ations of potential solutions and continuity of the fitness function [130].

There are numerous examples of the applications of SBSE spanning over the
whole software development life cycle, e.g., requirements engineering [28], project
planning [13], software testing [233], software maintenance [38] and quality assess-
ment [39].
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1.3 The application of search-based software engineer-
ing in this thesis

This thesis has a focus on using search-based techniques to control variation during
software V&V activities. Based on measures that support software quality, the thesis
investigates multiple related themes (as outlined in Section 1.1). Thus the research
questions addressed in this thesis focus on: i) a particular problem theme, and ii) ap-
plication of search-based techniques targeting that particular theme. A major portion
of this thesis involves the application of software quality evaluation models to help
quantify software quality. In relation to Tian’s classification of software quality evalu-
ation models [310] and the classification of software fault prediction models by Fenton
and Neil [100] (Section 1.2.2), the scope of predictive modeling in this thesis falls
in the categories of product-specific quality evaluation models (with respect to Tian’s
classification) and predictions using testing metrics (with respect to Fenton and Neil’s
classification). This is shown in Figure 1.3.

As discussed in Section 1.2.2, at a higher level the fault prediction studies can
be categorized as making use of statistical regression (traditional) and machine learn-
ing (recent) approaches. There are numerous studies making use of machine learn-
ing techniques for software fault prediction. Artificial neural networks represents
one of the earliest machine learning techniques used for software reliability growth
modeling and software fault prediction. Karunanithi et al. published several stud-
ies [163, 164, 165, 166, 167] using neural network architectures for software relia-
bility growth modeling. Other examples of studies reporting encouraging results in-
clude [3, 19, 86, 117, 118, 135, 169, 177, 182, 184, 293, 311, 312, 313, 314]. Apart
from artificial neural networks, some authors have proposed using fuzzy models, as
in [60, 61, 297, 323], and support vector machines, as in [316], to characterize soft-
ware reliability. There are also studies that use a combination of techniques, e.g., [316],
where genetic algorithms are used to determine an optimal neural network architecture
and [255], where principal component analysis is used to enhance the performance
of neural networks. (The use of genetic programming for software fault prediction is
further reviewed in Chapter 2 of this thesis.)

In relation to the thesis content, it is useful to discuss some important constituent
design elements. This concerns the use of data sets for predictive modeling, statistical
hypothesis testing, the use of evaluation measures and the application of systematic
literature reviews.
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Figure 1.3: Relating thesis studies to the two classification approaches.

Software engineering data sets

One of the building blocks of the studies in this thesis is the data sets used for construct-
ing models. A common element in all the data sets used in this thesis is that they come
from industry or open source projects. Our industrial partners helped us gather relevant
data, while on other occasions, we made use of data from open source software (OSS)
projects and repositories such as PROMISE [37]. While the important details of these
data sets appear in individual chapters of this thesis, the following points highlight the
salient features:

• The data sets are diverse in terms of being both univariate and multivariate. In
Chapters 2 and 3, the data sets used resembles a time-series, where occurrences
of faults are recorded on weekly/monthly basis. In Chapters 5–8 the data sets are
multivariate where multiple metrics related to work progress, test progress and
faults found/not found per test phase are used.

• The data sets are diverse in terms of being representative of both closed-source
and open-source software projects. Chapter 3 makes use of historical data from
three OSS projects while the rest of the chapters make use of industrial, closed-
source data sets, made available either by our industrial partners or taken from
open-access repositories.

Table 1.1 presents an overview of the data sets used in this thesis. More specific
details regarding these data sets are given in relevant chapters.
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Table 1.1: Software engineering data sets used in this thesis.
Ch. Data set names/ Source Context Characteristics

description
3 Project 1, Project 2, Industrial (through collaboration) large-scale, univariate

Project 3 telecom
4 OSStom, OSSbsd, Industrial (through collaboration) large-scale, diverse univariate &

OSSmoz, IND01, & open source in domains multi-release
IND02, IND03, projects
IND04

5 Training project, Industrial (through collaboration) large-scale, telecom multivariate &
Testing project on-going projects

6 Training project, Industrial (through collaboration) large-scale, telecom multivariate &
Testing project on-going projects

7 AR6, AR1, PC1 req, Industrial (through PROMISE large-scale, diverse multivariate
JM1 req, CM1 req data repository) in domains

8 jEdit, AR5, MC1, Industrial (through PROMISE large-scale, diverse multivariate
CM1, KC1 Mod data repository) in domains

9 Human resource and Industrial (through collaboration) large-scale, Enterp- multivariate
bug description data set rise Resource Plan-

ning (ERP) software

Statistical hypothesis testing and the use of evaluation measures

Statistical hypothesis testing is used to test a formally stated null hypothesis and is
a key component in the analysis and interpretation phase of experimentation in soft-
ware engineering [342]. Earlier studies on predictive accuracy of competing models
did not test for statistical significance and, hence, drew conclusions without report-
ing significance levels. This is, however, not so common anymore as more and more
studies report statistical tests of significance5. All the chapters in this thesis make use
of statistical hypothesis testing to draw conclusions (except for Chapter 2, which is a
systematic literature review).

Statistical tests of significance are important since it is not reliable to draw con-
clusions merely on observed differences in means or medians because the differences
could have been caused by chance alone [248]. The use of statistical tests of signif-
icance comes with its own share of challenges regarding which tests are suitable for
a given problem. A study by Demšar [83] recommends non-parametric (distribution
free) tests for statistical comparisons of classifiers; while elsewhere in [48] parametric
techniques are seen as robust to limited violations in assumptions and as more powerful
(in terms of sensitivity to detect significant outcomes) than non-parametric.

The strategy used in this thesis is to first test the data to see if it fulfills the as-
sumption(s) of a parametric test. If there are no extravagant violations in assumptions,

5Simply relying on statistical calculations is not always reliable either, as was clearly demonstrated by
Anscombe in [23] where he showed the necessity of actually looking at plotted data.
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parametric tests are preferred; otherwise non-parametric tests are used. We are how-
ever well aware of the fact that the issue of parametric vs. non-parametric methods is
a contentious issue in some research communities. Suffice it to say, if a parametric
method has its assumptions fulfilled it will be somewhat more efficient and some non-
parametric methods simply cannot be significant on the 5% level if the sample size is
too small, e.g., the Wilcoxon signed-rank test [340].

Prior to applying statistical testing, suitable accuracy indicators are required. How-
ever, there is no consensus concerning which accuracy indicator is the most suitable
for the problem at hand. Commonly used indicators suffer from different limita-
tions [105, 289]. One intuitive way out of this dilemma is to employ more than one
accuracy indicator, so as to better reflect on a model’s predictive performance in light
of different limitations of each accuracy indicator. This way the results can be better as-
sessed with respect to each accuracy indicator and we can better reflect on a particular
model’s reliability and validity.

However, reporting several measures that are all based on a basic measure, like
mean relative error (MRE), would not be useful because all such measures would suffer
from common disadvantages of being unstable [105]. For continuos (numeric) predic-
tion, measures for the following characteristics are proposed in [257]: goodness of fit
(Kolmogorov-Smirnov test), model bias (U-plot), model bias trend (Y-plot) and short-
term predictability (Prequential likelihood). Although providing a thorough evaluation
of a model’s predictions, this set of measures lacks a suitable one for variable-term
predictability. Variable-term predictions are not concerned with one-step-ahead pre-
dictions but with predictions in variable time ahead. In [107, 229], average relative
error is used as a measure of variable-term predictability.

As an example of applying multiple measures, the study in Chapter 3 uses mea-
sures of prequential likelihood, the Braun statistic and adjusted mean square error for
evaluating model validity. Additionally we examine the distribution of residuals from
each model to measure model bias. Lastly, the Kolmogorov-Smirnov test is applied
for evaluating goodness of fit. More recently, analyzing the distribution of residuals
is proposed as an alternative measure [193, 289]. It has the convenience of applying
significance tests and visualizing differences in absolute residuals of competing models
using box plots.

For binary classification studies in this thesis, where the objective is to evaluate the
binary classifiers that categorize instances or software components as being either fault-
prone (fp) or non fault-prone (nfp), we have used the area under the receiver operating
characteristic curve (AUC) [41] as the single scalar means of expected performance.
The use of this evaluation measure is further motivated in Chapter 7.

We also see examples of studies in which the authors use a two-prong evaluation
strategy for comparing various modeling techniques. They include both quantitative
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evaluation and subjective qualitative criteria based evaluation because they consider
using only quantitative evaluation as an insufficient way to judge a model’s output ac-
curacy. Qualitative criterion-based evaluation judges each method based on conceptual
requirements [113]. One or more of these requirements might influence model selec-
tion. The study in Chapters 3 and 5 presents such qualitative criteria based evaluation,
in addition to quantitative evaluation.

Systematic literature review in this thesis

A systematic review evaluates and interprets all available research relevant to a par-
ticular research question [188] and, hence, the aim of the systematic review is thus
to consolidate all the evidence available in the form of primary studies. System-
atic reviews are at the heart of a paradigm called evidence-based software engineer-
ing [92, 155, 189], which is concerned with objective evaluation and synthesis of high
quality primary studies relevant to a research question. A systematic review differs
from a traditional review in the following ways [318]:

• The systematic review methodology is made explicit and open to scrutiny.

• The systematic review seeks to identify all the available evidence related to the
research question so it represents the totality of evidence.

• The systematic reviews are less prone to selection, publication and other biases.

The guidelines for performing systematic literature reviews in software engineer-
ing [188] divides the stages in a systematic review into three phases:

1. Planning the review.

2. Conducting the review.

3. Reporting the review.

The key stages within the three phases are depicted in Figure 1.4 and summarized
in the following paragraph:

1. Identification of the need for a review—the reasons for conducting the review.

2. Research questions—the topic of interest to be investigated e.g., assessing the
effect of a software engineering technology.
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Phase 1: Planning the review
Identify research questions

Develop a review protocol

Evaluate the review protocol

Phase 2: Conducting the review

Search strategy

Study selection criteria

Study quality assessment

Data extraction

Synthesize data

Phase 3: Reporting the review
Select the dissemination forum

Report write-up

Report evaluation

Figure 1.4: The systematic review stages.

3. Search strategy for primary studies—the search terms, search query, electronic
resources to search, manual search and contacting relevant researchers.

4. Study selection criteria—determination of quality of primary studies e.g., to
guide the interpretation of findings.

5. Data extraction strategy—designing the data extraction form to collect informa-
tion required for answering the review questions and to address the study quality
assessment.

6. Synthesis of the extracted data—performing statistical combination of results
(meta-analysis) or producing a descriptive review.

Chapter 2 consists of a systematic literature review. This systematic review con-
solidates the application of symbolic regression using genetic programming (GP) for
predictive studies in software engineering.

1.4 Research questions and contribution
The purpose and goals of a research project or study are very often highlighted in
the form of specific research questions [77]. These research questions relate to one
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or more main research question(s) that clarify the central direction behind the entire
investigation [77].

The purpose of this thesis, as outlined in Section 1.1, is to evaluate the use of
search-based techniques for supporting the decision-making process within software
V&V activities, thus impacting the quality of software. The main research question of
the thesis is based on this purpose and is formulated as:

Main Research Question: How can search-based techniques be used for
improving predictions regarding software quality?

To be able to answer the main research question several other research questions
(RQ1–RQ7) need to be answered. In Figure 1.5, the different research questions and
how they relate to each other is shown. Figure 1.5 also shows the research process
steps relating to RQ1–RQ7 that is further discussed in the upcoming Section 1.5.4.

The first research question that needed an answer, after the main research question
was formulated as:

RQ1: What is the current state of research on using genetic programming
(GP) for predictive studies in software engineering?

The answer to RQ1 is to be found in Chapter 2. RQ1 is answered using a system-
atic literature review investigating the extent of application of symbolic regression in
genetic programming within software engineering predictive modeling by:

• Consolidating the available research on the application of GP for predictive mod-
eling studies in software engineering and its performance evaluation by follow-
ing a systematic process of research identification, study selection, study quality
assessment, data extraction and data synthesis.

• Identifying areas of improvement in current studies and highlights further re-
search opportunities.

• Presenting an opportunity to analyze how different improvements/variations to
the search mechanism can be transferred from predictive studies in one domain
to the other.

Our second research question, RQ2, undertakes initial investigations to apply GP
for a particular predictive modeling domain. RQ2 is answered in Chapters 3 and 4 of
this thesis.
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RQ2: What is the quantitative and qualitative performance of GP in mod-
eling fault count data in comparison with common software reliability
growth models, machine learning techniques and statistical regression?

Chapter 3 serves as a stepping-stone for conducting further research in search-based
software fault prediction. Chapter 3 helps us answer RQ2 in multiple steps. Specif-
ically, the first step discusses the mechanism enabling GP to progressively search for
better solutions and potentially be an effective prediction tool. The second step ex-
plores the use of GP for software fault count predictions by evaluating against five
different performance measures. This step did not include any comparisons with other
models, which were added as a third step in which the predictive capabilities of the GP
algorithm were compared against three traditional software reliability growth models.

The early positive results of using GP for fault predictions in Chapter 3 warranted
further investigation into this area, resulting in Chapter 4. Chapter 4 investigates cross-
release prediction of fault data from large and complex industrial and open source
software. The complexity of these projects is attributed to being targeting complex
functionality, in diverse domains. The comparison groups, in addition to using sym-
bolic regression in GP, include both traditional and machine learning models, while the
evaluation is done both quantitatively and qualitatively. Chapters 3 and 4 thus:

• Explore the GP mechanism that might be suitable for modeling.

• Empirically investigate the use of GP as a potential prediction tool in software
verification and validation.

• Comparatively evaluate the use of GP with software reliability growth models.

• Evaluate the use of GP for cross-release predictions, for both large-scale indus-
trial and open source software projects.

• Assess GP, both qualitatively and quantitatively, in comparison with software
reliability growth models, statistical regression and machine learning techniques
for cross-release prediction of fault data.

The successful initial investigations in Chapters 3 and 4 encouraged us to make the
research results particularly relevant for an industrial setting, where a variety of inde-
pendent variables play an important role. One of our industrial partners were interested
in investigating ways to improve the test phase6efficiency. One way to improve test

6The test phases are taken in this thesis as synonym to test levels to remain consistent with the company-
wide use of terminology. Throughout the thesis, test phases and test levels are used interchangeably.

18



Introduction

phase efficiency is to avoid unnecessary rework by finding the majority of faults in the
phases where they ought to be found. The faults-slip-through (FST) [79, 80] metric is
one way of keeping a check on whether or not a fault slipped through the phase where
it should have been found. Our next research question (RQ3) was therefore aimed at
predicting this metric for test phase efficiency measurements:

RQ3: How can we predict FST for each testing phase multiple weeks in
advance by making use of data about project progress, testing progress and
fault inflow from multiple projects?

The answer to RQ3 is to be found in Chapter 5 of this thesis. The answer to RQ3
also shows a shift from univariate prediction to multivariate prediction, so as to include
as much context information as possible in the modeling process by:

• Applying search-based techniques in an industrial context where the amount of
rework is being monitored using the FST measure.

• Identifying the test phases with excessive FST inflow; making the basis for fol-
lowing it up with test phase efficiency measurements.

RQ3 was aimed at numeric predictions, therefore this prompted us to investigate
the possibility of using the FST metric for binary classification, i.e., classifying com-
ponents as either being fault-prone or non fault-prone. In particular, we investigated
the possibility of using the number of faults slipping from unit and function test phases
to predict the fault-prone components at the integration and system test phases, which
then led us to RQ4.

RQ4: How can we use FST to predict fault prone software components
before integration and system test and what is the resulting prediction per-
formance?

The answer to RQ4 is to be found in Chapter 6, and the chapter also:

• Leverages on collected FST data and project-specific data in the repositories to
investigate its use as potential predictors of fault-proneness.

• Provides the basis for early reliability enhancement of fault-prone software com-
ponents in early test phases for successive releases.

Apart from studying state-of-the-art and doing investigations on large-scale indus-
trial problems, the next two research questions (RQ5 and RQ6) are dedicated to what

19



Introduction

we call as methodological investigations using search-based techniques that are rele-
vant to the task of software quality measurement. These methodological investigations
target the use of resampling methods and feature subset selection methods in soft-
ware quality measurement, two important design elements in predictive and classifica-
tion studies in software engineering that lack credible research and recommendations.
Thus, RQ5 seeks to investigate the potential impact of resampling methods7 on soft-
ware quality classification:

RQ5: How do different resampling methods compare with respect to pre-
dicting fault-prone software components using GP?

The motivation for investigating this question is given in Section 7.1 of Chapter 7
of the thesis and the chapter also:

• Empirically compares five common resampling methods using five publicly avail-
able data sets using GP as a software quality classification approach.

• Examines the influence of resampling methods to quantify possible differences.

RQ6 makes up the second research question of our methodological investigations.
This time we aim at benchmarking feature subset selection (FSS) methods8 for soft-
ware quality classification. For multivariate approaches to predictive studies, much
work has concentrated on FSS [100], but very few benchmark studies of FSS meth-
ods on data from software projects in industry have been conducted. Also the use of
an evolutionary computation method, like GP, has rarely been investigated as a FSS
method for software quality classification.

RQ6: How do different feature subset selection methods compare in pre-
dicting fault-prone software components9?

The answer to RQ6 is to be found in Chapter 8 and the chapter also:

• Empirically evaluates the use of GP as a feature subset selection method in soft-
ware quality classification and compares it with competing techniques.

7A resampling method is used to draw a large number of samples from the original one and thus to reach
an approximation of the underlying theoretical distribution. It is based on repeated sampling within the same
data set.

8The purpose of FSS is to find a subset of the original features of a data set, such that an induction
algorithm that is run on data containing only these features generates a classifier with the highest possible
accuracy [195]

9The term ‘components’ is taken as a synonym to ‘modules’.
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• Demonstrates the relative merits of significant predictor variables.

• Quantifies the use of GP as a potentially valid feature subset selection method.

Up till now, the research questions were centered around predictive and classifi-
cation studies within software V&V. Our next research question, RQ7, takes a step
back from predictive studies and presents another perspective on providing effective
decision-support. Using a genetic algorithm (a search-based technique), RQ7 aims to
investigate the possibility of effectively scheduling bug10 fixing tasks to developers and
testers, using relevant context information:

RQ7: How to schedule developers and testers to bug fixing activities taking
into account both human properties (skill set, skill level and availability)
and bug characteristics (severity and priority) that satisfies different value
objectives by using a search-based method such as GA and what is the
comparative performance with a baseline method such as a simple hill-
climbing?

The answer to RQ7 is to be found in Chapter 9, and the chapter also:

• Takes resource capability and availability into account while triaging and fixing
the bugs.

• Uses GA to balance competing constraints of schedule and cost in a quest to
reach near optimal resource scheduling.

• Presents an initial bug model and a human resource model to support scheduling.

Table 1.2 lists down the related concept(s) for each chapter along with the research
question to be answered.

1.5 Research methodology
Research approaches can usually be classified into quantitative, qualitative and mixed
methods [77]. A quantitative approach to research is mainly concerned with inves-
tigating cause and effect, quantifying a relationship, comparing two or more groups,
use of measurement and observation and hypothesis testing [77]. A qualitative ap-
proach to research, on the other hand, is based on theory building relying on human

10The term ‘bug’ is taken as a synonym to the IEEE definition of fault. The term ‘bug’ is retained for RQ7
to stay consistent with existing literature on scheduling.
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Table 1.2: Related concepts used in thesis chapters for answering each research ques-
tion.

Research Related concept(s) Relevant chapter(s)
question (RQ)
RQ1 Software engineering measurement (Section 1.2.1), Chapter 2

Software quality measurement (Section 1.2.2),
Search-based software engineering (SBSE) (Section 1.2.3)

RQ2 Software engineering measurement (Section 1.2.1), Chapters 3 & 4
Software quality measurement (Section 1.2.2),
Search-based software engineering (SBSE) (Section 1.2.3)

RQ3 Software engineering measurement (Section 1.2.1), Chapter 5
Software quality measurement (Section 1.2.2),
Search-based software engineering (SBSE) (Section 1.2.3)

RQ4 Software engineering measurement (Section 1.2.1), Chapter 6
Software quality measurement (Section 1.2.2),
Search-based software engineering (SBSE) (Section 1.2.3)

RQ5 Software engineering measurement (Section 1.2.1), Chapter 7
Software quality measurement (Section 1.2.2),
Search-based software engineering (SBSE) (Section 1.2.3)

RQ6 Software engineering measurement (Section 1.2.1), Chapter 8
Software quality measurement (Section 1.2.2),
Search-based software engineering (SBSE) (Section 1.2.3)

RQ7 Software engineering measurement (Section 1.2.1), Chapter 9
Search-based software engineering (SBSE) (Section 1.2.3)

perspectives. The qualitative approach accepts that there are different ways of inter-
pretation [342]. The mixed methods approach involves using both quantitative and
qualitative approaches in a single study.

The below text provides a description of different strategies associated with quanti-
tative, qualitative and mixed method approaches [77]. In the end, the relevant research
methods for this thesis are discussed.

1.5.1 Qualitative research strategies
Ethnography, grounded theory, case study, phenomenological research and narrative
research are examples of some qualitative research strategies [77].

Ethnography studies people in their contexts and natural settings. The researcher
usually spends longer periods of time in the research setting by collecting observa-
tional data [77]. Grounded theory evolved as an abstract theory of the phenomenon
under interest based on the views of the study participants. The data collection is con-
tinuous and information is refined as progress is made [77]. A case study involves
in-depth investigation of a single case, e.g., an event or a process. The case study
has time and scope delimitations within which different data collection procedures are
applied [77]. Phenomenological research is grounded in understanding the human
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experiences concerning a phenomenon [77]. Like in ethnography, phenomenological
research involves prolonged engagement with the subjects. Narrative research is akin
to retelling stories about other individuals’ lives while relating to the researcher’s life
in some manner [77].

1.5.2 Quantitative research strategies

Quantitative research strategies can be divided into two quantitative strategies of in-
quiry [77]: Experiments and surveys.

An experiment, or “[. . . ] a formal, rigorous and controlled investigation” [342],
has as a main idea to distinguish between a control situation and the situation under
investigation. Experiments can be true experiments and quasi-experiments. Within
quasi-experiment, there can also be a single-subject design.

In a true experiment, the subjects are randomly assigned to different treatment
conditions. This ensures that each subject has an equal opportunity of being se-
lected from the population; thus the sample is representative of the population [77].
Quasi-experiments involve designating subjects based on some non-random criteria.
This sample is a convenience sample, e.g., because the investigator must use naturally
formed groups. The single-subject designs are repeated or continuos studies of a single
process or individual. Surveys are conducted to generalize from a sample to a popu-
lation by conducting cross-sectional and longitudinal studies using questionnaires or
structured interviews for data collection [77].

Robson, in his book Real World Research [281], identifies another quantitative re-
search strategy named non-experimental fixed designs. These designs follow the same
general approach as used in experimental designs but without active manipulation of
the variables. According to Robson, there are three major types of non-experimental
fixed designs: relational (correlational) designs, comparative designs and longitudinal
designs. First, relational (correlational) designs analyze the relationships between two
or more variables and can further be divided into cross-sectional designs and prediction
studies. Cross-sectional designs are normally used in surveys and involves in taking
measures over a short period of time, while prediction studies are used to investigate if
one or more predictor variables can be used to predict one or more criterion variables.
Since prediction studies collect data at different points in time, the study extends over
time to test these predictions. Second, comparative designs involve analyzing the dif-
ferences between the groups; while, finally, longitudinal designs analyze trends over
an extended period of time by using repeated measures on one or more variables.
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1.5.3 Mixed method research strategies
The mixed method research strategies can use sequential, concurrent or transforma-
tive procedures [77]. The sequential procedure begins with a qualitative method and
follows it up with quantitative strategies. This can conversely start with a quantita-
tive method and later on complemented with qualitative exploration [77]. Concurrent
procedures involve integrating both quantitative and qualitative data at the same time;
while transformative procedures include either a sequential or a concurrent approach
containing both quantitative and qualitative data, providing a framework for topics of
interest [77].

With respect to specific research strategies, surveys and case studies can be both
quantitative and qualitative [342]. The difference is dependent on the data collection
mechanisms and how the data analysis is done. If data is collected in such a manner
that statistical methods are applicable, then a case study or a survey can be quantitative.

We consider systematic literature reviews (Section 1.3) as a form of survey. A sys-
tematic literature review can also be quantitative or qualitative depending on the data
synthesis [188]. Using statistical techniques for quantitative synthesis in a systematic
review is called meta-analysis [188]. However, software engineering systematic litera-
ture reviews tend to be qualitative (i.e., descriptive) in nature [44]. One of the reason
for this is that the experimental procedures used by the primary studies in a systematic
literature review differs, making it virtually impossible to undertake a formal meta-
analysis of the results [191].

1.5.4 Research methodology in this thesis
The research process used in this thesis is shown in Figure 1.5. We strived for contri-
butions on two fronts: i) industrial relevance of the obtained research results, and ii)
methodological investigations aimed at improving the design of predictive modeling
studies.

The research path taken towards the strive for industrial relevance was composed
of a multi-step process where answers to different research questions were pursued:

• Studying state-of-the-art and problem formulation (RQ1).

• Formulating candidate solutions and carrying out initial investigations (RQ2 and
RQ5).

• Assessing industrial applicability on large-scale problems (RQ3 and RQ4).

The second front of our research — the methodological investigations — included
RQ6 and RQ7. These investigations were targeted at two important design elements
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of predictive modeling studies in software engineering (resampling and feature subset
selection).

The research methodology used in this thesis is both quantitative and qualitative.
Chapters 3 to 7 of this thesis fall within the category of prediction studies (Sec-
tion 1.5.2) and thus belonging to the high-level category of non-experimental fixed
designs. Specifically, these chapters make use of one or more predictor (independent)
variables to predict the criterion (dependent) variable. Also these studies use quantita-
tive data collected over time, which is used for training and testing the models. Chap-
ters 4 and 5 are additionally complemented with a qualitative assessment of models so
it is justifiable to place it under a mixed methods approach using sequential procedure.
Chapter 2 is a systematic review and since it consists of descriptive data synthesis, it is
considered to be a candidate for qualitative studies. Chapters 8 and 9 are comparative
design studies analyzing the differences between the groups. Table 1.3 presents the
research methodologies used in this thesis in tabular form.

Table 1.3: Research methodologies used in this thesis.
Chapter Utilized research methodology
2 Qualitative → Survey → Systematic review
3 Quantitative → Non-experimental fixed designs → Relational design → Predictive studies
4 Mixed method → Sequential procedure
5 Mixed method → Sequential procedure
6 Quantitative → Non-experimental fixed designs → Relational design → Predictive studies
7 Quantitative → Non-experimental fixed designs → Relational design → Predictive studies
8 Quantitative → Non-experimental fixed designs → Comparative designs
9 Quantitative → Non-experimental fixed designs → Comparative designs

1.6 Papers included in this thesis
The introductory Chapter 1 is an extended version of a summary paper — Search-based
prediction of fault count data — published in the proceedings of the 1st International
Symposium on Search Based Software Engineering (SSBSE’09).

Chapter 2 is based on a systematic literature review — On the application of genetic
programming for software engineering predictive modeling: A systematic review —
accepted at the Journal of Expert Systems with Applications.

Chapter 3 is based on three papers — Suitability of genetic programming for soft-
ware reliability growth modeling — published in the proceedings of the 2008 IEEE
International Symposium on Computer Science and its Applications (CSA’08), Predic-
tion of fault count data using genetic programming — published in the proceedings
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of the 12th IEEE International Multitopic Conference (INMIC’08) and A comparative
evaluation of using genetic programming for predicting fault count data — published
in the proceedings of the 3rd International Conference on Software Engineering Ad-
vances (ICSEA’08).

Chapter 4 has been published as a book chapter with the title — Genetic program-
ming for cross-release fault count predictions in large and complex software projects,
in the book — Evolutionary computation and optimization algorithms in software en-
gineering — published by IGI Global.

Chapter 5 is based on an extended version of the research paper — Search-based
prediction of faults-slip-through in large software projects — published in the proceed-
ings of the 2nd International Symposium on Search Based Software Engineering (SS-
BSE’10). The extended version is under submission at IEEE Transactions on Software
Engineering.

Chapter 6 is based on the research paper — Using faults-slip-through metric as a
predictor of fault-proneness — published in the proceedings of the — 17th Asia Pacific
Software Engineering Conference (APSEC’10).

Chapter 7 — Resampling methods in software quality classification – A comparison
using genetic programming — has been submitted to the International Journal of Soft-
ware Engineering and Knowledge Engineering, special issue on: Emerging synergies
of artificial intelligence and software engineering.

Chapter 8 — Genetic programming for feature subset selection – A comparative
evaluation — is based on the manuscript — Benchmarking feature subset selection
methods for software fault prediction, that has been submitted to the Journal of Systems
and Software.

Chapter 9 is based on the research paper — Search-based resource scheduling for
bug-fixing tasks — published in the proceedings of the 2nd International Symposium
on Search Based Software Engineering (SSBSE’10).

Wasif Afzal is first author of all papers except the paper that Chapter 9 is based
on (a first author has the main responsibility for the idea, implementation, conclusion
and composition of the results). Chapter 9 was written together with Dr. Junchao Xiao.
Wasif Afzal was involved in the setup of the experiment as well as investigating and
drawing conclusions on the empirical part. He also took part in the theoretical discus-
sions and in writing the paper.

Dr. Richard Torkar is a co-author on all the papers included in this thesis except the
papers that Chapters 6 and 9 are based on. Dr. Robert Feldt is a co-author on the papers
that Chapters 3–5 and 7 are based on. Dr. Tony Gorschek is a co-author on the papers
that Chapters 4 and 5 are based on. Finally, Dr. Greger Wikstrand is a co-author on the
paper that Chapter 5 is based on.
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1.7 Papers also published but not included
Except for the papers included in this thesis, a number of related additional papers have
also been published. The following papers are, however, not included in this thesis:

Paper I W. Afzal, R. Torkar and R. Feldt. A systematic review of search-based test-
ing for non-functional system properties. Information and Software Technology,
Volume 51, Issue 6, 2009.

Paper II R. Torkar, N. M. Awan, A. K. Alvi and W. Afzal. Predicting software test effort
in iterative development using a dynamic bayesian network. Proceedings of the
21st International Symposium on Software Reliability Engineering (ISSRE’10)
– Industry track.

Paper III W. Afzal and R. Torkar. Lessons from applying experimentation in software
engineering prediction systems. Proceedings of The 2nd International Workshop
on Software Productivity Analysis and Cost Estimation (SPACE’08), Collocated
with 15th Asia-Pacific Software Engineering Conference (APSEC’08).

Paper IV W. Afzal and R. Torkar. Incorporating metrics in an organizational test strategy.
Proceedings of the International Software Testing Standard Workshop, Collo-
cated with 1st International Conference on Software Testing, Verification and
Validation (ICST’08).

Paper V R. Feldt, R. Torkar, T. Gorschek and W. Afzal. Searching for cognitively diverse
tests: Towards universal test diversity metrics. Proceedings of the 1st Interna-
tional Workshop on Search-based Software Testing (SBST’08), Collocated with
1st International Conference on Software Testing, Verification and Validation
(ICST’08).

1.8 Summary
In this chapter we presented a synopsis of the research area and what we believe to
be the main contributions of the research presented in this thesis. We additionally
presented the concepts that will be used in later chapters and outlined the research
methodology used. The next chapter, Chapter 2, presents a systematic literature review
on the applicability of genetic programming as a predictive modeling tool in software
engineering.
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Chapter 2

On the application of genetic
programming for software
engineering predictive
modeling: A systematic review

Accepted for publication in the
Journal of Expert Systems with
Applications

W. Afzal & R. Torkar

2.1 Introduction
Genetic programming (GP) [200] is an evolutionary computation technique. It is a sys-
tematic, domain-independent method for getting computers to solve problems automat-
ically starting from a high-level statement of what needs to be done [272]. Symbolic
regression is one of the many application areas of GP, which finds a function with the
outputs having desired outcomes. It has the advantage of being independent of making
any assumptions about the function structure. Another potential advantage is that mod-
els built using symbolic regression application of GP can also help in identifying the
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significant variables which might be used in subsequent modeling attempts [198]. This
chapter reviews the available literature on the application of symbolic regression using
GP for predictions and estimations within software engineering. The performance of
symbolic regression using GP is assessed in terms of its comparison with competing
models, which might include common machine learning models, statistical models and
models based on expert opinion. There are two reasons for carrying out this study:

1. To be able to draw (if possible) general conclusions about the extent of applica-
tion of symbolic regression using GP for predictions and estimations in software
engineering.

2. To summarize the benefits and limitations of using symbolic regression as a pre-
diction and estimation tool.

The authors are not aware of any study having goals similar to ours. Prediction and
estimation in software engineering has been applied to measure different attributes. A
non-exhaustive list includes prediction and estimation of software quality, e.g., [204],
software size, e.g., [220], software development cost/effort, e.g., [157], maintenance
task effort, e.g., [153], correction cost, e.g., [82], software fault, e.g., [307], and soft-
ware release timing, e.g., [86]. A bulk of the literature contributes to software cost/
effort and software fault prediction. A systematic review of software fault prediction
studies is given by Catal and Diri [66], while a systematic review of software devel-
opment cost estimation studies is provided by [157]. This chapter differs from these
systematic reviews in several ways. Firstly, the studies of [66] and [157] are more con-
cerned with classification of primary studies and capturing different trends. This is not
the primary purpose of this study, which is more concerned with investigating the com-
parative efficacy of using symbolic regression across software engineering predictive
studies. Secondly, [66] and [157] review the subject area irrespective of the applied
method, resulting in being more broad in their coverage of the specific area. This is
not the case with this study as it is narrowly focused in terms of the applied tech-
nique and open in terms of capturing prediction and estimation of different attributes
(as will be evident from the addressed research question in Section 2.2.1). Thirdly,
one additional concern, which makes this study different from [66] and [157], is that
it also assesses the evidence of comparative analysis of symbolic regression with other
competing models.

A paper by Crespo et al. [76] presents a classification of software development ef-
fort estimation into artificial intelligence (AI) methods of neural networks, case-based
reasoning, regression trees, fuzzy logic, dynamical agents and genetic programming.
While the authors were able to present a classification scheme, it is not complete in
terms of its coverage of studies within each AI method.
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One other motivation for carrying out this systematic review is the general grow-
ing interest in search-based approaches to solve software engineering problems [131].
In this regard, it is interesting to investigate the extent of application of genetic pro-
gramming (a search-technique) within software engineering predictive modeling. This
presents an opportunity to assess different attributes, which can be measured using
GP. It also allows us to gain an understanding of different GP variations used by these
studies to predict and estimate in a better way.

In the rest of this chapter, wherever we refer to GP, we mean the symbolic regres-
sion application of GP.

This chapter is organized as follows: Section 2.2 describes the research method
including the research question, the search strategy, the study selection procedure, the
study quality assessment and the data extraction. Results are presented in Section 2.3,
while Section 2.4 discusses the results and future work. Validity threats and conclu-
sions appear in Section 2.5 and Section 2.6, respectively.

2.2 Method

This section describes our review protocol, which is a multi-step process following the
guidelines outlined in [188].

2.2.1 Research question

We formulated the following research question for this study:

RQ Is there evidence that symbolic regression using genetic programming is an ef-
fective method for prediction and estimation, in comparison with regression, ma-
chine learning and other models?

The research questions can conveniently be structured in the form of PICOC (Pop-
ulation, Intervention, Comparison, Outcome, Context) criteria [268]. The population
in this study is the domain of software projects. Intervention includes models evolved
using symbolic regression application of GP. The comparison intervention includes
the models built using regression, machine learning and other methods. The outcome
of our interest represents the comparative effectiveness of prediction/estimation using
symbolic regression and machine learning/regression/other models. We do not pose
any restrictions in terms of context and experimental design.
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2.2.2 The search strategy
Balancing comprehensiveness and precision in the search strategy is both an important
and difficult task. We used the following approach for minimizing the threat of missing
relevant studies:

1. Breaking down the research question into PICOC criteria. This is done to man-
age the complexity of a search string that can get rather sophisticated in pursuit
of comprehensiveness.

2. Identification of alternate words and synonyms for each of PICOC criterion.
First, since it is common that terminologies differ in referring to the same con-
cept, derivation of alternate words and synonyms helps ensuring completeness
of search. The genetic programming bibliography maintained by Langdon et
al. [202] and Alander’s bibliography of genetic programming [16] turned out to
be valuable sources for deriving the alternate words and synonyms. Secondly
our experience of conducting studies in a similar domain was also helpful [10].

3. Use of Boolean OR to join alternate words and synonyms.

4. Use of Boolean AND to join major terms.

We came up with the following search terms (divided according to the PICOC
criteria given in Section 2.2.1):

• Population. software, application, product, web, internet, world wide web,
project, development.

• Intervention. symbolic regression, genetic programming.

• Comparison intervention. regression, machine learning, machine-learning,
model, modeling, modelling, system identification, time series, time-series.

• Outcomes. prediction, assessment, estimation, forecasting.

Hence, leading to the following search string: (software OR application OR prod-
uct OR Web OR Internet OR “World-Wide Web” OR project OR development) AND
(“symbolic regression” OR “genetic programming”) AND (regression OR “machine
learning” OR machine-learning OR model OR modeling OR modelling OR “system
identification” OR “time series” OR time-series) AND (prediction OR assessment OR
estimation or forecasting).

The search string was applied to the following digital libraries, while searching
within all the available fields (i.e., abstract, titles, key words, etc.):
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• INSPEC

• EI Compendex

• ScienceDirect

• IEEEXplore

• ISI Web of Science (WoS)

• ACM Digital Library

In order to ensure the completeness of the search strategy, we compared the results
with a small core set of primary studies we found relevant, i.e., [56, 73, 88]. All of the
known papers were found using multiple digital libraries.

We additionally scanned the online GP bibliography maintained by Langdon et
al. [202] by using the search-term symbolic regression. We also searched an online data
base of software cost and effort estimation called BESTweb [154], using the search-
term genetic programming.

The initial automatic search of publication sources was complemented with manual
search of selected journals (J) and conference proceedings (C). These journals and
conference proceedings were selected due to their relevance within the subject area and
included: Genetic Programming and Evolvable Machines (J), European Conference on
Genetic Programming (C), Genetic and Evolutionary Computation Conference (C),
Empirical Software Engineering (J), Information and Software Technology (J), Journal
of Systems and Software (J), IEEE Transactions on Software Engineering (J) and IEEE
Transactions on Evolutionary Computation (J). We then also scanned the reference lists
of all the studies gathered as a result of the above search strategy to further ensure a
more complete set of primary studies.

The time span of the search had a range of 1995–2008. The selection of 1995 as
the starting year was motivated by the fact that we did not find any relevant study prior
to 1995 from our search of relevant GP bibliographies [16, 202]. In addition, we also
did not find any relevant study published before 1995 as a result of scanning of the
reference lists of studies found by searching the electronic databases.

2.2.3 The study selection procedure
The purpose of the study selection procedure is to identify primary studies that are
directly related to answering the research question [188]. We excluded studies that:

1. Do not relate to software engineering or software development, e.g., [18].
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2. Do not relate to prediction/estimation of software cost/effort/size, faults, quality,
maintenance, correction cost and release timing, e.g., [2].

3. Report performance of a particular technique/algorithmic improvement without
being applied to software engineering, e.g., [22].

4. Do not relate to symbolic regression (or any of its variants) using genetic pro-
gramming, e.g., [291].

5. Do not include a comparison group, e.g., [172].

6. Use genetic programming only for feature selection prior to using some other
technique, e.g., [277].

7. Represent similar studies, i.e., when a conference paper precedes a journal paper.
As an example, we include the journal article by Costa et al. [73] but exclude two
of theirs conference papers [75, 262].

Table 2.1 presents the count of papers and the distribution before and after duplicate
removal as a result of the automatic search in the digital libraries.

Table 2.1: Count of papers before and after duplicate removal for the digital search
in different publication sources. The numbers within parenthesis indicates the counts
after duplicate removal.

Source Count
EI Compendex & Inspec 578 (390)
ScienceDirect 496 (494)
IEEE Xplore 55 (55)
ISI Web of Science 176 (176)
ACM Digital Library 1081 (1081)
Langdon et al. GP bibliography [202] 342 (342)
BESTweb [154] 4 (4)

Total 2732 (2542)

The exclusion was done using a multi-step approach. First, references were ex-
cluded based on title and abstract which were clearly not relevant to our research ques-
tion. The remaining references were subject to a detailed exclusion criteria (see above)
and, finally, consensus was reached among the authors in including 24 references as
primary studies for this review.
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2.2.4 Study quality assessment and data extraction
The study quality assessment can be used to devise a detailed inclusion/exclusion cri-
teria and/or to assist data analysis and synthesis [188]. We did not rank the studies
according to an overall quality score but used a simple ‘yes’ or ‘no’ scale [91]. Table 1,
Appendix A (page 281), shows the application of the study quality assessment crite-
ria where a (

√
) indicates ‘yes’ and (×) indicates ‘no’. Further a (~

√
) shows that we

were not sure as not enough information was provided but our inclination is towards
‘yes’ based on reading full text. A (~×) shows that we were not sure as not enough
information was provided but our inclination is towards ‘no’ based on reading full
text. We developed the following study quality assessment criteria, taking guidelines
from [188, 191]:

• Are the aims of the research/research questions clearly stated?

• Do the study measures allow the research questions to be answered?

• Is the sample representative of the population to which the results will general-
ize?

• Is there a comparison group?

• Is there an adequate description of the data collection methods?

• Is there a description of the method used to analyze data?

• Was statistical hypothesis undertaken?

• Are all study questions answered?

• Are the findings clearly stated and relate to the aims of research?

• Are the parameter settings for the algorithms given?

• Is there a description of the training and testing sets used for the model construc-
tion methods?

The data extraction was done using a data extraction form for answering the re-
search question and for data synthesis. One part of the data extraction form included
the standard information of title, author(s), journal and publication detail. The second
part of the form recorded the following information from each primary study: stated
hypotheses, number of data sets used, nature of data sets (public or private), compar-
ison group(s), the measured attribute (dependent variable), evaluation measures used,
independent variables, training and testing sets, major results and future research di-
rections.
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2.3 Results
The 24 identified primary studies were related to the prediction and estimation of the
following attributes:

1. Software fault proneness (software quality classification).

2. Software cost/effort/size (CES) estimation.

3. Software fault prediction and software reliability growth modeling.

Table 2.2 describes the relevant information regarding the included primary studies.
The 24 primary studies were related to the application of GP for software quality classi-
fication (9 primary studies), software CES estimation (7 primary studies) and software
fault prediction and software reliability growth modeling (8 primary studies).

Figure 2.1 shows the year-wise distribution of primary studies within each category
as well as the frequency of application of the different comparison groups. The bubble
at the intersection of axes contains the number of primary studies. It is evident from the
left division in this figure that the application of GP to prediction problems in software
engineering has been scarce. This finding is perhaps a little surprising; considering
that the proponents of symbolic regression application of GP have highlighted several
advantages of using GP for solving prediction problems [203].

In the right division of Figure 2.1, it is also clear that statistical regression tech-
niques (linear, logistic, logarithmic, cubic, etc.) and artificial neural networks have
been used as a comparison group for most of the studies.

Next we present the description of the primary studies in relation to the research
question.

2.3.1 Software quality classification
Our literature search found 10 studies on the application of symbolic regression using
GP for software quality classification. Seven out of these ten studies were co-authored
by similar authors to a large extent, where one author was found to be part of each
of these seven studies. The data sets also overlapped between studies, which gives
an indication that the conclusion of these studies were tied to the nature of the data
sets used. However, these seven studies were marked with different variations of the
GP fitness function and also used different comparison groups. This in our opinion
indicates a distinct contribution and thus worthy of inclusion as primary studies for this
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Table 2.2: Distribution of primary studies per predicted/estimated attribute.
Author(s) Year Ref. Domain
Robinson et al. 1995 [280] SW quality classification (37.50%)
Evett et al. 1998 [96]
Khoshgoftaar et al. 2003 [180]
Liu et al. 2001 [215]
Khoshgoftaar et al. 2004 [173]
Khoshgoftaar et al. 2004 [174]
Liu et al. 2004 [216]
Reformat et al. 2003 [278]
Liu et al. 2006 [218]
Dolado et al. 1998 [89] SW CES estimation (29.17%)
Dolado 2000 [87]
Regolin et al. 2003 [279]
Dolado 2001 [88]
Burgess et al. 2001 [56]
Shan et al. 2002 [288]
Lefley et al. 2003 [208]
Kaminsky et al. 2004 [160] SW fault prediction and reliability growth (33.33%)
Kaminsky et al. 2004 [161]
Tsakonas et al. 2008 [322]
Zhang et al. 2006 [355]
Zhang et al. 2008 [356]
Afzal et al. 2008 [6]
Costa et al. 2007 [73]
Costa et al. 2006 [74]

Dependent
variable

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 NN ANN NB SRGM SGP OTSR

Year Comparison groups

1
1 1 2 3 1

2

SR = statistical regression
NN = k-nearest neighbor
ANN = artificial neural network
NB = naive Bayes
SRGM = software reliability growth models
SGP = standard genetic programming
OT = other (random selection, random, LoC
 & expert ranking)

20081995

Software
 reliability

 growth modeling

Software 
fault 

prediction

Software
cost/effort

Software
size

Software
quality

classification

1

1 1

2 1 1

1

2 21

2 1 1 3 4

21

34 1 1

21

2 4 1

Figure 2.1: Distribution of primary studies over range of applied comparison groups
and time period.
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review. The evaluation measures also varied but were mostly based on the Type-I and
Type-II misclassification rates.

A software quality classification model predicts the fault-proneness of a software
component as being either fault-prone (fp) or not fault-prone (nfp). A fault-prone com-
ponent is one in which the number of faults are higher than a selected threshold. The
use of these models leads to knowledge about problematic areas of a software system,
that in turn can trigger focused testing of fault-prone components. With limited quality
assurance resources, such knowledge can potentially yield cost-effective verification
and validation activities with high return on investment.

The general concept of a software quality classification model is that it is built
based on the historical information of software metrics for program components with
known classification as fault-prone or not fault-prone. The generated model is then
tested to predict the risk-based class membership of components with known software
metrics in the testing set.

Studies making use of GP for software quality classification argue that GP carries
certain advantages for quality classification in comparison with traditional techniques
because of its white-box and comprehensible classification model [180]. This means
that GP models can potentially show the significant software metrics affecting the qual-
ity of components. Additionally, by following a natural evolution process, GP can au-
tomatically extract the underlying relationships between the software metrics and the
software quality, without relying on the assumption of the form and structure of the
model.

In [280], the authors use GP to identify fault-prone software components. A soft-
ware component is taken to comprise of a single source code file. Different software
metrics were used as independent variables, with predictions assessed using five and
nine independent variables. GP was compared with neural networks, k-nearest neigh-
bor and linear regression. The methods were compared using two evaluation measures,
accuracy and coverage. Accuracy was defined as the proportion of ‘files predicted to
be faulty’ which were faulty, while coverage was defined as the proportion of ‘files
which were faulty’ which were accurately predicted to be faulty. Using a measurement
data corresponding to 163 software files, it was observed that in comparison with other
techniques, GP results were reasonably accurate but lacked coverage.

In [96] the authors describe a GP-based system for targeting software components
for reliability enhancement. This study not only predicted the number of faults but
also ranked-order the software components. The motivation was to assist the project
managers in deciding which software components were more fault-prone. The authors
claimed the study to be the first one that applied GP on software quality predictions.
However, we found Robinson and McIlroy’s study [280] to be the earliest using GP
for software quality classification. Using the actual data from two industrial data sets
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(a data communication system and a legacy telecommunication system), Evett et al.
showed that for rank order of components from least to the most fault-prone, the GP
models were able to reveal faults closer to the actual number in comparison with ran-
dom selection of components for reliability enhancement. With cut-off percentile val-
ues of 75%, 80%, 85% and 90% for component ordering, GP model performance was
consistently superior to random ordering of components based on the number of faults.
The problem was solved as a multi-objective optimization problem with minimization
of absolute errors in prediction of faults as well as maximization of the best percentage
of the actual faults averaged over the percentile level of interest.

A similar approach was used by Khoshgoftaar et al. [173], in which a different
multi-objective fitness value: (i) Maximized the best percentage of the actual faults av-
eraged over the percentile level of interest (95%, 90%, 80%, 70%). (ii) Restricted the
size of the GP tree. The data set used in the study came from an embedded software
system and five software metrics were used for quality prediction. The data set was
divided into three random splits of the training and the testing data sets to avoid biased
results. Based on the comparison of models ranked according to lines of code (LoC),
the GP-models ranked the components closer to the actual ranking on two of the three
data splits. The results were not much different in an extension of this study [174],
where in an additional case study of a legacy telecommunication system with 28 inde-
pendent variables, GP outperformed the component ranking based on LoC.

Another study by Khoshgoftaar et al. [180] used a different multi-objective fit-
ness function for generating the software quality model. First the average weighted
cost of misclassification was minimized and subsequently the trees were simplified by
controlling their size. The average weighted cost of misclassification was formulated
to penalize Type-II errors (a fp component misclassified as nfp) more than Type-I er-
rors (a nfp component misclassified as fp). This was done by normalizing the cost of
Type-II error with respect to the cost of Type-I errors. Data was collected from two
embedded systems applications, which consisted of five different metrics for different
components. In comparison with standard GP, the performance of multi-objective GP
was found to be better with multi-objective GP finding lower Type-I and Type-II error
rates with smaller tree sizes. A similar study was carried out by [215] in which a single
objective fitness function was used that took into account the average weighted cost of
misclassification. Random subset selection was chosen which evaluated GP individu-
als in each generation on a randomly selected subset of the fit data set. Random subset
selection helped to reduce the problem of over-fitting in GP solutions. Comparisons
with logistic regression showed that Type-I and Type-II error rates for GP model were
found to be better than for logistic regression. The same authors extended the study
by adding a case study with data from a legacy telecommunication system in [216].
This time the fitness function was multi-objective with minimization of expected cost
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of misclassification and also control of the tree size of GP solutions. The results of ap-
plying the random subset selection showed that over-fitting was reduced in comparison
with when there was no random subset selection, hence, yielding solutions with better
generalizability in the testing part of the data set.

In [278], evolutionary decision-trees were proposed for classifying software ob-
jects. The comparison group in this case was the classification done by two architects
working on the project under study. The data set consisted of 312 objects whose qual-
ity was ranked by two architects as high, medium and low. The independent variables
included 19 different software metrics for each object. Both genetic algorithms and GP
were used to get the optimal splitting of attribute domains for the decision-tree and to
get the best decision-tree. The GA chromosome was represented by a possible split-
ting for all attributes. The fitness of the chromosome was evaluated using GP with two
possibilities of the fitness function: (i) When the number of data samples in each class
was comparable, K

N , where K = number of correctly specified data and N = number of
data samples in a training set. (ii) When the number of data samples in each class were
not comparable, ∏

c
i=1

ki+1
ni

, where c = number of different classes, ni = number of data
samples belonging to a class i and, finally, ki = number of correctly classified data of a
class i. The results showed that in comparison with architects’ classification of objects’
quality, the rate of successful classification for training data was around 66–72% for
the first and the second architect respectively.

In [218], the performance of GP based software quality classification is improved
by using a multi data set validation process. In this process, the hundred best models
were selected after training on a single data set. These models were then validated on
five validation data sets. The models that performed the best on these validation data
sets were applied to the testing data set. The application of this technique to seven
different NASA software projects showed that the misclassification costs were reduced
in comparison with standard genetic programming solution.

Tables 2.3 and 2.41 shows the relevant summary data extracted to answer the re-
search question from each of the primary studies within the area of software quality
classification.

2.3.2 Software cost/effort/size (CES) estimation
In line with what Jørgensen and Shepperd suggest in [157], we will use the term ‘cost’
and ‘effort’ interchangeably since effort is a typical cost driver in software develop-

1The data sets in Table 2.4 are taken at a coarser level, e.g., ISBSG data ([143]) of multiple projects is
one data set.
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Table 2.4: Data set characteristics for primary studies on GP application for software
quality classification. (?) indicates absence of information.

Article Data Sampling of training and testing sets Industrial (I) Data sets
sets no. or academic (A) public or private

[280] 1 103 records for training and 60 records for testing ? Private
[96] 2 2

3 components for training and the rest for testing I Private
[180] 1 Approximately 2

3 for training and the rest for testing I Private
[215] 1 Approximately 2

3 for training and the rest for testing and random
subset selection I Private

[173] 1 2
3 for training and the rest for testing, three splits I Private

[174] 2 2
3 for training and the rest for testing, three splits I Private

[216] 1 Training on release 1 data set, testing on release 2,3,4 data sets I Private
[278] 1 10 fold cross-validation I Private
[218] 7 1 training data set, 5 validation data sets and 1 testing data set I Private

ment. We additionally take software size estimation to be related to either effort or
cost and discuss these studies in this same section. According to Crespo et al. [76],
six different artificial intelligence methods are common in software development effort
estimation. These are neural networks, case-based, regression trees, fuzzy logic, dy-
namical agents and genetic programming. We are here concerned with the application
of symbolic regression using genetic programming as the base technique.

In [89], five different data sets were used to estimate software effort with line of
code (LoC) and function points as the independent variables. Using the evaluation
measures of pred(0.25) and MMRE (mean magnitude of relative error), it was observed
that with respect to predictive accuracy, no technique was clearly superior. However,
neural networks and GP were found to be flexible approaches as compared with clas-
sical statistics.

In [87], different hypotheses were tested for estimating the size of the software in
terms of LoC. Specifically, the component-based method was validated using three dif-
ferent techniques of multiple linear regression, neural networks and GP. Three different
components were identified which included menus, input and reports. The independent
variables were taken to be the number of choices within the menus and the number of
data elements and relations for inputs and reports. For evaluating the component-based
methodology in each project, six projects were selected having largest independent
variables within each type of the component. Using the evaluation measures of MMRE
and pred(0.25), it was observed that for linear relationships, small improvements ob-
tained by GP in comparison with multiple linear regression came at the expense of the
simplicity of the equations. However, it was also observed that the majority of the lin-
ear equations were rediscovered by GP. Also GP and neural networks (NN) showed
superiority over multiple linear regression in case of non-linear relationship between
the independent variables. The conclusion with respect to GP was that it provided sim-
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ilar or better values than regression equations and the GP solutions were also found to
be transparent. Regolin et al. [279] used a similar approach of estimating LoC from
function points and the number of components (NoC) metric. Using GP and NN, the
prediction models using function points did not satisfy the criteria MMRE ≤ 0.25 and
pred(0.25) ≥ 0.75. However, the prediction models for estimating lines of code from
the NoC metric were acceptable from both the NN and the GP point of view.

In [88], genetic programming and different types of standard regression analysis
(linear, logarithmic, inverse quadratic, cubic, power, exponential, growth and logistic)
were used to find a relationship between software size (independent variable) and cost
(dependent variable). The predictive accuracy measures of pred(0.25) and MMRE
showed that linear regression consistently obtained the best predictive values, with GP
achieving a significant improvement over classical regression in 2 out of 12 data sets.
GP performed well, pred(0.25), on most of the data sets but sometimes at the expense
of MMRE. This also indicated the potential existence of over-fitting in GP solutions. It
was also found that size alone as an independent variable for predicting software cost
is not enough since it did not define the types of economies of scale or marginal return
with clarity.

The study by Burgess et al. [56] extends the previous study from [88] by using nine
independent variables to predict the dependent variable of effort measured in person
hours. Using the Desharnais [85] data set of 81 software projects, the study showed
that GP is consistently more accurate for MMRE but not for adjusted mean square error
(AMSE), pred(0.25) and balanced mean magnitude of relative error (BMMRE). The
study concluded that while GP and NN can provide better accuracy, they required more
effort in setting up and training.

In [288] the authors used grammar-guided GP on 423 projects from release 7 of the
ISBSG (The International Software Benchmarking Standards Group Limited [143])
data set to predict software project effort. The evaluation measures used were R-
squared, MSE, MMRE, pred(0.25) and pred(0.5). In comparison with linear and log-
log regression, the study showed that GP was far more accurate than simple linear
regression. With respect to MMRE, log-log regression was better than GP which led to
the conclusion that GP maximizes one evaluation criterion at the expense of the other.
The study showed that grammar-guided GP provides both a way to represent syntacti-
cal constraints on the solutions and a mechanism to incorporate domain knowledge to
guide the search process.

Lefley and Shepperd [208] used several independent variables from 407 cases to
predict the total project effort comparing GP, ANN, least squares regression, nearest
neighbor and random selection of project effort. With respect to the accuracy of the
predictions, GP achieved the best level of accuracy the most often, although GP was
found hard to configure and the resulting models could be more complex.
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Tables 2.5 and 2.62 present the relevant summary data extracted to answer the re-
search question from each of the primary studies within the area of software CES esti-
mation.

2.3.3 Software fault prediction and reliability growth

Apart from studies on software quality classification (Section 2.3.1), where the pro-
gram components are classified as being either fp or nfp, there are studies which are
concerned with prediction of either the fault content or software reliability growth.

In [160] the authors proposed the incorporation of existing equations as a way
to include domain knowledge for improving the standard GP algorithm for software
fault prediction. They specifically used Akiyama’s equations [15], Halstead’s equa-
tion [125], Lipow’s equation [213], Gaffney’s equation [106] and Compton’s equa-
tion [71] to add domain knowledge to a simple GP algorithm which is based on mathe-
matical operators. Using the fitness function (1−standard error), six experiments were
performed using a NASA data set of 379 C functions. Five of these experiments com-
pared standard GP with GP enhanced with Akiyama’s, Halstead’s, Lipow’s, Gaffney’s
and Compton’s equations. The last experiment compared standard GP with GP en-
hanced with all these equations simultaneously. The results showed, not surprisingly,
that by including explicit knowledge in the GP solutions, the fitness values for the GP
solutions increased.

In another study, [161], the same authors used another approach called data equal-
ization to compensate for data skewness. Specifically, duplicates of interesting training
instances (in this case functions with greater than zero faults) were added to the training
set until the total reached the frequency of most occurring instance (in this case func-
tions with zero faults). The fitness function used was: 1 + e(7∗(1−n−k)/(n−1)∗Se2/Sy2),
where k = number of inputs, n = number of valid results, Se = standard error and Sy =
standard deviation. Using the same data sets as before, the experimental results showed
that the average fitness values for the equalized data set were better than for the original
data set.

In [322], grammar-guided GP was used on NASA’s data set consisting of four
projects to measure the probability of detection, PD (the ratio of faulty components
found to all known faulty components) and false alarm rate, PF (the ratio of number
of non-faulty components misclassified as faulty to all known non-faulty components).

2The data sets in Table 2.6 are taken at a coarser level, e.g., ISBSG data ([143]) of multiple projects is
one data set.
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Table 2.6: Data set characteristics for primary studies on GP application for software
CES estimation.

Article Data Sampling of training and testing sets Industrial (I) Data sets
sets no. or academic (A) public or private

[89] 5 a) Train and test a model with all the points. b) Train a model on 66%
of the data points and test on 34% of the points I Public & Private

[87] 6 Train a model on 60 to 67 % of the data points and test in 40 to 37% A Public
[279] 2 Train on 2

3 and test on 1
3 I & A Public

[88] 12 Training and testing on all data points I & A Public
[56] 1 Training on 63 projects, testing on 18 projects I Public
[288] 1 Random division of 50% in training set and 50% in testing set I Public
[208] 1 149 projects in the training set and 15 projects in the testing set I Public

The fitness function represented the coverage of knowledge represented in the indi-
vidual, and equaled t p

(t p+ f n) ∗
tn

(tn+ f p) where fp is the number of false positives, t p the
number of true positives, tn the number of true negatives and f n the number of false
negatives. The study showed that grammar-guided GP performed better than naı̈ve
Bayes on both measures (PD and PF) in two of the projects’ data while in the rest of
the two data, it was better in one of the two measures.

We were also able to find a series of studies where the comparison group included
traditional software reliability growth models. Zhang et al. [355] used mean time
between failures (MTBF) time series to model software reliability growth using ge-
netic programming, neural networks (NN) and traditional software reliability models,
i.e., Schick-Wolverton, Goel-Okumoto, Jelinki-Moranda and Moranda. Using multi-
ple evaluation measures of short-term range error, prequential likelihood, model bias,
model bias trend, goodness of fit and model noise; the GP approach was found bet-
ter than the traditional software reliability growth models. However, it is not clear
from the study how neural networks performed against all the evaluation measures (ex-
cept for the short-term range error where GP was better than neural networks). Also
it is not clear from the study what sampling strategy was used to split the data set
into training and testing set. The fitness function information is also lacking from the
study. The study is however extended in [356] with adaptive cross-over and mutation
probabilities, and the corresponding GP was named adaptive genetic programming. In
comparison with standard GP and the same reliability growth models (as used in the
previous study), the mean time between failures (MTBF) and the next mean time to
failure (MTTF) values for adaptive GP were found to be more accurate.

Afzal and Torkar [6] used fault data from three industrial software projects to
predict the software reliability in terms of number of faults. Three SRGMs (Goel-
Okumoto, Brooks and Motley, and Yamada’s S-shaped) were chosen for comparison
using the fitness function of sum of absolute differences between the obtained and ex-
pected results in all fitness cases, ∑

n
i=1 | ei−e

′
i |, where ei is the actual fault count data,
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e
′
i the estimated value of the fault count data and n the size of the data set used to train

the GP models. The faults were aggregated on weekly basis and the sampling strategy
divided the first 2

3 of the data set into a training set and remaining 1
3 into a test set. Us-

ing prequential likelihood ratio, adjusted mean square error (AMSE), Braun statistic,
Kolmogorov-Smirnov tests and distribution of residuals, the GP models were found to
be more accurate for prequential likelihood ratio and Braun statistic but not for AMSE.
The goodness of fit of the GP models were found to be either equivalent or better than
the competing models used in the study. The inspection of the models’ residuals also
favored GP.

In [73], the authors used GP and GP with boosting to model software reliabil-
ity. The comparisons were done with time based reliability growth models (Jelinski-
Moranda and geometric), coverage-based reliability growth model (coverage-based
binomial model) and artificial neural network (ANN). The evaluation measures used
for time-based models included maximum deviation, average bias, average error, pre-
diction error and correlation coefficient. For coverage-based models, an additional
Kolmogorov-Smirnov test was also used. The fitness function used was weighted root

mean square error (WRMSE),
√

∑
m
i=1 (xi− xd

i )
2Dim where xi = real value, xd

i = esti-
mated value, Di = weight of each example and m = size of the data set. Using the
first 2

3 of the data set as a training set, it was observed that GP with boosting (GPB)
performed better than traditional models for models based on time. However, there was
no statistical difference between GP, GPB and ANN models. For models based on test
coverage, the GPB models’ results were found to be significantly better compared to
that of the GP and ANN models.

In [262], the authors used a modified GP algorithm called the µ +λ GP algorithm
to model software reliability growth. In the modified algorithm, n% of the best indi-
viduals were applied the genetic operators in each generation. The genetic operators
generated λ individuals, which competed with their parents in the selection of µ best
individuals to the next generation where (λ > µ). The fitness function used was root

mean square error (RMSE), given by:
√

∑
n
i=1 |xi−xd

i |
n where xi is the real value, xd

i is the
estimated value and n is the size of the data set. Using measures as maximum devia-
tion, average bias, average error, prediction error and correlation coefficient, the results
favored modified GP algorithm. Additional paired two-sided t-tests for average error
confirmed the results in favor of modified GP with a statistically significant difference
in the majority of the results between the modified and standard GP algorithm.

Table 2.7 and Table 2.83 shows the relevant summary data extracted to answer the

3The data sets in Table 2.8 are taken at a coarser level, e.g., ISBSG data ([143]) of multiple projects is
one data set.
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research question from each of the primary studies within the area of software fault
prediction and reliability growth.

2.4 Discussion and areas of future research
Our research question was initially posed to assess the efficacy of using GP for predic-
tion and estimation in comparison with other approaches. Based on our investigation,
this research question is answered depending upon the prediction and estimation of the
attribute under question. In this case, the attribute belonged to three categories:

1. Software fault proneness (software quality classification).

2. Software CES estimation.

3. Software fault prediction and software reliability growth modeling.

For software quality classification, seven out of nine studies reported results in favor
of using GP for the classification task. Two studies were inconclusive in favoring a
particular technique either because the different measures did not converge, as in [280],
or the proposed technique used GP for initial investigative purposes only, without being
definitive in the judgement of GP’s efficacy, as in [278] (these two studies are indicated
by the sign ~ in Table 2.3).

The other seven studies were co-authored by similar authors to a large extent and
the data sets also overlapped between studies but these studies contributed by introduc-
ing different variations of the GP fitness function and also used different comparison
groups. These seven studies were in agreement that GP is an effective method for
software quality classification based on comparisons with neural networks, k-nearest
neighbor, linear regression and logistic regression. Also GP was used to successfully
rank-order software components in a better way than the random ranking and the rank-
ing done on the basis of lines of code. Also it was shown that numerous enhancements
to the GP algorithm are possible hence improving the evolutionary search in compari-
son with standard GP algorithm. These enhancements include random subset selection
and different mechanisms to control excessive code growth during GP evolution. Im-
provements to the GP algorithm gave better results in comparison with standard GP
algorithm for two studies [180, 216]. However, one finds that there can be two areas
of improvement in these studies: (i) Increasing the comparisons with more techniques.
(ii) Increasing the use of public data sets.
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Table 2.8: Data set characteristics for primary studies on GP application for software
fault prediction and reliability growth. (?) indicates absence of information.

Article Data Sampling of training and testing sets Industrial (I) or Data sets
sets no. academic (A) public or private

[160] 1 ? I Public
[161] 1 ? I Public
[322] 1 10-fold cross-validation I Public
[355] 1 ? I Private
[356] 1 ? I Private
[6] 3 First 2

3 of the data set for training and
the rest for testing I Private

[73] 2 First 2
3 of the data set for training and

the rest for testing I Public & Private
[262] 1 First 2

3 of the data set for training and
the rest for testing I Public

We also observe from Table 2.3 that multi-objective GP is an effective way to seek
near-optimal solutions for software quality classification in the presence of competing
constraints. This indicates that further problem-dependent objectives can possibly be
represented in the definition of the fitness function, which potentially can give bet-
ter results. We believe that in order to generalize the use of GP for software quality
classification, the comparison groups need to increase in size.

There are many different techniques that have been applied by researchers to soft-
ware quality classification, see e.g., [209]. GP needs to be compared with a more
representative set of techniques that have been found successful in earlier research—
only then can we be able to ascertain that GP is a competitive technique for software
quality classification. We see from Table 2.4 that all the data sets were private. In
this regards, the publication of private data sets needs to be encouraged. Publication
of data sets would encourage other researchers to replicate the studies based on similar
data sets and, hence, we can have greater confidence in the correctness of the results.
Nevertheless, one encouraging trend that is observable from Table 2.4 is that the data
sets represented real world projects which adds to the external validity of these results.

For software CES estimation, there was no strong evidence of GP performing con-
sistently on all the evaluation measures used (as shown in Table 2.5). The sign ~ in the
last column of Table 2.5 shows that the results are inconclusive concerning GP. The
study results indicate that while GP scores higher on one evaluation measure, it lags
behind on others.

There is also a trade-off between different qualitative factors, e.g., complexity of
interpreting the end solution, and the ease of configuration and flexibility to cater for
varying data sets. The impression from these studies is that GP also requires some
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effort in configuration and training. There can be different reasons related to the ex-
perimental design for the inconsistent results across the studies using GP for software
CES estimation. One reason is that the accuracy measures used for evaluation pur-
poses are not near to a standardized use. While the use of pred(0.25) and MMRE are
commonly used, other measures, including AMSE and BMMRE, are also applied. It
is important that researchers are aware of the merits/demerits of using these evalua-
tion measures [105, 289]. Another aspect which differed between the studies was the
sampling strategies used for training and testing sets (Column 3, Table 2.6). These dif-
ferent sampling strategies are also a potential contributing factor in inconsistent model
results. What is also observable from these studies is that over-fitting is a common
problem for GP. However, there are different mechanisms to avoid over-fitting, such
as random subset selection on the training set and placing limits on the size of the GP
trees. These mechanisms should be explored further.

As previously pointed out in Section 2.3.2, Crespo et al. [76] identified six artifi-
cial intelligence techniques applicable to software development effort estimation. It is
interesting to note that our literature search did not find any study, which compares all
of these techniques. As for the studies related to software fault prediction and software
reliability growth, seven out of eight studies favor the use of GP in comparison with
neural networks, naı̈ve Bayes and traditional software reliability growth models (this
is evident from the last column in Table 2.7). However, as Table 2.8 showed, it was
not clear from four studies which sampling strategies were used for the training and
testing sets. From two of these four studies, it was also not clear what fitness function
was used for the GP algorithm. If, however, we exclude these four studies from our
analysis, GP is still a favorable approach for three out of four studies. With respect to
comparisons with traditional software reliability growth models, the main advantage of
GP is that it is not dependent on the assumptions that are common in these software reli-
ability growth models. Also GP promises to be a valid tool in situations where different
traditional models have inconsistent results. Besides, we also observe that several im-
provements to the standard GP algorithm are possible which provides comparatively
better results. Specifically, we see studies where the incorporation of explicit domain
knowledge in the GP modeling process has resulted in improved fitness values [160].
Table 2.7 also shows that the variety of comparison groups is represented poorly; there
is an opportunity to increase the comparisons with more techniques and also to use a
commonly used technique as a baseline.

For studies which were inconclusive in the use of GP for prediction/estimation, we
include quotations from the respective papers in Table 2.9 (an approach similar to the
one used in [228]) that reflects the indifference between GP and other approaches.

What is evident from these studies is the following:
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1. The accuracy of GP as a modeling approach is attached to the evaluation mea-
sure used. The impression from these studies is that GP performs superior on
one evaluation measure at the cost of the other. This indicates that the GP fitness
function should not only be dependent on the minimization of standard error but
also biased in searching those solutions which reflect properties of other evalua-
tion measures, such as correlation coefficient.

2. The qualitative scores for GP models are both good and bad. While they might
be harder to configure and result in complex solutions, the results can never-
theless be interpreted to some extent. This interpretation can be in the form of
identifying the few significant variables [198]. But another key question is that
whether or not we are able to have a reasonable explanation of the relationship
between the variables. As an example, Dolado [87] provides the following equa-
tion generated by GP:

LoC = 50.7 + 1.501 ∗ data elements + data elements ∗ relations − 0.5581 ∗
relations

While this equation identifies the dependent variables, it is still difficult to ex-
plain the relationships. Simplification of resulting GP solutions is thus impor-
tant.

Based on the above discussion, we can conclude that while the use of GP as a pre-
diction tool has advantages, as presented in Section 2.3, there are, at the same time,
challenges to overcome as points 1 and 2 indicate above. We believe that these chal-
lenges offer promising future work to undertake for research community.

2.5 Empirical validity evaluation

We assume that our review is based on studies which were unbiased. If this is not the
case, then the validity of this study is also expected to suffer [228]. Also, like any other
systematic review, this one too is limited to making use of information given in the
primary studies [191]. There is also a threat that we might have missed a relevant study
but we are confident that both automated and manual searches of the key information
sources (Section 2.2.2) have given us a complete set. Our study selection procedure
(Section 2.2.3) is straightforward and the researchers had agreement on which studies
to include/exclude. However, this review does not cover unpublished research that had
undesired outcome and company confidential results.
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2.6 Conclusions
This systematic review investigated whether symbolic regression using genetic pro-
gramming is an effective approach in comparison with machine learning, regression
techniques and other competing methods. The results of this review resulted in a total
of 24 primary studies; which were further classified into software quality classification
(nine studies), software CES estimation (seven studies) and fault prediction/software
reliability growth (eight studies).

Within software quality classification, we found that in seven out of nine studies,
GP performed better than competing techniques (i.e., neural networks, k-nearest neigh-
bor, linear regression and logistic regression). Different enhancements to the standard
GP algorithm also resulted in more accurate quality classification, while GP was also
more successful in rank-ordering of software components in comparison with random
ranking and ranking based on lines of code. We concluded that GP seems to be an
effective method for software quality classification. This is irrespective of the fact that
one author was part of seven out of nine primary studies and the fact that there was
an overlap of data sets used across the studies. We considered each of these primary
studies representing a distinct contribution in terms of different algorithmic variations.

For software CES estimation, the study results were inconclusive in the use of GP as
an effective approach. The main reason being that GP optimizes one accuracy measure
while degrades others. Also the experimental procedures among studies varied, with
different strategies used for sampling the training and testing sets. We were therefore
inconclusive in judging whether or not GP is an effective technique for software CES
estimation.

The results for software fault prediction and software reliability growth modeling
leaned towards the use of GP, with seven out of eight studies resulting in GP perform-
ing better than neural networks, naı̈ve Bayes and traditional software reliability growth
models. Although four out of these eight studies lacked in some of the quality instru-
ments used in Table 1 (Appendix A, page 281); still three out of the remaining four
studies reported results in support of GP. We therefore conclude that current litera-
ture provides evidence in support of GP being an effective technique for software fault
prediction and software reliability growth modeling.

Based on the results of the primary studies, we can offer the following recommen-
dations. Some of these recommendations refer to other researchers’ guidelines which
are useful to reiterate in the context of this study:

1. Use public data sets whenever possible. In case of private data sets, there are
ways to transform the data sets to make it public domain (e.g., one such transfor-
mation is discussed in [343]).
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2. Apply commonly used sampling strategies to help other researchers replicate,
improve or refute the established predictions and estimations. From our sample
of primary studies, the sampling strategy of 2

3 for training, remaining 1
3 for test-

ing and 10-fold cross validation are mostly used. Kitchenham et al. [191] recom-
mends using a jackknife approach with leave-one-out cross-validation process;
this needs to be validated further.

3. Avoiding over-fitting in GP solutions is possible and is beneficial to increase the
generalizability of model results in the testing data set. The primary studies in
this review offer important results in this regards.

4. Always report the settings used for the algorithmic parameters (also suggested
in [30]).

5. Compare the performances against a comparison group which is both commonly
used and currently an active field of research. For our set of primary studies,
comparisons against different forms of statistical regression and artificial neural
networks can be seen as a baseline for comparisons.

6. Use statistical experimental design techniques to minimize the threat of differ-
ences being caused by chance alone [249].

7. Report the results even if there is no statistical difference between the quality of
the solutions produced by different methods [30].

The next Chapter 3 discusses the mechanism enabling GP to progressively search
for better solutions, explores the use of GP for software fault count predictions and
compares the predictive capabilities of GP with three traditional software reliability
growth models.
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Genetic programming for
software fault count predictions

Originally published in: Proceedings
of the 1st International Conference on
Computer Science and its
Applications (CSA’08), Proceedings
of the 12th IEEE International
Multitopic Conference (INMIC’08)
and Proceedings of the 3rd
International Conference on Software
Engineering Advances (ICSEA’08)

W. Afzal, R. Torkar and R. Feldt

3.1 Introduction

Software has become a key element in the daily life of individuals and societies as a
whole. We are increasingly dependent on software and because of this ever-increasing
dependency; software failures can lead to hazardous circumstances. Ensuring that the
software is of high quality is thus a high priority. A key element of software quality
is software reliability, defined as the ability of a system or component to perform its
required functions under stated conditions for a specific period of time [301]. If the
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software frequently fails to perform according to user-specified behavior, other soft-
ware quality factors matters less [246]. It is, therefore, imperative that the reliability of
the software is determined before making it operational.

Deciding upon when to release the software is also important because releasing
software that contains faults will result in high failure costs whereas, on the other hand,
prolonged debugging and testing increases development costs. Reliability growth mod-
eling is an important criterion, which helps in making an informed decision about when
to release the software. A software reliability growth model (SRGM) describes the
mathematical relationship of finding and removing faults to improve software reliabil-
ity. A SRGM performs curve fitting of observed failure data by a pre-specified model
formula, where the parameters of the model are found by statistical techniques like
e.g., the maximum likelihood method [251]. The model then estimates reliability or
predicts future reliability by different forms of extrapolation [224]. After the first soft-
ware reliability growth model was proposed by Jelinski and Moranda in 1972 [146],
there have been numerous reliability growth models following it. These models come
under different classes [223], e.g., exponential failure time class of models, Weibull
and Gamma failure time class of models, infinite failure category models and Bayesian
models. The existence of a large number of models requires a user to select and apply
an appropriate model. For practitioners, this may be an unmanageable selection prob-
lem and there is a risk that the selected model is unsuitable to the particulars of the
project in question.

Some models are complex with many parameters. Without extensive mathemati-
cal background, practitioners cannot determine when a model is applicable and when
the model diverges from reality. Even if the dynamics of the testing process are well
known, there is no guarantee that the model whose assumptions appear to best suit
these dynamics will be most appropriate [257]. Moreover, these parametric software
reliability growth models are often characterized by a number of assumptions, e.g., that
once a failure occurs the fault that caused the failure is immediately removed and that
the fault removal process will not introduce new faults. These assumptions are often
unrealistic (see e.g., [344]), hence, causing problems in the long-term applicability and
validity of these models. Under these constraints, what becomes significantly interest-
ing is to have modeling mechanisms that can exclude the pre-suppositions about the
model and are based entirely on the fault data. In this respect, genetic programming
(GP) can be used as an effective tool because, being a non-parametric method, GP does
not conceive a particular structure for the resulting model and GP also does not make
any assumptions about the distribution of the data.

This chapter presents a multi-stage exploration of using GP for the purpose of pre-
dicting software reliability. Stage one discusses the mechanisms enabling GP to po-
tentially be an effective modeling technique. Stage two presents an experiment where
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we apply GP to evolve a model based on weekly fault count data. The contribution
of this stage is exploring the use of GP as a potential method for software fault count
predictions. We use five different measures to evaluate the adaptability and predictive
ability of the GP-evolved model on three sets of fault data that corresponds to three
projects carried out by a large telecommunication company. The results of the exper-
iment indicate that software reliability growth modeling is a suitable problem domain
for GP as the GP evolved model gives statistically significant results for goodness of
fit and predictive accuracy on each of the data sets. Stage three presents the results of
the comparison between models evolved using GP and three other traditional SRGMs
based on the same data sets as in stage two. Stage three compares the models using
measures of model validity, goodness of fit and residual analysis. The comparative
results indicate that in terms of model validity, two out of three measures favor GP
evolved models. The GP evolved models also represented comparatively better good-
ness of fit, while residual analysis showed that the predictions from the GP evolved
model are comparatively less biased.

The remainder of this chapter is organized as follows. Section 3.2 and Section 3.3
present related work and a background to genetic programming, respectively. Sec-
tion 3.4 discusses stage one of the study. The second stage is discussed in Section 3.5
and consists of a discussion on the research method, experimental setup, results and
summary of results. The third stage is discussed in Section 3.6, consisting of a discus-
sion about selection of traditional SRGMs, hypotheses, evaluation measures, results
and a summary of results. The validity evaluation of the complete study appears in
Section 3.7, while the chapter ends with a discussion and conclusions in Section 3.8
and Section 3.9, respectively.

3.2 Related work
Within the realm of machine learning algorithms, there has been work exploring the
use of artificial neural networks for software reliability growth modeling (e.g., [293]),
but our focus here is on the research done using GP for software reliability growth
modeling.

Studies reporting the use of GP for software reliability modeling are few and recent.
Costa et al. [75] presented the results of two experiments exploring GP models based
on time and test coverage. The authors compared the results with other traditional and
non-parametric artificial neural network (ANN) models. For the first experiment, the
authors used 16 data sets containing time-between-failure (TBF) data from projects
related to different applications. The models were evaluated using five different mea-
sures, four of these measures represented different variants of differences between ob-
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served and estimated values. The results from the first experiment, which explored GP
models based on time, showed that GP adjusts better to the reliability growth curve.
Also GP and ANN models converged better than traditional reliability growth models.
GP models also showed lowest average error in 13 out of 16 data sets. For the second
experiment, which was based on test coverage data, a single data set was used. This
time the Kolmogorov-Smirnov test was also used for model evaluation. The results
from the second experiment showed that all measurements were consistently better for
GP and ANN models. The authors later extended GP with boosting techniques for
reliability growth modeling [262] and reported improved results.

A similar study by Zhang and Chen [355] used GP to establish a software reliability
model based on mean time between failures (MTBF) time series. The study used a
single data series and used six different criteria for evaluating the GP evolved model.
The results of the study also confirmed that in comparison with the ANN model and
traditional models, the model evolved by GP had higher prediction precision and better
applicability.

There are several ways in which the present work differs from the aforementioned
studies. Firstly, none of the previous studies used data sets consisting of weekly fault
count data. In this study, our aim is to use the weekly fault count data as a means to
evolve the reliability growth model using GP. Secondly, we have avoided performing
any pre-processing of data to avoid chances of incorporating bias. Thirdly, in our study,
we remain consistent throughout with using 2/3 of the data to build the model and use
the rest 1/3 of the data for model evaluation for all of our data sets. This splitting
procedure was found not to be consistent in earlier studies. Lastly, we do not change
the evaluation measures for all the data sets, in an attempt to provide a fair evaluation.
This is again something that is lacking from earlier studies.

3.3 Background to genetic programming
The evolution of software reliability growth models using GP is an example of a sym-
bolic regression problem. Symbolic regression is an error-driven evolution as it aims
to find a function, in symbolic form, that fits (or approximately fits) data from an un-
known curve [200]. In simpler terms, symbolic regression finds a function whose out-
put matches some target values. GP is well suited for symbolic regression problems,
as it does not make any assumptions about the structure of the function.

GP is an evolutionary computation technique (first results reported by Smith [295]
in 1980) and is an extension of genetic algorithms. As compared with genetic al-
gorithms, the population structures (individuals) in GP are not fixed length character
strings, but programs that, when executed, are the candidate solutions to the problem.
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Poli et al. [272] define GP as:

“GP is a systematic, domain-independent method for getting computer to
solve problems automatically starting from a high-level statement of what
needs to be done.”

Programs are expressed in GP as syntax trees, with the nodes indicating the instruc-
tions to execute and are called functions (e.g., min, ∗, +, /), while the tree leaves are
called terminals which may consist of independent variables of the problem and ran-
dom constants (e.g., x, y, 3). The fitness evaluation of a particular individual is deter-
mined by the correctness of the logical output produced for all of the fitness cases [27].
The fitness function guides the search in promising areas of the search space and is
a way of communicating a problem’s requirements to the GP algorithm. The control
parameters limit and control how the search is performed like setting the population
size and probabilities of performing the genetic operations. The termination criterion
specifies the ending condition for the GP run and typically includes a maximum num-
ber of generations [57]. GP iteratively transforms a population of computer programs
into a new generation of programs using various genetic operators. Typical operators
include crossover, mutation and reproduction. It is expected that over successive iter-
ations, more and more useful structures or programs be evolved, eventually resulting
in a structure having most useful sub-components. That structure would then represent
the optimal or near-optimal solution to the problem. The crossover operator creates
new structure(s) by combining randomly chosen parts from two selected programs or
structures (Figure 3.1a). The mutation operator creates a new structure by randomly
altering a chosen part of a program (Figure 3.1b). The reproduction operator simply
copies a selected structure to the new population (Figure 3.1c). Figure 3.2 shows the
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Figure 3.1: Crossover, reproduction and mutation operators in GP.
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3.4 Study stage 1: GP mechanism

The suitability of GP for modeling software reliability growth is based on the identifi-
cation of building blocks and progressively improving overall fitness.

According to Koza [200], the GP population contains building blocks, which could
be any GP tree or sub-tree in the population, and according to the building block hy-
pothesis, good building blocks improve the fitness of individuals that include them, and
these individuals have greater chance to be selected for reproduction. Therefore, good
building blocks get combined to form better individuals [29]. This hypothesis appears
suited to adaptive model-building that can be used for predicting software reliability
growth.

The evolution of better individuals using GP is shown in Figure 3.3.
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Figure 3.3: Combination of trees containing building blocks.

The fitness of a GP solution is the sum of absolute differences between the obtained
and expected results in all fitness cases. Suppose that during the fourth generation of a
GP run, two solutions have evolved (see Figure 3.3a and 3.3b in Figure 3.3) containing
different building blocks for an optimum solution. For tree 1 (Figure 3.3a), the sum
of absolute differences between the obtained and expected results in all fitness cases
was 31.34, while for tree 2 (Figure 3.3b), the fitness measure was 28.9. By combining
these two trees, two new trees could emerge (Figure 3.3c and Figure 3.3d). The first
tree (Figure 3.3c) has a better fitness of 27.8 than any of its parents, while the second
tree (Figure 3.3d) produced a higher fitness of 39.

In order to evolve a general function based on the fitness cases, the search space
of solutions can get complex. This increase in complexity helps the GP programs
comply with all the fitness cases [272]. Evolutionary algorithms have been found to
be robust for complex search spaces and genetic programming can potentially be a
valid technique to evolve software reliability growth models because the suitability of
genetic programming has already been proven for symbolic regression and curve fitting
problems. Being a stochastic search technique, the different runs of GP would result
in different trajectories [272]. Figure 3.4 shows how the GP algorithm is searching the
program space of solutions to track the model to approximate.

63



Genetic programming for software fault count predictions

Figure 3.4: Several approximations to the original fault count data in different genera-
tions.

Figure 3.5 shows the Pareto front when modeling software reliability growth for
one of the data sets. A Pareto front consists of a set of Pareto optimal solutions. A
Pareto optimal solution is a non-dominated solution since it is not dominated by any
other feasible solution in the entire search space [237]. The Pareto front in Figure 3.5
shows the set of solutions for which no other solution was found which both had a
smaller tree and better fitness [292]. The Figure 3.5 also shows the best fitness found
for each tree size. It is clear from Figure 3.5 that the fitness of different solutions
fluctuates as the number of nodes increases during the course of generations.

3.5 Study stage 2: Evaluation of the predictive
accuracy and goodness of fit

In this stage, we present the details of an experiment where we use GP as a potential
method for software fault count predictions.
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Figure 3.5: Visualization of Pareto front for one set of industrial fault count data.

3.5.1 Research method

The discussion regarding the research method includes a description of the data sets
used, the formulated hypotheses and a description of the evaluation measures.

Fault count data sets

The data sets used in this study are based on the weekly fault count data collected
during the testing of three large-scale software projects at a large telecom company.
The projects are targeted towards releases of three mature systems that have been on
the market for several years. These projects follow an iterative development process
meaning that within each iteration, a new system version, containing new function-
ality and fixes of previously discovered faults, is delivered to test. These iterations
occur on a weekly basis or even more frequently, while testing of new releases proceed
continuously. In this scenario, it becomes important for project managers to estimate
the current reliability and to predict the reliability ahead of time, so as to measure the
quality impact with continuous addition of new functionality and fixes of previously
discovered faults. The three projects are similar in size, i.e., they have approximately
half a million lines of code. There are, however, minor differences with respect to
the projects’ duration. The first project lasted 26 weeks, whereas the second and third
projects lasted 33 and 30 weeks respectively.

The independent variable in our case was the week number while the corresponding
dependent variable was the count of faults. We used 2/3 of the data in each data set for
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building the model and 1/3 of the data for evaluating the model according to the five
different measures (Subsection 3.5.1). This implies that we are able to make predictions
on several weeks constituting 1/3 of the data.

Hypothesis

The purpose of this experiment is to evaluate the predictive accuracy and goodness of
fit of GP in modeling software reliability using weekly fault count data collected in an
industrial context. In order to formalize the purpose of the experiment, we define the
following hypotheses:

H0−acc : GP model does not produce significantly accurate predictions.

H1−acc : GP model produces significantly accurate predictions.

H0−gof : GP model does not fit significantly to a set of observations.

H1−gof : GP model fits significantly to a set of observations.

In order to test the above hypotheses, we use five measures for evaluating the good-
ness of fit and predictive accuracy as detailed in the next section.

Evaluation measures

It is usually recommended to use more than one measure to determine model applica-
bility, as in [257], because reliance on a single measure can lead to making incorrect
choices. The deviation between observed and the fitted values were, in our case, mea-
sured using a goodness-of-fit test. We selected two measures for determining the good-
ness of fit: the two-sample two-sided Kolmogorov-Smirnov (K-S) test and Spearman’s
rank correlation coefficient. For measuring predictive accuracy, we used prediction at
level l, mean magnitude of relative error (MMRE) and a measure of prediction stabil-
ity. What follows is a brief description of each of these measures and how they were
used in this study.

Kolmogorov-Smirnov The K-S test is a commonly used statistical test for measuring
goodness of fit [231, 305]. The K-S test is a distribution-free test for measuring general
differences in two populations.

The null hypothesis of interest here is that the two samples, F(t) and G(t) have the
same probability distribution and represents the same population.
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H0 : [F(t) = G(t), for every t]

We have used the significance level α = 0.05 and if the K-S statistic J is greater than
or equal to the critical value Jα , the null hypothesis is rejected in favor of the alternate
hypothesis; otherwise we conclude that the two samples have the same distribution.
For detailed description of the test, see [137].

Spearman’s rank correlation coefficient Spearman’s rank correlation coefficient ρ

is the non-parametric counterpart of the parametric linear correlation coefficient, r.
We use hypothesis testing to determine the strength of relationship between ob-

served and estimated model values. If the absolute value of the computed value of ρ

exceeds the critical values of ρ for α = 0.05, we conclude that there is a significant
relationship between the observed and estimated model values. Otherwise, there is not
sufficient evidence to support the conclusion of a significant relationship between the
two distributions. More details on Spearman’s rank correlation coefficient can be found
in [159].

Prediction at level l Prediction at level l, or pred(l), represents the count of the
number of predictions within l% of the actuals. We have used the standard criterion
for considering a model as acceptable which is pred(0.25)≥ 0.75 which means that at
least 75% of the estimates are within the range of 25% of the actual values [87].

Mean magnitude of relative error Mean magnitude of relative error (MMRE) is the
most commonly used accuracy statistic.

Conte et al. [72] consider MMRE≤ 0.25 as acceptable for effort prediction models;
we use the same measure for our study.

Measure of prediction stability The predictions of a model should not vary signif-
icantly and should remain stable to denote the maturity of the model. We use here a
good rule of thumb given in [343] for prediction stability which says that a prediction
is stable if the prediction in week i is within 10% of the prediction in week i−1.

3.5.2 Experimental setup
In this study we used MATLAB version 7.0 [230] and GPLAB version 3.0 [292] (a GP
toolbox for MATLAB).
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Control parameter selection for GP

GPLAB allows for different choices of tuning control parameters. We were able to
adjust the control parameters after a certain amount of experimentation. We experi-
mented with different function sets and terminal sets by fixing the rest of the control
parameters like population size, number of generations and sampling strategy. Initially
we experimented with a minimal set of functions by keeping the terminal set contain-
ing the independent variable only. We incrementally increased the function set with
additional functions and later on also complemented the terminal set with a random
constant. For each data set, the best model having the best fitness was chosen from
all the runs of the GP system with different variations of function and terminal sets.
The function set for Project 1 and Project 3 data sets was the same, while a slightly
different function set for Project 2 gave the best fitness. The GP programs were eval-
uated according to the sum of absolute differences between the obtained and expected
results in all fitness cases, ∑

n
i=1 | ei− e

′
i |, where ei is the actual fault count data, e

′
i is

the estimated value of the fault count data and n is the size of the data set used to train
the GP models. The control parameters that were chosen for the GP system are shown
in Table 3.1.

Table 3.1: Main control parameters used for the GP system.
Control Parameter Value
Population size 30
Number of generations 200
Termination condition 200 generations
Function set (for project 1 & 3) {+,−,∗,sin,cos, log}
Function set (for project 2) {+,−,∗,/, sin,cos, log}
Terminal set {x}
Tree initialization ramped half-and-half
Initial maximum number of nodes 28
Maximum number of nodes after genetic operations 512
Genetic operators crossover, mutation, reproduction
Selection method lexictour
Elitism replace

3.5.3 Results

In this section, we describe the results of the evaluation measurements to assess the
adaptability and predictive accuracy of the GP evolved model.
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Adaptability of the model

Table 3.2 shows the statistic J for the K-S test performed on the validation fault count
data (1/3 of the original data set) and the estimated fault count data provided by the
GP evolved model for each of the data sets. The critical values Jα for α = 0.05 are also
given. We selected the significance level (α) of 0.05 as it is common in practice [158].
We see that in each data set, J < Jα ; this suggests that the estimated fault count data,
as provided by the GP model, fits quite well to the set of observations in all three data
sets.

Table 3.2: Results of applying two-sample two-sided Kolmogorov-Smirnov test.
J Jα=0.05 Sample size J < Jα

Project 1 0.40 0.70 10
√

Project 2 0.27 0.64 11
√

Project 3 0.10 0.70 10
√

We additionally calculated the Spearman’s rank correlation coefficient ρ for de-
termining the relationship between actual and estimated model values (Table 3.3). At
significance level α = 0.05, computed values of ρ exceeds the critical values rα=0.05
for every data set. This indicates that there is a strong relationship between actual
values and estimated model values.

Table 3.3: Results of applying Spearman’s correlation coefficient test.
ρ rα=0.05 Sample size ρ > rα=0.05

Project 1 0.99 0.65 10
√

Project 2 0.93 0.62 11
√

Project 3 1.00 0.65 10
√

Based upon the results of applying Kolmogorov-Smirnov and Spearman’s rank cor-
relation coefficient, we are able to reject the null hypothesis, H0−gof in support of the
alternative hypothesis, H1−gof.

Measuring predictive accuracy

Table 3.4 presents the results of measuring pred(0.25) for the three data sets where ei

denotes the actual fault count data and e
′
i is the estimated value of the fault count data.

69



Genetic programming for software fault count predictions

Table 3.4: Testing for pred(0.25)≥ 0.75.
Week i 25% of ei e

′
i e

′
i within range

of 25% of ei?
Project 1

19 25±6.25 25
√

20 27±6.75 26.23
√

21 30±7.5 27.53
√

22 33±8.25 28.83
√

23 34±8.5 30.10
√

24 35±8.75 31.28
√

25 36±9 32.38
√

26 40±10 33.44
√

27 40±10 34.51
√

28 41±10.25 35.58
√

Project 2
23 69±17.25 75.82

√

24 70±17.5 77.30
√

25 74±18.5 74.69
√

26 78±19.5 76.40
√

27 79±19.75 84.14
√

28 83±20.75 88.64
√

29 85±21.25 94.28
√

30 93±23.25 96.48
√

31 102±25.5 93.36
√

32 109±27.25 102.56
√

33 110±27.5 102.91
√

Project 3
21 153±38.25 148.54

√

22 162±40.5 159.07
√

23 173±43.25 167.06
√

24 180±45 174.67
√

25 184±46 181.04
√

26 190±47.5 189.07
√

27 196±49 196.18
√

28 204±51 203.80
√

29 208±52 207.65
√

30 210±52.5 216.32
√

In all the data sets, the measurement pred(0.25)≥ 0.75 holds true. The bold values
in Table 3.4 illustrate the cases when the model underestimates the actual fault count
data.

We also calculated the MMRE for each of the data sets. The MMRE values for the
three data sets were 0.0992, 0.06558 and 0.0166, respectively. Each of these values
satisfy the criterion of MMRE ≤ 0.25, therefore we have confidence that we have a
good set of predictions. For evaluating the prediction stability, we calculated whether
the prediction in week i is within 10% of the prediction in week i− 1. The results
(Table 3.5) indicate that the predictions are indeed stable.
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Table 3.5: Testing for prediction stability.
Week i Prediction in 10% of the prediction Prediction

week i in week i−1 stability
Project 1

19 25 − −
20 26.23 25±2.5

√

21 27.53 26.23±2.62
√

22 28.83 27.53±2.75
√

23 30.10 28.83±2.88
√

24 31.28 30.10±3.01
√

25 32.37 31.28±3.12
√

26 33.44 32.37±3.23
√

27 34.50 33.44±3.34
√

28 35.57 34.50±3.45
√

Project 2
23 75.81 − −
24 77.30 75.81±7.58

√

25 74.69 77.30±7.73
√

26 76.39 74.69±7.46
√

27 84.14 76.39±7.63
√

28 88.64 84.14±8.41
√

29 94.28 88.64±8.86
√

30 96.48 94.28±9.42
√

31 93.35 96.48±9.64
√

32 102.56 93.35±9.33
√

33 102.91 102.56±10.25
√

Project 3
21 148.53 − −
22 159.06 148.53±14.85

√

23 167.06 159.06±15.90
√

24 174.66 167.06±16.70
√

25 181.04 174.66±17.46
√

26 189.07 181.04±18.10
√

27 196.18 189.07±18.90
√

28 203.80 196.18±19.61
√

29 207.65 203.80±20.38
√

30 216.32 207.65±20.76
√
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The results of applying pred(l), MMRE and the measure of prediction stability
show that the GP model is able to produce significantly accurate predictions. We can,
thus reject the null hypothesis, H0−acc in favor of the alternative, H1−acc.

Figure 3.6 shows the comparison of actual and predicted fault count data for the
three projects. The actual and predicted fault count data is multiplied by a constant
factor due to proprietary concerns. The difference between the actual and predicted
fault count is the least for data from Project 3, which also has the best MMRE value
of 0.0166. These charts show that the GP evolved curve is able to learn the pattern in
failure count data and adapts reasonably well.

3.5.4 Summary of results

The hypothesis tested if GP could be a suitable approach for evolving a SRGM based
on fault count data. The results of applying the evaluation criteria, as described in
Section 3.5.1, confirmed that GP represents a suitable approach for modeling software
reliability growth based on fault count data, both in terms of goodness of fit and pre-
dictive accuracy. In terms of goodness of fit, the K-S test statistic for all three data sets
showed that at significance level of 0.05, the GP model fits well to the set of obser-
vations. We also calculated the Spearman’s rank correlation coefficient to determine
the strength of the relationship between actual values and and estimated model values.
The results showed that at significance level of 0.05, there exists a strong relationship
between the two distributions. The results obtained are also promising in terms of pre-
dictive accuracy. The custom measures of MMRE ≤ 0.25 and pred(0.25) ≥ 0.75, as
indicative of a good prediction system, holds true in all the three data sets. However,
we noted a considerable variation in MMRE values for the three validation data sets.
This indicates the sensitivity of GP to changes in the training set and is indicative of
the adaptive nature of the GP algorithm to deal with heterogeneous data. To have a
degree of confidence about the accuracy of future estimates, we resorted to a good rule
of thumb for evaluating predictive stability (see Section 3.5.1), which also gave results
in support of GP.

3.6 Study stage 3: Comparative evaluation with
traditional SRGMs

In this stage, we present the results of comparison between models evolved using GP
and three other traditional SRGMs based on the same data as in Stage 2. We discuss the
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(a) Project 1—Predicted and actual fault count data.

(b) Project 2—Predicted and actual fault count data.

(c) Project 3—Predicted and actual fault count data.

Figure 3.6: Actual and predicted fault count data for three projects.
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selection of traditional SRGMs, hypotheses, the evaluation measures and the results.
We do not discuss the experimental setup as it is the same as for Stage 2 (Section 3.5.2).

3.6.1 Selection of traditional SRGMs
Since we are interested in comparing predictions of weekly fault count data, we se-
lect three traditional SRGMs that represent the fault count family of models [108].
These three models are Goel-Okumoto non-homogeneous Poisson process model (GO-
NHPP) [109], Brooks and Motley’s Poisson model (BM) [52] and Yamada’s S-shaped
growth model (YAM) [347]. We selected them because these models present a fair
representation of the fault count family of models and, in addition, represent different
forms of growth curves. In particular, GO-NHPP and BM are concave (or exponential)
while YAM is S-shaped. Also we had limitations in terms of information requirements
of certain models, so they were not selected for comparison, like Shooman’s expo-
nential model and its hazard function requiring knowing the parameters of the total
number of instructions in the program and debugging time since the start of system
integration [108].

3.6.2 Hypothesis
In order to formalize the purpose of this experiment, we define the following hypothe-
ses:

H0−val : The predictions of the GP evolved model are not significantly more valid as
compared with traditional models.

H1−val : The predictions of the GP evolved model are significantly more valid as com-
pared with traditional models.

H0−gof : The GP evolved model does not give significantly higher goodness of fit as
compared with traditional models.

H1−gof : The GP evolved model gives significantly higher goodness of fit as compared
with traditional models.

H0−res : There is no significant difference between the residuals of the GP evolved
model as compared with traditional models.

H1−res : There is a significant difference between the residuals of the GP evolved model
as compared with traditional models.
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In order then to test the above hypotheses, we use different evaluation measures as
detailed in the next section.

3.6.3 Evaluation measures
It is usually recommended to use more than one measure to determine model applica-
bility (see e.g., [257]) because reliance on a single measure can lead to making incor-
rect choices. We used measures of model validity, goodness of fit and distribution of
residuals to compare the GP evolved model with traditional reliability growth models.

Model validity is measured in terms of prequential likelihood ratio (PLR), the Braun
statistic and the adjusted mean square error (AMSE). The PLR of two prediction sys-
tems, A and B, is the running product of ratio of their successive on-step ahead predic-
tions f̂ A

j (t j) and f̂ B
j (t j) respectively [51]:

PLRAB
i =

j=i

∏
j=s

f̂ A
j (t j)

f̂ B
j (t j)

In our case, we select the actual time distribution of weekly fault count data as a
reference and conduct pair-wise comparisons of all other models’ predictions against
it. Then the model with the relatively smallest prequential likelihood ratio can be
expected to provide the most trustworthiest predictions. (For further details on PLR
please see [1, 51].) We complement the measure of prequential likelihood ratio with
two measures of variability, namely the Braun statistic and AMSE. The Braun statis-
tic can be used to measure the accuracy of fault count predictions and is given by the
following formula [51]:

Braun statistic{Ê[Nk];k = s, . . . ,r}=

r

∑
k=s

(nk− Ê[Nk])2xk

r

∑
k=s

(nk− n̄)2xk

Where nk is the actual fault count within successive time intervals, xk,k = s, . . . ,r.
Ê[Nk] represents the predicted fault count data and n̄ represents the mean of the actual
fault count data. AMSE is a simple measure based on the mean square error which
takes into account the mean of the data sets and is given by the following formula [56]:

AMSE =
i=n

∑
i=1

(Ei− Êi)2

(Ēi)∗ ¯̂Ei)2
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where Ei is the actual fault count data and Êi is the predicted fault count data.
To measure a particular model’s bias, we examine the distribution of residuals to

compare models as suggested in [193, 270]. The model’s goodness of fit in our case
was measured using the Kolmogorov-Smirnov (K-S) test [137]. For the K-S test, we
use α = 0.05 and if the K-S statistic J is greater or equal than the critical value Jα , we
infer that the two samples did not have the same probability distribution and hence do
not represent significant goodness of fit, i.e., the null hypothesis of two samples having
the same probability distribution, was rejected in favor of the alternate hypothesis.

3.6.4 Results
Figure 3.7 shows the PLR analysis for the three data sets. The log(PLR) of actual time
distribution of weekly fault count data is chosen as the the reference; and it is indicated
as a straight line in the plots of Figure 3.7. It can be seen that the curve for the PLR of
the GP model with the actual fault count data (GP:Actual) is closer to the straight line
as compared with the same curves for the traditional models; confirming that GP pre-
dictions are better in modeling reality as compared with traditional reliability growth
models.

The variability measures of Braun statistic and AMSE obtained for each data set
of all models were compared using matched paired two-sided t-test at significance
level, α = 0.1. We compared the variability measures of the GP model with each
of the traditional models. The null hypothesis was formulated as that there was no
difference between the variability statistics of GP and that of the particular traditional
model under comparison. The alternate hypothesis to test was then that there existed
such a difference. Using normal quartile plot of the samples’ variability differences
to assess any radical departures from the normal distribution showed that they had
approximately normal distribution. The results of applying the matched paired two
sided t-test are shown in Table 3.6.

Table 3.6: Statistical results for Braun statistic and AMSE.
Comparative models t-statistic

Braun statistic, tα =±2.42
GP:BM −3.97
GP:YAM −4.80
GP:GO-NHPP −1.64

AMSE statistic, tα =±2.42
GP:BM −1.23
GP:YAM −1.39
GP:GO-NHPP −1.03
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(a) log(PLR) plots for Project 1.
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(b) log(PLR) plots for Project 2.
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Figure 3.7: log(PLR) plots for three projects.
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The critical values of t for α=0.1 and degrees of freedom n−1 is tα =±2.92. If the
calculated t-statistic lied in the critical region, we were able to reject the null hypothesis
of no difference between the samples.

We can observe from Table 3.6 that there is a statistical difference between GP and
two of the traditional models (BM and YAM) for the Braun statistic. However, for the
AMSE statistic, there is no statistical difference between GP and traditional models.
This shows that the GP model, while optimizing the Braun statistic, degrades AMSE.
This result strengthens the viewpoint of Mair et al. [227] that using a fitness function
for GP that is not specifically tied to a single measure, but takes into account multiple
objectives, may give overall better results for the GP model. Based on the results of
applying PLR, Braun statistic and AMSE, we are not able to reject the null hypothesis,
H0−val in support of the alternative hypothesis, H1−val.

Table 3.7 shows the statistic J for the two sample K-S test performed on the vali-
dation fault count data and the predictions by the GP and traditional SRGMs.

Table 3.7: Results of applying K-S test.
JGP JBM JYAM JGO−NHPP

Proj. 1, Jα =0.70 0.40 0.70 1.00 0.8
Proj. 2, Jα =0.64 0.27 0.73 0.82 0.54
Proj. 3, Jα =0.70 0.10 0.30 0.70 0.20

For Project 1, we see that JGP < Jα , suggesting that the predicted fault count data,
as provided by the GP model, fits quite well to the set of observations. On the other
hand, the J statistic for all other traditional models are either equal to or greater than
Jα . For Project 2, the GP model along with the GO-NHPP model have K-S statistic J
less than Jα and, finally, for Project 3, the GP model along with BM and GO-NHPP
provide K-S statistic J less than Jα .

While we see the traditional models giving statistically significant goodness of fit
for Project 2 and 3 on three occasions, neither of them gave statistics that were lower
than the corresponding K-S statistic for the GP model. This is, however, not enough to
reject the null hypothesis H0−gof, i.e., we are inconclusive regarding the significance of
the goodness of fit of competing models.

Figure 3.8 shows the box plots of the residuals for all the models for the three
projects. For Project 1 (Figure 3.8a), all the box plots show the tendency of underes-
timating; with the length of the box and tails of the GP model and BM model being
smaller, indicating that the prediction bias is not severe. The tendency of the GP model
in case of Project 2 (Figure 3.8b) is to overestimate but the bias is smaller as compared
to other models. In case of Project 3 (Figure 3.8c) all box plots represent a tendency
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to underestimate while the GP model presents relatively less bias with residuals both
above and below 0.

Since the box plots in Figure 3.8 are not significantly skewed, we applied matched
paired t-tests of the residuals for each data set to compare the GP model with each of the
traditional models. The results are presented in Table 3.8 and show that the residuals
from the GP model are significantly different and less variable from the residuals for
traditional models for each data set at α=0.05. Therefore, we are able to reject the null
hypothesis, H0−res in support of the alternative hypothesis, H1−res.

Table 3.8: t-test results for residuals.
tGP:BM tGP:YAM tGP:GO−NHPP

Proj. 1, tα =±2.42 −32.18 −6.42 −6.59
Proj. 2, tα =±2.23 −7.76 −7.11 −7.53
Proj. 3, tα =±2.26 −23.43 −7.92 −4.56

3.6.5 Summary of results
Stage 3 of the study presented the results of a comparative evaluation of fault count data
predictions from models evolved by genetic programming and traditional reliability
growth models. The results have been evaluated in terms of model validity, goodness
of fit and distribution of residuals. For evaluating model validity, the results of using
prequential likelihood ratio show favorability concerning the GP model. However, the
results of AMSE and Braun statistic did not show a statistically significant difference
between the GP model and traditional software reliability growth models for all the
projects.

The goodness of fit of GP models was not found to be significantly higher than
all the models for the three data sets; so we remain inconclusive regarding the sig-
nificance of goodness of fit. The visual inspection of the box plots of residuals and
matched paired t-tests showed the GP model predictions to be less biased than tradi-
tional models. The evaluation results show that prediction of fault count data using
genetic programming is a promising approach.

3.7 Empirical validity evaluation
There can be different threats to the validity of experimental results in Stage 2 and 3
of this study. Conclusion validity refers to the statistically significant relationship be-
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(a) Box plots of residuals for Project 1.
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(b) Box plots of residuals for Project 2.
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(c) Box plots of residuals for Project 3.

Figure 3.8: Charts showing box plots of residuals for three projects.
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tween the treatment and the outcome [342]. One of the threats to conclusion validity
is the use of MMRE in Stage 2 of the study which has been criticized in [105] for
being unreliable. We, however, used an additional measure (Spearman’s rank correla-
tion coefficient) for measuring the strength of relationship to minimize this threat. A
similar threat is that we might have missed applying a more suitable evaluation mea-
sure. However, to our knowledge, the evaluation measures used in the study reflect
the ones commonly used for evaluating prediction models. Internal validity refers to a
causal relationship between the treatment (independent variable) and outcome (depen-
dent variable) [342]. Threats to internal validity are reduced in several ways. First, the
splitting of data sets into training and testing sets were always done using the rule that
first 2/3 of the data set is used for training, while the rest 1/3 of the data set is used
for testing purposes. There were two reasons for persisting with this choice. First of
all, this choice of splitting is commonly used in many machine-learning studies [341].
Secondly, since the fault count histories are time-series data, it is logical to choose a
split that preserves the chronological time series occurrences of faults. Another pos-
sible threat to internal validity was minimized by not pre-processing the data before
applying any technique, except that the data were aggregated on weekly/monthly basis
due to the availability of data sets in this format. Construct validity is concerned with
the relationship between theory and observation [342]. The different evaluation mea-
sures used in Stage 2 and Stage 3 of this study reflect the construct under study, e.g.,
Kolmogorov-Smirnov test is used for measurement of goodness of fit, which is a com-
monly used test for this measure. Other measures used in this study also relate to the
measurement of a specific property. External validity is concerned with generalization
of results outside the scope of the study. The experiments in Stage 2 and Stage 3 of this
study are conducted on three different data sets taken from an industrial setting. How-
ever, these projects are carried out by one organization following similar development
methods. The generalizability of the research can be improved by experimenting with
data sets taken from diverse projects employing different development methodologies.

3.8 Discussion
This chapter presented a multi-stage exploration of using GP for the purpose of soft-
ware fault prediction. Stage 1 discussed the mechanisms enabling GP to potentially be
an effective modeling technique. Stage 2 presented an experiment where we applied
GP to evolve models based on weekly fault count data. Stage 3 presented the results of
comparing models evolved using GP with three other traditional SRGMs based on the
same data sets as in Stage 2.

In our case, we had one independent and one dependent variable. Hence, the GP
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algorithm generated good models efficiently within the termination criterion of reason-
able number of generations. However, it is common that efficiency and effectiveness
of GP drops if the data tables contain hundreds of variables as the GP algorithm then
can take a considerable amount of time in isolating the key features [272].

While measures of goodness of fit and predictive accuracy are important, we agree
with Mair et al. [227] that these measures are not enough to constitute a useful pre-
diction system. Therefore, the explanatory value (transparency of solution) and ease
of configuration are also important aspects that require discussion. Since the output of
a GP system is an algebraic expression, it has the potential of generating transparent
solutions; however, the solutions can become complex as the number of nodes in the
solution increases. There is a trade-off in having more accurate predictions and less
simplicity of the algebraic expressions but we believe that this trade-off is manageable
as achieving accurate models within acceptable thresholds is possible. In terms of ease
of configuration, we found that configuring GP control parameters requires consider-
able effort. Different facets need to be determined, e.g., evaluation function, genetic
operators and probabilities, population size and termination criterion to name a few.
The parameter tuning problem is time consuming because the control parameters are
not independent but interact in complex ways and trying all possible combinations of
all parameters is practically infeasible [272].

3.9 Summary of the chapter
The overall contribution of this chapter is exploring the GP mechanism that might be
suitable for modeling, empirically investigating the use of GP as a potential prediction
tool in software V&V while, at the same time, performing a comparative evaluation
of GP with traditional software reliability growth models. Stage two of this study
evaluated the GP-evolved models in terms of goodness of fit and predictive accuracy.
For evaluating goodness of fit, the K-S statistic and Spearman’s rank correlation co-
efficient gives statistically significant results in favor of adaptability of GP evolved
model. The resulting statistics for evaluating predictive accuracy are also encouraging
with pred(0.25), MMRE and measure of prediction stability offering results in favor
of statistically significant prediction accuracy. In Stage 3 of the study, the results have
been evaluated in terms of model validity, goodness of fit and distribution of residuals.
For evaluating model validity, although the results of using prequential likelihood ratio
show favorability to the GP model, the same is not the case with the Braun statistic and
AMSE. The GP model was also found to have either an equivalent or better goodness
of fit as compared to traditional models, but not statistically significant in every case.
The visual inspection of the box plots of residuals and matched paired t-tests showed
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the GP model predictions to be less biased than traditional models.
These early results of using a search-based technique for software fault prediction

are carried forward in the next chapter, Chapter 4, which investigates cross-release pre-
diction of fault-count data from large and complex industrial and open source software
projects.
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4.1 Introduction

One influential factor in software quality are the number of faults incurred during the
development life cycle which can have direct impact on costs. Software verification
and validation activities constitutes a fair percentage of the total software life cycle
cost; some say around 40% [36] and, hence, efficient resource allocation for quality
assurance activities is required. Thus, fault prediction models have attracted consider-
able interest (as will be shown in Section 4.2), both in research and in practice. From a
research point of view, new methods of fault prediction are regularly being proposed,
and their predictability assessed, at varying levels of detail. The practical aspect of such
models has strong implications on the quality of the software a project develops since
the information gained from such models can e.g., be an important decision-making
tool for project managers.

The number of faults in a software component, or in a particular release of soft-
ware, represents indirect quantitative measures of software quality. A fault prediction
model uses historic software quality data in the form of metrics (including software
fault data) to predict the number of software faults in a component or a release [178].
Fault predictions for a software release are fundamental to the efforts of quantifying
software quality. A fault prediction model helps a software development team in prior-
itizing the effort spent on a software project. If the predictions forecasts a high number
of faults in the coming release of a project, management has the option of investing
required levels of effort to circumvent possible project failures.

This chapter presents both quantitative and qualitative evaluations for cross-release
predictions of fault count data gathered from both open source and industrial software
projects. Fault counts denotes the cumulative faults aggregated on a weekly or monthly
basis. We quantitatively compare the results from traditional and machine learning ap-
proaches to fault count predictions and also assess various qualitative criteria for better
trade-off analysis. The main purpose is to increase empirical knowledge concerning
innovative ways of predicting fault count data and to apply the resulting models in a
manner, which is suited to multi-release software development projects.

Linear regression is a typical method used for software fault predictions; however
this may not be the best approach. This argument is supported by the fact that soft-
ware engineering data come with certain characteristics that creates difficulties in mak-
ing accurate software prediction models. These characteristics include missing data,
large number of variables, strong co-linearity between the variables, heteroscedastic-
ity1, complex non-linear relationships, outliers and small sample size [113]. Therefore,
it is not surprising that we possess an incomplete understanding of the phenomenon

1A sequence of random variables with different variances.
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under study since it is very difficult to make valid assumptions about the form of the
functional relationship between the variables [46]. This argument strengthens earlier
established results that show program metrics begin insufficient for accurate prediction
of faults. Moreover, the acceptability of models has seen little success due to lack of
meaningful explanation of the relationship among different variables and the lack of
generalizability of model results [113]. Applications of computational and artificial in-
telligence have attempted to deal with some of these challenges, see e.g., [354], mainly
because of their inherent intelligent modeling mechanisms to deal with data. There are
several reasons for using these techniques for fault prediction modeling:

1. They do not depend on assumptions about data distribution and relationship be-
tween independent and dependent variables.

2. They are independent of any assumptions about the stochastic behavior of soft-
ware failure process and the nature of software faults [306].

3. They do not conceive a particular structure for the resulting model.

4. The model and the associated coefficients can be evolved based on the fault data
collected during the initial test phase.

While the use of artificial intelligence and machine learning is applied with some
success in software reliability growth modeling and software fault predictions, only a
small number of these studies make use of data from large industrial software projects,
see e.g., [313]. Performing large empirical studies is hard due to difficulties in getting
necessary data from large software projects, but if we want to generalize the use of
some technique or method, larger type software need to be investigated to gain better
understanding. Moreover, due to the novelty of applying artificial intelligence and
machine learning approaches, researchers many times focus more on introducing new
approaches, validated on a smaller scale, than validating existing approaches on a larger
scale. In this chapter we try to focus on the latter.

Another dimension that lacks researchers’ attention is cross-release prediction of
faults. With the growing adoption of agile software development methodologies, pre-
diction of faults in subsequent releases of software will be an important decision tool.
With short-timed releases, the software development team might not be inclined to-
wards gathering many different program metrics in a current release of a project. There-
fore, machine learning techniques can make use of less and commonly used historical
data to become a useful alternative in predicting the number of faults across different
releases of a software project.

The goals of this study differ in some important ways from related prior studies (as
will be covered in detail in Section 4.2). Our main focus is on evaluating a variety of
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techniques for cross-release prediction of fault counts, on data sets from large projects;
to our knowledge this is novel. We evaluate the created models on fault data from
several large software projects, some from open-source and some from industry (see
Section 4.3).

Our study is also unique in comparing multiple different fault count modeling
techniques, both traditional and several machine learning approaches. The traditional
approaches we have selected are three software reliability growth models (SRGMs)
that represent the fault count family of models [108]. These three models are Goel-
Okumoto non-homogeneous Poisson process model (GO) [109], Brooks and Motley’s
Poisson model (BMP) [52] and Yamada’s S-shaped growth model (YAM) [347]. We
selected them because these models provide a fair representation of the fault count fam-
ily of models (representing different forms of growth curves). In particular, GO and
BMP are concave (or exponential) while YAM is S-shaped. We also include a simple
and standard least-squares linear regression as a baseline.

The machine learning approaches we compare with are genetic programming (GP),
artificial neural networks (ANN) and support vector machine regression (SVM). We
selected these because they are very different/disparate and have seen much interest
in the machine learning (ML) communities of late, see e.g., [172, 184, 316] for some
examples.

Our main goal is to answer the question:

Is GP a better approach for cross-release prediction of fault counts on fault
data from large software projects in comparison with traditional and ma-
chine learning approaches?

To answer it we have identified a number of more detailed research questions listed
in Section 4.4. By applying the model creation approaches described above and by
answering the research questions this chapter presents the following results:

1. Quantitative and qualitative assessment of the generalizability and applicability
of different modeling techniques by the use of extensive data sets covering both
open source and industrial software projects.

2. Comparative evaluations with both traditional and machine learning models for
cross-release prediction of fault count data.

The remainder of this chapter is organized as follows. In Section 4.2, we present
the background for this study. Section 4.3 elaborates on the data collection procedure.
Section 4.4 describes the research questions, while Section 4.6 provides a brief intro-
duction to the techniques used in the study. Section 4.5 describes the different evalu-
ation measures used in the study while Section 4.7 covers the application of different
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techniques and the corresponding evaluation. The validity evaluation is presented in
Section 4.8, while discussion and conclusions are presented in Section 4.9.

4.2 Related work
The research into software quality modeling based on software metrics is used to pre-
dict the response variable which can either be the class of a module (e.g., fault-prone
and not fault-prone) or a quality factor (e.g., number of faults) for a module [179].
There have been a number of software fault prediction and reliability growth mod-
eling techniques proposed in software engineering literature. The applicable meth-
ods include statistical methods (random-time approach, stochastic approach), machine
learning methods and mixed algorithms [67]. Despite the presence of large number of
models, there is no agreement within the research community about the best model.
One of the reasons for this situation is that models exhibit different predictive accura-
cies across different data sets. Therefore, the quest for a consistently accurate predictor
model is continuing and the current result is that the prediction problem is seen as being
largely unsolvable and NP-hard [67, 290]. Due to a large number of studies covering
software quality modeling (for both classifying fault-proneness and predicting software
faults), the below references should be seen more as representative than exhaustive.

Gao and Khoshgoftaar [107] empirically evaluated eight statistical count models
for software quality prediction. They showed that with a very large number of zero re-
sponse variables, the zero inflated and hurdle-count models are more appropriate. The
study by Yu et al. [352] used number of faults detected in earlier phases of the develop-
ment process to predict the number of faults later in the process. They compared linear
regression with a revised form of, an earlier proposed, Remus-Zilles model. They
found a strong relationship between the number of faults during earlier phases of de-
velopment and those found later, especially with their revised model. Khoshgoftaar et
al. [176] showed that the typically used least squares linear regression and least abso-
lute value linear regression do not predict software quality well when the data does not
satisfy the normality assumption and thus two alternative parameter estimation proce-
dures (relative least square and minimum relative error) were found more suitable in
this case. In [245], the discriminant analysis technique is used to classify the programs
into either fault-prone and not fault-prone based upon the uncorrelated measures of
program complexity. Their technique was able to yield less Type II errors (mistakenly
classifying a fault-prone component as fault-prone) on data sets from two commercial
systems.

In [45], optimized set reduction classifications (that generates logical expressions
representing patterns in the data) were found to be more accurate than multivariate
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logistic regression and classification trees in modeling high-risk software components.
The less optimistic results of using logistic regression are not in agreement with Khosh-
goftaar’s study [168], which supports using logistic regression for software quality
classification. Also the study by Denaro et al. [84] used logistic regression to success-
fully classify faults across homogeneous applications. Basili et al. [31] verified that
most of Chidamber and Kemerer’s object-oriented metrics are useful quality indica-
tors for fault-prone classes. Ohlsson et al. [260] investigated the use of metrics for
release n to identify the most fault-prone components in release n+1. Later, in [261],
principal component analysis and discriminant analysis was used to rank the software
components in several groups according to fault-proneness.

Using the classification and regression trees (CART) algorithm, and by balancing
the cost of misclassification, Khoshgoftaar et al. [170] showed that the classification-
tree models based on several product, process and execution measurements were useful
in quality classification for successive software releases. Briand et al. [49] proposed
multivariate adaptive regression splines (MARS) to classify object-oriented classes as
either fault-prone or not fault-prone. MARS outclassed logistic regression with an
added advantage that the functional form of MARS is not known a priori. In [235],
the authors show that static code attributes like McCabe’s and Halstead’s are valid
attributes for fault prediction. It was further shown that naı̈ve Bayes outperformed the
decision-tree learning methods.

As discussed briefly in Section 4.1, the use of regression analysis might not be
the best approach for software fault prediction. And, hence, we find numerous studies
making use of machine intelligence techniques for software fault prediction. Applica-
tions of artificial neural networks to fault predictions and reliability growth modeling
mark the beginning of several studies using machine learning for approximations and
predictions. Neural networks have been found to be a powerful alternative when noise
in the input-generating process complicates the analysis, a large number of attributes
describe the inputs, conditions in the input-generating process change, available mod-
els account for some but not all of the data, the input-generating distribution is un-
known and probably non-Gaussian, it is expensive to estimate statistical parameters,
and nonlinear relationship are suspected [58]. These characteristics are also common
to data collected from a typical software development process. Karunanithi et al. pub-
lished several studies [163, 164, 165, 166, 167] using neural network architectures for
software reliability growth modeling. Other examples of studies reporting encouraging
results include [3, 19, 86, 117, 118, 135, 169, 177, 182, 184, 293, 311, 312, 313, 314].
While, finally, Cai et al. [59] observed that the prediction results of ANNs show a pos-
itive overall pattern in terms of probability distribution but were found to be poor at
quantitatively estimating the number of software faults.

A study by Gray et al. [113] showed that neural network models show more pre-
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dictive accuracy as compared with regression based methods. The study also used a
criteria-based evaluation on conceptual requirements and concluded that not all mod-
eling techniques suit all types of problems. CART-LAD (least absolute deviation) per-
formed the best in a study by Khoshgoftaar et al. [179] for fault prediction in a large
telecommunications system in comparison with CART-LS (least squares), S-plus, re-
gression tree algorithm, multiple linear regression, artificial neural networks and case-
based reasoning.

Gyimóthy et al. [121] used OO metrics for predicting the number of faults in classes
using logical and linear regression, decision-tree and neural network methods. They
found that the results from these methods were nearly similar. A recent study by Less-
man et al. [209] also concluded that, with respect to classification, there were no signif-
icant differences among the top-17 of the classifiers used for comparison in the study.

Apart from artificial neural networks, some authors have proposed using fuzzy
models, as in [60, 61, 297, 323], and support vector machines, as in [316], to char-
acterize software reliability.

In the later years, interest has shifted to evolutionary computation approaches for
software reliability growth modeling. Genetic programming has been used for soft-
ware reliability growth modeling in several studies [6, 8, 9, 73, 75, 262, 355]. The
comparisons with traditional software reliability growth models indicate that genetic
programming may have an edge with respect to predictive accuracy and also does not
need assumptions that are common in the traditional models. There are also several
studies where genetic programming has been successfully used for software quality
classification [172, 173].

There are also studies that use a combination of techniques, e.g., [316], where
genetic algorithms are used to determine an optimal neural network architecture and
in [255], where principal component analysis is used to enhance the performance of
neural networks.

As mentioned in Section 4.1, very few studies have looked at cross-release pre-
dictions of fault data on a large scale. Ostrand and Weyuker [264] presented a case
study using 13 releases of a large industrial inventory tracking system. Among several
goals of that study, one was to investigate the fault persistence in the files between re-
leases. The study concluded with moderate evidence supporting that files containing
high number of faults in one release remain ‘high fault files’ in later releases. The
authors later extend their study in [265] by including four further releases. They in-
vestigated which files in the next release of the system were most likely to contain the
largest number of faults. A negative binomial regression model was used to make ac-
curate predictions about expected number of faults in each file of the next release of a
system.
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4.3 Selection of fault count data sets
We use fault count data from two different types of software projects: open source
software and industrial software. For all of these projects we have data for multiple
releases of the same software system. Between releases there can be both changes and
improvements to existing functionality as well as additions of new features. The soft-
ware projects together represent many man years of development and span a multitude
of different software applications targeting e.g., home users, small-business users and
industrial, embedded systems.

The included open source systems are: Apache Tomcat2, OpenBSD3 and Mozilla
Firefox4. Apache Tomcat is a servlet container implementing the Java servlet and the
JavaServer Pages. Members of the Apache Software Foundation (ASF), and others,
contribute in developing Apache Tomcat. OpenBSD is a UNIX-like operating system
developed at the University of California, Berkley. OpenBSD supports a variety of
hardware platforms and includes several extra security options like built-in cryptogra-
phy. Mozilla Firefox is an open-source web-browser from the Mozilla Corporation,
supporting a variety of operating systems.

In the following, the fault count data from these open source software projects are
referred to as OSStom, OSSbsd and OSSmoz, respectively.

The industrial fault count data sets come from three large companies specializing
in different domains. The first industrial data set (IND01) is from a European company
in the space industry. The multi-release software is for an on-board computer used
in a satellite system. It consists of about 70,000 lines of manually written C code
for drivers and other low-level functions and about 230,000 lines of C code generated
automatically from Simulink models. The total number of person hours used to develop
the software is on the order of 30,000. About 20% of this was spent in system testing
and 40% in unit testing. The faults in the data set is only from system testing, the unit
testing faults are not logged but are instead corrected before the final builds.

The second and third fault count data sets (IND02 and IND03) are taken from a
power and automation company specializing in power products, power systems, au-
tomation products, process automation and robotics. IND02 comes from one of their
robotic controller software that makes use of advanced motion technology to program
robot systems. This software makes use of a state-of-the-art self-optimizing motion
technology, security and error handling mechanism and advanced user-authorization
system. IND03 consists of fault count data from robotic packaging software. This
software comes with an advanced vision technique and integrated conveyor tracking

2http://tomcat.apache.org
3http://www.openbsd.org
4http://www.mozilla.com
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capability; while being open to communicate with any external sensor. The total num-
ber of person hours used to develop the two projects is on the order of 2,000.

The last data set, IND04, comes from a large mobile hydraulics company special-
izing in engineered hydraulic, electric and electronic systems. The fault count data set
comes from one of their products, a graphical user interface integrated development
environment, which is a part of a family of products providing complete vehicle con-
trol solutions. The software allows graphical development of machine management
applications and user-specific service and diagnostic tools. The software consists of
about 350,000 lines of hand written Delphi/Pascal code (90%) and C code (10%). To-
tal development time is about 96,000 person hours, 30% of this has been on system
tests.

4.3.1 Data collection process
The fault count data from the three open source projects: Apache Tomcat (OSStom),
OpenBSD (OSSbsd) and Mozilla Firefox (OSSmoz), come from web-based bug re-
porting systems.

As an example, Figure 4.1 shows a bug report for Mozilla Firefox. For OSStom

Figure 4.1: A sample bug report.

and OSSmoz, we recorded the data from the ‘Reported’ and ‘Version’ fields as shown
in the Figure 4.1. For OSSbsd, the data was recorded from the ‘Environment’ and
‘Arrival-Date’ fields of the bug reports. We include all user submitted bug reports in
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our data collection because the core development team examines each bug report and
decides upon a course to follow [210]. The severity of the user submitted faults was
not considered as all submitted bug reports were treated equally. A reason for treating
all user submitted bug reports as equal was to eliminate inaccuracy and subjective bias
in assigning severity ratings.

Concerning the industrial software, we were assisted by our industrial partners in
provision of the fault count data sets IND01–IND04. Table 4.1 show more details
regarding the data collected from the open source and industry software projects. The

Table 4.1: Data collection from open source and industrial software projects, time span
mentioned in () in the second column is same for the releases preceding.

Software Data collected from releases and time span Training and test sets Length of Lenght of
training set testing set

OSStom 6.0.10, 6.0.11, 6.0.13 (Mar.–Aug. 2007), 6.0.14 (Aug.–Dec. 2007) Train on 6.0.10, 6.0.11, 6.0.13 24 20
Test on 6.0.14

OSSbsd 4.0, 4.1 (Jan.–Jul. 2007), 4.2 (Oct.–Dec. 2007) Train on 4.0, 4.1 28 12
Test on 4.2

OSSmoz 1.0, 1.5 (Jul.–Dec. 2005), 2.0 (Jan.–Jun. 2006) Train on 1.0, 1.5 72 24
Test on 2.0

IND01 4.3.0, 4.3.1, 4.4.0, 4.4.1, 4.5.0 (Oct. 2006–Feb. 2007), 4.5.1 (Mar.–Apr. 2007) Train on 4.3.0, 4.3.1, 4.4.0, 4.4.1, 4.5.0 20 8
Test on 4.5.1

IND02 5.07, 5.09 (Feb. 2006–Apr. 2007), 5.10 (Feb.–Dec. 2007) Train on 5.07, 5.09 38 11
Test on 5.10

IND03 5.09, 5.10 (Sept. 2005–Dec. 2007) Train on 5.09 19 11
Test on 5.10

IND04 3.0, 3.1 (Jan. 2007–Mar. 2008), 3.2 (Sept.–Dec. 2008) Train on 3.0, 3.1 60 16
Test on 3.2

data sets were impartially split into training and test sets. In line with the goals of
the study (i.e., cross-release prediction), we used a finite number of fault count data
from multiple releases as a training set. The resulting models were evaluated on a
test set, comprising of fault count data from subsequent releases of respective software
projects. The length of the test sets also determined the prediction strength, x time
units into future, where x equals the length of the test set and is different for different
data sets. We used the cumulative weekly count of faults for all the data sets, except
for IND02 and IND03 for which the monthly cumulative counts were used due to the
availability of the fault data in monthly format.

4.4 Research questions
Before presenting the empirical study in detail, we pose the specific research questions
to be answered. Informally, we want to evaluate if there can be a better approach for
cross-release prediction of fault count data in general when comparing traditional and
machine learning approaches. We quantify this evaluation in terms of goodness of fit,
predictive accuracy, model bias and qualitative criteria:
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RQ 1: What is the goodness of fit (gof) of traditional and machine learning models for
cross-release fault count predictions?

RQ 2: What are the levels of predictive accuracy of traditional and machine learning
models for cross-release fault count predictions?

RQ 3: What is the prediction bias of traditional and machine learning models for cross-
release fault count predictions?

RQ 4: How do the prediction techniques compare qualitatively in terms of generality,
transparency, configurability and complexity?

4.5 Evaluation measures
Selecting appropriate evaluation measures for comparing the predictability of compet-
ing models is not trivial. A number of different accuracy indicators have been used for
comparative analysis of models, see e.g., [289]. Since a comparison of different mea-
sures is out of scope for this chapter, we used multiple evaluation measures to increase
confidence in model predictions; a recommended approach since we would have a hard
time relying on a single evaluation measure [257].

However, quantitative evaluations of predictive accuracy and bias are not the only
important aspects for practical use of the modeling techniques. Hence, we also com-
pare them on a set of qualitative aspects. Below we describe both of these types of
evaluation.

4.5.1 Quantitative evaluation
On the quantitative front, we test the models’ results for goodness of fit, predictive ac-
curacy and model bias. A goodness of fit test measures the difference between the ob-
served and the fitted values after a model is fitted to the training data. We are interested
here to test whether the two samples (actual fault count data from the testing set and
the predicted fault count data from each technique) belong to identical distributions.
Therefore, the Kolmogorov-Smirnov (K-S) test is applied which is a commonly used
statistical test for measuring goodness of fit [305, 231]. The K-S test is distribution free,
which suited the samples as they failed the normality tests. Since goodness of fit tests
do not measure predictive accuracy per se, we use prequential likelihood ratio (PLR),
absolute average error (AAE), absolute relative error (ARE) and prediction at level
l, pred(l), as the measures for evaluating predictive accuracy. Specifically, PLR pro-
vides a measure for short-term predictability (or next-step predictability) while AAE
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and ARE provides measures for variable-term predictability [181, 229]. We further
test a particular model’s bias which gives an indication of whether the model is prone
to overestimation or underestimation [229]. To measure a particular model’s bias, we
examine the distribution of residuals to compare models as suggested in [193, 270].
We also formally test for significant differences between competing prediction systems
as recommended in e.g., [289]. In the following we describe the evaluation measures
in more detail.

Kolmogorov-Smirnov (K-S) test The details regarding this test are given in Sec-
tion 3.5.1 of the thesis.

Prequential likelihood ratio (PLR) PLR is used to investigate the relative plausi-
bility of the predictions from two models [1]. The prequential likelihood (PL) is the
measure of closeness of a model’s probability density function to the true probability
density function. It is defined as the running product of one-step ahead predictions
f̂i(ti) of next fault count intervals Tj+1,Tj+2, . . . ,Tj+n,

PLn =
j+n

∏
i= j+1

f̂i(ti)

The PLR of two prediction systems, A and B, is then the running product of the
ratio of their successive one-step ahead predictions f̂ A

j (t j) and f̂ B
j (t j) respectively [51]:

PLRAB
i =

j=i

∏
j=s

f̂ A
j (t j)

f̂ B
j (t j)

In our case, we select the actual time distribution of fault count data as a refer-
ence and conduct pair-wise comparisons of all models’ predictions against it. Then
the model with the relatively smallest prequential likelihood ratio can be expected to
provide the most trustworthiest predictions. For further details on PLR, see [51].

Absolute average error (AAE) and relative error (ARE) The AAE is given by,

AAE =
1
n

n

∑
i=1
|yi− ŷi|
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where ŷi is the predicted value against the original yi, n is the total number of points
in the test data set.

The ARE is given by,

ARE =
1
n

n

∑
i=1

|yi− ŷi|
|yi|

where ŷi is the predicted value against the original yi, n is the total number of points
in the test data set.

Prediction at level l Prediction at level l, pred(l), represents a measure of the num-
ber of predictions within l% of the actuals. We have used the standard criterion for
considering a model as acceptable which is pred(0.25) ≥ 0.75 which means that at
least 75% of the estimates are within the range of 25% of the actual values [87].

Distribution of residuals To measure a particular model bias, we examine the distri-
bution of residuals to compare models [193, 289]. It has the convenience of applying
significance tests and visualizing differences in absolute residuals of competing models
using box plots.

4.5.2 Qualitative evaluation
In addition to the quantitative evaluation factors there are other qualitative criteria,
which needs to be accounted for when assessing the usefulness of a particular mod-
eling technique. Qualitative criterion-based evaluation evaluates each method based
on conceptual requirements [113]. One or more of these requirements might influence
model selection. We use the following qualitative criteria [56, 113, 225, 227], which
we believe are important factors influencing model selection:

1. Configurability (ease of configuration), i.e., how easy is it to configure the tech-
nique used for modeling?

2. Transparency of the solution (explanatory value regarding output), i.e., do the
models explain the output?

3. Generality (applicability in varying operational environments), i.e., what is the
extent of generality of model results for diverse data sets?

4. Complexity, i.e., how complex are the resulting models?
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4.6 Software fault prediction techniques
This section describes the techniques used in this study for software fault prediction.
The techniques include genetic programming (GP), artificial neural networks (ANN),
support vector machine regression (SVM), Goel-Okumoto non-homogeneous Poisson
process model (GO), Yamada’s S-shaped growth model (YAM) and Brooks and Mot-
ley’s Poisson model (BMP). We have used GPLAB version 3 [292] (for running GP),
WEKA software version 3.4.13 [341] (for running ANN, SVM and LR) and SMERFS3
version 2 [97] (for running GO, YAM and BMP).

4.6.1 Genetic programming (GP)
The background to GP is given in Section 3.3 of this thesis. Below we discuss the
parameter settings for GP.

Initially we experimented with a minimal set of functions and the terminal set con-
taining the independent variable only. We incrementally increased the function set with
additional functions and later on also complemented the terminal set with a random
constant. For each data set, the best model having the best fitness was chosen from all
the runs of the GP system with different variations of function and terminal sets. The
GP programs were evaluated according to the sum of absolute differences between the
obtained and expected results in all fitness cases, ∑

n
i=1 | ei− e

′
i |, where ei is the actual

fault count data, e
′
i is the estimated value of the fault count data and n is the size of the

data set used to train the GP models. The control parameters that were chosen for the
GP system are shown in Table 4.2. The selection method used is lexictour in which
the best individuals are selected from a random number of individuals. If two individ-
uals are equally fit, the tree with fewer nodes is chosen as the best [292]. For a new
population, the parents and offsprings are prioritized for survival according to elitism.
The elitism level specifies the members of the new population, to be selected from the
current population and the newly generated individuals. The elitism level used in this
study is replace in which children replace the parent population having received higher
priority of survival, even if they are worse than their parents [292].

4.6.2 Artificial neural networks (ANN)
The development of artificial neural networks is inspired by the interconnections of
biological neurons [286]. These neurons, also called nodes or units, are connected by
direct links. These links are associated with numeric weights which shows both the
strength and sign of the connection [286]. Each neuron computes the weighted sum
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Table 4.2: GP control parameters.
Control parameter Value
Population size 200
Number of generations 450
Termination condition 450 generations
Function set (for OSStom, OSSbsd, IND01 & IND02) {+,−,∗,sin,cos,log,sqrt}
Function set (for OSSmoz, IND03, IND04) {+,−,∗,/,sin,cos,log}
Terminal set {x}
Tree initialization (for OSStom, OSSbsd, OSSmoz, IND03, IND04) Ramped half-and-half method
Tree initialization (for IND01, IND02) Full method
Genetic operators Crossover, mutation, reproduction
Selection method Lexictour
Elitism Replace

of its input, applies an activation (step or transfer) function to this sum and generates
output, which is passed on to other neurons.

A neural network structure can be feed-forward (acyclic) network and recurrent
(cyclic) network. Feed-forward neural networks do not contain any cycles and a net-
work’s output is only dependent on the current input instance [341]. Recurrent neural
networks feeds its output back into it’s own inputs, supporting short-term memory.
Feed-forward neural network are more common and may consist of three layers: In-
put, hidden and output. The feed-forward neural network having one or more hidden
layers is called multilayer feed-forward neural network. Back-propagation is the com-
mon method used for learning the multilayer feed-forward neural network whereby
the error from the output layer back-propagates to the hidden layer. The ANN models
for this study were obtained using multilayer feed-forward neural networks containing
one input layer, one hidden layer and one output layer. The default parameter values
for multilayer perceptron implemented in Weka software version 3.4.13 were used for
training. The output layer had one node with linear transfer function and the two nodes
in the hidden layer had sigmoid transfer function.

4.6.3 Support vector machine (SVM)
Support vector regression uses a support vector machine algorithm for numeric pre-
diction. Support vector machine algorithms classify data points by finding an optimal
linear separator which possess the largest margin between it and the one set of data
points on one side and the other set of examples on the other. The largest separator
is found by solving a quadratic programming optimization problem. The data points
closest to the separator are called support vectors [286]. For regression, the basic idea
is to discard the deviations up to a user specified parameter ∈ [341]. Apart from spec-
ifying ∈, the upper limit C on the absolute value of the weights associated with each
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data point has to be enforced (known as capacity control). The default parameter values
for support vector regression implemented in Weka software version 3.4.13 were used
for training. More details on support vector regression can be found in [115].

4.6.4 Linear regression (LR)
The linear regression used in the study performs a standard least-squares linear regres-
sion [159]. Simple linear regression helps to find a relationship between the indepen-
dent (x) and dependent (y) variables. It also allows for prediction of dependent variable
values given values of the independent variable.

4.6.5 Traditional software reliability growth models
As discussed in Section 4.1, we use three traditional software reliability growth models
for comparisons. Below is a brief summary of these models while further details,
regarding e.g., the models’ assumptions, can be found in [52, 109, 347].

The Goel-Okumoto non-homogeneous Poisson process model (GO) [109] is given
by,

m(t) = a[1− e−bt ] (4.1)

while Yamada’s S-shaped growth model (YAM) [347] is also a non-homogeneous
Poisson process model given by,

m(t) = a(1− (1+bt)e−bt) (4.2)

where in both above equations a is the expected total number of faults before test-
ing, b is the failure detection rate and m(t) is the expected number of faults detected
by time t, also called as the mean value function. In the above two models, the failure
arrival process is viewed as a stochastic non-homogeneous Poisson process (NHPP),
with the number of failures X(t) for a given time interval (0, t) given by the probability
P[X(t) = n] as [309]:

P[X(t) = n] =
[m(t)]ne−m(t)

n!
(4.3)

Brooks and Motley’s model come in two variations, depending upon the assump-
tion of either a Poisson or a binomial distribution of failure observations. We make use
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of the Poisson model (BMP) [52]. The BMP model, with a Poisson distribution of fail-
ure observations ni over all possible X for i-th period, of length ti, gives the probability
P[X = ni] of number of failures for a given time interval,

P[X = ni] =

{
(Niφi)ni e−Niφi

ni!
φi = 1− (1−φ)ti

(4.4)

where Ni is the estimated number of defects at the beginning of i-th period and φ is
Poisson constant.

4.7 Experiment and results
We collected data from seven multi-release open source and industrial software projects
for the purpose of cross-release prediction of fault count data. The data sets have
been impartially split into training and test sets. The training set is used to build the
models while the independent test set is used to evaluate the models’ performance.
The performance is assessed both quantitatively (goodness of fit, predictive accuracy,
model bias) and qualitatively (ease of configuration, solution transparency, generality
and complexity). The independent variable in our case is the week number while the
corresponding dependent variable is the count of faults. Week number is taken as
the independent variable because it is controllable and potentially has an effect on
the dependent variable, i.e., the count of faults, in which the effect of the treatment
is measured. The design type of our experiment is one factor with more than two
treatments [40]. The factor is the prediction of fault count data while the treatments
are the application of GP, traditional approaches and the machine learning approaches.
In this section, we further present the results of goodness of fit, predictive accuracy,
model bias and qualitative evaluation for different techniques applied to the different
data sets in the study.

4.7.1 Evaluation of goodness of fit
We make use of K-S test statistic to test whether the two samples (in this case, the
predicted and actual fault count data from the test set part of the data set for each tech-
nique) have the same probability distribution and hence represents the same population
(more details regarding this test appear in Section 3.5.1 of this thesis).

Table 4.3 shows the results of applying K-S test statistic for each technique for
every data set. The (–) in the Table 4.3 indicates that the algorithm was not able to
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Table 4.3: Results of applying Kolmogorov-Smirnov test. The bold values indicate
J < Jα , (–) indicates lack of model convergence, Jα is the critical J value at α=0.05

Sample size JGP JANN JSV M JLR JGO JYAM JBMP Jα=0.05
OSStom 20 0.20 0.95 0.30 0.25 – 0.25 0.25 0.43
OSSbsd 12 0.17 0.50 0.75 0.50 0.42 0.58 0.50 0.68
OSSmoz 24 0.46 0.37 1.00 1.00 – 0.17 0.46 0.39
IND01 8 0.37 0.87 1.00 1.00 – 0.75 0.62 0.75
IND02 11 0.27 0.45 0.27 0.27 0.27 0.54 0.27 0.64
IND03 11 0.54 0.54 – 0.54 – – 0.82 0.64
IND04 16 0.50 1.00 1.00 1.00 – 1.00 1.00 0.48

converge for the particular data set. The instances where the K-S statistic J is less than
the critical value Jα are shown in bold in Table 4.3. It is evident from Table 4.3 that GP
was able to show statistically significant goodness of fit for the maximum number of
data sets (i.e., five). The other close competitors were ANN (4), LR (4), YAM (4) and
BMP (4). This indicates that, at significance level α = 0.05, GP is better in terms of
having statistically significant goodness of fit on more data sets than other, competing,
techniques.

Table 4.4 summarizes the K-S test statistic for all the techniques. Since some tech-

Table 4.4: Summary statistics for K-S test showing the mean, median, min and max
corresponding to the respective number of data sets.

K-S test statistic
Technique No. of data sets Mean Median Min Max
GP 7 0.36 0.37 0.17 0.54
BMP 7 0.56 0.50 0.25 1.00
LR 7 0.65 0.54 0.25 1.00
ANN 7 0.67 0.54 0.37 1.00
YAM 6 0.55 0.56 0.17 1.00
SVM 6 0.72 0.87 0.27 1.00
GO 2 0.34 0.34 0.27 0.42

niques did not converge for some data sets, the number of data sets applicable for
techniques is different. GP, ANN, LR and BMP were able to converge for all seven
data sets. However, the same did not happen with other techniques, as can be seen
from the second column of Table 4.4. We can observe that in comparison with ANN,
LR and BMP, with seven data sets each, GP appears to be a better technique (showing
a comparatively closer fit to the set of observations) when ranked based on mean and
median.

We conclude that the goodness of fit of GP models for cross-release predictions is
promising in comparison with traditional and machine learning models as they were
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able to show better goodness of fit for majority of the data sets, both in terms of K-S
test statistic and ranking based on mean and median, on more data sets.

4.7.2 Evaluation of predictive accuracy
Table 4.5 shows the final log result of the running product of the ratio of the successive
one-step ahead predictions of actual fault count data and other techniques’ prediction.
Since the actual time distribution of weekly/monthly fault count data is chosen as the
reference, the PLR values closer to 0 are better. We can observe, from Table 4.5, that
the log(PLR) values are closest to 0 on four occasions for GP while thrice for LR. The
‘winner’ from each data set is shown in bold in Table 4.5. This shows that for most
data sets (four out of seven), the probability density function of the GP model is closer
to the true probability density function.

Table 4.5: log(PLR) values for one-step-ahead predictions. The values shown are
the final log result of the running product of ratio of the successive on-step ahead
predictions of actual fault count and other models’ predictions. (Values closer to 0 are
of course better.)

Sample size GP ANN SVM LR GO YAM BMP
OSStom 20 2.66 8.77 0.81 0.38 – −2.00 −1.20
OSSbsd 12 −0.10 −0.30 −2.80 −1.60 −1.31 −1.69 1.03
OSSmoz 24 11.28 −3.14 12.45 7.78 – −0.19 −2.20
IND01 8 −0.29 −2.17 44.28 4.67 – 2.11 0.97
IND02 11 0.15 0.74 0.39 0.07 −0.55 −0.88 0.56
IND03 11 7.21 7.21 – 7.21 – – −8.62
IND04 16 0.56 1.14 −6.63 −6.75 – −7.58 −7.17

Figures 4.2a – 4.2g depicts the PLR analysis for all the data sets which shows the
pair-wise comparisons of each technique with the actual weekly/monthly fault count
data which has been chosen as the reference model (indicated as a dotted straight line in
the plots of Figures 4.2a – 4.2g). We see that for OSStom (Figure 4.2a), the prediction
curves for LR and SVM are closer to the reference in comparison with other curves. For
OSSbsd (Figure 4.2b), the prediction curve for GP follows the reference more closely
than other curves. The same behavior is also evident for IND01, IND03 and IND04
(Figures 4.2d, 4.2e and 4.2g). However, for OSSmoz (Figure 4.2c), YAM is better at
following the reference compared to any other curve, while for IND03 (Figure 4.2f),
the curves for GP, ANN and LR are much closer to the log(PLR) of actual fault count
data. Overall, GP was able to show more consistent predictive accuracy, across four
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Figure 4.2: log(PLR) plots for the data sets OSStom, OSSbsd, OSSmoz, IND01,
IND02, IND03 and IND04. Continuing on to the next page.
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Figure 4.2: Continuing from the previous page; log(PLR) plots for the data sets OS-
Stom, OSSbsd, OSSmoz, IND01, IND02, IND03 and IND04.
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of the seven data sets. Table 4.6 shows the computed values of AAE for all the
data sets. The lowest AAE values from each data set are shown in bold. GP gave the
lowest AAE values for the maximum number of data sets (data sets OSStom, OSSbsd,
IND01, IND03 and IND04) followed by LR, which remained successful in case of data
sets IND02 and IND03.

Table 4.6: AAE values for different techniques for all data sets. The bold values in-
dicate the lowest AAE values from each data set. (–) indicates lack of model conver-
gence.

Sample size GP ANN SVM LR GO YAM BMP
OSStom 20 6.35 35.38 7.55 6.91 – 8.36 6.35
OSSbsd 12 3.78 14.08 44.01 23.72 18.93 24.79 19.44
OSSmoz 24 64.71 45.18 114.69 78.61 – 9.77 26.12
IND01 8 2.90 8.49 27.64 12.29 – 6.51 3.47
IND02 11 5.07 12.05 7.57 4.58 7.80 12.60 8.25
IND03 11 1.36 1.36 – 1.36 – – 1.90
IND04 16 1.18 2.31 17.08 17.46 – 20.12 18.80

Since the AAE samples from different methods did not satisfy the normality as-
sumption, we used the non-parametric Wilcoxon rank sum test to test the null hypothe-
sis that data from two samples have equal means. We tested the following pairs of AAE
samples: GP vs. ANN, GP vs. SVM, GP vs. LR and GP vs. YAM. The corresponding
p-values for these tests came out to be 0.27, 0.02, 0.13 and 0.03 respectively. At signif-
icance level of 0.05, the results indicate that the null hypothesis can be rejected for GP
vs. SVM and GP vs. YAM, while, on the other hand, there is no statistically significant
difference between the AAE means of GP, ANN and LR at the 0.05 significance level.

Apart from statistical testing, Table 4.7 presents the summary statistics of AAE for
all the techniques.

We can observe that having a ranking based on median, GP has the lowest value in
comparison with ANN, LR and BMP having seven data sets each. For a ranking based
on mean, GP appears to be very close to the best mean AAE value for BMP, which is
12.05.

Table 4.8 shows the computed values of ARE for all the data sets. It is evident
from the table that GP resulted in the lowest ARE values for most of the data sets (five
out of seven). The other closest technique was LR that was able to produce lowest
ARE values for two data sets. This indicates that GP is generally a better approach for
variable-term predictability.

As with AAE, ARE samples from different methods also did not satisfy the nor-

106



Empirical evaluation of cross-release . . .

Table 4.7: Summary statistics for AAE showing the mean, median, min and max cor-
responding to the respective number of data sets.

AAE statistic
Technique No. of data sets Mean Median Min Max
BMP 7 12.05 8.25 1.90 26.12
GP 7 12.19 3.78 1.18 64.71
ANN 7 16.98 12.05 1.36 45.18
LR 7 20.70 12.29 1.36 78.61
YAM 6 13.69 11.18 6.51 24.79
SVM 6 36.42 22.36 7.55 114.69
GO 2 13.36 13.36 7.80 18.93

Table 4.8: ARE values for different techniques for all data sets. Bold values indicate
the lowest ARE values from each data set. (–) indicates lack of model convergence.

Sample size GP ANN SVM LR GO YAM BMP
OSStom 20 0.06 0.33 0.07 0.07 – 0.11 0.08
OSSbsd 12 0.02 0.08 0.26 0.14 0.12 0.15 0.12
OSSmoz 24 0.22 0.15 0.40 0.28 – 0.03 0.10
IND01 8 0.10 0.31 1.00 0.44 – 0.23 0.11
IND02 11 0.03 0.07 0.04 0.02 0.05 0.08 0.05
IND03 11 0.37 0.37 – 0.37 – – 1.49
IND04 16 0.03 0.07 0.51 0.52 – 0.61 0.57

mality assumption. We used the non-parametric Wilcoxon rank sum test for testing the
following pairs of ARE samples: GP vs. ANN, GP vs. SVM, GP vs. LR and GP vs.
YAM. The corresponding p-values for these tests came out to be 0.18, 0.07, 0.15 and
0.29 respectively. This shows that, for significance level of 0.05, there is no statistical
difference between the ARE means of GP, ANN, SVM, LR and YAM.

Apart from statistical testing, we can observe from Table 4.9 that having a ranking
based on both mean and median; GP has the lowest value in comparison with ANN,
LR and BMP having seven data sets each.

We further applied the measure of pred(l) to judge on the predictive ability of the
prediction systems. The result of applying pred(l) is shown in Table 4.10.

The standard criterion of pred(0.25)≥ 75 for stable model predictions was met by
different techniques for different data sets, but GP and BMP were able to meet this
criterion on most data sets i.e., five. The application of these two techniques on the
five data sets resulted in having 100% of the estimates within the range of 25% of the
actual values.

We conclude that while the statistical tests for AAE and ARE do not give us a clear
indication of a particular technique being (statistically) significantly better compared
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Table 4.9: Summary statistics for ARE showing the mean, median, min and max cor-
responding to the respective number of data sets.

ARE statistic
Technique No. of data sets Mean Median Min Max
GP 7 0.12 0.06 0.02 0.37
ANN 7 0.20 0.15 0.07 0.37
LR 7 0.26 0.28 0.02 0.52
BMP 7 0.26 0.11 0.05 0.80
YAM 6 0.20 0.13 0.03 0.61
SVM 6 0.37 0.33 0.04 0.96
GO 2 0.08 0.08 0.05 0.12

Table 4.10: pred(0.25) calculation for different techniques for all data sets. (–) shows
lack of model convergence.

Sample size GP (%) ANN (%) SVM (%) LR (%) GO (%) YAM (%) BMP (%)
OSStom 20 100 30 100 100 – 99 100
OSSbsd 12 100 100 50 100 100 100 100
OSSmoz 24 41.67 100 0 16.67 – 100 100
IND01 8 100 37.5 100 0 – 37.5 100
IND02 11 100 45.45 100 100 100 100 100
IND03 11 45.45 45.45 – 44.45 – – 18.18
IND04 16 100 100 0 0 – 0 0

to other techniques, the summary statistics (Tables 4.7 and 4.9) together with the eval-
uation of pred(0.25) and PLR show that the use of GP for cross-release prediction of
fault count data is in many ways better in comparison with other techniques.

4.7.3 Evaluation of model bias
We examined the bias in predictions by making use of box plots of model residuals.
The box plots of residuals for all the data sets are shown in Figures 4.3a – 4.3g.
For OSSbsd (Figure 4.3b) and IND04 (Figure 4.3g), the box plots for GP show two
important characteristics:

1. Smaller or equivalent length of the box plot as compared with other box plots.

2. Presence of majority of the residuals close to 0 as compared with other box plots.

For IND03 (Figure 4.3f), the length of the box plot and its proximity close to 0
appear to be similar for GP, ANN and LR. For OSStom (Figure 4.3a), SVM and LR
are better placed than the rest of the techniques while for OSSmoz (Figure 4.3c), YAM
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Figure 4.3: Charts showing box plots of residuals for the seven data sets. Continuing
on to the next page.
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appears to be having a smaller box plot positioned in the proximity of 0. For IND01,
although the length of the box plot seems to be small for ANN, it still appears below
the 0-mark indicating that the predictions from ANN are overestimating the actual fault
count data. The GP box plot, however, appears to be better positioned in this respect.
The same is the case with IND02 (Figure 4.3e) where GP and LR show a good trade-off
between length and actual position of the box plot.

Since the box plots of the residuals were skewed, we resorted to using the non-
parametric Kruskal-Wallis test to examine if there is a statistical difference between
the residuals for all the data sets and to confirm the trend observed from the box plots.
The results of the application of the Kruskal-Wallis test appear in Table 4.11. For each

Table 4.11: Kruskal-Wallis statistic h for different data sets for testing difference in
residuals. ν is the degrees of freedom.

Data sets Kruskal-Wallis statistic, h
OSStom, χ2

0.05=11.07, ν = 5 83.49
OSSbsd, χ2

0.05=12.60, ν = 6 58.51
OSSmoz, χ2

0.05=11.07, ν = 5 122.95
IND01, χ2

0.05=11.07, ν = 5 43.76
IND02, χ2

0.05=12.60, ν = 6 42.9
IND03, χ2

0.05=7.81, ν = 3 21.45
IND04, χ2

0.05=11.07, ν = 5 75.57

of the data sets, the Kruskal-Wallis statistic h is greater than the critical value χ2
0.05.

Hence, we have sufficient evidence to reject the null hypothesis that the residuals for
different techniques within a project are similar.

In order to further investigate if the residuals obtained from GP are different from
those of other techniques, we used the Wilcoxon rank sum test. The p-values obtained
are shown in Table 4.12. The table shows that, except for four cases, the p-values
were found to be less than 0.05 thus rejecting the null hypothesis that the samples are
drawn from identical continuous distributions. The four cases where the null hypothe-
sis was not rejected coincide with data sets OSSbsd and IND02, where the comparisons
of the residuals of GP were not found to be different from those of ANN, SVM and
LR. (These cases are shown in bold in Table 4.12.) We conclude that in terms of
model bias, the examination of residuals show the greater consistency of GP, as com-
pared with other traditional and machine learning models (in having predictions that
result in smaller box plots that are positioned near the 0-mark). Further, application
of the Wilcoxon rank sum test shows that except for four combinations (GP:ANN-
OSSbsd, GP:SVM-IND02, GP:LR-IND02, GP:ANN-IND02), there is sufficient evi-
dence to show that the residuals from GP are different from those of other competing
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Table 4.12: p-values after applying the Wilcoxon rank sum test on residuals (values
rounded to two decimal places). Values in bold indicate p > 0.05.

PGP:ANN PGP:SV M PGP:LR PGP:GO PGP:YAM PGP:BMP
OSStom, α = 0.05 0.00 0.00 0.01 – 0.00 0.00
OSSbsd, α = 0.05 0.79 0.00 0.00 0.00 0.00 0.00
OSSmoz, α = 0.05 0.00 0.02 0.00 – 0.00 0.00
IND01, α = 0.05 0.00 0.00 0.00 – 0.00 0.02
IND02, α = 0.05 0.09 0.32 0.95 0.00 0.00 0.00
IND03, α = 0.05 – – – – – 0.00
IND04, α = 0.05 0.02 0.00 0.00 – 0.00 0.00

techniques.

4.7.4 Qualitative evaluation of models

The selection of a particular model for fault count predictions is influenced not only by
the quantitative factors (e.g., goodness of fit, predictive accuracy and bias) but also by
certain conceptual requirements, which we term as qualitative measures. We believe
that it is important to take into account these qualitative measures (in addition to quan-
titative ones) to reach an informed decision about a suitable technique or combination
of techniques to use for fault count predictions.

Ease of configuration The parametric models including BMP, GO, YAM and linear
regression require an estimation of certain parameters. The number of these param-
eters, and the ease with which these parameters can be measured, affects measure-
ment cost [225]. With automated reliability measurement using tools such as CASRE
(Computer-Aided Software Reliability Estimation) and SMERFS (Statistical Model-
ing and Estimation of Reliability Functions for Systems) [97, 256], the estimation of
parameters may have eased but such tools are limited by the number of supported mod-
els and numerical approximation methods. Linear regression, in comparison, is much
simpler to use having several tools available for automation.

For the machine learning methods, as used in this study, the ease of configuration
concerns setting algorithmic control parameters. For ANN, some initial experimen-
tation is required to reach a suitable configuration of number of layers and associated
number of neurons. For GP, there are several parameters that control the adaptive evalu-
ation of fitter solutions, such as selection of function and terminal sets and probabilities
of genetic operators. For SVM, one needs to take care of capacity control and the loss
function. But once these algorithmic control parameters are set, an approximation is
found by these methods during training. However, there seems to be no clear differen-
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tiation among different techniques with respect to ease of configuration. This is in our
opinion a general problem and indicates a need for further research.

Transparency of the solution The resulting equations for traditional models are par-
tially transparent; however, GP is capable of producing transparent solutions because
the resulting model is an algebraic expression (which is not the case with ANN and
SVM). Thus, transparency of solutions is one distinct advantage of using GP. Trans-
parency of the solutions can be important for the purpose of verification as well as
theory building and gaining an understanding of the process being modeled [113]. In
our case, with one independent variable (week number) and one dependent variable
(count of faults), typical GP solutions are of the form below:

times(minus(sin(minus(cos(x),x)),minus(log(cos(log(sin(log(x))))),sin(x))), log(x))

where x is the independent variable and minus, times, sin, cos, log represents the
function set (as outlined in Table 4.2).

Generality The extent of generality of model results for diverse data sets is better
for machine learning and evolutionary methods than the traditional methods. This is
because of the fact that machine learning and evolutionary models do not depend on
prior assumptions about data distribution and form of relationship between independent
and dependent variables. The model and the associated coefficients are evolved based
on the fault data collected during the initial test phase. In this sense, the applicability
of the models derived from machine learning and evolutionary methods for different
development and operational environments and life-cycle phases, appear to be better
suited than traditional modeling techniques.

Complexity The complexity criterion is especially important to discuss with respect
to GP since GP has the potential of evolving transparent solutions. However the so-
lutions can become complex as the number of nodes in the GP solution increases, a
phenomenon known as bloating. Although there are different ways to control this (see
e.g., [222]), in the context of canonical GP, this is still an important consideration. For
ANN the complexity can be connected to the potential complex and inefficient struc-
tures, which can evolve in an attempt to discover difficult data patterns. For SVM and
traditional software reliability growth models, being essentially black-box, the com-
plexity is difficult to discuss. However, for linear regression, where the reasoning pro-
cess is partially visible, the complexity is apparently minimal.
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There can be another way to evaluate complexity in terms of suitability of a tech-
nique to incorporate complex models. This can be connected back to the theory of
whether the modeling technique determines its own structure or requires the engineer
to provide the structure of the relationship between independent and dependent vari-
ables [113]. The machine learning and evolutionary models certainly scores high in
this respect in comparison with traditional methods.

4.8 Empirical validity evaluation
There can be different threats to the validity of the empirical results [342]. In this sec-
tion we cover, conclusion, internal, construct and external validity threats. Conclusion
validity refers to the statistically significant relationship between the treatment and out-
come. We have used non-parametric statistics in this study, particularly Kolmogorov-
Smirnov goodness of fit test, Kruskal-Wallis statistic and Wilcoxon rank sum test. Al-
though the power of parametric tests is known to be higher than for non-parametric
tests, we were uncertain about the corresponding parametric alternatives meeting the
tests’ assumptions. Secondly, we used a significance level of 0.05, which is a com-
monly used significance level for hypothesis testing [158]; however, facing some crit-
icism lately [142]. Therefore, it can be considered as a limitation of our study and
a potential threat to conclusion validity. One potential threat to conclusion validity
could have been that the fitness evaluation used for GP (Subsection 4.6.1) is similar
to the quantitative evaluation measures for comparing different techniques (Subsec-
tion 4.5.1). This is, however, not the case with this study since the GP fitness function
differs from the quantitative evaluation measures and since we have used a variety of
different quantitative evaluation measures not necessarily based on minimization of
standard error. A potential threat to conclusion validity is that the fault count data sets
did not consider the severity level of faults, rather treated all faults equally. This is
a limitation of our study, and we acknowledge that by considering severity levels the
conclusion validity of the study would have improved; but at the same time we are also
apprehensive that subjective bias might result in wrong assignment of severity levels.
Another potential threat to conclusion validity is the different lengths of training and
test data sets, depending upon the fault counts from respective. We plan to investigate
this in the future. Internal validity refers to a causal relationship between treatment (in-
dependent variable) and outcome (dependent variable). It concerns all the factors that
are required for a well-designed study. As for the selection of different data sets, we
opted for having data sets from varying domains. Moreover, for each data set, we used
a consistent scheme of impartially splitting the data set into testing and training sets
for all the techniques. A possible threat to internal validity is that we cannot publicize
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our industrial data sets due to proprietary concerns; therefore other researchers cannot
make use of these data sets. However, we encourage other researchers to emulate our
results using other publicly available data sets. The best we can do is to clearly state our
research design and apply recommended approaches like statistical hypothesis testing
to minimize the chances of unknown bias. Additionally, we have data included in this
study that is freely available since it was collected from open source software.

Also, another threat is that the different techniques were applied over different data
sets in approximate standard parameter settings. For the GP algorithm there are no
standard setting for the function and terminal sets so we had to test a few different
ones, while keeping other parameters constant, until some search success was seen.
Even though this is standard practice when using GP systems, a potential threat is that
it could bias the results.

The used data sets were grouped on a weekly or monthly basis. While some stud-
ies (e.g., [343]) have indicated that the grouping of data is not a threat, it is possible
that more detailed and frequent date and time resolution, and thus prediction intervals,
could affect the applicability of different modeling techniques. For example, linear re-
gression models might have a relative advantage concerning data that is more regular,
with less frequent changes. However, it is hard to predict such effects and without fur-
ther study we cannot determine if it is really a threat. Construct validity is concerned
with the relationship between theory and application. We attempted to present both
quantitative and qualitative evaluation factors in the study for defining the different
constructs. There is a threat that we might have missed one or more evaluation crite-
ria, however the evaluation measures used in the study reflect the ones commonly used
for evaluating prediction models. External validity is concerned with generalization of
results outside the scope of the study. We used data sets from both open source and
industrial software projects, which we believe adds to the generalizability of the study.
Also the data sets cannot be regarded as toy problems as each one of them represented
fault data from multiple software releases in industry and in open source projects. One
threat to external validity is the selection of machine learning algorithms for compari-
son. Being a large field of research, new data mining algorithms are continuously being
proposed. We used a small subset of the machine learning algorithms but we are con-
fident that our subset is a fairly representative one, being based on techniques which
have different modeling mechanism and are currently being actively researched.

4.9 Discussion and conclusions
In this chapter, we compared cross-release predictions of fault count data from models
constructed using common machine learning and traditional techniques. The compar-
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isons were based on measures of goodness of fit, predictive accuracy and model bias.
We also presented an analysis of some of the conceptual requirements for a success-
ful model (including ease of configuration, transparency of solution, generality and
complexity). These conceptual requirements are important when considering the ap-
plicability of a prediction system [227] and should be taken into account along with the
quantitative performance.

The quantitative results of comparing different techniques have shown some indi-
cation that GP can be one of the competitive techniques for software fault prediction.
In terms of conceptual requirements, though ease of configuration might not be the
favorable aspect of GP models, the transparency of solution and generality are factors
that add further value to the quantitative potential of GP-evolved models.

The fact that no prior assumptions have to be made in terms of actual model form
is a distinct advantage of machine learning approaches over linear regression and tra-
ditional models. The traditional techniques need to satisfy the underlying assumptions,
which means that there is no assurance that these techniques would converge to a so-
lution. This does not happen with GP and ANN machine learning techniques. This
shows that the machine learning techniques tend to be more flexible than their tradi-
tional counterparts. This flexibility also contributes to the greater generalizability of
machine learning models in a greater variety of software projects. GP offers flexibil-
ity by adjusting a variety of functions to the data points; thereby both structure and
complexity of the model evolve during subsequent generations.

Considering the different trade-offs among competing models, it appears crucial to
define the success criterion for an empirical modeling effort. Such a definition of suc-
cess would help exploit the unique capabilities of different modeling techniques. For
instance, if success is defined in terms of having only accurate predictions without the
need of examining the relationship among variables in the form of a function, then arti-
ficial neural networks (ANN) might be a worthy candidate for selection (being known
as universal approximators), provided that the requisite levels of model accuracy are
satisfied. But selecting ANN as a modeling technique would mean that we have to be
aware of its potential drawbacks:

1. Less flexible as the neural nets cannot be manipulated once the learning phase
finishes [90]. This means that neural networks require frequent re-training once
specific process conditions change and hence adds to the maintenance overhead.

2. Black-box approach, thus disadvantageous for experts who want to have an un-
derstanding and potential manipulation of variable interactions.

3. Possibility of having inefficient and non-parsimonious5 structures.
5The parsimony says that the model with the smallest number of parameters is usually the best.
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4. Potentially poor generalizability outside the range of the training data [197].

In contrast, GP possesses certain unique characteristics considering the above is-
sues. Symbolic regression using GP is flexible because of its ability to adjust a variety
of functions to the data points and the models returned by symbolic regression are open
for interpretation. This also helps to identify significant variables, which in the longer
run could be used in subsequent modeling to increase the efficiency of the modeling ef-
fort [198]. Hence, this might also be useful for an easy integration in existing industrial
work processes whereby only those variables could be used.

A brief summary of the relative performance of different techniques is presented in
Table 4.13.

Table 4.13: Summary of the relative strengths of the methods on different criteria;
techniques are ranked according to the relative performance for maximum number of
times on all the data sets.

GP ANN SVM LR GO YAM BMP
Goodness of fit + + - - 0 - - -
Accuracy + + - - - 0 - - - -
Bias + + + - 0 - - - - -
Ease of configuration 0 0 0 + 0 0 0
Transparency of solution + - - 0 0 0 0
Generality + + + - - - -
Complexity 0 0 0 + 0 0 0
Key:
+ + very good, + good, 0 average, - bad, - - very bad

The performance indicators in Table 4.13 are given as to summarize the detailed
evaluation done in the study based on several measures (Section 4.5). The indicators
(+ +, +, 0, -, - -) for the quantitative measures of goodness of fit, accuracy and model
bias represent the relative performance of different techniques for largest number of
times on different data sets, e.g., GP is ranked (+ +) on accuracy because of perform-
ing comparatively better on accuracy measures for greater number of data sets. The
indicators for the qualitative measures represent the relative merits of the techniques as
discussed in Subsection 4.7.4. Table 4.13 shows that GP has the advantage of having
better goodness of fit and accuracy as compared to other techniques, even though no
special adaptions were made to the canonical GP algorithm taking into account the time
series nature of the data (GP and ANN are expected to perform better for time series
prediction if there is a possibility to save state information between different steps of
prediction which can be used to identify trends in the input data; however, we wanted
to compare the performance for standard algorithms and any enhancements to these
techniques is not addressed in this study).
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Table 4.13 shows that the GP models also exhibit less model bias. On the other
hand, the ease of configuration and complexity are not necessarily stronger points for
GP models. It is interesting to observe that ANN does not perform as well as ex-
pected in terms of goodness of fit and accuracy. Linear regression was able to show
normal predictions in terms of goodness of fit and accuracy but scores higher on ease
of configuration (however lacking generality due to the need of satisfying underlying
assumptions). SVM and the traditional models (GO, YAM, BMP) appear to have simi-
lar advantages and disadvantages, with YAM showing a slightly improved quantitative
performance, while SVM possesses better generality across different data sets.

The most encouraging result of this study shows the feasibility of using GP as a pre-
diction tool across different releases of software. This indicates that the development
team can use GP to make important decisions related to the quality of their deliverables.
GP models also showed a decent ability to adapt to different time spans of releases (on
the basis of the different lengths of the testing sets for different data sets), which is also
a positive indicator. The study shows that GP is least affected by moderate differences
in the release durations and can predict decently with variable time units into future.
Additionally, having evaluated the performance on diverse data sets from different ap-
plication domains, further points out the flexibility of GP, i.e., suiting a variety of data
sets.

In short, the use of GP can lead to improved predictions with the additional ca-
pabilities of solution transparency and generality across varying operational environ-
ments. Secondly the GP technique used in this chapter followed a standard/canonical
approach. Several adaptations to the GP algorithm (e.g., Pareto GP and grammar-
guided GP) can potentially lead to further improved GP search process. We intend to
investigate this in the future. Another future work involves evaluating the use of GP
in an on-going project in an industrial context and compare the relative short-term and
long-term predictive strength of the GP-evolved models for different lengths of training
data.

The next Chapter 5 aims at predicting the faults-slip-through metric for test phase
efficiency measurements. We also present the usefulness of such a prediction task
and highlight criteria that are important in making the prediction techniques usable in
industrial practice.
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Prediction of faults-slip-through
in large software projects:
An empirical evaluation
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5.1 Introduction and problem statement
Presence of faults1 usually indicates an absence of software quality. Software testing
is the major fault-finding activity, therefore much research has focused on making the
software test process as efficient and as effective as possible. One way to improve the
test process efficiency is to avoid unnecessary rework by finding more faults earlier.

1According to IEEE Standard Glossary of Software Engineering Terminology [301], a fault is a manifes-
tation of a human mistake.
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This argument is based on the premise that the faults are cheaper to find and remove
earlier in the software development process [36]. The faults-slip-through (FST) met-
ric [79, 80] is one way of providing quantified decision-support to reduce the effort
spent on rework.

The FST metric is used for determining whether a fault slipped through the phase
where it should have been found or not [79, 80]. The term phase refers to any phase
in a typical software development life cycle (as an example, ISO/IEC 12207 [298] de-
fines the different software development phases). However, the most interesting and
industry-supported applications of FST measurement are in the test phase of a soft-
ware development life cycle, because it is typically in this phase where the faults are
classified into their actual and expected identification phases.

The time between when a fault was inserted and found is commonly referred to
as ‘fault latency’ [138]. Figure 5.1 shows the difference between fault latency and
FST [79, 80]. As is clear from this figure, the FST measurement evaluates when it is
cost efficient to find a certain fault. To be able to specify this, the organization must
first determine what should be tested in which phase [79, 80].

Design Coding Unit test System Test OperationFunction Test

= When fault was inserted

= When fault was found and corrected

= FST fault belonging (when most cost-effective to find)

Fault latency

Fault slippage

Figure 2.1: Example of Fault Latency and FST

found in which phase. To be able to specify this, the organization must first determine

what should be tested in which phase. Therefore, this can be seen as test strategy work.

Thus, experienced developers, testers and managers should be involved in the creation

of the definition. The results of the case study in Section 2.3 further exemplify how

to create such a definition. Table 2.1 provides a fictitious example of FST between

arbitrarily chosen development phases. The columns represent in which phase the

faults were found (phase found) and the rows represent where the faults should have

been found (phase belonging). For example, 25 of the faults that were found in function

test should have been found during unit test (e.g. through inspections or unit tests).

Further, the rightmost column summarizes the amount of faults that belonged to each

phase whereas the bottom row summarizes the amount of faults that were found in each

phase. For example, 49 faults belonged to the unit test phase whereas most of the faults

were found in function test (50).

2.2.2 Average Fault Cost

When having all the faults categorized, the next step is to estimate the cost of finding

faults in different phases. Several studies have shown that the cost of finding and

fixing faults increases more and more the longer they remain in a product (Boehm

49

Figure 5.1: Difference between fault latency and FST.

Studies on multiple projects executed within several different organizations at Er-
icsson [79] showed that FST measurement has some promising advantages:

1. FST can prioritize which phases and activities to improve.

2. The FST measurement approach can assess to which degree a process achieves
early and cost-effective software fault detection (one of the studies indicated that
it is possible to obtain good indications of the quality of the test process already
when 20–30% of the faults have been found).
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Figure 5.2 shows a snippet of a faults-slip-through matrix showing the faults slip-
ping through to later phases. The columns in Figure 5.2 represent the phases in which
the faults were found (Found During) whereas the rows represent the phases where the
faults should have been found (Expected fault identification phase). For example, 56
of the faults that were found in the function test should have been found during the unit
test.

 

Report Name: Fault Slip Through Analysis Project: FST M570 Start Date: 2009-06-22 End Date: 2009-12-13 Customer Delivery: 2009-12-22

FST Measurement Tool
 

FST Matrix

Found During:

 

Expected fault 

identification phase: Review Unit Test Function Test Integration Test System Test Acceptance Test

Customer 

Identified Total

Output 

Slippage%

Review 15 25 86 25 30 2 1 184 47

Unit Test  19 56 15 19 1 0 110 25

Function Test   33 4 4 0 0 41 2

Integration Test    8 11 0 0 19 3

System Test     4 0 1 5 0

Acceptence Test      1 0 1 0

Total 15 44 175 52 68 4 2 360  

Input Slippage % 0 57 81 85 94 75 100 0  

 

Review Unit Test Function Test Integration Test System Test Acceptance Test Customer 

Identified

Total

Incorrect data 76 1 8 25 1 0 0 0 111 24%

 

Review

Unit Test

Function Test

Integration Test

System Test

Acceptance Test

Customer Identified

System Design Review, Module Design Review, Code Review

HW Development, System Simulation, Module Test

Function Test, Interoperability development test

Integration of modules to functions, Integration Test

System Test, IOT, Delivery Test

Type Approval

Customization, Customer Acceptance, Operator Identified, Customer Identified

Figure 5.2: An example FST matrix.

Apart from the studies done by Damm [79, 80], there are other studies presenting
successful industrial implementation of FST measurements. Two such cases are the
FST implementations at Ericsson Nikola Tesla [138, 328]. They started collecting
FST measurements in all development projects from the middle of the year 2006. The
results were encouraging with a decrease of fault-slippage to customers, improvements
of test configurations and improvements of test cases used in the verification phase of
the projects.

Considering the initial successful results of implementing FST measurement across
different organizations within Ericsson, our industrial partner became interested in in-
vestigating how to use FST measurement to provide additional decision-support for
project management. For example, Staron and Meding [303] highlight that the pre-
diction of the number of faults slipping through can be a refinement to their pro-
posed approach for predicting the number of defects in the defect database. Similarly
Damm [79] highlight that FST measurement can potentially be used as a support tool
in software fault predictions. This additional decision-support is to make the software
development more predictable [275].

The number of faults found by the test team impacts whether or not a project would
be completed on schedule and with a certain quality. The project manager has to bal-
ance the resources, not only for fixing the identified faults, but also to implement any
new functionality. This balance has to be distributed correctly on a weekly or a monthly
basis. Any failure to achieve this balance would mean that either the project team is
late with the project delivery or the team resources are kept underutilized.
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In this chapter, we focus on predicting the number of faults slipping through to
different test phases, multiple weeks in advance (a quantitative modeling task). We
compare a variety of prediction techniques2. Since there is a general lack of empirical
evaluation of expert judgement [66, 317] and due to the fact that predictions regarding
software quality are based on expert judgements at our organization, and we would
argue in industry in general, we specifically compare human expert predictions with
these techniques. Thus the motivation of doing this study is to:

• avoid predictable pitfalls like effort/schedule overruns, underutilization of re-
sources and a large percentage of rework.

• provide better decision-support to the project manager so that faults are pre-
vented early in the software development process.

• prioritize which phases and activities to improve.

We also include results from a survey based on an industrial questionnaire. The
motivation is to let the industrial experts:

• evaluate the usefulness of predicting FST in different test phases.

• determine the criteria that make prediction techniques usable in industrial prac-
tice.

The quantitative data modeling make use of several independent variables at the
project level, i.e., variables depicting work status, testing progress status and fault-
inflow. The dependent variable of interest is then the number of faults slipping through
to various test phases, predicted multiple weeks in advance.

Hence, we are interested in answering the following research questions:

RQ1 Is it and how useful is it to industrial software engineers to predict the number of
faults slipping through to different test phases?

RQ2 Can other techniques better predict the number of faults slipping through to dif-
ferent test phases than human expert judgement?

RQ3 How do different techniques compare in FST prediction performance?

2statistical techniques (multiple regression, pace regression), tree-structured techniques (M5P, REPTree),
nearest neighbor techniques (K-Star, K-nearest neighbor), ensemble techniques (bagging and rotation for-
est), machine-learning techniques (support vector machines and back-propagation artificial neural networks),
search-based techniques (genetic programming, artificial immune recognition systems, particle-swarm opti-
mization based artificial neural networks and gene-expression programming) and expert judgement
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RQ4 What criteria are important in making prediction techniques usable in industrial
practice?

The mapping between the research questions and the research methodology used is
given in Table 5.1.

Table 5.1: Mapping between the research questions and the research methodology.
RQ Research methodology
RQ1 Qualitative survey based on an industrial questionnaire
RQ2 Quantitative data modeling
RQ3 Quantitative data modeling
RQ4 Qualitative survey based on an industrial questionnaire

The data used in the quantitative data modeling comes from large and complex
software projects from the telecommunications industry, as our objective is to come
up with results that are representative of real industrial use. Also large-scale projects
offer different kinds of challenges, e.g., the factors affecting the projects are diverse
and many, data is distributed across different systems and success is dependent on
the effort of many resources. Moreover, a large project constitutes a less predictable
environment and there is a lack of research on how to use predictive models in such an
environment [156].

The rest of the chapter is organized as follows. Section 5.2 summarizes the related
work. Section 5.3 describes the study context, variables selection, the test phases un-
der consideration, the performance evaluation measures and the techniques used. Sec-
tion 5.4 presents a quantitative evaluation of various techniques for the prediction task
while the results of the industrial survey are presented in Section 5.5. The results from
the quantitative evaluation of different models and the industrial survey are discussed
in Section 5.6 while the study validity threats are given in Section 5.7. The chapter is
concluded in Section 5.8 while Appendix 10.4 outlines the parameter settings for the
different techniques.

5.2 Related work
Due to the definition of software quality in many different ways, previous studies have
focused on predicting different but related dependent variables of interest; examples
include predicting for defect density [240, 252], software defect content estimation [47,
339], fault-proneness [26, 209] and software reliability prediction in terms of time-to-
failure [223]. In addition, several independent variables have been used to predict
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the above dependent variables of interest; examples include prediction using size and
complexity metrics [121], testing metrics [317, 325] and organizational metrics [253].
The actual prediction is performed using a variety of approaches, and can broadly be
classified into statistical regression techniques, machine learning approaches and mixed
algorithms [67]. Increasingly, evolutionary and bio-inspired approaches are being used
for software quality classification [6, 217] while expert judgement is used in very few
studies [317, 357].

For a more detailed overview of related work on software fault prediction studies,
the reader is referred to [66, 100, 285, 310, 329].

This study is different from the above software quality evaluation studies. First,
this study takes a mixed research methodology approach [77], where both quantitative
data modeling and qualitative descriptive survey results are presented. Second, the de-
pendent variable of interest for the quantitative data modeling is the number of faults
slipping through to various test phases, with the aim of taking corrective actions for
avoiding unnecessary rework late in software testing. Third, the independent variables
of interest for the quantitative data modeling are diverse and at the project level, i.e.,
variables depicting work status, testing progress status and fault-inflow. A similar set of
variables were used in a study by Staron and Meding [303], but they predicted weekly
defect inflow and used different techniques. Fourth, for the sake of comparison, we in-
clude a variety of carefully selected techniques, representing both commonly used and
newer approaches. Fifth, the qualitative descriptive survey assesses the usefulness of
predicting FST for the industrial software engineers and the criteria that are important
in making prediction techniques usable in industrial practice.

Together this means our study is, we would claim, broader and more industrially
relevant than previous studies.

We also would like to mention that this study is an extended version of the authors’
earlier conference manuscript [12] where only a limited number of techniques were
compared with no evaluation of expert judgement. Furthermore, there was neither an
evaluation of the usefulness of FST predictions, nor a discussion of the usability criteria
for the prediction techniques.

5.3 Study plan for quantitative data modeling

This section describes the context, independent/dependent variables for the prediction
model, the research method, the predictive performance measures and the techniques
used for quantitative data modeling. The relevant research questions are RQ2 and RQ3.
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5.3.1 Study context

As given in Section 5.1, our context is large and complex software projects in the
telecommunications industry. Our subject company develops mobile platforms and
wireless semiconductors. The projects are aimed at developing platforms introducing
new radio access technologies written using the C programming language. The average
number of persons involved in these projects is approximately 250. The data from one
of the projects is used as a baseline to train the models while the data from the second
project is used to evaluate the models’ results. We have data from 45 weeks of the
baseline project to train the models while we evaluate the results on data from 15 weeks
of an on-going project. Figure 5.3 shows the number of faults occurring per week for
the training and the testing set.
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(b) Testing set.

Figure 5.3: Number of fault occurrences per week for the training set and the testing
set.

The management of these projects follow the company’s general project model
called PROPS (PROfessional Project Steering). PROPS is based on the concepts of
tollgates, milestones, steering points and check-points to manage and control project
deliverables. Tollgates represent long-term business decisions while milestones are
predefined events representing intermediate objectives at the operating work level. The
monitoring of these milestones is an important element of the project management
model. Steering points are defined to coordinate multiple parallel platform projects,
e.g., handling priorities between different platform projects. The checkpoints are de-
fined in the development process to define the work status in a process. Multiple check-
points might have to be passed for reaching a certain milestone. Figure 5.4 shows an
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Figure 5.4: PROPS concepts used in the subject company; TG, SP, MS, ChP are short
for tollgate, steering point, milestone and checkpoint respectively.

abstract view of these concepts.
At the operative work level, the software development is structured around work

packages. These works packages are defined during the project planning phase. The
work packages are defined to implement change requests or a subset of a use-case,
thus the definition of work packages is driven by the functionality to be developed. An
essential feature of work packages is that it allows for simultaneous work on different
components of the project at the same time by multiple teams.

Since different components might get affected by developing a single work pack-
age, therefore it is difficult to obtain consistent metrics at the component level. The
structure of a project into work packages present an obvious choice of selecting vari-
ables for the prediction models since the metrics at work package level are stable and
entails a more intuitive meaning for the employees at the subject company.

Figure 5.5 gives an overview of how a given project is divided into work packages
that affects multiple components. The division of an overall system into sub-systems
is driven by design and architectural constraints.

5.3.2 Variables selection
At our subject company the work status of various work packages is grouped using
a graphical integration plan (GIP) document. The GIP maps the work packages’ sta-
tus over multiple time-lines that might indicate different phases of software testing or
overall project progress. There are different status rankings of the work packages, e.g.,
number of work packages planned to be delivered for system integration testing. A
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Figure 5.5: Division of requirements into work packages and modules (work model),
thereby achieving tollgates, milestones/steering points and checkpoints (management
model).

snippet of a GIP is shown in Figure 5.6.
The variables of interest in this study are divided into four sets (Table 5.2), i.e., fault

in-flow, status rankings of work packages, faults-slip-through and test case progress.

Table 5.2: Variables of interest for the prediction models.
No. Description Abbreviation Category
1 Fault in-flow F. in-flow Fault-inflow
2 No. of work packages planned for system integration No. WP. PL. SI Status rankings of WPs
3 No. of work packages delivered to system integration No. WP. DEL. SI
4 No. of work packages tested by system integration No. WP Tested. SI
5 No. of faults slipping through to all of the test phases No. FST FST
6 No. of faults slipping through to the unit test FST-Unit
7 No. of faults slipping through to the function test FST-Func
8 No. of faults slipping through to the integration test FST-Integ
9 No. of faults slipping through to the system test FST-Sys
10 No. of system test cases planned No. System. TCs. PL TC progress
11 No. of system test cases executed No. System. TCs. Exec.
12 No. of interoperability test cases planned No. IOT TCs. PL
13 No. of interoperability test cases executed No. IOT TCs. Exec.
14 No. of network signaling test cases planned No. NS TCs. PL
15 No. of network signaling test cases executed No. NS TCs. Exec.
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Figure 5.6: The graphical integration plan showing the status of various work packages
over multiple time-lines.

During the project life cycle there are certain status rankings related to the work
packages (shown under the category of ‘status rankings of WPs’ in Table 5.2) that in-
fluence fault-inflow, i.e., the number of faults found in the consecutive project weeks.
The information on these status rankings is also conveniently extracted from the GIP,
which is a general planning document at the company. Another important set of vari-
ables for our prediction models is the actual test case (TC) progress data, shown under
the category of ‘TC progress’ in Table 5.2, which have a more direct influence on
the fault in-flow. The information on the number of test cases planned and executed
at different test phases is readily available from an automated report generation tool
that uses data from an internally developed system for fault logging. These variables,
along with the status rankings of the work packages, influence the fault-inflow; so we
monitor the fault-inflow as another variable for our prediction models. Another set of
variables representing the output is the number of faults that slipped-through to the
unit, function, integration and system test phases, indicated under the category ‘FST’
in Table 5.2. We also recorded the accumulated number of faults slipping through to all
the test phases. All of the above measurements were collected at the subject company
on a weekly basis.

5.3.3 Test phases under consideration
Software testing is usually performed at different levels, i.e., at the level of a single
component, a group of such components or a complete system [141]. These different
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levels are termed as test phases in our subject company therefore we stick to calling
them test phases throughout the chapter. The purpose of different test phases, as defined
at our subject company, is given below:

• Unit: To find faults in component internal functional behavior e.g., memory
leaks.

• Function: To find faults in functional behavior involving multiple components.

• Integration: To find configuration, merge and portability faults.

• System: To find faults in system functions, performance and concurrency.

Some of these earlier test levels are composed of constituent test activities that
jointly make up the higher-order test levels. The following is the division of test levels
(i.e., unit, function, integration and system) into constituent activities at our subject
company:

• Unit: Hardware development, component test.

• Function: Function test.

• Integration: Integration of components to functions, integration test.

• System: System test, delivery test.

Our focus is then to predict the number of faults slipping through to each of these
test phases.

5.3.4 Performance evaluation measures and prediction techniques

The evaluation of predictive performance of various techniques is done using measures
of predictive accuracy and goodness of fit.

• The predictive accuracy of different techniques is compared using absolute resid-
uals (i.e., |actual-predicted|) [193, 270, 289].

• The goodness of fit of the results from different techniques is assessed using the
two-sample two-sided Kolmogorov-Smirnov (K-S) test at α = 0.05. The details
regarding this test are given in Section 3.5.1 of this thesis.
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We consider a technique better if it performs well for both predictive accuracy
and goodness of fit. For instance, if no statistically significant differences are found
between techniques A and B for predictive accuracy, but technique B has statistically
significant goodness of fit in comparison with technique A, then technique B is declared
as better. This is a kind of multi-criteria based evaluation system, a concept similar to
the one presented by Lavesson et al. in [206].

A brief description of each of the different techniques used in this study appears in
Table 5.3

5.4 Analysis and interpretation
This section describes the quantitative analysis helping us answer RQ2 and RQ3.

5.4.1 Analyzing dependencies among variables
Before applying the specific techniques for prediction, we analyzed the dependencies
among variables (see Table 5.2) using scatter plots. We were especially interested in
visualizing:

• The relationship between the measures of status rankings of work packages.

• The relationship between the measures of test case progress.

• Fault in-flow vs. the rest of the measures related to status rankings of work pack-
ages and test case progress.

The pair-wise scatter plots of the above attributes showed a tendency of non-linear
relationship. Two of these scatter plots are shown in Figure 5.7 for fault in-flow vs.
number of faults slipping through all of the test phases (Figure 5.7a) and fault in-flow
vs. number of work packages tested by system integration (Figure 5.7b).

After getting a sense of the relationships among the variables, we used kernel prin-
cipal component analysis (KPCA) [63] to reduce the number of independent variables
to a smaller set that would still capture the original information in terms of explained
variance in the data set. The role of original variables in determining the new factors
(principal components) is determined by loading factors. Variables with high loadings
contribute more in explaining the variance. The results of applying the Gaussian ker-
nel, KPCA (Table 5.4) showed that the first four components explained 97% of the
variability in the data set. We did not include the faults-slip-through measures in the
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(a) Fault in-flow vs. number of faults slipping
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tested by system integration.

Figure 5.7: Example scatter plots.

KPCA since these are the attributes we are interested in predicting. In each of the four
components, all the variables contributed with different loadings, with the exception of
two, namely number of network signaling test cases planned and number of network
signaling test cases executed. Hence, we excluded these two variables and use the rest
for predicting the faults-slip-through in different test phases.

Table 5.4: The loadings and explained variance from four principal components.
Variance Variable loadings. The variable names use abbreviations given in Table 5.2
explained

F. inflow No. WP. No. WP. No. WP No. FST No. System. No. System. No. IOT No. IOT No. NS No. NS
PL. SI DEL. SI Tested. SI TCs. PL TCs. Exec. TCs. PL TCs. Exec. TCs. PL TCs. Exec.

Component 1 51.61% 0.60 0.02 0.01 0.09 0.38 0.61 0.34 0.02 0.02 0 0
Component 2 31.07% 0.75 -0.02 0.01 0.13 -0.01 -0.57 -0.32 0.03 0.03 0 0
Component 3 9.88% -0.29 0.01 0 0.52 0.75 -0.20 -0.11 0.11 0.12 0 0
Component 4 4.64% 0 0 0.02 0.83 -0.50 0.19 0 -0.07 -0.07 0 0
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Specifically, for predicting the faults-slippage to unit test, we use the fault in-flow,
work-package status rankings and test case progress metrics. For predicting the faults-
slippage to subsequent test phases we also include the faults-slippage for the proceed-
ing test phase; for instance when predicting the faults-slip-through at the function test
phase, we also use the faults-slip-through at unit test phase as an independent variable
along with fault inflow, work-package status rankings and test case progress metrics.

5.4.2 Performance evaluation of techniques for FST prediction

Next we present the results of the performance of different techniques in predicting
FST for each test phase that would help us to answer RQ3. As given in Section 5.3.4,
we evaluate the prediction performance using the measures for predictive accuracy and
goodness of fit.

The common analysis procedure to follow is to compare the box-plots of the abso-
lute residuals for different prediction techniques. But since box-plots cannot confirm
whether one prediction technique is significantly better than another, we use a statisti-
cal test (parametric or a non-parametric test—depending upon whether the assumptions
of the test are satisfied) for testing the equality of population medians among groups
of prediction techniques. Upon the rejection of the null hypothesis of equal population
medians, a multiple comparisons (post-hoc) test is performed on the group medians to
determine which means differ. Finally, we proceed with assessing the goodness of fit
using the K-S test described in Section 5.3.4.

Prediction of FST at the unit test phase

The box-plots of absolute residuals for predicting FST at the unit test phase for different
techniques is shown in Figure 5.8a. The box-plot having the median value close to the
0 mark on the y-axis (shown as a dotted horizontal line in Figure 5.8a) and a smaller
spread of the distribution indicate better predictive accuracy. Keeping in view these two
properties of the box-plots, there seems to be only a marginal difference in the residual
box-plots of PR, M5P, Knn, Bagging, GEP and PSO-ANN. AIRS has a median at the 0
mark but shows larger spread in comparison with other techniques. The human/expert
prediction also shows a larger spread but smaller than AIRS. Two outliers for the
human prediction are extreme as compared to the one extreme outlier for PSO-ANN.
Predictions from MR, SVM and ANN appear to be farther away from the 0 mark on
the y-axis, an indication that the predictions are not closely matching the actual FST
values.
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(a) Box-plots of the residuals for each technique in predicting
FST at the unit test phase.
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(b) Results of the multiple comparisons test
with α = 0.05 (The vertical dotted lines in-
dicating that 12 techniques have mean ranks
significantly different from MR).

Figure 5.8: Results showing box plots of absolute residuals and multiple comparisons
of the absolute residuals between all techniques at the unit test phase.

To test for any statistically significant differences in the models’ residuals, the non-
parametric Kruskal-Wallis test was used to examine any statistical differences between
the residuals and to confirm the trend observed from the box-plots. The skewness in
the residual box-plots for some techniques motivated the use of the non-parametric test.
The result of the Kruskal-Wallis test (p = 3.2e−14) suggested that it is possible to reject
the null hypothesis of all samples being drawn from the same population at significance
level, α = 0.05. This is to suggest that at least one sample median is significantly
different from the others. In order to determine which pairs are significantly different,
we apply a multiple comparisons test (Tuckey-Kramer, α = 0.05). The results of the
multiple comparisons are displayed using a graph given in Figure 5.8b. The mean of
each prediction technique is represented by a circle while the straight lines on both
sides of the circle represents an interval. The means of two prediction techniques are
significantly different if their intervals are disjoint and are not significantly different
if their intervals overlap. For illustrative purposes, Figure 5.8b shows vertical dotted
lines for MR. There are two other techniques (SVM and ANN) where either of these
two dotted lines cut through their intervals, showing that the means for MR, SVM
and ANN are not significantly different. It is interesting to observe that there is only a
single technique (AIRS) whose mean is significantly different (and better) than all these
three techniques (i.e., MR, SVM and ANN). There are, however, no significant pair-
wise differences between the means of AIRS and rest of the techniques (i.e., PR, M5P,
REPTree, K*, Knn, Bagging, RF, GP, GEP, PSO-ANN, Human). Human predictions,
on the other hand, are significantly different and better than two of the least accurate
techniques (MR, ANN).
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The K-S test result for measuring the goodness of fit for predictions from each
technique relative to the actual FST at the unit test phase appear in Table 5.5. The
techniques having statistically significant goodness of fit are shown in bold (AIRS and
Human). Figure 5.9 shows the plot of AIRS, human and actual FST at the unit test

Table 5.5: Two-sample two sided K-S test results for predicting FST at the unit test
phase with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
1 0.60 0.60 0.93 0.53 0.80 0.87 1 0.80 0.93 0.53 0.80 0.27 0.73 0.33

phase. The statistically significant goodness of fit for AIRS and human can be at-
tributed to the exact match of actual FST data on 9 out of 15 instances for AIRS and
5 out of 15 instances for the human. However, the human prediction is off by large
values in the last three weeks that can also be seen as extreme outliers in Figure 5.8a.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−5 

0  

5  

10

Weeks

FS
T

AIRS
Actual
human

Figure 5.9: Plot of the predicted vs. the actual FST values at the unit test phase for
techniques having significant goodness of fit.

In summary, in terms of predictive accuracy, AIRS showed significantly different
absolute residuals in comparison with the three least performing techniques for pre-
dicting FST at the unit test phase. But then there were found no significant differences
between the absolute residuals of AIRS and rest of the 11 techniques. Human pre-
dictions showed significantly different absolute residuals in comparison with the two
least performing techniques for predicting FST at the unit test phase. For goodness of
fit, AIRS and human predictions were found to be statistically significant, though the
human predictions resulted in extreme values later in the prediction period.
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Prediction of FST at the function test phase

The box-plots of absolute residuals for predicting FST at the function test phase for
different techniques is shown in Figure 5.10a. We can observe that there is a greater
spread of distribution for each of the techniques as compared with those at the unit
test phase. The box-plots for each of the techniques are also farther away from the 0
mark on the y-axis, with PSO-ANN and SVM having the median closet of all to the
0 mark on the y-axis. Human and MR prediction shows the greatest spread of distri-
butions while the box-plots of PR, M5P, K*, Knn and Bagging show only a marginal
difference. The result of the Kruskal-Wallis test (p = 1.6e−11) at α = 0.05 suggested
that at least one sample median is significantly different from the others. Subsequently,
the results of the multiple comparisons test (Tuckey-Kramer, α = 0.05) appear in Fig-
ure 5.10b. The absolute residuals of MR and human are not significantly different (as
their intervals overlap), a confirmation of the trend observed from the box-plots. Two
of the better techniques having lower medians are SVM and PSO-ANN. There are no
significant differences between the two. Also there are no significant pair-wise dif-
ferences between SVM and each one of: PR, M5P, REPTree, K*, Knn, Bagging, GP,
GEP.
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(a) Box-plots of the residuals for each technique in predicting
FST at the function test phase.
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(b) Results of the multiple comparisons test
with α = 0.05 (The vertical dotted lines in-
dicating that 6 techniques have mean ranks
significantly different from MR).

Figure 5.10: Results showing box plots of absolute residuals and multiple comparisons
of the absolute residuals between all techniques at the function test phase.

The K-S test result for measuring the goodness of fit for predictions from each
technique relative to the actual FST at the function test phase appear in Table 5.6.
SVM and PSO-ANN show statistically significant goodness of fit. Figure 5.11 shows
the line plots of SVM and PSO-ANN with the actual FST at the function test phase.
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Table 5.6: Two-sample two sided K-S test results for predicting FST at the function
test phase with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
1 0.93 0.93 0.73 0.93 0.93 0.4 1 0.80 0.93 0.93 0.93 0.93 0.4 0.73
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Figure 5.11: Plot of the predicted vs. the actual FST values at the function test phase
for techniques having significant goodness of fit.

SVM appears to behave in Figure 5.11 since there are no high peaks showing outliers
(as is the case with PSO-ANN in Week 11).

In summary, in terms of predictive accuracy, residual box-plots indicate that SVM
and PSO-ANN are better at predicting FST at the function test phase but there are no
significant differences found with the majority of the other techniques. Also MR and
human predictions are significantly worse than seemingly better SVM and PSO-ANN.
SVM and PSO-ANN also show statistically significant goodness of fit in comparison
with other techniques.

Prediction of FST at the integration test phase

The box-plots of absolute residuals for predicting FST at the integration test phase for
different techniques is shown in Figure 5.12a. We can observe that there is a smaller
spread of distribution for each technique as compared with the box-plots for function
test. An exception is ANN whose box-plot is more spread out than other techniques.
In terms of the median being close to the 0 mark on the y-axis, Bagging and GP appear
to be promising, though there seem to be only marginal differences in comparison with
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(a) Box-plots of the residuals for each technique in predicting
FST at the integration test phase.
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(b) Results of the multiple comparisons test
with α = 0.05 (The vertical dotted lines in-
dicating that eleven techniques have mean
ranks significantly different from MR).

Figure 5.12: Results showing box plots of absolute residuals and multiple comparisons
of the absolute residuals between all techniques at the integration test phase.

PR, M5P, REPTree and PSO-ANN. GEP and human each show two extreme outliers.
The result of the Kruskal-Wallis test (p = 1.7e−5) at α = 0.05 suggested that at least
one sample median is significantly different from the others. Subsequently, the results
of the multiple comparisons test (Tuckey-Kramer, α = 0.05) appear in Figure 5.12b.
The mean rank for MR is not significantly different than the ones for SVM, ANN and
the human. GP has the mean rank that is significantly different than MR and ANN,
the two least performing techniques. However, there are not any pair-wise significant
differences between the absolute residuals for GP and each one of: PR, M5P, REPTree,
K*, Knn, SVM, Bagging, RF, GEP, AIRS, PSO-ANN and Human.

The K-S test result for measuring the goodness of fit for predictions from each
technique relative to the actual FST at the integration test phase appear in Table 5.7.
Bagging, GP, AIRS and human predictions show statistically significant goodness of
fit. Figure 5.13 show the line plots of Bagging, GP, AIRS and the human predictions.

Table 5.7: Two-sample two sided K-S test results for predicting FST at the integration
test phase with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
0.73 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.40 0.60 0.33 0.60 0.27 0.60 0.27
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(a) Plot of the actual vs. predicted FST values
(AIRS and Bagging) at the integration test phase.
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(b) Plot of the actual vs. predicted FST values (Hu-
man and GP) at the integration test phase.

Figure 5.13: Plot of the predicted vs. the actual FST values at the integration test phase
for techniques having significant goodness of fit.

In summary, in terms of predictive accuracy, MR and ANN appear to be the two
least performing techniques for predicting FST at the integration test phase, while there
were no statistically significant differences between the majority of the techniques.
Bagging, GP, AIRS and human predictions show statistically significant goodness of
fit in comparison with other techniques.

Prediction of FST at the system test phase

The box-plots of absolute residuals for predicting FST at the system test phase for
different techniques is shown in Figure 5.14a. We can observe that there are certain
techniques that appear to do better. These are PR, RF and GP. The box-plots of these
three techniques have medians closer to the 0 mark on the y-axis, with GP being the
closest. GP also show the smallest distribution as compared with PR and RF. For the
rest of the techniques, there is a greater variance in their box-plots with outliers. MR,
Knn, AIRS and human box-plots seem to be worse, both in terms of the position of
the median and the spread of the distribution. The result of the Kruskal-Wallis test
(p = 5.6e−7) at α = 0.05 suggested that at least one sample median is significantly
different from the others. Subsequently, the results of the multiple comparisons test
(Tuckey-Kramer, α = 0.05) appear in Figure 5.14b. The technique with smallest mean
rank is GP and there are no pair-wise significant differences between GP and any of
the techniques: PR, Bagging, RF and PSO-ANN. This finding also confirms the trend
from the box-plots. MR is the worst performing technique and there are no pair-wise
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(a) Box-plots of the residuals for each technique in predicting
FST at the system test phase.
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(b) Results of the multiple comparisons test
with α = 0.05 (The vertical dotted lines in-
dicating that 3 techniques have mean ranks
significantly different from MR).

Figure 5.14: Results showing box plots of absolute residuals and multiple comparisons
of the absolute residuals between all techniques at the system test phase.

significant differences between MR and any of the techniques: M5P, REPTree, K*,
Knn, SVM, ANN, Bagging, GEP, AIRS, PSO-ANN and Human.

The K-S test result for measuring the goodness of fit for predictions from each
technique relative to the actual FST at the system test phase appear in Table 5.8. PR,
GP and PSO-ANN show statistically significant goodness of fit. Figure 5.15 shows the

Table 5.8: Two-sample two sided K-S test results for predicting FST at the system test
phase with critical value J0.05 = 0.5.

K-S test statistic, J
MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN Human
0.67 0.40 0.73 0.93 0.93 0.80 0.87 0.47 0.93 0.67 0.20 0.80 0.73 0.40 0.60

line plots of PR, GP, PSO-ANN with the actual FST at the system test phase.

In summary, in terms of predictive accuracy, GP, PR, Bagging, RF and PSO-ANN
perform better than the other techniques for predicting FST at the system test phase.
PR, GP and PSO-ANN show statistically significant goodness of fit in comparison with
other techniques.
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(a) Plot of the actual vs. predicted FST values (PSO-
ANN) at the system test phase.
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(b) Plot of the actual vs. predicted FST values (GP
and PR) at the system test phase.

Figure 5.15: Plot of the predicted vs. the actual FST values at the system test phase for
techniques having significant goodness of fit.

5.4.3 Performance evaluation of human expert judgement vs. other
techniques for FST prediction

The analysis done in the previous Section 5.4.2 would also allow us to answer the RQ2
that questions if other techniques better predict FST than human expert judgement. We
now analyze the performance of human expert judgement vs. other techniques for FST
prediction at each of the four test phases.

Prediction of FST at the unit test phase

Figure 5.8b shows the results of the multiple comparisons test (Tuckey-Kramer, α =
0.05) for FST prediction at the unit test phase. Two techniques have their means signif-
icantly different (and worse) than the human expert judgement. These techniques are
MR and ANN. Otherwise, there are no significant pair-wise differences between the
means of human expert judgement and rest of the techniques.

In terms of goodness of fit, Table 5.5 shows that AIRS and human expert judgement
have statistically significant goodness of fit in comparison with other techniques.

Prediction of FST at the function test phase

Figure 5.10b shows the results of the multiple comparisons test (Tuckey-Kramer, α =
0.05) for FST prediction at the function test phase. Three techniques have their means
significantly different (and better) than the human expert judgement. These techniques
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are PSO-ANN, SVM and Knn. Otherwise, there are no significant pair-wise differences
between the means of human expert judgement and the rest of the techniques.

In terms of goodness of fit, Table 5.6 shows that human expert judgement have no
significant goodness of fit in comparison with SVM and PSO-ANN.

Prediction of FST at the integration test phase

Figure 5.12b shows the results of the multiple comparisons test (Tuckey-Kramer,
α = 0.05) for FST prediction at the integration test phase. No technique has its mean
significantly different than the human expert judgement.

In terms of goodness of fit, Table 5.7 shows that Bagging, GP, AIRS and human
expert judgement have significant goodness of fit in comparison with rest of the tech-
niques.

Prediction of FST at the system test phase

Figure 5.14b shows the results of the multiple comparisons test (Tuckey-Kramer,
α = 0.05) for FST prediction at the system test phase. GP has its mean significantly
different (and better) than the human expert judgement.

In terms of goodness of fit, Table 5.8 shows that GP and PSO-ANN have significant
goodness of fit in comparison with rest of the techniques.

Table 5.9 sums up which techniques are or are not better than human expert judge-
ment in predicting FST at unit, function, integration and system test phases. The dark
grey cells in the Table 5.9 refers to techniques that are equally good in predicting FST
with the human expert judgement. The light grey cells indicate that the techniques are
inferior with respect to the human judgement and the dark grey cells. The white cells
indicate that these techniques are better than human expert judgement in predicting
FST.

Table 5.9: A summary of techniques that are or are not better than predicting FST at
unit, function, integration and system test phases.

Human expert judgement
vs.

MR PR M5P REPTree K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-ANN
Unit
Function
Integration
System
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5.5 Results from an industrial survey
In order to answer RQ1 and RQ4, we conducted an industrial survey based on a ques-
tionnaire. The goal of the survey was to evaluate the usefulness and usability of having
FST predictions in different test phases. We conducted this survey at companies known
to be interested in collecting and reporting FST measurements. The survey involved
two industrial organizations and targeted experienced professionals. As such a total of
five responses were collected from professionals serving a variety of managerial po-
sitions: technical manager test (1), line manager (2), project manager verification (1)
and quality coordinator (1).

5.5.1 Survey study design
The survey was conducted based on a questionnaire. It can be considered as a descrip-
tive survey and gives distribution of certain characteristics or attributes, as opposed to
explaining or showing causal relationships between variables [263]. Descriptive sur-
veys focus on describing the frequencies of certain events happening regardless of why
the observed distribution exists [342].

We did a purposive sampling [254] whereby the respondents were selected based on
their interest in reporting the FST metric. A total of five responses were collected from
two telecommunications companies. The questionnaire included a precise description
of its intent and included explanatory text for completing different parts. The ques-
tionnaire was emailed to the contact persons in the two companies and a response was
awaited. Mail data collection [21] was therefore the principal data collection mecha-
nism used.

We requested the background information of the respondents in the questionnaire.
The respondents’ overall work experience varied in the range of 5 to 30 years while the
experience in using/reporting FST varied in the range of 2 to 10 years. The frequency of
using/reporting FST data also showed considerable variance whereby one respondent
reported/used FST on bi-monthly basis while others reported/used them once or twice
a year. The respondents’ number of years of work experience, the number of years in
using/reporting FST and the frequency of using/reporting FST is shown in Figure 5.16.

5.5.2 Assessment of the usefulness of predicting FST
The questionnaire asked multiple questions to evaluate how useful it is to predict FST
in different test phases multiple weeks in advance. The Likert [211] format questions
were formulated with the following format:

143



Prediction of faults-slip-through. . .

Number of elapsed months 
for reporting/using FST

51 2 3 4
Respondents

6

Ye
ar

s 
of

 w
or

k 
ex

pe
rie

nc
e

5

0

10

15

20

25

30

6

10 6

2 1

2 2

3 0.5

Scale

Number of years
 reporting/using FST

n1 n2

Figure 5.16: Background information regarding the questionnaire respondents.

• Strongly disagree.

• Disagree.

• Neither agree nor disagree.

• Agree.

• Strongly agree.

Additionally, the respondents were given an option of ‘no opinion’. The questions
regarding the usefulness of predicting FST were divided into several themes, i.e., use-
fulness in terms of:

1. Committing realistic deadlines.

2. Realistically planning testing resources for a test assignment.

3. Visualizing ahead in time the expected fault-detection efficiency of test phases.

4. Taking corrective actions in time for the test phase with expected high FST.

5. Reducing the overall cost of testing by improving test effort on phases with high
fault slippage.
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6. Continuously monitoring and improving the test phase efficiency over time.

7. Reducing the chances of slipping high severity faults to the end customer.

8. Baselining the expected effort to be spent on different test phases.

The questions regarding the above themes were posed in an affirmative sense, i.e.,
questioning the positive outcome. For example, the question regarding commitment of
realistic deadlines was posed as: How much do you agree that accurate prediction of
FST would help the test team to commit realistic deadlines?, instead of asking: How
much do you agree that accurate prediction of FST would not help the test team to
commit realistic deadlines?

Figure 5.17 illustrates the reported usefulness of predicting FST against the above
themes. Overall, the agreement level is high, with most answers in ‘agree’ and

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Committing deadlines

Planning test resources

Visualizing fault−detection eff.

Taking corrective actions

Reducing test cost

Test phase eff. improv.

Reducing fault−slippage

Baselining exp. test effort

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree No opinion

Figure 5.17: The respondents’ view of the usefulness of predicting FST in different test
phases (questions asked in affirmation).

‘strongly agree’ levels and none in the ‘strongly disagree’ level (Figure 5.18). The
themes having the most ‘strongly agree’ votes are:

• Baselining the expected effort to be spent on different test phases.

• Reducing the overall cost of testing by improving test effort on phases with high
fault slippage.

• Visualizing ahead in time the expected fault-detection efficiency of test phases.
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Figure 5.18: Percentage of votes belonging to various levels in evaluating the useful-
ness of predictions (questions asked in affirmation).

The themes having the ‘agree’ votes as dominant are:

• Committing realistic deadlines.

• Realistically planning testing resources for a test assignment.

• Taking corrective actions in time for the test phase with expected high FST.

• Continuously monitoring and improving the test phase efficiency over time.

One theme where the majority of the votes are neutral, i.e., ‘neither agree nor disagree’
is usefulness in terms of reducing high severity fault-slippage to the end customer.

The second set of questions evaluating the usefulness of predicting FST were posed
in a negative sense, i.e., questioning the possibility of a negative outcome. The ques-
tions were divided into several themes, i.e., questioning that prediction of FST would
be counter-productive because:

1. It would be too time-consuming.

2. It would result in major change in existing development process.

3. It would incur huge training cost.

4. It would give us a false sense of security.

The results of questions regarding the above themes are illustrated in Figure 5.19.
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Figure 5.19: The respondents’ view of the usefulness of predicting FST in different test
phases (questions asked in negation).

Overall, a total of 70% of votes are in disagreement (Figure 5.20).
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Disagree, 40%

Neither agree 
nor disagree, 

5%

Agree, 20%

Strongly agree, 5%

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Figure 5.20: Percentage of votes belonging to various levels in evaluating the useful-
ness of predictions (questions asked in negation).

30% of the votes are in ‘neither agree nor disagree’ while 40% are in the ‘dis-
agree’ level. The theme ‘Prediction of FST would be counter-productive because it
would incur huge training cost’ has one vote with level ‘strongly agree’ and one with
level ‘agree’. The following themes are dominated by disagreement levels (‘strongly
disagree’ and ‘disagree’:

• Prediction of FST would be counter-productive because:

– It would be too time-consuming.

– It would result in major change in existing development process.
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– It would give us false sense of security.

5.5.3 Assessment of the usability of predicting FST

The questionnaire asked multiple questions to evaluate the importance of certain cri-
teria when using a particular technique for predicting FST in different test phases. As
with evaluating the usefulness, Likert [211] format questions were formulated, com-
plemented by a ‘no opinion’ option. The following criteria were used to evaluate the
usability of the prediction techniques:

1. The techniques used for prediction need to be part of an automated tool.

2. We need to know the working principles of the prediction technique to under-
stand how is it working.

3. The techniques used for prediction should be able to determine the form of rela-
tionship between inputs and outputs rather than being dependent on the user for
providing the form of the relationship.

4. Most of the techniques used for prediction requires settings of some parameter
values, which are regarded as a hindrance in the use of these techniques.

5. Different techniques apply different mechanisms for predicting an output and the
reasoning process might be transparent or black-box. Do you think that the final
relationships between inputs and output should be transparent?

The results are illustrated in Figure 5.21. The respondents agreed to the larger
extent (80%) that the techniques used for prediction need to be part of an automated
tool (40% – ‘agree’ and 40% – ‘strongly agree’). A similar trend was observed with
respect to the users being able to know the working principles of the techniques and
the prediction technique being able to determine the form of the relationship between
the inputs and the outputs (80% of the respondents were in agreement on these two
usability aspects). In relation to the parameter settings of various techniques being a
hindrance in the use of these techniques, the agreement level is still higher (60%) but
for some respondents, it was difficult to answer with certainty (20% – ‘no opinion’
and 20% – ‘neither agree/disagree’). On the question if it is useful to have the final
relationships between inputs and outputs being transparent, 80% respondents were in
agreement (60% – ‘agree’ and 20% – ‘strongly agree’).
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Figure 5.21: The respondents’ view of the usability of predicting FST in different test
phases.

5.6 Discussion
One of the basic objectives of doing measurements is monitoring of activities so that
action can be taken as early as possible to control the final outcome. With this objective
in focus, FST metrics work towards the goal of minimization of avoidable rework by
finding faults where they are most cost-effective to find. Early prediction of FST at
different test phases is an important decision-support to the development team whereby
advance notification of improvement potential can be made.

In this chapter we investigated four research questions outlined in Section 5.1. RQ3
investigated the use of a variety of techniques for predicting FST in unit, function, in-
tegration and system test phases. The results are evaluated for predictive accuracy
(through absolute residuals) and goodness of fit (through the Kolmogorov-Smirnov
test). A number of techniques are found to be useful in predicting FST for different test
phases (both in terms of predictive accuracy and goodness of fit). RQ2 is concerning
a more specific research question that compared human expert judgement with other
techniques. The results of this comparison indicate that expert human judgement is
better than majority of the techniques at unit and integration test but are far off at func-
tion and system test. Hence, human predictions regarding FST lack some consistency.
There are indications that a smaller group of techniques might be consistently better in
predicting at all the test phases. Following is the list of techniques performing better at
various test phases for predicting FST in our study:

1. Unit test – AIRS and human.

2. Function test – SVM and PSO-ANN.
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3. Integration test – Bagging, GP, AIRS, human.

4. System test – PR, GP, PSO-ANN.

A trend that can be observed from this list of comparatively better techniques is that
there is a representation of search-based techniques in predicting FST at each test
phase.

• AIRS is consistently better at – Unit and integration test.

• PSO-ANN is consistently better at – function and system test

• GP is consistently better at – integration and system test.

At this point in time we are not able to provide definitive reasons for why the search-
based techniques are able to perform better consistently as compared with other tech-
niques. What we can discuss here are relative merits of the search-based techniques,
one or more of which might be responsible for outperforming the other group of tech-
niques.

• Better ability to cope with ill-defined, partial and messy input data [129].

• GP is particularly good at providing small programs that are nearly correct and
predictive models are not exceptionally long [129].

• Being non-parametric approaches, the structure of the end solution is not pre-
conceived.

• Entirely data driven approaches and do not include any assumptions about the
distribution of the data in its formulation.

GP, in particular, also fulfills two of the usability aspects that showed higher agreement
levels among industrial experts, i.e.,

• The techniques used for prediction should be able to determine the form of rela-
tionship between inputs and outputs rather than that the technique is dependent
on the user providing the form of the relationship.

• The final relationship between the inputs and the outputs should be visible.

The results also argue that there is value in the use of other techniques like human
predictions, SVM, Bagging and PR, it is just that these are not as consistent as the
search-based techniques.
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Another interesting outcome of this study is the performance of search-based tech-
niques (and other better performing techniques) outside their respective training ranges,
i.e., the predictions are evaluated for 15 weeks of an on-going project after being trained
on another baseline project data. This is to say that the over-fitting is within acceptable
limits, and this is particularly encouraging considering the fact that we are dealing with
large projects where the degree of variability in fault occurrences can be large. This
issue is also related to the amount of data available for training the different techniques,
which, in case of large projects is typically available.

Another important aspect of the results is that human predictions were among the
better techniques for predicting FST at unit and integration test. In our view, this is also
an important outcome and shows that expert opinions perhaps need more consideration
that is largely been ignored in empirical studies of software fault predictions [66, 317].
We, therefore, agree with the conclusion of Hughes [139] that expert judgement should
be supported by the use of other techniques rather than displacing it. Search-based
techniques seem to be an ideal decision-support tool for two reasons:

1. They have performed consistently better than other techniques (Section 5.4.2).

2. Search-based techniques, as part of the more general field of search-based soft-
ware engineering (SBSE) [128, 131], is inherently concerned with improving not
with proving [129].

As such it is likely that human-guided semi-automated search might help get a reason-
able solution that incorporates human judgement in the search process. This human-
guided search is commonly referred to as ‘human-in-the-loop’ or ‘interactive evolu-
tion’ [129] and is a promising area of future research. The incorporation of human
feedback in the automated search can possibly account for some of the extreme fluctu-
ations in the solely human predictions that are observed for predicting FST at unit and
integration test.

We also believe that the selection of predictor variables that are easy to gather (e.g.,
the project level metrics at the subject company in this study) and that do not conflict
with the development life cycle have better chances of industry acceptance. There is
evidence to support that general process level metrics are more accurate than code/
structural metrics [26]. A recent study by Afzal [4] has shown that the use of number
of faults-slip-through to/from various test phases are able to provide good results for
finding fault-prone components at integration and system test phases. However this
subject requires further research.

We have also come to realize that the calculation of simple residuals and goodness
of fit tests along with statistical testing procedures are a sound way to secure empirical
findings where the outcome of interest is numeric rather than binary. An assessment of
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the qualitative features can then be undertaken as an industrial survey to complement
the initial empirical findings.

While working on-site at the subject organization for this research, we realized
several organizational factors that influence the success of such a decision-support.
Managerial support and an established organizational culture of quantitative decision-
making allowed us to gain easy access to data repositories and relevant documentation.
Moreover, collection of faults-slip-through data and association of that data to compo-
nents, was made possible using automated tool support that greatly reduced the time
for data collection and ensured data integrity.

5.7 Empirical validity evaluation
We adopted a case study approach in evaluating various techniques for predicting FST
in four test phases, while conducting an industrial survey for an assessment of the
usefulness of such predictions and the usability of prediction techniques. A controlled
experiment was deemed not practical since too many human factors potentially affect
fault occurrences.

What follows next is our presentation of the various threats to validity of our study:
Construct validity: Our choice of selecting project level metrics (Table 5.2) instead of
structural code metrics was influenced by multiple factors. First, metrics relevant to
work packages (Section 5.3.1) have an intuitive appeal for the employees at the subject
company where they can relate FST to the proportion of effort invested. Secondly, the
existence of a module in multiple work packages made it difficult to obtain consistent
metrics at the component level. Thirdly, the intent of this study is to use project level
metrics that are readily available and hence reduces the cost of doing such predictions.
In addition, the case study is performed in the same development organization having
the identical application domain, so the two projects in focus are characterized by the
same set of metrics. Internal validity: A potential threat to the internal validity is that
the FST data did not consider the severity level of faults, rather treated all faults equally.
As for the prediction techniques, the best we could do was to experiment with a variety
of parameter values. But we acknowledge that the obtained results could be improved
by better optimizing the parameters. External validity: The quantitative data modeling
was performed on data from a specific company while the questionnaire was filled out
by experts from two companies. We have tried to present the context and the processes
to the extent possible for fellow researchers to generalize our results. We are also
encouraged by the fact that the companies are enterprise-size and have development
centers worldwide that follow similar practices. It is therefore likely that the results of
this study are useful for them too. A threat to the external validity is that we cannot

152



Prediction of faults-slip-through. . .

publicize our industrial data sets due to proprietary concerns. However, the transformed
representation of the data can be made available if requested. Conclusion validity: We
were conscious in using the right statistical test, basing our selection on whether the
assumptions of the test were met or not. We used a significance level of 0.05, which is
a commonly used significance level for hypothesis testing [158]; however, facing some
criticism lately [142].

5.8 Conclusion
In this chapter, we have presented an extensive empirical evaluation of various tech-
niques for predicting the number of faults slipping through to the four test phases of
unit, function, integration and system. We also reported on the results of a survey based
on an industrial questionnaire that evaluates the usefulness of such a prediction task and
evaluates criteria important in making prediction techniques usable in industrial prac-
tice.

We find that a number of techniques are found to be useful in such a prediction
task, both in terms of predictive accuracy and goodness of fit. However, the group of
search-based techniques consistently give better predictions, having a representation at
all the test phases. Human predictions are also among the better techniques at two of
the four test phases. We conclude that human predictions can be supported well by the
use of search-based techniques and a mix of the two approaches has the potential to
provide improved results.

The results of the survey based on an industrial questionnaire showed that the ex-
perts agreed on the usefulness of predicting FST (RQ1) in general for several themes,
especially that the FST predictions are useful for:

• Baselining the expected effort to be spent on different test phases.

• Reducing the overall cost of testing by improving test effort on phases with high
fault slippage.

• Visualizing ahead in time the expected fault-detection efficiency of test phases.

Regarding the usability of the prediction task (RQ4), 80% of the respondents are in
agreement on three usability aspects:

• The techniques used for prediction need to be part of an automated tool.

• We need to know the working principles of the prediction technique to under-
stand how is it working.
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• The techniques used for prediction should be able to determine the form of re-
lationship between inputs and outputs rather than the technique being dependent
on the user for providing the form of the relationship.

The above usability aspects give indications for additional evaluation criteria that are
important in addition to measuring the predictive accuracy and the goodness of fit mea-
sures. A general multi-criteria based evaluation system can thus be formulated that
captures both the quantitative and the qualitative aspects of such a prediction task. Fu-
ture work will also investigate ways to incorporate human judgement in the automated
search mechanism.

The next chapter, Chapter 6, investigates the possibility of using the number of
faults slipping from unit and function test phases to predict the fault-prone components
at integration and system test phases.
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Prediction of fault-prone
software components:
A faults-slip-through approach
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W. Afzal

6.1 Introduction
The number of faults in a software component or in a particular release of software
represents quantitative measures of software quality. A fault prediction model uses
historic software quality data in the form of metrics (including software fault data) to
predict the number of software faults in a component or a release [178, 209]. Automatic
prediction of fault-prone components can be of immense value for a software testing
team especially as we know that 20% of a software system is responsible for 80% of its
errors, costs and rework [35]. Some of the benefits of using software fault prediction
include: (a) software quality can be improved by focussing on a subset of software
components. This in turn can reduce software failures and hence the maintenance
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costs. (b) Refactoring candidates can be identified for reliability enhancement [65]. (c)
Testing activities can be better planned.

While there is a plethora of studies on software quality classification, none of them
focus on identifying fault-prone components at different test levels (such as unit, func-
tion, integration and system). Secondly, due to lack of quantification of quality at test
levels, all the faults are assumed to be found at the right level, which is not the case
with many projects. This leads us to the concept of Faults-Slip-Through (FST) [80].
An introduction to FST is given in Section 5.1 of Chapter 5 of this thesis.

In this chapter we aim at predicting the fault-prone software components before
integration and system test levels based on the FST metric. The choice of these test
levels for quality enhancement is because they represent the last test levels before the
software is released for customer use. Therefore, these test levels need to find as many
faults as possible. In particular, we make use of number of faults slipping from unit and
function test levels to predict the fault-prone components at the integration and system
test levels. We essentially seek an answer to the following research question:

RQ: How can we use FST to predict fault prone software components before integra-
tion and system test and what is the resulting prediction performance?

The expectation is that answering this research question would provide valuable
decision-support for the project and test managers. This decision-support relates to
reduction in the number of faults slipping through to the end customer (lower mainte-
nance and contended customers). We have used a number of classification techniques
(logistic regression, C4.5, random forests, naı̈ve Bayes, support vector machines, artifi-
cial neural networks, genetic programming and artificial immune recognition systems)
to the task of classifying the quality of components. We used FST and the associated
affected components’ data from two large industrial projects from the telecommunica-
tion domain. The results show that FST data has the potential to be a generally useful
predictor of quality of components while genetic programming show an appealing de-
gree of classification performance.

The remainder of the chapter is organized as follows. Section 6.2 summarizes the
related work. Section 6.3 describes the research context, including the variables and
the data collection method. A brief on different classification techniques is given in
Section 6.4. Section 6.5 gives an overview of how the performances of different tech-
niques are evaluated. Results are given in Section 6.6 and are discussed in Section 6.7.
Validity evaluation and conclusions makeup Sections 6.8 and 6.9 respectively.
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6.2 Related work
There have been a number of techniques used for software quality modeling (classi-
fying fault-proneness or predicting number of software faults) based on different sets
of metrics. The applicable techniques include statistical methods, machine learning
methods and mixed algorithms [67]. A number of metrics have been used as indepen-
dent variables for software quality modeling and can broadly be classified into three
categories [151]: (a) source code measures (structural measures), (b) measures captur-
ing the amount of change (delta measures) and, (c) measures collected from meta data
in the repositories (process measures). A non-exhaustive summary of software quality
modeling studies appear in Section 4.2 of this thesis.

While it is clear that previous studies have focused on predicting the fault-proneness
of software components, none of them quantify the quality of components at different
test levels. Quantification of quality of components at different test levels promises to
provide opportunities of more focussed improvements at each test level. The current
study is unique from previous studies in two ways. Firstly the study aims to provide
indications of fault-prone components before starting integration and system test levels.
Secondly, the classification of fault-prone components is done by making use of faults-
slip-through (FST) data.

6.3 Research context
The data used in this study comes from two large projects at a telecommunication
company that develops mobile platforms and wireless semiconductors. The projects
are aimed at developing platforms introducing new radio access technologies writ-
ten using the C programming language. The average number of persons involved in
these projects is approximately 250. We have data from 106 components from the two
projects. Since a high percentage of components were reused in the two projects, we
evaluate the fault-proneness of 106 components as if they are from a single project. We
use a 10-fold cross-validation to evaluate the performance of different techniques.

The management of these projects follow the company’s general project model
called PROPS (PROfessional Project Steering). PROPS is based on the concepts of
tollgates, milestones and check-points to manage and control project deliverables. Toll-
gates represent long-term business decisions while milestones are predefined events at
the operating work level. The monitoring of these milestones is an important element
of the project management model. The checkpoints are defined in the development
process to define the work status in a process. Figure 5.4 in Chapter 5 presents an
abstract level view of these concepts.
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At the operative work level, the software development is structured around work
packages. These works packages are defined during the project planning phase. The
work packages are defined to implement change requests or a subset of a use-case,
thus the definition of work packages is driven by the functionality to be developed. An
essential feature of work packages is that it allows for simultaneous work on different
components of the project at the same time by multiple teams. Figure 5.5 in Chapter 5
of this thesis gives an overview of how a given project is divided into work packages
that affects multiple components. The division of an overall system into sub-systems
in driven by design and architectural constraints.

The prediction models in this study make use of number of faults that should have
been found at test levels prior to integration and system test. Since these faults were
cost-effective to be found at test levels earlier than integration and system test, they are
said to have slipped-through from the earlier test levels. These earlier test levels in our
case are review, unit and function levels. The purpose of different test levels, as defined
at our subject company, is given below:

• Review: To find faults in the feasibility of requirements, design and architecture.

• Unit: To find faults in component internal functional behavior, e.g., memory
leaks.

• Function: To find faults in functional behavior involving multiple components.

• Integration: To find configuration, merge and portability faults.

• System: To find faults in system functions, performance and concurrency.

Some of these earlier test levels are composed of constituent test activities that
jointly make up the higher-order test levels. Following is the division of test levels
(i.e., review, unit, function, integration and system) into constituent activities at our
subject company:

• Review: component design review, code review.

• Unit: Hardware development, Component test.

• Function: Function test.

• Integration: Integration of components to functions, integration test.

• System: System test, delivery test.
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We collected the fault data for different components that slipped from review, unit
and function test levels to the integration and system test levels. Thus we can classify
the components as being either fault-prone or non-fault-prone at the integration and
system test levels based on whether a single or no fault slipped through to these test
levels from earlier levels.

This association of components, with the levels where the faults were to be found in
them, provides an intuitive and easy way to identify fault-prone software components
at different test levels. For instance, consider a fault in component A that slipped from
unit level and was not captured until at integration level. Now the component A which
is already fault-prone at the unit level, is more costly for quality improvement at the
later integration level due to the higher cost of finding and fixing the faults at that level.
But due to certain reasons (e.g., ambiguous requirements) the fault is not detected at
the right level and slipped. The integration test level now has to detect both the faults
that are expected to be found in this level and also any other faults that slipped from
earlier levels of review, unit and function test. At this stage, any indication of fault-
prone components would help plan better for integration testing. Also since integration
test (and system test for that matter) represents one of the last test levels before the
system is delivered to the end-users, it is critical that these last test levels have accurate
knowledge of where to focus the testing effort.

Therefore we are interested in identifying those components that were fault-prone
in earlier test levels of review, unit and function but the faults from these components
slipped to integration and system test levels where they were eventually found. With
a historical backlog of faults slipping through from review, unit and function test to
integration and system test, along with the affected components, it is possible to build
prediction models to predict fault-prone components for an on-going project before the
commencement of integration and system test levels.

Our data set contains seven count metrics and the descriptions are given in Ta-
ble 6.1. The data set contains two additional attributes that represent the dependent
variables: FP-I (fault-prone at integration test level) and FP-S (fault-prone at system
test level). Each one of these metrics is collected for every component separately; for
example SF-CR in Table 6.1 represents the count of faults slipping from code review
for each component. The data regarding the number of faults slipping to/from different
test levels is readily available from an automated report generation tool at the subject
company that used data from an internally developed system for fault logging.
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Table 6.1: Metric descriptions.
Metric Definition
SF-CR No. of faults slipping from (SF) code review (CR)
SF-MDR No. of faults slipping from (SF) module design review (MDR)
SF-R No. of faults slipping from (SF) review (R)
SF-HD No. of faults slipping from (SF) hardware development (HD)
SF-MT No. of faults slipping from (SF) module test (MT)
SF-U No. of faults slipping from (SF) unit level (U)
SF-F No. of faults slipping from (SF) function level (F)

6.4 A brief background on the techniques
We compare a variety of techniques for the purpose of predicting fault-prone compo-
nents at integration and system test. Below is a brief description of these methods while
the detailed descriptions can be found in relevant references.

6.4.1 Logistic regression (LR)

Logistic regression is used when the dependent variable is dichotomous (e.g., either
fault-prone or non-fault-prone). Logistic regression does not assume that the dependent
variable or the error terms be normally distributed. The form of the logistic regression
model is:
log

(
p

1−p

)
= β0 +β1X1 +β2X2 + . . .+βkXk

where p is the probability that the fault was found in the component that slipped to
either integration or system test and X1, X2,. . ., Xk are the independent variables. β0,β1,
. . ., βk are the regression coefficients estimated using maximum likelihood. A multino-
mial logistic regression model with a ridge estimator, implemented as part of WEKA,
was used with default parameter values.

6.4.2 C4.5

C4.5 is the most well-known algorithm in the literature for building decision trees
[199]. C4.5 first creates a decision tree based on the attribute values of the available
training data such that the internal nodes denote the different attributes, the branches
correspond to value of a certain attribute and the leaf nodes correspond to the classifica-
tion of the dependent variable. The decision tree is made recursively by identifying the
attribute(s) that discriminates the various instances most clearly, i.e., having the high-
est information gain. Once a decision tree is made, the prediction for a new instance
is done by checking the respective attributes and their values. For our experiments,
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standard pruning factors as in WEKA were used i.e., with a confidence factor of 0.25.

6.4.3 Random forests (RF)
Random forests is a collection of tree-structured classifiers [43]. A new instance is
classified on each tree in the forest. Results of these trees are used for majority voting
and the forest selects the classification having the most votes over all the trees in the
forest. Each classification tree is built using a bootstrap sample of the data. The results
were generated using 500 trees (the default value in random forest literature [116]).

6.4.4 Naı̈ve Bayes (NB)
The naı̈ve Bayes classifier is based on the Bayesian theorem. It analyses each data
attribute independently and being equally important. The naı̈ve Bayes classifier assigns
an instance sk with attribute values (A1 = V1, A2 = V2, . . . , Am = Vm) to class Ci with
maximum prob(Ci|(V1,V2, . . . ,Vm)) for all i. The results were generated using default
parameter values in WEKA.

6.4.5 Support vector machines (SVM)
The details regarding the SVM algorithm are given in Section 4.6.3 of this thesis. Us-
ing WEKA, the kernel function used was Gaussian (RBF) while other parameters had
default values.

6.4.6 Artificial neural networks (ANN)
The details regarding ANN are given in Section 4.6.2 of this thesis. A three layer feed
forward neural network model has been used in this study. The final ANN structure
consisted of one input layer, one hidden layer and one output layer. The hidden layer
consisted of five nodes while the output layer had two nodes representing each of the
binary outcomes. The number of independent variables in the problem determined the
number of input nodes. The sigmoid and linear transfer functions have been used for
the hidden and output nodes respectively, with training time set to 500 epochs.

6.4.7 Genetic programming (GP)
The background to GP is given in Section 3.3 of this thesis. The GP programs were
evaluated according to the sum of absolute differences between the obtained and ex-
pected results in all fitness cases, ∑

n
i=1 | ei−e

′
i |, where ei is the actual fault count data,
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e
′
i is the estimated value of the fault count data and n is the size of the data set used to

train the GP models. The control parameters that were chosen for the GP system are
shown in Table 6.2.

Table 6.2: GP control parameters.
Control parameter Value
Population size 50
Termination condition 500 generations
Function set {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Ramped half-and-half method
Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1
Selection method lexictour

6.4.8 Artificial immune recognition system
(AIRS)

A brief introduction to AIRS is given in Table 5.3 of Chapter 5 of this thesis.
The WEKA plug-in for AIRS [53] has been used with the following parameters:

Affinity threshold = 0.2, clonal rate = 10, hypermutation rate = 2, knn = 3, mutation
rate = 0.1, stimulation value = 0.9 and total resources = 150.

6.5 Performance evaluation
We use the area under the receiver operating curve (AUC) as the performance evalua-
tion measure for different classifiers. Area under the curve (AUC) [41] acts as a single
scalar measure of expected performance and is an obvious choice for performance as-
sessment when ROC curves for different classifiers intersect [209] or if the algorithm
does not allow configuring different values of the threshold parameter. AUC, as with
the ROC curve, is also a general measure of predictive performance since it separates
predictive performance from class and cost distributions [209]. The AUC measures the
probability that a randomly chosen fault-prone component has a higher output value
than a randomly chosen non fault-prone component [98]. The value of AUC is always
between 0 and 1; with a higher AUC is preferable indicating that the classifier is on
average more effective in identifying fault prone components.

We also plotted the (PF, PD) pairs belonging to various classification algorithms
to facilitate visualization [226] (PF denotes the probability of false alarm, i.e., propor-
tion of non-fault prone components that are erroneously classified and PD denotes the
probability of detection of fault-prone components).
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6.6 Experimental results

The (PF, PD) pairs for different techniques for detecting fault-prone software compo-
nents at integration test level are given in Table 6.3. The corresponding location of

Table 6.3: (PF, PD) pairs for fault prediction at integration test level.
Techniques PF PD Techniques PF PD
GP 0.055 0.706 NB 0.673 0.921
LR 0.4 0.627 SVM 1 0
C4.5 0.64 0.94 ANN 0.545 0.784
RF 0.6 0.76 AIRS 0.473 0.706

these pairs in the ROC space is shown in Figure 6.1.
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Figure 6.1: (PF, PD) pairs for different techniques for fault prediction at integration test
level.

What is evident from Figure 6.1 is that three out of eight classifiers (GP, LR, AIRS)
are placed in the upper left region of the ROC space, which is the region of inter-
est for the software engineers, marked by high probability of detection (PD) and low
probability of false alarm (PF). However, except GP, no technique is seen as being
approximately near to the perfect classification performance of having (PF, PD) pair
equal to (0, 1). GP has the (PF, PD) pair most nearer to (0, 1), in comparison with
LR and AIRS, in the upper left region of the ROC space. Rest of the five classifiers
(SVM, ANN, RF, C4.5, NB) are either placed in upper right or lower right regions, and
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hence show less impressive performance. This means that these five classifiers offer
little decision-support to the software engineers in comparison with GP, LR and AIRS.

One way to quantify the distances of individual (PF, PD) pairs from the perfect
classification (0, 1) is to use a distance metric, ED [226]:

ED =
√

Θ∗ (1−PD)2 +(1−Θ)∗PF2

where Θ (ranging from 0 to 1) represents the weights assigned to PD and PF. If we
assume that lower PD is more costly than a higher PF, one can assign more weight
to (1−PD). Table 6.4 calculates the distance metric, ED, for the three visibly better
classifiers for an arbitrary range of Θ values. The smaller the distance, i.e., the closer

Table 6.4: Distance metric, ED, values for the three better techniques for fault predic-
tion at integration test level.

Θ ED GP ED LR ED AIRS
1 0.294 0.373 0.294
0.9 0.279 0.376 0.376
0.8 0.264 0.378 0.378
0.7 0.248 0.381 0.381
0.6 0.230 0.384 0.384

the point is to the perfect classification, the better the performance of the classifier
[226]. GP show smaller distances in comparison with other two classifiers; a trend that
is also confirmed from visualizing their (PF, PD) pairs in Figure 6.1.

Table 6.5 shows the AUC measures for different techniques for predicting fault-
prone components at integration test level. GP shows the highest AUC value followed

Table 6.5: AUC measures for different techniques at integration test level.
GP LR C4.5 RF NB SVM ANN AIRS
0.853 0.614 0.652 0.58 0.624 0.50 0.619 0.617

by C4.5, ANN and AIRS for fault prediction at the integration test level. SVM has the
lowest AUC value and is also reflected by its (PF, PD) pair being in the lower right
corner of the ROC space. Also what is evident from these AUC values is that apart
from GP and SVM (having best and the worst AUC values), the rest of the techniques
show small differences.

The (PF, PD) pairs for different techniques for detecting fault-prone components at
system test level are given in Table 6.6.
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Table 6.6: (PF, PD) pairs for fault prediction at system test level.
Techniques PF PD Techniques PF PD
GP 0.10 0.73 NB 0.16 0.29
LR 0.605 0.81 SVM 1 1
C4.5 0.87 0.87 ANN 0.76 0.88
RF 0.737 0.720 AIRS 0.53 0.647

The corresponding location of these pairs in the ROC space is shown in Figure 6.2.
This time only a single technique (GP) has its (PF, PD) pair in the preferred upper left
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Figure 6.2: (PF, PD) pairs for different techniques for fault prediction at system test
level.

region of the ROC space. Six of the techniques (AIRS, LR, RF, ANN, C4.5, SVM)
resulted in being placed at top right region of the ROC space while NB got a place in
lower left. For the second time, SVM is not able to provide useful results, with a high
probability of false alarms. LR, C4.5, RF and ANN are closely placed in the upper
right region with small differences in their (PF, PD) values, though AIRS and LR have
their (PF, PD) pairs closer to the preferred region.

Table 6.7 calculates the distance metric, ED, for the three visibly better classifiers
for an arbitrary range of Θ values.

165



Prediction of fault-prone software components: A faults slip-through approach

Table 6.7: Distance metric, ED, values for the three better techniques for fault predic-
tion at system test level.

Θ ED GP ED LR ED AIRS
1 0.27 0.19 0.353
0.9 0.258 0.263 0.374
0.8 0.246 0.319 0.395
0.7 0.232 0.367 0.414
0.6 0.218 0.410 0.432

It shows that GP has smaller distances on majority of Θ values in comparison with
LR and AIRS, while LR’s ED values are better than those of AIRS. This trend is also
confirmed from visualizing the respective techniques’ (PF, PD) pairs in Figure 6.2.

Table 6.8 shows the AUC measures for different techniques for predicting fault-
prone components at system test level. GP has the highest AUC value, followed-up by

Table 6.8: AUC measures for different techniques at system test level.
GP LR C4.5 RF NB SVM ANN AIRS
0.78 0.602 0.5 0.49 0.568 0.50 0.56 0.56

LR. Rest of the techniques showed small differences in their AUC values.

Now that we have the AUC values for different techniques for predicting fault-
prone components at integration and system test levels, we can use a two-sample t-
test to verify if the differences in AUC values among different pairs of techniques are
significant or not. The results of applying the two sample t-test appear in Table 6.9
where h = 1 indicates a rejection of the null hypothesis at 5% significance level of
the two samples having equal means, while h = 0 indicates a failure to reject the null
hypothesis at 5% significance level.

The results show that apart from seven combinations, highlighted in bold in Ta-
ble 6.9, there are no significant differences between the AUC values of all other com-
bination of classifiers. It is, however, interesting to note that there are significant dif-
ferences between the AUC values of GP and all other classifiers except for one (C4.5).
This shows that GP has an edge in terms of identifying fault-prone components at in-
tegration and system test levels in comparison with majority of the techniques.

166



Prediction of fault-prone software components: A faults slip-through approach

Table 6.9: Two-sample t-test results for differences in AUC measures for different
techniques.

Techniques p value h Techniques p value h
GP:LR 0.030 1 C4.5:NB 0.828 0
GP:C4.5 0.104 0 C4.5:SVM 0.423 0
GP:RF 0.040 1 C4.5:ANN 0.884 0
GP:NB 0.041 1 C4.5:AIRS 0.892 0
GP:SVM 0.013 1 RF:NB 0.369 0
GP:ANN 0.040 1 RF:SVM 0.518 0
GP:AIRS 0.039 1 RF:ANN 0.418 0
LR:C4.5 0.715 0 RF:AIRS 0.421 0
LR:RF 0.250 0 NB:SVM 0.076 0
LR:NB 0.716 0 NB:ANN 0.888 0
LR:SVM 0.003 1 NB:AIRS 0.868 0
LR:ANN 0.601 0 SVM:ANN 0.094 0
LR:AIRS 0.572 0 SVM:AIRS 0.090 0
C4.5:RF 0.688 0 ANN:AIRS 0.983 0

6.7 Discussion
In this chapter, we evaluated the use of several techniques for predicting fault-prone
components at integration and system test levels using faults-slip-through data from
two industrial projects. The results of this study have multiple important dimensions.
First, this chapter demonstrates the use of faults-slip-through metric as a potential pre-
dictor of fault-proneness. While previous studies have focussed on structural measures,
change measures and process measures (Section 6.2) as predictors of fault proneness,
this study shows that the use of number of faults slipping through to/from various test
levels are able to provide good results for finding fault-prone components at integra-
tion and system test levels. At integration and system test levels, GP was able to give
impressive AUC values (0.7 or more – with the (PF, PD) pairs in the preferred region
of the ROC space). For rest of the techniques, five of them had their AUC values
greater than 0.6 at integration test level while one of them showed a AUC value greater
than 0.6 at system test level. Though still moderate (for techniques other than GP),
these AUC values give an early indication that faults-slip-through measures have the
discriminative power to classify components as either fault-prone or non-fault-prone at
integration and system test levels. This result strengthens Arisholm’s et al. results [26]
where simple process measures significantly improved the prediction models. For fu-
ture work, it would be interesting to investigate the combination of faults-slip-through
metric with structural, change and other process measures for effectively finding fault-
prone components.

Second, GP has shown promising results for predicting fault-proneness at both in-
tegration and system test levels. This quantitatively better performance of GP adds to
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the other qualitative features of using such a non-parametric search-based technique
for fault prediction. These additional feature include independence from data distribu-
tion assumptions and automatic evolution of model and associated coefficients based
on historical data. One additional advantage of using GP is the comprehensibility of
resulting models which can lead to an insight of the significant predictor variables and
important rules. This result adds to the current body of knowledge that explores GP as
a possible tool for predictive studies in software engineering [5].

Third, previous studies on fault-proneness classified components irrespective of
the different test levels. While such studies are useful, we might run into a risk of
investing more effort in improving the quality of a component than is cost-effective at
a certain test level. The quantification of quality of components at different test levels,
coupled with the use of FST measures, entail an additional benefit that components can
be selected for quality enhancement keeping in view the cost-effectiveness. Thus the
fundamental hypothesis underlying the work in this study is that an efficient test process
verifies each product aspect at a test level where it is easiest to test and the faults are
cheapest to fix; therefore the identification of fault-prone components at specific test
levels is a step in that direction. We were assisted in this endeavor to an extent by the
segregation of different test levels at our subject organization.

While AUC is a generally useful measure of classification performance, however,
we need additional ways to visualize the performance of different techniques. The plot-
ting of (PF, PD) pairs in the ROC space is one way of achieving it. As clear from the
two plots in Figures 6.1 and 6.2, the location of (PF, PD) pairs in the ROC space can
quickly show the trade-off in PF and PD values of competing techniques whereby one
or more techniques might be preferred. This additional way to visualize performance
is important from the viewpoint of practical use. A software manager who intends to
apply these techniques would be mainly interested in correct detection of fault-prone
components, i.e., PD [324]. This is because the cost of delivering fault-prone com-
ponents to the end-customers is much more than the cost of testing one component
too many. This unequal cost of misclassification is the reason why software managers
would prefer a trade-off between PF and PD. Using a distance metric like ED and vi-
sualizing the (PF, PD) pairs in the ROC space provides that flexibility to the software
manager.

6.8 Empirical validity evaluation
Conclusion validity refers to the statistically significant relationship between the treat-
ment (independent variable) and the outcome (dependent variable). We tested for any
significant differences between the AUC values of different techniques using a two-
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sample t-test at 5% significance level, which is a commonly used significance level for
hypothesis testing. The choice of selecting a parametric test was based on its greater
power to identify differences and robustness to smaller departures from the normality
assumption. Internal validity refers to a causal relationship between treatment and out-
come. Out of the many metrics we could collect, we only selected those based on the
FST metric since our goal was to evaluate the use of such metrics for quality prediction.
We used a 10-fold cross-validation as a resampling method which has been found to
give low bias and low variance [194]. A potential threat to internal validity is that the
faults-slip-through data did not consider the severity level of faults, rather treated all
faults equally. Construct validity is concerned with the relationship between the theory
and application. The use of AUC as the performance measure is motivated by the fact
that it is a general measure of predictive performance, while the plot of (PF, PD) pairs
provides an intuitive visualization tool. External validity is concerned with generaliza-
tion of results outside the scope of the study. The data used in the study comes from
two industrial projects from the telecommunication domain and thus represents real-
life use. However, more replications of this study would help generalize the results
beyond the specific environment.

6.9 Conclusion and future work
This chapter evaluated the use of faults-slip-through data as a potential predictor of
fault-proneness at integration and system test levels for data gathered from two indus-
trial projects. A variety of classification algorithms were applied, including a stan-
dard statistical technique for classification (logistic regression), tree-structured classi-
fiers (C4.5 and random forests), a Bayesian technique (Naı̈ve Bayes), machine-learning
techniques (support vector machines and back-propagation artificial neural networks)
and search-based techniques (genetic programming and artificial immune recognition
systems). The performance of these classifiers was assessed using AUC and location
of (PF, PD) pairs in the ROC space. The results of this study concluded that faults-slip-
through data has the potential to be a generally useful predictor of fault-proneness at
integration and system test levels. As for the different classifiers, GP performed more
consistently across both integration and system test levels in terms of AUC and location
of (PF, PD) pairs in the ROC space. The visualization of (PF, PD) pairs in the ROC
space provides another opportunity for the test team to assess a classifier performance
with respect to the perfect (PF, PD) pair of (0, 1). A distance metric can then be calcu-
lated, with different weights assigned to represent the misclassification costs of PF and
PD, to select a classifier most suited for the project.

Based on this study, some interesting future work can be undertaken. Firstly, it
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would be interesting to compare the FST metric with other commonly used predictors
of fault proneness to quantify any differences. Secondly, the performance of FST as an
effective predictor of fault-proneness needs to be assessed for a segregation of faults
based on severity levels. Lastly, one can think of a probabilistic model on how likely
different fault counts or slips in earlier phases are for predicting fault-proneness in later
phases.

The next chapter, Chapter 7, answers our first of the two methodological inves-
tigation questions. Chapter 7 seeks to investigate the potential impact of resampling
methods on software quality classification.
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7.1 Introduction
Different dependent variables of interest have been the target of predictive studies in
software engineering. Software quality classification is one such domain which con-
cerns classifying software components as either fault-prone ( f p) or non-fault prone
(n f p). A fault prone component is one in which the number of faults are higher than a
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selected threshold. Such a classification of software components potentially has an ef-
fect on overall software quality since fault-prone components are candidates for further
reliability enhancement. Supervised learning algorithms from machine learning litera-
ture represent one of the relatively newer approaches for software quality classification
whereby an induction algorithm builds a classifier from a given data set. Examples of
such studies include applications of artificial neural networks, e.g., [167], classifica-
tion and regression trees CART, e.g., [171], support vector machines, e.g., [315] and
evolutionary computation, e.g., [6, 215].

With the availability of numerous techniques for constructing classification models,
an important task in quality classification is appropriate model selection and evaluation.
There are several key questions to answer in achieving this task, e.g.,

1. What resampling method to use?

2. What prediction accuracy measure to use?

3. What statistical tests to use to compare the results?

While each one of these questions are important, the focus of this study is to answer
the choice of a resampling method to use. Specifically, we attempt to investigate which
resampling method performs better while using genetic programming as a software
classification technique.

It is common in machine learning that a portion of a data set is used to test the
performance of the trained classifier. With limited data, different resampling methods
are used to assess a model’s generalizability. The choice of a resampling method is
an important element in an overall model selection procedure that has attracted little
investigation. With lack of convergence across various software classification models,
the researchers have highlighted the need of greater use of public data sets, appropriate
accuracy indicators and statistical testing procedures; but the choice of a resampling
method is surprisingly less emphasized in the past. However increasing concern to
investigate the choice of resampling methods is now being raised. Myrtveit et al. [250]
and Lessmann et al. [209] highlight the need to examine the influence of resampling
methods and to quantify possible differences. Kitchenham and Mendes [190] point at
the importance of explicitly stating the resampling method chosen:

“Another important issue is whether to compare with predictions based on
the entire data set or predictions based on dividing the data into training
and testing data sets. Most researchers agree that the latter technique is
better, but if we use anything other than a simple leave-one-out procedures
results are not auditable unless the specific data set partitions are defined.”
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Further highlighting the need of multiple training sets, Kirsopp and Shepperd [186]
came to the conclusion:

“The major conclusion of this paper is, however, that it is dangerous to
make inferences concerning the accuracy of prediction systems based on
a small number of sampled training sets.”

Kitchenham et al. [191] also highlight that a variety of resampling techniques used
by different studies is one of the reasons that impedes a formal meta-analysis of the
primary study results:

“Some studies used independent holdout samples; others used different
types of cross validation (e.g., 3-fold, 20-fold, leave-one-out cross val-
idation) . . . These differences made it impossible to perform any formal
meta-analysis of the primary study results.”

A recent systematic review comparing genetic programming (GP) with other meth-
ods of predictive studies [5] indicate that for studies applying GP for software fault
prediction and software reliability growth modeling, it is not always clear which re-
sampling method is used (Table 7.1). The third column in Table 7.1 indicate that four
out of eight studies did not mention the resampling method used while three out of
eight studies used hold-out validation. This shows that while use of resampling meth-
ods is an unsettled matter in predictive studies in software engineering in general, it
requires even more investigation when using GP as a prediction technique.

Table 7.1: Data set characteristics for primary studies on GP application for software
fault prediction and reliability growth. All studies included the use of industrial data.
(?) indicates absence of information.

Study No. of data sets Sampling of training and testing sets Data sets public or private
[160] 1 ? Public
[161] 1 ? Public
[322] 1 10-fold cross-validation Public
[355] 1 ? Private
[356] 1 ? Private
[6] 3 First 2

3 of the data set for training and the rest for testing Private
[73] 2 First 2

3 of the data set for training and the rest for testing Public & Private
[262] 1 First 2

3 of the data set for training and the rest for testing Public

We therefore seek an answer to the following research question in this chapter:

RQ: How do different resampling methods compare with respect to predicting fault-
prone software components using GP?
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The affect of resampling methods on GP evolution has sporadically been discussed
in research but not in a manner as in this study. Ross [283] studied the effects of
randomly sampled training data on program evolution in GP. The study concluded
that GP performance is better when the samples are more representative of the target
behavior. The study did not empirically evaluate different resampling methods but
highlighted a need of doing so:

“The effects of re-sampling are not as clear, and further work is required
to study the relationship between re-sampling rates and GP performance.”

In this study, we use GP as a software quality classification approach and evalu-
ate the influence of different resampling methods on the outcome of software quality
classification. We present an extensive comparison between five common resampling
methods: hold-out validation, repeated random sub-sampling, 10-fold cross-validation,
leave-one-out cross-validation and non-parametric bootstrapping using five different
publicly available data sets.

The rest of the chapter is organized as follows: Section 7.2 presents relevant related
studies. Section 7.3 presents the study design including an introduction to the differ-
ent resampling methods used, an introduction to genetic programming and symbolic
regression, the data sets used, performance estimation of classification accuracy and
the experimental setup. The results are presented in Section 7.4, and discussed in Sec-
tion 7.5. Validity issues make up Section 7.6 while conclusions appear in Section 7.7.

7.2 Related work
Few comparisons of standard resampling methods have been performed in software
engineering. Mittas and Angelis [238] used permutation tests and bootstrap to con-
struct confidence intervals for the difference in accuracy measures for software cost
prediction using regression and estimation by analogy. The emphasis of their study
was not to find the best model but rather to recommend a systematic comparison of
models using statistical hypothesis testing. Kirsopp and Shepperd [186] analyzed the
influence of number of training sets for software effort prediction using case-based
prediction on two data sets. They evaluated the hold-out procedure and demonstrated
that results may be misleading unless at least 5 different training sets, and preferable
more than 20, are used. Green and Ohlsson [114] used artificial neural network en-
sembles to compare 5×5 fold cross-validation, 25-fold bootstrap and 25-fold hold-out
using three cut-offs (0.25, 0.50 and 0.75). They showed that 5×5 fold cross-validation
and hold-out with cut-offs 0.25 and 0.50 are the best resampling strategies for estimat-
ing the true performance of ANN ensembles. Kohavi [194] experimented with C4.5
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and Naive-Bayesian classifier using six industrial data sets to compare 0.632 bootstrap
and k-fold cross-validation with different values of k. They concluded that 10-fold
stratified cross-validation is the best method for the data sets used. A study by Schaf-
fer [287] concluded that on average 10-fold cross-validation strategy outperforms C4.5
decision-trees and back-propagation neural networks. Molinaro et al. [242] used four
classification algorithms (linear discriminant analysis, diagonal discriminant analysis,
nearest neighbor and classification and regression trees (CART)) to compare different
resampling methods. Among several conclusions, one of them was that leave-one-out
cross-validation and 10-fold cross-validation had the smallest bias for diagonal dis-
criminant analysis, nearest neighbor, CART and linear discriminant analysis.

While other references to resampling methods may be found in literature, we have
focussed above on more recent ones and their use in comparative studies.

7.3 Study design
In this section we present an introduction to the different resampling methods used,
an introduction to genetic programming and symbolic regression, the data sets used,
performance estimation of classification accuracy and the experimental setup.

7.3.1 Resampling methods
Resampling is an important concept in inferential statistics. It is used to draw a large
number of samples from the original one and thus to reach an approximation of the
underlying theoretical distribution. It is based on repeated sampling within the same
data set [351].

Intuitively the most accurate way to establish an approximation of the underlying
theoretical distribution is to examine the values for every member of the population
but this might not be possible due to high costs and high time-consumption [111].
That is why we need accurate methods to use sample statistics to estimate population
parameters. Parametric statistics relies on the properties of the central limit theorem
to generalize sample statistics. Problems associated with most data sets threaten the
assumptions of these approaches. Conventional non-parametric alternatives offer free-
dom from distribution assumptions but more complex experimental designs do not have
non-parametric equivalents and there is always a concern for loss of statistical power.
Resampling methods are a new dimension of distribution-free methods that address
many of the limitations of conventional parametric and non-parametric methods [271].
Resampling methods are particularly useful in the absence of large, independent test
sets with normal distributions [32].

175



Resampling methods in software quality classification. . .

Resampling is especially important for the validity of software engineering predic-
tive studies since software engineering data sets are scarce and data limited. This has
to do with difficulties in getting large data sets due to the data being confidential or
where the data simply is too rudimentary in its nature [7]. The below mentioned points
highlight the benefits of using resampling methods [284, 351]:

1. Resampling methods do not make any assumptions about data distribution.

2. One can analyze any statistic.

3. Resampling methods are less complex and do not require sophisticated mathe-
matical background.

4. There is no specific sample size restriction.

5. Resampling methods provide a way to achieve internal replication [308].

The resampling methods divide the data into learning set and a test set. This di-
vision is crucial since performance of a particular modeling technique on the learning
set can not be a good indicator of performance on an independent test set [341]. The
learning set is the one that is used to train the models using different techniques. Some-
times it is required to split the learning data further into two sets: training set and the
validation set. The training set is used for the models to learn from the data and then the
validation set is used to optimize the parameters of the learned models. The test set is
used to evaluate the trained models on one or more accuracy measures. We will solely
examine the partitioning of data into training and test sets for the purpose of delimiting
ourselves to reach an early evaluation of the resampling methods.

We examine the two most common resampling methods: cross-validation and boot-
strapping. We also compare the split-sample or the hold-out method which acts as a
baseline and an obvious split choice [341]. We briefly describe these methods below
and refer the reader to a more detailed discussion in [93, 94, 304].

Cross-validation

Cross-validation (CV) is widely used in regression and classification problems to obtain
nearly unbiased estimators of generalization errors. The inherent idea is to train and test
the model on separate subsets of data to get model’s prediction strength as a function
of a CV error curve. Cross-validation (CV) consists of [93]:

1. deleting the points xi from the data set one at a time;

2. recalculating the prediction rule on the basis of the remaining n−1 points;
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3. seeing how well the recalculated rule predicts deleted point, and;

4. averaging these predictions over all n deletions of an xi.

Cross-validation is primarily used to reduce over-fitting, which refers to a model’s
poor performance on the test set or lack of generalization. There are generally three
types of cross-validation: repeated random subsampling, k-fold cross validation and
leave-one-out cross-validation.

Repeated random sub-sampling validation (Monte-Carlo cross-validation) This
method randomly divides (without replacement) the original sample into training and
test sets numerous times. The results of the trained model are evaluated using the test
set for every sub-sample (Figure 7.1a [119]).

A disadvantage of this approach is that some observations may never be selected in
the test sets whereas others may be selected more than once. Therefore the data may
not be optimally used in every split of repeated random sub-sampling.

In this study we randomly split the sample into learning and test set 10 times. In
each split one third of the sample was used as a test set while the remaining two-third
was used as a training set. For each split we ran the GP algorithm 10 times and picked
the GP solution giving the least classification error. We calculated the sample statistics
– AUC, PF and PD (discussed in Section 7.3.4) for each of the 10 splits and present the
average.

k-fold cross-validation (Rotation estimation) This method splits the data into k sub-
sets (or folds) and each one of these k subsets is used as a testing set to evaluate the
models’ performance by using k− 1 subsets as training set. The cross validation pro-
cess is repeated k times. The evaluation measure (e.g., the error estimate) for each
of these folds is averaged to reach an overall measure (or the error estimate). K-fold
cross-validation has the advantage that all values in the data set are eventually used for
both training and testing. A common choice for k-fold cross-validation is k = 10; thus
called as 10-fold cross-validation [341] (Figure 7.1b). We used 10-fold cross-validation
in this study.

For each split, we ran the GP algorithm 10 times and picked the GP solution giving
the least classification error. We calculated the sample statistics – AUC, PF and PD
(discussed in Section 7.3.4) for each of the 10 splits and present the average.

Leave-one-out cross-validation (LOOCV) In LOOCV, each observation in the sam-
ple is used once in the test set. Using a single observation as the test set allows the
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model to be trained on the remaining observations. This is the extreme case of k-
fold cross-validation where k being equal to the number of observations in the test set
(Figure 7.1c). For large samples LOOCV might not be favorable due to high compu-
tational times but the advantage is that it uses the greatest possible amount of data for
training [341].

For each split, the best GP solution was picked and sample statistics (AUC, PF and
PD) were calculated. The average of these statistics in then presented.

bootstrapping

bootstrapping is a resampling method with replacement. For a data set of size n, a boot-
strap sample is created by randomly selecting (with replacement) n examples and this
set is then used for training. Because some elements in the training set will be repeated,
the testing set consists of the instances in the original data set that have not been picked
in the training set. The process is repeated for a specified number of bootstrap samples
or folds (Figure 7.1d). There are several variations of the bootstrap resampling method
but we will only use the non-parametric bootstrap method, which makes no assumption
about the form of the population’s distribution. The non-parametric bootstrap work as
follows [327]:

• Collect the data set of n samples {x1, . . . ,xn}.

• Create B bootstrap samples {x∗1, . . . ,x
∗
n} where each x∗i is a random sample with

replacement from {x1, . . . ,xn}.

• For each bootstrap sample {x∗1, . . . ,x
∗
n} calculate the required statistic θ . The

distribution of these B estimates of θ represents the bootstrap estimate of uncer-
tainty about the true value of θ .

The required statistics in our case are the AUC, PF and PD measures (discussed
in Section 7.3.4). We repeated the bootstrap method 10 times for each data set while
running the GP algorithm 10 times for each bootstrap sample. We selected the GP
solution giving the minimum error rate as a result of 10 runs of GP algorithm for each
bootstrap sample and calculated the required statistics. The final AUC, PF and PD
statistics were taken as an average from each of the bootstrap samples.

Hold-out validation

Hold-out validation involves splitting the data set into a single partition consisting of a
training set and a test set (Figure 7.1e). The commonly used practice is to hold-out one-
third of the data for testing and to use two-thirds for training [341]; we use the same in
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Figure 7.1: The resampling methods used for comparison.

this study. The advantage of this method is its simplicity and ease of computation but
it wastes data that could have been used for improving the classifier.

7.3.2 Genetic programming (GP) and symbolic regression applica-
tion of GP

An introduction to GP and symbolic regression application of GP is given in Section 3.3
of this thesis.

The GP parameters used for this study are shown in Table 7.2. The GP programs
were evaluated according to the sum of absolute differences between the obtained and
expected results in all fitness cases, ∑

n
i=1 | ei− e∗i |, where ei is the actual fault count
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Table 7.2: GP control parameters.
Control Parameter Value
Population size 30
Number of generations 100
Termination condition 100 generations
Function set {+,−,∗,sin,cos, log}
Terminal set {x}
Tree initialization ramped half-and-half
Initial maximum number of nodes 28
Maximum number of nodes after genetic operations 512
Genetic operators crossover, mutation, reproduction
Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1
Selection method lexictour
Elitism replace

data, e∗i is the estimated value of the fault count data and n is the size of the data set
used to train the GP models. The selection method used is lexicographic parsimony
pressure tournament [221] (short named as lexictour) in which the best individuals are
selected from a random number of individuals. If two individuals are equally fit, the
tree with fewer nodes is chosen as the best. For a new population, the parents and
offsprings are prioritized for survival according to elitism. The elitism level specifies
the members of the new population, to be selected from the current population and the
newly generated individuals. The elitism level used in this study is replace, in which
children replace the parent population having received higher priority of survival, even
if they are worse than their parents. GPLAB, the GP toolbox for MATLAB is used for
running the GP algorithm [292].

7.3.3 Public domain data sets
The data sets used in this study are taken from the PROMISE data repository [37]
which is a collection of data sets freely available for performing predictive studies in
software engineering. Specifically we make use of 5 data sets from the PROMISE
repository namely AR6, AR1, PC1 req, JM1 req and CM1 req.

AR6 and AR1 data sets contain fault-proneness data from two embedded software
for white-goods products written in the C programming language. AR6 consists of 101
components while AR1 contains data from 121 components. The collected metrics
for AR6 are McCabe, Halstead and LoC measures while for AR1 several function
level static code attributes have been collected. More information on these data sets is
available at [319, 320].

The remaining data sets (PC1 req, JM1 req and CM1 req) come from the NASA
metrics data program (MDP) data repository [219]. These data sets contain different
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requirement metrics. Since not all the requirements were linked to the components,
therefore, subsets of the original sets are used which are available at the PROMISE
repository [149] and have been used in a study by Jiang et al. [148]. The data sets
PC1 req, JM1 req and CM1 req relate to NASA’s earth orbiting satellite system, real-
time ground system and spacecraft instrument respectively. Table 7.3 provides further
information regarding all data sets used in this study.

Table 7.3: Information on data sets used in the study.
Data set No. of records % with faults Language Domain No. of predictor

variables
AR6 101 14.85 C White-goods embedded software 29
AR1 121 6.61 C White-goods embedded software 29
PC1 req 320 33.43 C Earth orbiting satellite system 8
JM1 req 37 45.94 C Real-time ground system 8
CM1 req 89 77.53 C Spacecraft instrument 8

7.3.4 Performance estimation of classification accuracy
We restrict ourselves to evaluate the performance of binary classifiers which catego-
rizes instances or software components as being either fault-prone ( f p) or non-fault
prone (n f p). We are interested in predicting whether or not a component contains any
faults, rather than the total number of faults. A common assessment procedure for bi-
nary classifiers is to count the number of correctly predicted components over hold-out
(test set) data. A fault prediction sheet [234], as in Figure 7.2, is commonly used.

FN: False NegativeTN: True Negative

FP: False Positive TP: True Positive
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Figure 7.2: The fault prediction sheet (confusion matrix).

Based on the different possibilities in the fault prediction sheet various measures
are typically derived. El-Emam et al. [95] have derived a number of measures based on
this; the most common ones being rate of faulty component detection (or probability
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of detection (PD) or specificity), overall prediction accuracy (acc), probability of false
alarm (PF or recall) and precision (prec). However the measure of overall accuracy
acc has been criticized as being misleading since it ignores the data distribution and
cost information [226]. The other measures of PD, PF and prec also reveal only one
aspect of the prediction models at a time; thus their use introduces bias in performance
assessment. Use of these measures also complicate comparisons and model selection
since there is always a trade-off between three measures, e.g., one model might exhibit
a high PD but lower prec [226].

A receiver operating characteristic (ROC) curve [98] and the area under a ROC
curve (AUC) [126] have been shown to be more statistically consistent and discrim-
inating than predictive accuracy, acc [212]. The ROC curve is also a more general
way, than numerical indices, to measure a classifier’s performance [350]. A ROC
curve provides an intuitive way to compare the classification performances of differ-
ent techniques. ROC is a plot of the trade-off between the ability of the classifier to
correctly detect fault-prone components (PD) and the number of non-fault prone com-
ponents that are incorrectly classified (PF) across all possible experimental threshold
settings [150, 226]. In short the (PF, PD) pairs generated by adjusting the algorithms
threshold settings forms an ROC curve. A typical ROC curve is shown in Figure 7.3.
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Figure 1. A defect level prediction sheet.

These results are discussed in Section 5. Section 6 sum-

marizes our findings and points out possible directions for

future work.

2 Measurement

In this study, we develop statistical models to predict de-

fective software modules. Requirement metrics, module-

based code metrics, and the fusion of requirement and mod-

ule metrics serve as predictors. The predicted variable is

whether one or more defects exists in the given module.

Figure 1 describes prediction outcomes.

Throughout the paper, we use the following set of evalu-

ation measures. The Probability of Detection (PD), also
called recall or specificity in some literature [13, 18]), is

defined as the probability of the correct classification of a

module that contains a defect:

PD =
TP

TP + FN

The Probability of False alarm (PF ) is defined as the ratio
of false positives to all non-defect modules:

PF =
FP

FP + TN

Intuitively, we would like to maximize PD and at the same

time minimize PF . Since we have a limited space avail-
able here, we refer readers to a recent publication [16]

which provides a rather comprehensive overview of statis-

tical methods relevant for evaluating predictive models in

software engineering.

3 Experimental Methodology

3.1 Random Forests

Random Forest is a tree-based classifier which has

demonstrated its robustness in building software engineer-

ing models [13]. As implied from its name, it builds an

ensemble, i.e., the “forest” of classification trees using the

following strategy:
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Figure 2. Regions of a typical ROC curve.

1. The root node of each tree contains a bootstrap sample

data. Each tree has a different bootstrap sample.

2. At each node, a subset of variables are randomly se-

lected to split the node.

3. Each tree is grown to the largest extent possible with-

out pruning.

4. When all trees in the forest are built, test instances are

fitted into all the trees and a voting process takes place.

The forest selects the classification with the most votes

as the prediction of new instances.

Random forest [6] as a machine learning classifier pro-

vides many advantages. One, it automatically generates the

importance of each attribute in the process of classification.

Two, by varying voting thresholds in step 4 of the algorithm,

we can generate a Receiver Operator Characteristic
(ROC) curve that represents an entire range of achievable

performance characteristics relative to PD and PF . In the
experiments, we build 20 random forests for each data set,

each with a different voting threshold ranging from 0.05 to

0.95.

3.2 ROC curve

In this study, we apply the same set of classification al-

gorithms to the set of software engineering datasets. There-

fore, we need an intuitive way to compare the ensuing clas-

sification performance. An ROC curve provides a visual

comparison of the classification performance. It is a plot

of PD as a function of PF across all the possible exper-

imental settings. A typical ROC curve is shown in Figure

2. Typical ROC curve has a concave shape with (0,0) as the

beginning and (1,1) as the end point.

Figure 2 provides an insight into the implications of the

classification performance to software engineering experi-

ments. A straight line connecting the (0,0) and (1,1) implies

that the performance of a classifier is no better than random

2

Figure 7.3: A typical ROC curve.

This concave curve has the probability of detection (PD) on y-axis while the x-axis
shows the probability of false alarms (PF). The start and end points for the ROC curve
are (0,0) to (1,1), respectively. The software engineers need to identify the points on
the ROC curve that suits their risks and budgets for the project [148]. A straight line
from (0,0) to (1,1) offers no information while the point (PF = 0,PD = 1) is the ideal
point on the ROC curve. A negative curve bends away from the ideal point while a
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preferred curve bends up towards the ideal point. As such, if we can divide the ROC
space into four regions as shown in Figure 7.4, the only region with practical value for
software engineers is region A with acceptable PD and PF values. The regions B, C
and D represent poor classification performance and hence are of little to no interest to
software engineers [226].
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Figure 7.4: Four regions in the ROC space.

Area under the curve (AUC) [41] acts as a single scalar measure of expected per-
formance and is an obvious choice for performance assessment when ROC curves for
different classifiers intersect [209] or if the algorithm does not allow configuring dif-
ferent values of the threshold parameter. AUC, as with the ROC curve, is also a general
measure of predictive performance since it separates predictive performance from class
and cost distributions [209]. The AUC measures the probability that a randomly chosen
f p component has a higher output value than a randomly chosen n f p component [98].
The value of AUC is always between 0 and 1; with a higher AUC indicating that the
classifier is on average more to the upper left region A in Figure 7.4.

We use AUC and the location of (PF, PD) pairs in the ROC space as measures of
classification performance for the different resampling methods.

7.3.5 Experimental setup
For each sample of an individual data set for each resampling method (except for
LOOCV), the GP algorithm is run for 10 times (GP being a stochastic algorithm).
The best GP individual from the 10 runs of the algorithm is chosen for each sample of
an individual data set. The sample statistics (AUC, PF, PD) were calculated for each of
these best GP individuals and then averaged.

For LOOCV, running GP algorithm for 10 times for each sample of an individual
data set was not feasible due to high computational times, therefore the GP was ran
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once for each leave-one out sample of a particular data set. The sample statistics (AUC,
PF, PD) from each leave-one-out samples were then averaged.

Figure 7.5 further illustrates the experimental procedure that was used for hold-
out validation, repeated random sub-sampling, 10-fold cross-validation, leave-one-out
cross-validation, non-parametric bootstrap resampling methods. Note that for hold-out
validation, each data set is randomly split into a training set (2/3 of the data) and a
testing set (1/3 of the data) as is discussed in Subsection 7.3.1.
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Figure 7.5: The experimental procedure.

7.4 Results

In this section we present the results of the empirical comparison in terms of (PF, PD)
pair data in the ROC space and the AUC. All the results are based on the AUC, PF and
PD values that represent the average over all the sub-samples (except for the hold-out
validation where we have a single split of data).
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7.4.1 (PF, PD) in the ROC space

AR6 data set

Table 7.4 shows the (PF, PD) pairs for the AR6 data set for each of the resampling
methods. The corresponding location of these pairs in the ROC space is shown in

Table 7.4: (PF, PD) pair data for the AR6 data set.
PD PF

Hold-out validation 0.33 0.06
Repeated random sub-sampling validation 0.10 0.40
10-fold cross-validation 0 0.01
Leave-one-out cross-validation 0.13 0.01
bootstrapping 0.16 0.04

Figure 7.6. For all the resampling methods the (PF, PD) pairs are in the region C of the
ROC space but hold-out and bootstrap resampling methods tend to have comparatively
higher PD and lower PF values which is desirable.

Figure 7.6: (PF, PD) pair data for the AR6 data set in the ROC space. HO, RRSS,
10-fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-
sampling, 10-fold cross-validation, leave-one-out cross-validation and non-parametric
bootstrapping.
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AR1 data set

Table 7.5 shows the (PF, PD) pairs for the AR1 data set for each of the resampling
methods. The corresponding location of these pairs in the ROC space is shown in

Table 7.5: (PF, PD) pair data for the AR1 data set.
PD PF

Hold-out validation 0 0
Repeated random sub-sampling validation 0 0.05
10-fold cross-validation 0 0
Leave-one-out cross-validation 0 0
bootstrapping 0.07 0.08

Figure 7.7. Again as with data set AR6, all the resampling methods have (PF, PD)
pairs in the region C while bootstrap tends to have only a slightly better PF and PD
values.

Figure 7.7: (PF, PD) pair data for the AR1 data set in the ROC space. HO, RRSS,
10-fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-
sampling, 10-fold cross-validation, leave-one-out cross-validation and non-parametric
bootstrapping.

PC1 req data set

Table 7.6 shows the (PF, PD) pairs for the PC1 req data set for each of the resampling
methods.
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Table 7.6: (PF, PD) pair data for the PC1 req data set.
PD PF

Hold-out validation 0 0
Repeated random sub-sampling validation 0.21 0.35
10-fold cross-validation 0.25 0.16
Leave-one-out cross-validation 0.39 0.24
bootstrapping 0.62 0

The corresponding location of these pairs in the ROC space is shown in Figure 7.8.
The only method not in region C is bootstrap with (PF, PD) pair of (0, 0.62) that places
it in region A.

Figure 7.8: (PF, PD) pair data for the PC1 req data set in the ROC space. HO, RRSS,
10-fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-
sampling, 10-fold cross-validation, leave-one-out cross-validation and non-parametric
bootstrapping.

JM1 req data set

Table 7.7 shows the (PF, PD) pairs for the JM1 req data set for each of the resampling
methods.
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Table 7.7: (PF, PD) pair data for the JM1 req data set.
PD PF

Hold-out validation 1 1
Repeated random sub-sampling validation 0.54 0.46
10-fold cross-validation 0.47 0.47
Leave-one-out cross-validation 0.50 0.43
bootstrapping 0.58 0.58

The corresponding location of these pairs in the ROC space is shown in Figure 7.9.
This time we see a wider spread of (PF, PD) pairs in the ROC space with repeated
random sub-sampling validation having the (PF, PD) pair located in region A. Both
hold-out validation and bootstrapping have high (PF, PD) values and are thus conse-
quently placed in region B.

Figure 7.9: (PF, PD) pair data for the JM1 req data set in the ROC space. HO, RRSS,
10-fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-
sampling, 10-fold cross-validation, leave-one-out cross-validation and non-parametric
bootstrapping.

CM1 req data set

Table 7.8 shows the (PF, PD) pairs for the CM1 req data set for each of the resampling
methods.
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Table 7.8: (PF, PD) pair data for the CM1 req data set.
PD PF

Hold-out validation 1 1
Repeated random sub-sampling validation 1 1
10-fold cross-validation 1 0.33
Leave-one-out cross-validation 0.54 0.28
bootstrapping 0.96 1

The corresponding location of these pairs in the ROC space is shown in Figure 7.10.
We see here the concentration of (PF, PD) pairs within two regions of the ROC space.
For 10-fold cross-validation and leave-one-out cross-validation, the (PF, PD) pairs lie
in region A while for rest of the resampling methods the (PF, PD) pairs are in region B.

Figure 7.10: (PF, PD) pair data for the CM1 req data set in the ROC space. HO, RRSS,
10-fold, LOOCV, bootstrap are short for hold-out validation, repeated random sub-
sampling, 10-fold cross-validation, leave-one-out cross-validation and non-parametric
bootstrapping.

7.4.2 AUC statistic
Table 7.9 shows the empirical comparisons among the resampling methods in terms of
mean AUC values. The resampling methods providing the best AUC for a particular
data set is highlighted in bold face. bootstrapping results in higher AUC values for two
data sets (AR1 and PC1 req) while hold-out cross-validation, 10-fold cross-validation
and leave-one-out cross-validation results in the highest AUC value for one data set
each.

bootstrapping AUC values suggest that it might be the most useful resampling
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Table 7.9: Hold-out test set results of five resampling methods in terms of the AUC.
Data set Resampling methods

Hold-out Repeated random 10-fold CV LOOCV bootstrapping
sub-sampling

AR6 0.63 0.46 0.49 0.59 0.56
AR1 0.5 0.48 0.5 0.49 0.53
PC1 req 0.5 0.5 0.5 0.53 0.55
JM1 req 0.5 0.57 0.75 0.53 0.49
CM1 req 0.5 0.52 0.42 0.61 0.5

method but we need to test for any significant differences in the AUC values. This
is achieved by using the Kruskal-Wallis test, which is a non-parametric alternative to
analysis of variance. It is used to test the null hypothesis H0 that k independent sam-
ples are from identical populations. The Kruskal-Wallis test statistic h is computed as
follows:

h =
12

n(n+1)

k

∑
i=1

r2
i

ni
−3(n+1) (7.1)

where n =total number of observations; k =number of independent samples; ri =sum
of rank corresponding to ni observations in the ith sample. If h falls in the critical re-
gion H > χ2

0.05 with ν = k− 1 degrees of freedom, null hypothesis H0 is rejected at
0.05 level of significance [331].

The h statistic came out to be 9.52 which lies in the critical region (h > 9.49 for
ν = 4 degrees of freedom and 0.05 significance level). Therefore we can reject the
null hypothesis that the samples are from identical populations. Now one can proceed
with a post hoc test to determine which particular comparisons differ significantly. We
used Wilcoxon rank sum test with Bonferroni correction for the pair-wise comparisons.
The Bonferroni correction is a multiple-comparison correction, which is used when
performing several tests simultaneously. However, performing several tests simultane-
ously also mean that the alpha value needs to be lowered to account for the number
of comparisons being performed. One way of doing this is to use an alpha value di-
vided by the number of comparisons. Since we compare five resampling methods, we
have 5(5−1)

2 = 10 comparisons to make. Therefore we evaluate the comparisons using
one-tenth of the 5% significance level i.e., α = 0.005. It is observed that there is no
statistically significant differences between the different resampling methods i.e., the
respective p-values are greater than 0.005.
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7.5 Analysis and discussion

The results of the Wilcoxon rank sum tests represent an interesting outcome. Although
there are a few differences between the AUC values for the different resampling meth-
ods (Table 7.9) they, however, do not differ significantly. There can be multiple reasons
for such an outcome and what we discuss here is intended to be suggestive rather than
definitive:

Imbalanced data sets Data sets having a high proportion of either fault-prone or
non-fault prone components would be likely to have non-significant performance out-
comes no matter what resampling method is used. This is because the performance
outcome of the dependent variable yε{fp|nfp} occurring most of the times would dom-
inate the classification.

In our study the AR1 data set has 6.61% of records representing fault-prone while
the CM1 req data set consists of 77.5% of records representing fault-prone. For
JM1 req, with 45.94% of records representing fault-prone (thus representing a more
balanced representation), 10-fold cross-validation is able to achieve an impressive AUC
value of 0.75. This reasoning is also supported by a study by Kohavi [194] who recom-
mends using stratification i.e., the folds are stratified so that they contain approximately
the same proportions of the labels as the original data set.

Learning from imbalanced data sets is a well-known problem in machine learning.
There are a number of proposed methods to resample the data in ways that diminish the
effect of class imbalance. Oversampling methods involve creating data for the minority
class to reach a size close to that of the larger class while undersampling methods elim-
inate larger class members to match the size of the smaller class. A study by Pelayo
and Dick [267] show that oversampling minority class examples improved the classifi-
cation accuracy using C4.5 decision-tree classifier. While oversampling methods might
improve classification accuracy, one has to be mindful that creation of ‘synthetic’ data
might lack in appeal for a practical use of a classification algorithm. Stratification
within the data set might be a more useful alternative in this case.

Insignificant predictor variables In case of a weak relationship between the pre-
dictor variables and the dependent variable, the performance outcomes are less depen-
dent on the resampling methods used since the potential of these resampling methods
would not be utilized optimally. The data sets PC1 req, JM1 req and CM1 req contain
requirement metrics which showed a weak relationship in classifying fault-proneness
in a study by Jiang et al. [148]. Therefore it is more likely that the resampling methods
perform non-significantly on these data sets. For data sets AR6 and AR1 containing
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code attributes, the relationship with fault-proneness is present but is limited.

High dimensional data set With a data set having large features, feature selection is
an important task. In this study the feature selection was not performed before running
the GP algorithm, primarily to exploit GP’s own feature selection capability [201].
However with high feature space the efficiency and effectiveness of GP (like any other
machine learning technique) can dramatically drop [272]. This potentially minimizes
the impact of a particular resampling method used.

We may conclude from above reasonings that the nature of the data sets play an
important role in the classification which also has an influence on the performance of
the resampling methods. Secondly the selection of a non-deterministic algorithm like
GP is shown to have a minimal dependency on the resampling method chosen, though
this behavior is also related to the actual nature of the data sets as already discussed
above.

Moreover the sample size has an impact on the resampling methods. For compar-
atively smaller data sets (JM1 req, CM1 req) hold-out validation is clearly not a good
choice due to bias resulting from a reduced training set size, this result being in agree-
ment with the study by Green and Ohlsson [114]. LOOCV performs better in smaller
data sets due to the optimum use of the training data (0.53 and 0.61 AUC values for
JM1 req and CM1 req respectively), while for larger data sets (AR6, AR1, PC1 req) it
is interesting to find that there is not much difference between 10-fold cross-validation
and LOOCV. Therefore 10-fold cross-validation might be more preferable to LOOCV
for larger data sets. Such a choice would also guard against the potential large variance
in the error estimate for LOOCV caused by a evaluating against only a single point in
the test set [276].

In terms of location of (PF, PD) pairs in the ROC space, bootstrapping appears to
be better placed (twice in the preferred region A). This indicates that bootstrapping
should be considered as a resampling method for classification studies. In the context
of software effort prediction studies, Kirsopp and Shepperd [186] argue that bootstrap-
ping suffers from the disadvantage that resampling with replacement might not fit well
with the practical use where there will not be multiple copies of the same project. This
argument, however, holds less for software fault prediction studies where certain inde-
pendent variables relate to fault-proneness rather than project-level outcome; therefore
it is more realistic to have multiple records of the same component within the scope of
a single project.

In statistics, there are existing studies to show that bootstrapping offers significant
improvements over cross-validation [110, 333]. It is fitting that the classification stud-
ies in software engineering learn from these positive results. It is also important that

192



Resampling methods in software quality classification. . .

the use of bootstrapping (and its variants) are evaluated more for publicly available
software engineering data sets. The work of Mittas and Angelis [238] is in the right
direction and more such studies are required.

Table 7.10 shows the best individuals from the resampling methods that gave the
highest AUC values for different data sets. For AR6, Table 7.10 shows the best-of-
the-run individual for hold-out validation; for AR1 and PC1 req Table 7.10 shows the
best-of-the-run individuals for each of the 10 bootstrap samples. For JM1 req the best-
of-the-run individuals for each fold of 10-fold cross-validation are given; while for
CM1 req, 10 random individuals are shown as a result of LOOCV. While the non-
deterministic nature of GP is evident from Table 7.10 (producing different models for
different runs of the algorithm), it is interesting to note the use of fewer predictor
variables for predicting an outcome. This reinforces our earlier comment that having
reduced dimensionality of data sets with fewer significant predictor variables would
allow the GP algorithm to explore much richer combinations of functions and predictor
variables having better fitness values. We take the case of best individuals from two
data sets, AR1 and JM1 req. For AR1, an analysis of the best-of-the-run individuals
reveal that only 15 of the 29 predictor variables make up the most fit solutions (they
appear once or more in the solutions in Table 7.10).

Out of these 15 predictor variables there are some that appear more frequently than
others, indicating their greater significance in the prediction outcome. This is shown
in Figure 7.11a. For JM1 req, although we have a smaller set of predictor variables,
still there exists a subset, which is more significant than its parent. This is depicted
by the fact that only six out of eight variables appear in the best-of-the-run solutions
(Figure 7.11b).

All what we discuss is related to using GP as a software quality classification ap-
proach. An important question to raise here is that whether or not there are differences
in resampling methods when other techniques are used? For linear regression, it is
shown in [50] that k-fold cross-validation performs better than LOOCV for model se-
lection and evaluation; while bootstrap gave an edge in terms of model evaluation when
compared with cross-validation. Using decision-trees and Naı̈ve Bayes, Kohavi [194]
showed the favorability of 10-fold cross-validation. Green and Ohlsson [114] found
cross-validation and hold-out (cut-off 0.25, 0.50) as being able to better estimate the
true performance of artificial neural network ensembles. While it is hard to find syn-
ergies with respect to a chosen classification technique from the above results k-fold
cross-validation, however, scores better in general. Our study did not find 10-fold
cross-validation and LOOCV to be giving significantly better results in comparison
with other resampling methods, but they showed some promise in the use of the boot-
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(a) Frequency of predictor variables appearing in best-of-the-run solutions
for AR1 data set.

(b) Frequency of predictor variables appearing in best-of-the-
run solutions for JM1 req data set.

Figure 7.11: Frequencies of predictor variables in best-of-the-run solutions for AR1
and JM1 req data sets.

strap method. Perhaps more empirical studies involving different variants of bootstrap
and different number of folds in k-fold cross-validation are required to reach a con-
fident statement about the choice of resampling method, given different classification
techniques and data sets. Replication studies [258] hold promise in verifying the gen-
eralizability of existing research.

What we can summarize from this study is that there are some implications on
predictive studies in software engineering:

1. We need to evaluate the use of bootstrapping more for software engineering data
sets. This is particularly promising for software fault prediction and software
quality classification studies where multiple copies of the same records do not
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pose a threat for a practical use.

2. If bootstrapping is not in contention, LOOCV is preferred for smaller data sets
and 10-fold cross-validation for larger data sets.

3. For imbalanced data sets stratification might improve the performance outcome
i.e., the folds are stratified so that they contain approximately the same propor-
tions of the labels as the original data set.

4. Using automated tool support it might be possible to report results using more
than one resampling methods.

5. It is important to take into account the data set properties before making a deci-
sion about a resampling method to select. Feature selection is one of the impor-
tant decision criteria.

7.6 Empirical validity evaluation
There can be different threats to the validity of study results [342]. Conclusion valid-
ity is concerned with a statistical relationship between the treatment and the outcome
with a given significance. We used Kruskal-Wallis test at 0.05 significance level with
a post-hoc test where we used Wilcoxon rank sum test with 0.05 significance level
with Bonferroni correction. While it is assumed that the power of a non-parametric
test is less than its parametric counterpart, we were not sure of the data satisfying the
assumptions of the parametric tests; therefore we resorted to the non-parametric sta-
tistical tests. The data sets used are from different domains and of different sizes;
we believe that they represent a suitable heterogeneous mix. Internal validity is con-
cerned with a causal relationship between the treatment and the outcome. GP is a
non-deterministic algorithm and different runs of the algorithm may give different re-
sults. Therefore, we followed a standard practice, i.e., to run the GP algorithm multiple
times for different folds of the different resampling methods; the exception being the
LOOCV where running GP multiple times was deemed not feasible. The selection of
resampling methods to compare was motivated by two factors: firstly, commonly used
methods in software engineering predictive studies and, secondly, other methods which
have given good results in other domains but not necessarily tried in software engineer-
ing to a large extent. The data sets used are publicly available so that the validity of the
study claims can be verified through replication. Construct validity is concerned with
the relation between theory and observation. While there are different ways to com-
pare different resampling methods (e.g., bias, variance, mean square error, to name a
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few), we chose the ones described in Section 7.3.4 after taking into account the pos-
sible drawbacks with prior approaches. Moreover, although bootstrapping might have
an edge with respect to the location of (PF, PD) pairs in the ROC space, one should
be mindful that bootstrapping is known not to perform well for some methodologies
like empirical decision-trees [194] and artificial neural network ensembles [114] for
being excessively optimistic. External validity is concerned with generalization of the
results. While other learning algorithms could have been selected our primary motive
was not to compare different algorithms for classification accuracy but to compare the
different resampling methods. The selection of GP was guided by its early positive
results as a software classification approach (see e.g., [215]).

7.7 Conclusion
We have reported an extensive empirical comparison of five resampling methods using
GP as a classifier over five public domain data sets from the PROMISE repository. We
used AUC and the location of (PF, PD) pairs in the ROC space as accuracy indicators
and used statistical testing procedures for contrasting different resampling methods.

Using (PF, PD) pair data across five data sets bootstrapping gave results in the pre-
ferred region of the ROC space for two data sets, indicating that bootstrapping should
be considered as a resampling method of choice in predictive studies in software engi-
neering. However, where the statistical comparison of individual resampling methods
is concerned, based on AUC, there were no significant differences. We then highlight
the possible reasoning of such an outcome, attributed to imbalanced data sets, insignif-
icant predictor variables and high dimensional data sets. Hold-out validation performs
less satisfactorily for comparatively smaller data sets where LOOCV performs better
due to optimal use of the training data. For comparatively larger data sets 10-fold
cross-validation is a better choice as compared to LOOCV.

An interesting area of future work is to investigate the outcome of different vari-
ants of bootstrapping for different software engineering data sets. Secondly resampling
methods are known to have complications when applied to time-series data, something
that remains relatively less explored [296, 207]. Thirdly, an interesting area is to study
the impact of different settings of GP parameters [99, 64] versus the resampling meth-
ods so that one can assess how much variability in the outcome can be attributed to
each factor.

The next chapter, Chapter 8, answers our second research question of the method-
ological investigation part. Chapter 8 aims at benchmarking feature subset selection
methods for software quality classification.
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Genetic programming for
feature subset selection:
A comparative evaluation
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W. Afzal & R. Torkar

8.1 Introduction
The purpose of feature subset selection (FSS) is to find a subset of the original fea-
tures of a data set, such that an induction algorithm that is run on data containing only
these features generates a classifier with the highest possible accuracy [195]. There are
several reasons to keep the number of features in a data set as small as possible:

1. Reducing the number of features allows classification algorithms to operate
faster, more effectively [124] and with greater simplicity [144].

2. Smaller number of features help reduce the curse of dimensionality1.

1The requirement that the number of training data points to be an exponential function of the feature
dimension.
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3. Smaller number of features reduce measurement cost as less data needs to be
collected [69].

4. Feature subset selection helps to achieve a better understandable model and sim-
plifies the usage of various visualization techniques [145].

The simplest approach to feature subset selection would require examining all pos-
sible subsets of the desired number of features in the selected subset and then selecting
the subset with the smallest classification error. However, this leads to a combinatorial
explosion, making exhaustive search all but impractical for most of the data sets [144].
Naturally, many feature subset selection methods are search-based [57], combined with
an attribute utility estimator to evaluate the relative merit of alternate subsets of at-
tributes [124]. Despite the general acceptance that software engineering data sets often
contain noisy, irrelevant, or redundant variables [11, 69], very few benchmark stud-
ies of feature subset selection methods on industrial data from software projects have
been conducted. Moreover, the use of evolutionary algorithms (e.g., genetic algorithm,
genetic programming) have sporadically been investigated as feature subset selection
methods [243, 294, 348] but not to an extent of comparing with state of the art feature
subset selection methods, using industrial data from software projects.

This chapter provides an empirical comparison of the state of the art feature subset
selection methods and an evolutionary computation method (genetic programming) on
five software fault prediction data sets from the PROMISE data repository [37]. Two
diverse learning algorithms, C4.5 and naı̈ve Bayes (NB) are used to test the attribute
sets given by each FSS method. We are interested in investigating if the classification
accuracy of C4.5 and NB significantly differ before and after the application of the
FSS methods. In order to formalize the purpose of the empirical study, we set forth the
following hypothesis to test:

H0: The classification accuracy of C4.5 and NB is not significantly different before
and after applying the FSS methods, i.e., ACCC4.5 = ACCNB.

H1: The classification accuracy of C4.5 and NB is significantly different before and
after applying the FSS methods, i.e., ACCC4.5 6= ACCNB.

The chapter is organized as follows. The next Section describes related work. Sec-
tion 8.3 briefly describes the FSS methods used in this study while

Section 8.4 describes the data sets used, the evaluation measure and the experimen-
tal setup. Section 8.5 presents the results of the empirical study and are discussed in
Section 8.6. Validity evaluation is given in Section 8.7 and the chapter is concluded in
Section 8.8.

200



Genetic programming for feature subset selection. . .

8.2 Related work
Janecek et al. [145] compared information gain, wrapper and variants of principal com-
ponent analysis (PCA) methods on two different data sets. The results showed that
wrappers tend to produce smallest feature subsets with very competitive classification
accuracy; however, they tend to be much more computationally expensive. Hall and
Holmes [124] did a benchmark comparison of six feature subset selection techniques
and recommended wrapper as the best method if speed is not an issue. Molina et
al. [241], Guyon and Elisseeff [120], Blum and Langley [33], Dash and Liu [81] pro-
vide good surveys reviewing work in machine learning on feature subset selection.

Menzies et al. [236] used different pruning strategies for rows and columns for
estimating software effort/cost. Kirsopp et al. [185, 187] and Chen et al. [69] also
highlighted the usefulness of some sort of feature subset selection for software ef-
fort estimation. Catal and Diri [65] applied correlation-based feature subset selection
method on class-level and method-level metrics for software fault prediction. They
showed that random forests give the best results when using this feature subset selec-
tion method. Khoshgoftaar et al. [180] and Wang et al. [332] showed good results
with a feature subset selection method based on the Kolmogorov-Smirnov two-sample
statistical test. In another study, Khoshgoftaar et al. [181] found that the use of a step-
wise regression model and a correlation-based feature subset selection did not yield
improved predictions.

8.3 Feature subset selection (FSS) methods
There are two commonly known categories of FSS methods: the filter approach and
the wrapper approach. In the filter approach, the feature selection takes place inde-
pendently of the learning algorithm and is based only on the data characteristics. The
wrapper approach, on the other hand, conducts a search for a good subset using the
learning algorithm itself as part of the evaluation function [195]. Hall and Holmes [124]
provides another categorization for FSS methods, namely, those methods that evaluate
individual attributes and those that evaluate subset of attributes.

We have chosen to empirically evaluate a total of seven FSS methods, two that
evaluate individual attributes (information gain attribute ranking and Relief), three that
evaluate subsets of attributes (correlation-based feature selection, consistency-based
subset evaluation, wrapper subset evaluation), one classical statistical method for di-
mensionality reduction (principal components analysis) and one evolutionary compu-
tational method (genetic programming). Following is a brief description of the FSS
methods used in this study.
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8.3.1 Information gain (IG) attribute ranking
This FSS method evaluates the ranking of each attribute by measuring the information
gain with respect to the class. Information gain is the amount of decrease in the entropy
of the class, and reflects the additional information about the class provided by the at-
tribute [124]. Each attribute is ranked based on the information gain between itself and
the class. More information about the method can be found in [349]. The information
gain attribute ranking is used with the ranker search method that ranks attributes by
their individual evaluations.

8.3.2 Relief (RLF)
Relief is an instance-based attribute ranking scheme and assigns a relevance score to
each feature based on the difference between the selected instance and the two nearest
instances of the same and opposite class. This process is repeated for a user specified
number of instances. Relief was later extended by Kononenko [196] to handle noise
and multi class data sets. More information about the method can be found in [183,
196]. The Relief method is used with the ranker search method that ranks attributes by
their individual evaluations.

8.3.3 Principal component analysis (PCA)
PCA transforms the original attributes into a set of uncorrelated variables called prin-
cipal components. PCA is normally done by Eigenvalue decomposition of the data
covariance matrix. The role of original variables in finding the principal components
is determined by loading factors. Variables with high loadings contribute more in ex-
plaining the variance. More information about the method can be found in [159]. PCA
is used with the ranker search method that ranks attributes by their individual evalua-
tions.

8.3.4 Correlation-based feature selection (CFS)
Correlation-based feature selection [122] uses the predictive ability of each feature in
a subset as well as the redundancy between them to evaluate the subset. The method
assigns high scores to subsets with attributes that are highly correlated with the class
(high predictive ability) and having low inter-correlation with each other (low redun-
dancy). More information about the method can be found in [122]. Correlation-based
feature selection is used with the greedy stepwise forward search through the space of
attribute subsets.
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8.3.5 Consistency-based subset evaluation (CNS)
Consistency-based subset evaluation use class consistency to evaluate subsets of fea-
tures. A search mechanism looks for the smallest subset with consistency equal to that
of the full set of attributes. More information about the method can be found in [214].
Consistency-based subset evaluation is used with the Greedy stepwise forward search
through the space of attribute subsets.

8.3.6 Wrapper subset evaluation (WRP)
The wrapper feature subset evaluation conducts a search for a good subset using the
learning algorithm itself as part of the evaluation function. More information about
the method can be found in [195]. Wrapper subset evaluation is used with the Greedy
stepwise forward search through the space of attribute subsets.

8.3.7 Genetic programming (GP)
A description of GP appears in Section 3.3 (Chapter 3) of this thesis.

The best GP program (having the minimum ∑
n
i=1 | ei− e

′
i |, where ei is the actual

outcome, e
′
i is the classification result and n is the size of the data set used to train the

GP models) over the 10 runs of each fold of the 10-fold cross-validation is selected.
The features making up this best GP program is then designated as the features selected
by the GP algorithm. The control parameters that were chosen for the GP system are
shown in Table 8.1. More information about GP can be found in [29, 272].

Table 8.1: GP control parameters.
Control parameter Value
Population size 50
Termination condition 500 generations
Function set {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Ramped half-and-half method
Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1
Selection method roulette-wheel

8.4 Experimental setup
We have applied the selected FSS methods to five industrial data sets from the PROMISE
repository [37]. The data sets are available in ARFF (Attribute-Relation File Format),
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useable in the open source machine learning tool called WEKA (Waikato Environment
for Knowledge Analysis) [123]. The data sets are selected based on their variance in
terms of number of instances and the number of attributes. The number of instances
varies from being less than 50 up to several thousands, with the number of attributes
varying from being in a single digit to nearly a hundred. The characteristics of the data
sets2 are given in Table 8.2.

Table 8.2: Characteristics of the data sets used in the study.
No. Data set Features No. of classes Train size Test size

all nominal continuous
1 jEdit 9 1 8 2 369 CV
2 AR5 30 1 29 2 36 CV
3 MC1 39 1 38 2 9466 CV
4 CM1 22 1 21 2 498 CV
5 KC1 Mod 95 1 94 2 282 CV

In order to compare the performance of different FSS methods, the attribute sets se-
lected by each method are tested with two learning algorithms, namely C4.5 and naı̈ve
Bayes (NB). Our motivation of selecting these two algorithms is that they represent two
different approaches (C4.5 being a decision-tree learner and NB being a probabilistic
learner) and are considered state of the art techniques. Also one of the previous bench-
mark studies [124] have used the same algorithms for comparing the effectiveness of
attribute selection.

Sections 6.4.4 and 6.4.2 in Chapter 6 of this thesis gives a background on naı̈ve
Bayes classifier and C4.5 respectively.

We restrict ourselves to evaluate the performance of binary classifiers which cate-
gorizes instances or software components as being either fault-prone ( f p) or non-fault
prone (n f p). We are interested in predicting whether or not a component contains any
faults, rather than the total number of faults.

We have used AUC as a measure of classification performance for the different FSS
methods. A description of AUC as a measure of classification performance appear in
Section 7.3 (Chapter 7) of this thesis.

For all the data sets, the AUC value averaged over 10 fold cross-validation runs,
was calculated for each FSS method-data set combination before and after FSS. For

2A detailed description of the features and the origin of these data sets can be found at their re-
spective locations within the PROMISE data repository: jEdit, http://promisedata.org/?p=74;
AR5, http://promisedata.org/?p=71; MC1, http://promisedata.org/?p=30; CM1,
http://promisedata.org/?p=3; and KC1 Mod, http://promisedata.org/?p=28.
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each cross-validation fold, the FSS method reduced the number of features in the data
set before being passed to C4.5 and naı̈ve Bayes classifiers.

8.5 Results

Table 8.3 shows the results for all the data sets for FSS with naı̈ve Bayes.

Table 8.3: FSS results with naı̈ve Bayes.
Data set NB IG RLF PCA CFS CNS WRP GP
jEdit 0.659 0.67 0.67 0.629 0.668 0.67 0.629 0.67
AR5 0.907 0.933 0.942 0.938 0.942 0.866 0.875 0.915
MC1 0.909 0.919 0.92 0.907 0.881 0.906 0.794 0.93
CM1 0.658 0.718 0.728 0.653 0.691 0.685 0.738 0.68
KC1 Mod 0.78 0.851 0.938 0.854 0.84 0.86 0.802 0.87

This table shows the AUC statistic for each FSS method and along with the AUC
statistic when no feature selection is performed (the second column). The values in
bold indicate if the use of the FSS method leads to an improvement of the AUC value,
in comparison with when no FSS method is used. A number of FSS methods give an
improved AUC value in comparison with the original AUC value without any feature
selection. However, we need to test for any statistically significant differences between
the different groups of AUC values. Since we have more than two samples with non-
normal distributions, the Kruskal-Wallis test with significance level of 0.05 is used
to test the null hypothesis that all samples are drawn from the same population. The
result of the test (p = 0.86) suggested that it is not possible to reject the null hypothesis
and, thus, there is no difference between any of the AUC values for the different FSS
methods using NB and the AUC values of using NB as a classifier before and after
applying the FSS methods. (Table 8.4 shows the number of attributes selected by each
FSS method for NB.)

Wrapper, CFS, Relief and GP produce comparable AUC values with fewer number
of selected features. PCA and IG, on the other hand, tend to select a much wider range
of features to provide comparable classification results using NB.

Table 8.5 shows the AUC statistic for each FSS method using C4.5 along with the
AUC statistic when no feature selection is used (second column). Again, the values in
bold indicate that the use of FSS method leads to an improvement of the AUC value, in
comparison with when no FSS is used. The result shows that multiple FSS methods do
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Table 8.5: FSS results with C4.5.
Data set NB IG RLF PCA CFS CNS WRP GP
jEdit 0.594 0.644 0.623 0.636 0.612 0.592 0.636 0.62
AR5 0.717 0.817 0.866 0.763 0.866 0.757 0.817 0.797
MC1 0.791 0.829 0.796 0.708 0.795 0.776 0.747 0.854
CM1 0.558 0.615 0.587 0.506 0.542 0.596 0.49 0.644
KC1 Mod 0.599 0.806 0.684 0.555 0.553 0.589 0.579 0.69

improve the classification performance across all data sets. However, the result of using
the Kruskal-Wallis test with α = 0.05 (p = 0.628) suggested that it is not possible to
reject the null hypothesis of all samples being drawn from the same population. Thus,
there is no significant difference between: a) Any of the AUC values for the different
FSS methods using C4.5. b) the AUC values of using C4.5 as a classifier before and
after applying the FSS methods. (Table 8.6 shows the number of attributes selected by
each FSS method for C4.5.)

WRP, IG, CFS and GP produce comparable average AUC values with less number
of selected features. RLF, PCA and CNS tend to select a wider range of features to
provide comparable classification results using C4.5.

The above results indicate that we cannot reject our earlier stated null hypothesis,
H0, and that there are no significant differences between the classification accuracy of
C4.5 and NB before and after applying the FSS methods.

8.6 Discussion

When looking at the classification accuracy achieved with different FSS methods on all
the data sets, it can be observed that it is not sensitive to the type of data, i.e., we had
data sets with varying degree of dimensionality and number of instances, yet the FSS
methods did not differ significantly when used with NB and C4.5. The degree of vari-
ation in the AUC values for different FSS methods is less and acceptable for practical
use. Though there are no statistically significant differences between the AUC values
for both NB and C4.5, conservatively speaking, PCA leads to fewer improvements in
the original AUC values in comparison with other FSS methods. This is true even when
the percentage of variance catered for by the principal components is 95%. Thus, the
percentage of the total variability of the data captured in the principal components is
not necessarily correlated with the resulting classification accuracy (a result similar to
the study by Janecek et al. [145]).

A previous study by Catal and Diri [65] claimed to have obtained high performance
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with CFS for software fault prediction, while Khoshgoftaar et al. [181] found that the
use of CFS did not yield improved predictions. In this study, CFS along with WRP and
GP consistently select fewer attributes without degrading classification performance.
Hence there is a larger set of FSS methods that can potentially be used for software
fault prediction studies.

In terms of evaluating an evolutionary algorithm like GP, it is worth noting that
feature selection is an implicit part of GP evolution. This enables automatic or semi-
automatic selection of features during model generation. GP allows almost any combi-
nation of a number of features. Evolution can freely add/remove multiple features and
can reconsider previous selections as new combinations are tried [201].

We emphasize that the feature subset selection is performed automatically without
human bias. This could potentially lead to a clash with human expert because the FSS
results might not make sense to an expert as some unexpected features are selected as
important ones or seemingly important features are left out. Either way, FSS leads to
useful insights, i.e., if FSS results are acceptable to the human expert, it means that
the dimensionality of the problem can effectively be reduced. If the FSS results are
not acceptable, it indicates that the information which the expert wants to extract is, in
principle, not present in the data [326].

8.7 Empirical validity evaluation

External validity: The data sets used in this study are collected from ongoing indus-
try projects. The FSS methods compared in the study represent a mix of established
methods as well as a not much explored method (GP). The data sets differed in their
number of attributes and sizes, thus representing a variety of data sets that could be
recorded in real industrial projects. Conclusion validity: This empirical study was
performed through by use of a 10-fold cross-validation for statistically reliable results
(recommended in [194]). The performance of classifiers is compared using area under
the receiver operating characteristic curve (AUC) which we motivate is a standard way
of evaluating classification results. Internal validity: We did not pre-process the data
sets in any way, rather used them as is from the PROMISE repository to encourage a
replication of our results. Construct validity: The data sets used in this study are the
ones donated by the authors of fault prediction studies. Different independent variables
are used to predict the faulty components, though structural measures are widely used.
Since the focus of this chapter is not to examine the predictive ability of a certain type
of measures, therefore, we selected datasets based on a varying degree of the number
of independent variables and the number of instances (Section 8.4).
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8.8 Conclusions
Feature subset selection (FSS) methods are used to keep the number of features in a
data set as small as possible. Out of the various perceived advantages of using these
FSS methods (Section 8.1), this study set out to evaluate whether or not the use of
FSS methods have any significant affect on the classification accuracy of software fault
prediction when used with two diverse learning algorithms, C4.5 and naı̈ve Bayes.

We compare a total of seven FSS methods, representing a mix of state of the art
methods and an evolutionary computation method, on five software fault prediction
data sets from the PROMISE data repository. Our findings show that the use of these
FSS methods do not lead to statistically significant differences in the classification
accuracies (measured using AUC) for C4.5 and naı̈ve Bayes. However, a smaller set
of methods—CFS, WRP, GP—consistently select fewer attributes without degrading
classification accuracy.

We recommend that any future software fault prediction study be preceded by an
initial analysis of FSS methods, not missing on methods that have shown to be more
consistent than their competitors.

For future work, we recommend comparing a multi-criteria GP fitness function for
FSS, e.g., one that combines cost of classification with accuracy.

The next chapter, Chapter 9, investigates the possibility of effectively scheduling
bug fixing tasks to developers and testers using relevant context information.
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Chapter 9

Search-based resource
scheduling for bug fixing tasks

Originally published in Proceedings
of the 2nd International Symposium
on Search Based Software
Engineering (SSBSE’10)

J. Xiao & W. Afzal

9.1 Introduction
Software bugs correspond to mistakes by the programmers due to an incorrect step,
process, or data definition. One estimate is that a professional programmer is respon-
sible for 5 bugs per 1000 lines of code (LoC) written on average [269]. This might not
be the case with every software application but there are always a certain number of
bugs in almost every software application that causes incorrect results.

Software testing is one major bug finding activity that improves software quality to
a certain extent before the software application is released to the end-users. As bugs
are reported, they must be triaged in a cost-effective manner, considering the resources
required to fix them and their varying degrees of requirements such as severity levels.
Triage of bugs in a cost-effective manner is an important decision-making task whereby
competing objectives of technical, resource and budget constraints need to be balanced
to provide maximum business value for the organization.
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Anvik et al. [25] report that 3,426 reports were submitted to the bug database of
Eclipse open source project between Jan. 1, 2005 to Apr. 30, 2005, averaging 29 re-
ports per day. Assuming that it takes 5 minutes to triage a report, this activity costs
2 person hours per day. This indicates that we have a need to support efficient and
effective bug-assignment policies that can schedule different bug fixing tasks by tak-
ing into account the available resource constraints and bug requirements. Laplante and
Ahmad [205] further emphasize the value of having an efficient and effective bug as-
signment policy: “Bug assignment policies can affect customer satisfaction, employee
behavior and morale, resource use, and, ultimately, a software product’s success”. But
triaging of bugs for repairing is fraught with challenges since the number of problem
variables is diverse, e.g., the severity and priority of a bug has to be balanced with
resource skills and availability for finding a reasonable bug-fix schedule.

Optimal resource scheduling for bug fixing is an example of a resource constrained
scheduling problem [330]. The scheduling problem in general is NP-hard, i.e., finding
optimal solutions in polynomial time is hard [266, 330]. This is because the search-
space becomes vast as problem size increases or more constraints are added. These
properties naturally make scheduling problems a suitable problem domain for evolu-
tionary computation approaches like genetic algorithms.

In this chapter we attempt to (at least approximately) formalize the problem of
appropriately scheduling developers and testers to bug fixing activities, keeping in view
the capabilities of resources and requirements of bugs. Hence, we seek an answer to
the following research question:

RQ: How to schedule developers and testers to bug fixing activities taking into ac-
count both human properties (skill set, skill level and availability) and bug char-
acteristics (severity and priority) that satisfies different value objectives by using
a search-based method such as Genetic Algorithm (GA)?

The chapter is organized as follows. Section 9.2 describes some related work. Sec-
tion 9.3 presents the basis of scheduling resources for bug fixing. It specifies models of
bugs and human resources. Section 9.4 discusses the design of the scheduling method
using a GA. Section 9.5 presents the industrial data used while results of applying the
proposed method are given in Section 9.6. The GA approach is compared with hill-
climbing search in Section 9.7. Section 9.8 presents a discussion while Section 9.10
presents conclusions and suggests future work.
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9.2 Related work

Search techniques have been successfully used to solve different scheduling related
software project management problems [132], such as software project planning [17,
24, 68, 345], software project effort prediction [186] and software fault prediction [11].
Hart et al. [133] have written a review on evolutionary scheduling; however, the appli-
cation of search techniques for implementing an efficient bug repair policy is very much
unexplored.

A study by Mockus et al. [239] predicted defect effort schedule based on observed
new feature changes. They fitted a probability model to the observed data from eleven
releases of a large real-time high availability software system and found the predicted
effort to be close to reality. Cubranic and Murphy [78] applied a naı̈ve Bayes classifier
to automatically assign the bug reports to developers and achieved a 30% classification
accuracy for reports entered into Eclipse’s bug tracking system between Jan. 1, 2002
and Sep. 1, 2002. Zeng and Rine [353] used a self-organizing neural network approach
to estimate defects fix effort. A feature map, having different clusters, was created
after training the weights of the self-organizing neural networks. They computed the
probability distributions of effort from the clusters and then compared them with those
from the test set. For projects having similar development environments, the approach
gave acceptable performance with average mean relative error (MRE) values between
7% to 23%. Canfora and Cerulo [62] used a probabilistic text similarity approach to
assign change requests to developers. Song et al. [300] presented association rule min-
ing based methods to predict defect correction effort. Using data from more than 200
projects, their approach was found to be better than partial regression trees (PART),
C4.5 and naı̈ve Bayes. Anvik et al. [25] applied support vector machine algorithm as
a text categorization technique to suggest assignment of a new bug report to a small
number of developers. Precision levels of 57% and 64% were obtained for the Eclipse
and Firefox development projects. Recently, Weiss et al. [337] used a text similar-
ity technique to predict bug fixing effort based on title and description of bug. Their
approach beat the naive approach using the defect data from the JBoss project.

This chapter differs from related work in some important ways. Since software
development is human-dependent, this work incorporates human factors such as com-
petencies and available time-slots to schedule resources for bug fixing. This is done by
using models for the bugs and human resources; moreover the use of a search-based
technique such as GA is presented, which can bring a near-optimal value in scheduling
by balancing multiple competing objectives.
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9.3 The bug fixing process
A typical bug-tracking system such as Bugzilla [55] keeps track of a reported bug
through assigned status. So the bug is marked ‘new’ when reported, ‘assigned’ when
assigned to a developer for fixing, ‘verified’ when testing of the bug fix is done and
‘resolved’ when the bug is closed. This is in line with the anomaly (bug) classification
process proposed by the IEEE standard classification for software anomalies (IEEE Std
1044–1993) [140], whereby the bug life-cycle is divided into four steps: recognition;
investigation; action; and disposition. If we assume that a bug is valid (i.e., it is not
a duplicate, not incomplete/needing more information and therefore is required to be
fixed), the following events describe one instance of the above four steps in more detail
(also shown in Figure 9.1):

1. A new bug is reported in the bug database which has been evaluated as a valid
bug.

2. The bug is assigned to a developer for fixing.

3. The developer fixes the bug.

4. The bug is assigned to a tester for verification.

5. The bug is verified and closed or alternatively is reopened due to an incorrect fix.

Recognition / 
Investigation

Action

Evaluate Open

Assign / Fix Test

Fix failed / 
Reopened

Closed

Disposition

Figure 9.1: The bug fixing process.

We have restricted the scope of this chapter to schedule resources for a single round of
these five events. So if a bug-fix from a developer fails at testing and is re-opened, a
second round of events need to be taken; however, this is not dealt with in this chap-
ter since it is not known in advance how many of these round of activities would be
required.

It is clear from the different bug life-cycle events that given a number of bugs re-
ported in the bug data base, there are two resource consuming activities taking place:
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development activity for fixing bugs and testing activity for verifying these bug-fixes.
The criticality and resource demands for various bugs require resources with desired
competencies and skills; moreover this has to be balanced with availability/workload
of resources for getting the job done. Due to that common constraint of limited re-
sources to play with, and engagement of resources in multiple projects concurrently,
the bug fixing events are in a competition for finding resources that have the availability
and competence to fix/verify reported bugs. To schedule the capable and available re-
sources, to balance the competing objectives and to bring near-optimal value by using
scheduling, we need a degree of formalism to describe the reported bugs and required
human resources. This is done by describing a bug and a human resource model.

9.3.1 The bug model
This chapter only focuses on the bugs found during system testing. This is however
more of a constraint rather than a rule and our proposed methodology should be equally
applicable to bugs found at other testing levels.

We define a bug data repository, BR, as a collection of reported bugs, BR =
{B1,B2, . . . ,Bn}, where each bug Bi in this repository has the following attributes:

1. Bug ID: A unique identification of the bug.

2. Bug description: A short description of the bug.

3. Bug severity: The perceived impact of the bug, having possible values of High,
Medium and Low.

4. Bug priority: A classification indicating the order in which the bugs are ad-
dressed, having possible values of High, Medium and Low.

5. Required skills: The skills required for bug fixing, which are used to select the
candidate resources. Each required skill is described as a triplet (SKT,SKN,SKL),
where

(a) SKT : The type of required skills, which in our context are two, namely
development skills and testing skills.

(b) SKN: The name of a specific required skill, e.g., programming language
skills for the skill type: development and test design skills for the skill
type: testing.

(c) SKL: The minimum required competency in a particular skill for fixing/
verifying the bug, having possible values of Low, Medium and High.
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It is to be noted that the definition of skills required to fix/verify a bug would be
different across software companies; however the skill structure defined above is
flexible to incorporate different skill types.

6. Estimated effort for fixing the bug: The estimated required effort, in number of
person-hours, to be invested in development and testing of the bug-fix. Note
that this estimated required effort is for one round of events, as described in
Section 9.3.

7. Assigned time: The date when the bug fixing activity can be started.

8. Deadline for bug fixing: The date by which the bug has to be fixed and verified.
This attribute is used as a constraint for scheduling.

9. Actual bug fixing time: The actual date when the bug fixing is finished. This
includes both the actual development and the actual testing time taken by a bug
for resolution. This is given by the scheduling results.

10. Coefficient of schedule benefit (CSB): If the actual bug fixing time is before the
deadline for bug fixing, there is an incurred benefit given by CSB which is de-
scribed by the benefit for each day before the deadline.

11. Coefficient of schedule penalty (CSP): If the actual bug fixing time is later than
the deadline, it is expected that some other work activity would get affected.
Thus there is a penalty, CSP, involved in this case for each day used up later than
the deadline.

The values for the coefficients CSB and CSP are configurable parameters chosen
accordingly by the stakeholders. For instance, the penalty in missing a deadline
might have higher impact than the benefit in fixing the bug before deadline; so
CSP might get a higher stakeholder value than CSB.

From the above attributes we can determine the value of each bug based on the follow-
ing value function:

Value(Bi) = f (Bi.priority,Bi.severity,Bi.deadline,

Bi.actual f ixing time,Bi.CSB,Bi.CSP)

Among these parameters, actual bug fixing time is decided by the scheduling re-
sults and the others are determined by the value objectives of stakeholders before the
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scheduling. The summation of the values of all the bugs provides us with the overall
value of the bug fixing process:

Value(BS) =
n

∑
i

Value(Bi)

9.3.2 The human resource model
The human resource model captures the competencies and availability of development
and testing personnel to undertake bug fixing/verification. We make use of the human
resource model proposed by Xiao et al. [346] to describe different attributes of human
resources in the bug fixing process. A human resource, HR, is defined in terms of four
attributes:

1. HR ID: A unique identification of the human resource.

2. SKLS: The set of skills possessed by a human resource, SKLS = {skl1,skl2, . . . ,skln}.
Each skli (1 ≤ i ≤ n) is defined by a triplet as skli = (SKT,SKN,SKL). The el-
ements in this triplet are the skill type (SKT ), skill name (SKN) and skill level
(SKL). For example, an experienced testing resource (SKT ) might be highly
competent (SKL) in a certain test design technique (SKN).

3. EXPD: The work experience figure, in number of years, for the human resource.
This figure can give an indication of the skill level of a particular resource.

4. STMW: The time and the workload that can be scheduled for a human resource.
STMW consists of all free time periods and the workload per day in each of these
time periods:

ST MW = {([Ts1,Te1],W1),([Ts2,Te2],W2),
. . . ,([Tsk,Tek],Wk),}

where Tsi and Tei represent the start and end date of the ith free time period
respectively, Wi represent the workable hours per day that can be scheduled in the
ith free time period. The unit for Wi is person hour. For example, ([25−Mar−
2010,07−Apr−2010],6) indicates that the resource is available between 25−
Mar−2010 and 07−Apr−2010 for 6 hours per day, excluding the weekends.

If a human resource has all the skills required for fixing a bug, then depending upon
the available time periods, this human resource can be scheduled for the bug fixing task.
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Thus, according to the human resource descriptions and skill requirements of bugs, the
capable resources for each bug fixing event/activity can be scheduled.

However, the organizations might lack the required competencies for fixing certain
bugs within the stipulated deadline, e.g., if the verification of a bug-fix requires a high
skill level of domain knowledge on part of the testing resource but the one available has
medium or low skill levels. In such a scenario, we setup certain rules aimed at relaxing
the skill requirements in order to provide additional capable candidates for bug fixing.
Thus the organization can take a risk of lowering the skill requirements in an attempt
to close a bug on deadline. Following are the rules to relax the skill requirements and
provide additional candidate capable resources for bug fixing if:

• the skill level gap between what is required and what is available is less than
a specific number such as ‘1’. This number indicates the scale of gap, so e.g.,
the gap is ‘1’ if there is a requirement of high level of a certain skill but only a
medium one is available.

• the number of skills possessed by resources, having levels lower than the require-
ment, is less than a given value, e.g., ‘3’, that is, at most a resource is lacking in
‘3’ skill levels than what is the requirement.

9.4 Scheduling with a genetic algorithm (GA)

Scheduling resources for bug fixing activities represent a problem with different com-
peting constraints and even with a moderate number of bugs, the search space can
become vast as the number of combinations grows. To deal with the complexity of
such a combinatorial optimization problem we apply a genetic algorithm (GA).

GA is an evolutionary algorithm that uses simulated evolution as a search strategy
to evolve potential solutions and uses operators inspired by genetics and natural selec-
tion [136]. A GA encodes the candidate solutions to the search problem as finite length
strings called chromosomes. The chromosomes are made up of components called
genes while the values of these genes are called alleles. A fitness measure discrimi-
nates good candidate solutions from bad ones and guides the search towards feasible
areas in the search space. A genetic algorithm maintains a population of solutions,
which is iteratively recombined and mutated to evolve successive generations of can-
didate solutions.
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9.4.1 Encoding and decoding of chromosome
Before encoding the scheduling problem as a GA chromosome, the following assump-
tions are made:

• Only one development resource and one testing resource can be allocated to each
bug.

• One developer can only fix one bug at a time. Similarly one tester can verify one
bug-fix at a time.

We use a binary representation of integers to encode the bug fixing problem as a chro-
mosome, an approach similar to the one in [345]. We establish a set of resource genes
and a set of priority genes. For each bug Bi in bug repository BR = {B1,B2, . . . ,Bn},
the fixing of bug Bi includes two activities, development (DEV) and testing (TST). For
each of these two activities, there are number of ri capable (or additional candidate ca-
pable) resources that can be allocated to it. We encode these capable resources as a set
of binary genes, where the size of the set is the smallest integer greater than or equal
to log2ri, j where i represents bug i and j represents activity type (DEV or TST). The
binary values of these genes are used to represent the decimal number that identifies a
scheduled resource as shown on the left part of Figure 9.2.

0/1 ... 0/1 ..... ... 0/1 ... 0/1 0/1 ... 0/1 ...

B1
DEV1 TST1

......

Size = smallest integer 
greater 

than or equal to log2r1,1

...... Bn

DEVn TSTn

Resource genes

Priority for
B1

...... Priority for 
Bn

Priority genes

Size = smallest integer 
greater 

than or equal to log2rn,2

Size = g1 Size = gn

... 0/1 ...

Figure 9.2: The bug fixing chromosome structure.

When two or more activities described by resource genes contend for the same re-
source, which activity can first acquire resources should be determined. Thus, a group
of genes named as priority genes are set, describing the activity priority (shown on the
right part of Figure 9.2, where g is the priority gene size for each bug). The activity
with higher priority is assigned to the resource first while if two activities have the same
priority, the one placed to the left in the chromosome is assigned to the resource first.
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Decoding is the reverse process of encoding. First, resource genes of each activity
are decoded to a real number, giving us scheduled resource for the activity. Second,
the priority genes for each activity are decoded to a real number, giving us the priority
of each activity. Third, the start time and end time for each activity is calculated. This
calculation satisfies the following constraints:

1. If two activities require the same resource, the one with higher priority will be
scheduled first.

2. The availability constraints of the human resources should be satisfied.

9.4.2 Multi-objective fitness evaluation of candidate solutions
Each scheduling result decoded by a chromosome is evaluated by means of a fitness
function. The fitness function is designed to keep in view the scheduling objectives.
Two generic and two specific objectives are taken in to consideration for scheduling.
The generic objectives are:

• Objective 1: Bugs with higher priority and severity bring higher value on fixing.

• Objective 2: From a scheduling perspective, the maximum total value of fixing
all the bugs should be obtained.

Besides these generic objectives, two specific objectives are used, each bringing a
different value return for getting a bug fixed. One specific objective is the strict deadline
objective:

• Objective 3: The deadline for each bug is strict. If a bug cannot be fixed before
a deadline, the value for fixing this bug is minimum, i.e., 0. If it can be fixed
before deadline, the value for fixing it is computed by its priority, severity and
preference weight.

By using these objectives the value of a bug B is described as follows:

Value(B) = (α ∗ priority+β ∗ severity)∗HasFinished(B)

where α and β are the preference weights for priority and severity respectively; HasFinished(B)
is an operator:

HasFinished(B) =
{

1 B is fixed before deadline
0 B cannot be fixed before deadline

The other specific objective is the relaxed deadline objective:
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• Objective 4: If bug fixing is finished before the deadline, there is an incurred
benefit. If bug fixing is finished later than deadline, a penalty is applied.

By using objectives 1, 2 and 4, the value of a bug B is described as follows:

Value(B) = (α ∗ priority+β ∗ severity)∗ScheduleValue(B)

where α and β are the preference weights of priority and severity respectively, while
ScheduleValue(B) is computed as follows:

ScheduleValue(B) =


(B.Deadline−B.FixedTime)∗B.CSB

f or Deadline≥ FixedTime
(B.Deadline−B.FixedTime)∗B.CSP

f or Deadline < FixedTime

where CSB and CSP are configurable parameters, set by the user. The strength of these
coefficients indicate the impact of benefit or otherwise on the bug fixing process so
e.g., if the impact of missing a deadline is more, the corresponding coefficient is set to
a higher value.

No matter whether the deadline of a bug is strict or not, the value function for the
bug fixing process is:

Value(BS) =
n

∑
i

Value(Bi)

This value function is used as a fitness function during the GA evolution process.

9.5 Industrial case study
Our proposed methodology for scheduling resources for bug fixing activities is evalu-
ated using data from large Enterprise Resource Planning (ERP) software developed by
a global provider of geo-technology and information technology services. The com-
pany consists of over 600 skilled professionals and have successfully been certified as
CMMi level 3 compliant. The ERP project has completed several releases while the
data used in this chapter comes from a batch of bugs reported by the testing team for
an upcoming release. This upcoming release incorporates customized functionality for
one of their telecom clients. The project team working on the upcoming release have
to schedule appropriate resources to cut-down the back-log of reported bugs from the
testing team. The project leader plans for fixing every bug by a set deadline (keeping
in view the release date for the customer) and estimates the required effort using expert
judgement. The project leader is responsible for triaging the bugs to resources hav-
ing the required skills (along with required skill levels) and available times. The skill
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set and associated levels for every resource in the project is maintained by the human
resource department and the project leader also has own qualitative assessments regard-
ing the skill levels of resources under him. The empty time slots for every resource are
available through a centralized calendar application.

Therefore, having bugs with different priority, severity, time constraints, resource
constraints and having resources with varying skill sets with associated skill levels and
available time slots, an automated mechanism to triage bugs with maximum possible
value for the organization is required.

9.5.1 Description of bugs and human resources
We evaluated our approach on a set of 25 bugs logged in the bug repository during
system testing. The ID, description, severity, priority, assigned time, deadline and es-
timated effort are shown in Table 9.1. The bug descriptions have been modified to
protect privacy. As discussed in Section 9.3, there are two resource consuming activi-
ties taking place during the bug fixing process: development (DEV) and testing (TST);
each of these activities require relevant skill sets. Although there can be different ways
of classifying skills required for both development and testing, we use more general
skill requirements that could easily be mapped to more specific skill-set at our subject
company. The skill requirements for each bug are described in Table 9.2 where H:
High, M: Medium and L: Low. Human resource attributes for available development
and testing personnel (as discussed in Section 9.3.2) are shown in Table 9.3.

9.6 The scheduling results
We applied the GA proposed in Section 9.4 to schedule capable resources for bug
fixing activities, based on the bug model and human resource model data given in
Section 9.3. The GA used the following parameters: population size, 100; total number
of generations, 500; cross-over rate, 0.8; mutation rate, 0.01; selection method, ratio.
These parameters were obtained after some experimentation; however, in the future we
need a more systematic mechanism of tuning them, perhaps using an automated way.

We assume that delaying the bug fixing after the deadline has greater impact than
fixing it before, therefore, CSB is set as 10 and CSP as 30 for every bug, i.e., one day de-
lay in bug fixing has three times effect on the value than completing the bug fixing one
day before. Based on the configuration of coefficients and weights in balancing objec-
tives (Section 9.4.2) and resources (Section 9.5.1), different scenarios suggest strategies
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Table 9.2: Skill requirements of each bug.
Development skills Testing skills
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1 H M H M M M M H H H M M H
2 H M H M M M M H H H M M H
3 H M H M M M M H H H M M H
4 H H H H M M M H H H M M H
5 H H H H M M M H H H M M H
6 H H H H M M M H H H M M H
7 H M H M M M M H H H M M H
8 H M H M M M M H H H M M H
9 H H H H M M M H H H M M H
10 H M H M M M M H H H M M H
11 H M H M M M M H H H M M H
12 H H H H M M M H H H M M H
13 H H H H M M M H H H M M H
14 H M H M M M M H H H M M H
15 H M H M M M M H H H M M H
16 H M H M M M M H H H M M H
17 H M H M M M M H H H M M H
18 M M M L L L L M M M L L M
19 M M M L L L L M M M L L M
20 H M H M M M M H H H M M H
21 M M M L L L L M M M L L M
22 M M M L L L L M M M L L M
23 M M M L L L L M M M L L M
24 M M M L L L L M M M L L M
25 M M M L L L L M M M L L M
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Table 9.3: Human resource descriptions.
HR ID (SKT, SKN, SKL) EXPD (Years) STMW
HR1 (Developer, Analytical, H)

6

([25-Mar-2010, 07-Apr-2010], 6)
(Developer, Programming Lang., H)

([12-Apr-2010, 15-Apr-2010], 6)

(Developer, Debugging, H)
(Developer, Refactoring , H)
(Developer, IDE, M)
(Developer, CM, M)
(Developer, Lib. and Frameworks, M)

HR2 (Developer, Analytical, H)

6

([20-Mar-2010, 04-Apr-2010], 8)
(Developer, Programming Lang., H)

([12-Apr-2010, 14-Apr-2010], 8)

(Developer, Debugging, H)
(Developer, Refactoring , H)
(Developer, IDE, M)
(Developer, CM, M)
(Developer, Lib. and Frameworks, M)

HR3 (Developer, Analytical, M)

2

([23-Mar-2010, 12-Apr-2010], 8)
(Developer, Programming Lang., M)

([15-Apr-2010, 22-Apr-2010], 8)

(Developer, Debugging, M)
(Developer, Refactoring , M)
(Developer, IDE, M)
(Developer, CM, L)
(Developer, Lib. and Frameworks, L)

HR4 (Developer, Analytical, M)

2

([23-Mar-2010, 05-Apr-2010], 6)
(Developer, Programming Lang., M)

([12-Apr-2010, 17-Apr-2010], 6)

(Developer, Debugging, M)
(Developer, Refactoring , M)
(Developer, IDE, M)
(Developer, CM, L)
(Developer, Lib. and Frameworks, L)

HR5 (Tester, TP, H)

4

([25-Mar-2010, 08-Apr-2010], 4)
(Tester, TD, H)

([12-Apr-2010, 14-Apr-2010], 4)
(Tester, TE, H)
(Tester, TR, M)
(Tester, Bug Tracking Tool, M)
(Tester, DK, M)

HR6 (Tester, TP, M)

2

([25-Mar-2010, 06-Apr-2010], 3)
(Tester, TD, M)

([09-Apr-2010, 16-Apr-2010], 3)
(Tester, TE, M)
(Tester, TR, L)
(Tester, Bug Tracking Tool, L)
(Tester, DK, M)
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for managing resources for the bug fixing tasks. We then discuss the scheduling results
out of these scenarios.

9.6.1 Scenario 1: Priority preference weight, α = 20; Severity pref-
erence weight, β = 5

With priority weight, α , set to 20 and severity preference weight, β , set to 5, we first
use objectives 1, 2 and 3 from Section 9.4.2. That is, we use the strict deadline as an
objective and find that, using data from Section 9.5.1, only 11 out of 25 bugs can be
scheduled for fixing. These bugs are listed in Table 9.4 and the corresponding Gantt
chart plan for fixing these bugs is shown in Figure 9.3. Gantt chart is an easy way to
illustrate a project schedule and provides an intuitive interface for the project leader
to monitor scheduling elements. As is clear, using a strict deadline objective, only a
limited number of bugs can be fixed.

Table 9.4: Bugs that can be fixed under a strict deadline (α=20, β=5).
Bug ID Value DEV TST
2 70 HR2: ([25-Mar-2010, 26-Mar-2010], 8) ([29-Mar-2010, 29-Mar-2010], 8) HR5: ([30-Mar-2010, 31-Mar-2010], 4)
3 70 HR2: ([30-Mar-2010, 01-Apr-2010], 8) HR5: ([06-Apr-2010, 07-Apr-2010], 4)
9 75 HR1: ([29-Mar-2010, 01-Apr-2010], 6) HR5: ([02-Apr-2010, 02-Apr-2010], 4) ([05-Apr-2010, 05-Apr-2010], 4)
10 75 HR1: ([02-Apr-2010, 02-Apr-2010], 6) ([05-Apr-2010, 07-Apr-2010], 6) HR5: ([08-Apr-2010, 08-Apr-2010], 4) ([12-Apr-2010, 12-Apr-2010], 4)
18 45 HR4: ([25-Mar-2010, 26-Mar-2010], 6) HR5: ([29-Mar-2010, 29-Mar-2010], 4)
19 45 HR3: ([25-Mar-2010, 26-Mar-2010], 8) HR6: ([29-Mar-2010, 30-Mar-2010], 3)
21 25 HR1: ([25-Mar-2010, 26-Mar-2010], 6) HR6: ([31-Mar-2010, 01-Apr-2010], 3)
22 25 HR3: ([29-Mar-2010, 30-Mar-2010], 8) HR5: ([01-Apr-2010, 01-Apr-2010], 4)
23 25 HR3: ([01-Apr-2010, 02-Apr-2010], 8) HR6: ([05-Apr-2010, 06-Apr-2010], 3)
24 25 HR3: ([05-Apr-2010, 06-Apr-2010], 8) HR5: ([13-Apr-2010, 13-Apr-2010], 4)
25 25 HR3: ([07-Apr-2010, 08-Apr-2010], 8) HR6: ([09-Apr-2010, 09-Apr-2010], 3) ([12-Apr-2010, 12-Apr-2010], 3)

We now use the relaxed deadline objective to schedule more bugs by relaxing the
deadline constraint. We assume that all the resources are available after 20-Apr-2010
and each workday comprises of 8 working hours. Using objectives 1, 2 and 4 from
Section 9.4.2, the simulation results appear in Table 9.5. The data in Table 9.5 indicates
that relaxing the deadline enables all the bugs to be scheduled for fixing but many of
them are delayed as indicated by negative integers in the third and sixth columns of
Table 9.5. The corresponding Gantt chart plan is shown in Figure 9.4 and could help in
showing the project leader that negotiating a relaxation in deadline would help fix all
the bugs.
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Figure 9.3: Strict deadline bug fixing plan.

Table 9.5: Bugs that can be fixed under a relaxed deadline (α=20, β=5).
Bug ID Value Precedent days compared Bug ID Value Precedent days compared

to the deadline to the deadline
1 -18900.0 -9 14 -37500.0 -25
2 -23100.0 -11 15 -24000.0 -16
3 4900.0 7 16 -33000.0 -22
4 -4500.0 -2 17 -42000.0 -28
5 -40500.0 -18 18 4950.0 11
6 -33750.0 -15 19 4500.0 10
7 -21000.0 -10 20 -25500.0 -17
8 6300.0 9 21 2000.0 8
9 3750.0 5 22 1500.0 6
10 -16800.0 -8 23 1750.0 7
11 -31500.0 -15 24 1250.0 5
12 -52800.0 -32 25 2250.0 9
13 -51150.0 -31
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Figure 9.4: Relax deadline bug fixing plan.
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9.6.2 Scenario 2: Priority preference weight, α = 5; Severity pref-
erence weight, β = 20

In this scenario, we change the priority and severity preference weights as α = 5 and
β = 20 respectively; that is to say that we now consider severity as more important than
the priority of a bug. Using the strict deadline as an objective, the simulation results
indicate that there are still 11 out of 25 bugs that can be scheduled before deadline.
Although the total number of bugs that could be fixed before deadline remains the same
for both the scenarios, a comparison of two schedules indicate that the two scheduling
plans differ at bug IDs 3, 5, 10 and 16. This is shown in Table 9.6.

Table 9.6: Comparison of bug fixing schedules under different priority and severity
preference weights.

Bug ID Priority Severity Value preference weight
α = 20; β = 5 α = 5; β = 20

2 3 2 70 55
3 3 2 70 0
5 3 3 0 75
9 3 3 75 75
10 3 2 75 0
16 2 2 0 50
18 2 1 45 30
19 2 1 45 30
21 1 1 25 25
22 1 1 25 25
23 1 1 25 25
24 1 1 25 25
25 1 1 25 25

The data in Table 9.6 show that increasing the severity preference weight β (Sce-
nario 2) has resulted in scheduling bug ID 5 with highest priority but at the cost of not
fixing bug IDs 3 and 10 from Scenario 1. Since bug IDs 3 and 10 cannot be fixed,
the available resources are enough to fix bug ID 16. Scenarios 1 and 2 indicate that by
plugging different combinations of priority and severity preference weights, the project
leader can balance the importance of fixing certain bugs at the cost of others (provided
that the deadline is strict). This, in our view, suggests valuable strategies for resource
scheduling.
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9.6.3 Scenario 3: Priority preference weight, α = 20; Severity pref-
erence weight, β = 5; Simulating virtual resources

In the previous two scenarios we see that, using a strict deadline, the resources are
not enough to fix all the bugs on or before the deadline. We also saw that one way to
provide more candidate resources is to relax the deadline. The other way to achieve
the deadline is, of course, addition of more resources. Therefore, we add virtual re-
sources for fixing bugs in this scenario. Initially we have 6 resources and are able
to schedule 11 out of 25 bugs for fixing. Increasing the resources to two more by
adding one development resource and one testing resource, with high skill levels in all
skills, enables scheduling over 15 bugs for fixing. Similarly increasing the resources
to 10 by adding two highly-skilled development resources and two highly-skilled test-
ing resources allow scheduling more than 20 bugs before deadline (Figure 9.5). This

Figure 9.5: Effects of increasing number of resources.

scenario gives another option to the project leader for viewing the scheduling outcome
if more resources were available than initially assigned. Therefore, the simulation of
virtual resources can provide schedules under varying circumstances, keeping in view
the available resource pool.

9.7 Comparison with hill-climbing search
Hill-climbing (HC) is a basic local search algorithm and, likewise GA, is used to com-
pute the value obtained in scheduling resources for bug fixing tasks. We have used the
three scenarios discussed in Section 9.6 to compute the total bug value by using HC
and have compared it with GA. The results are shown in Figure 9.6. The figure shows
that if the number of bugs is small (i.e., 1 to 3), GA and HC obtain the same optimal
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Figure 9.6: A comparison of total bug value obtained by using GA and HC.

value. But when the scale of problem increases with an increase in number of bugs,
GA gives better results than HC. In order to test whether any significant differences
exist between the bug values from two algorithms, we used Wilcoxon rank sum test.
The p-value of 0.004 confirmed that the bug values from HC and GA do not have equal
medians at α = 0.05. Thus, bug values from GA are significantly different and better
than those of HC.

9.8 Discussion
Considering that we have a need to support efficient and effective bug assignment poli-
cies, this chapter has provided early results as to how a GA can help strike a balance
between competing constraints to achieve near-optimal value for the organization. Due
to the dynamic nature of the bug fixing schedules, different scenarios are possible and
these changing scenarios have to be modeled effectively for near-optimal solutions.
The multi-objective fitness function proposed in this chapter attempts to model the un-
certainty in the scheduling problem. The scenarios discussed here provide a way to
schedule resources under different circumstances, e.g., having a strict/flexible dead-
line, having assigned different weights to severity and priority and last but not least,
the ability to foresee the resource requirements by adding virtual resources to meet the
deadline. GA is able to effectively suggest different strategies to tackle the bug fixing
process and is found to be more effective than hill-climbing. Consequently the project
leaders can use these results to support their resource scheduling decisions. We are
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also aware of certain limitations of our study. First we have some assumptions that
might get violated, e.g., it is common that the bug-fix is verified not to be correct by
the testing team and a second round of bug fixing activities is undertaken. If this is the
case, then the different elements of the bug model would require new data for the sec-
ond round of activities. We, however, limit ourselves to only one round of bug fixing
activities.

Second, there are some rules that are followed for the relaxed deadline objective.
While these rules would differ with respect to the expectations a project leader has on
her team members, we followed some intuitive ones. Any change in these rules is,
however, possible.

Third, there is a possibility that a resource works concurrently on more than one
assignment; however, we only consider the empty time slots that a particular resource
has for dealing with one bug at a time. If such a division of workload is not possible
then it is expected that the human resource model needs to incorporate this change.

Fourth, a company might face the difficulty to quantify the skills and the associated
levels. As our subject company is on the path of CMMi Level 4, such quantification is
seen as a continuing improvement opportunity for the workforce. The human resource
model presented here uses a simple classification of skills, which can be changed to suit
specific needs. There is a possibility that the human resource model we propose has
ignored relevant human performance factors. An important point to make here is that
the company using such an approach needs to continuously update the skill database
of its resources since it is common for the resources to educate themselves and learn as
part of the project experience.

9.9 Empirical validity evaluation
Construct validity threats refer to the extent the experiment setting actually reflects
the construct under study [342]. These threats might arise due to the assumptions we
made in the study and the way we modeled the problem. However, a search-based
technique such as GA is independent of the way the problem is modeled; it is the fit-
ness function that contains the crucial information and needs to be adapted for a more
complex model. The assumptions in this chapter made sense for the type of case study
discussed; however, as mentioned in Section 9.8, the bug and human resource model
might change if a different process of bug fixing is followed. Internal validity threats
refer to any sources of bias that might have affected the results. Since GA is a stochas-
tic algorithm, different runs produce different solutions. The different GA parameters
were obtained after careful experimentation and taking into account that further chang-
ing the parameter values do not have significant impact on the results. Moreover, the
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GA was run multiple times (30) to, partly, overcome the stochastic nature of GA. Ex-
ternal validity threats are concerned with generalization. The results obtained in this
chapter as such should be applicable to the situations where our assumptions are held.
Otherwise, the bug and the human resource model needs to be adapted accordingly.

9.10 Conclusions and future work
We have presented a search-based resource allocation method for bug fixing tasks. We
proposed models for the bug fixing process, the human resources and the capability
matching method between bug fixing activities and human resources. On the basis of
these models and our proposed method, the resources were allocated for bug fixing ac-
tivities using a GA. Depending on differing objectives, three scenarios were discussed
using an industrial data set and the results showed that GA was able to give schedules
having balanced different objectives and entailing maximum value for the organization.
Comparison with hill-climbing showed that GA gave statistically better results in terms
of maximizing the value objective.

Based on this chapter, some interesting future work can be undertaken:

• Combining the bug fixing process with other resource consuming activities that
might happen concurrently, e.g., testing of newly implemented requirements
might take place in parallel with bug fixing activities, probably needing simi-
lar resources.

• Increasing the generalizability of the proposed method by considering schedul-
ing a larger set of bugs.

• Supplementing the scheduling with cost issues, i.e., the cost incurred in investing
resources to perform different activities might impact the value objective.

• Analyzing the sensitivity of parameters in the GA and the fitness function, such
as population size of the GA, priority preference weight and severity preference
weight of the fitness function.

The next chapter, Chapter 10, presents a summary and a discussion of the thesis
results, the thesis’ conclusions and recommended future work.
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Chapter 10

Discussion and conclusions

Below we first summarize the individual chapters and then discuss and conclude what
they mean. Finally, we discuss future work.

10.1 Summary
The research questions (Section 1.4) in this thesis were targeted towards investigating
multiple related themes, with a focus on using metaheuristic search-based techniques,
for supporting the decision-making processes within software V&V activities. These
themes related to:

• The possibility of analyzing software fault history as a measurement technique
to predict future software reliability (Chapters 3–4).

• Using measures to support test phase efficiency (Chapter 5).

• Using measures to support assignment of resources to fix faults (Chapter 9).

• Using measures to classify fault-prone parts of the software from non fault-prone
parts (Chapter 6).

The thesis also investigated two methodological research questions (RQ5 and RQ6),
making up Chapters 7–8, using search-based techniques that were relevant to the task
of software quality measurement. These two research questions were related to the use
of resampling methods and feature subset selection methods.
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Chapter 2 consolidated the existing evidence, in the software engineering literature,
that comparatively evaluates the symbolic regression application of GP with other tech-
niques. The results of this study provided evidence in support of symbolic regression
using GP for software quality classification, software fault prediction and software re-
liability growth modeling in comparison with regression/machine learning techniques
and other models. However, the study results were inconclusive in judging whether or
not GP was an effective technique for software cost/effort/size estimation.

Chapter 3 presented an initial investigation into the predictive capabilities of ap-
plying symbolic regression using GP. The comparative evaluation with traditional
software reliability growth models showed that symbolic regression using GP had a
potential to be a valid fault prediction technique. Using three measures of model va-
lidity, the prequential likelihood ratio showed favorability for the GP models while the
same was not the case with the Braun statistic and AMSE. The goodness of fit of the
GP models was either equivalent or better in comparison with traditional models but
not statistically significant in every case. The box plots of residuals and matched paired
t-tests showed results in favor of GP models.

Chapter 4 carried forward the early positive results of using symbolic regression
application of GP. The empirical investigation this time was into cross-release predic-
tion of fault-count data from large and complex industrial and open-source software.
The results were evaluated both quantitatively and qualitatively, while the comparisons
were done with both machine-learning and traditional approaches to fault prediction.
The results showed that, quantitatively, symbolic regression using GP was at least as
competitive as other techniques for cross-release fault prediction. Qualitatively, sym-
bolic regression using GP scored better for transparency of resulting solutions and
generality, in comparison with comparative techniques. On the other hand, ease of
configuration was found not to be a strength for symbolic regression using GP.

Chapter 5 presented an extensive empirical evaluation of various techniques for
predicting the number of faults slipping through to the four test phases of unit, function,
integration and system testing. A variety of techniques were found to be useful in such
a prediction task, both in terms of predictive accuracy and goodness of fit. However,
the group of search-based techniques consistently gave better predictions, having a
representation at all the test phases. Human expert predictions were, however, among
the better techniques at two of the four test phases. The chapter also reported on the
results of a survey based on an industrial questionnaire that confirmed the usefulness
of predicting the number of faults slipping through to the four test phases, particularly
in terms of: (i) Baselining the expected effort to be spent on different test phases. (ii)
Reducing the overall cost of testing by improving the test effort on phases with high
fault-slippage. (iii) Visualizing the expected fault-detection efficiency of test phases.
The survey results also highlighted the need for the prediction techniques to be part of
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an automated tool, the users being aware of the working principles of the techniques
and the techniques being able to determine the form of the relationship between the
inputs and the outputs.

Chapter 6 evaluated the use of faults-slip-through data as a potential predictor of
fault-proneness at integration and system test levels for data gathered from two indus-
trial projects. The performance of a variety of classifiers was assessed using AUC and
the location of (PF, PD) pairs in the ROC space. The results showed that faults-slip-
through data had the potential to be a generally useful predictor of fault-proneness at
integration and system test levels. As for the different classifiers, GP performed consis-
tently across both integration and system test levels in terms of AUC and the location
of (PF, PD) pairs in the ROC space. The visualization of (PF, PD) pairs in the ROC
space provided another opportunity for the test team to assess a classifier performance
with respect to the perfect (PF, PD) pair of (0, 1). A distance metric could then be
calculated, with different weights assigned to represent the misclassification costs of
PF and PD, to select a classifier most suited for the project.

Chapter 7 reported on an extensive empirical comparison of five resampling meth-
ods using GP as a classifier over five public domain software data sets from the
PROMISE data repository. Using (PF, PD) pair data across five data sets, bootstrap-
ping gave results in the preferred region of the ROC space for two data sets, indicating
that bootstrapping should be considered as a resampling method of choice in predictive
studies in software engineering. However, where the statistical comparison of indi-
vidual resampling methods was concerned, based on AUC, there were no significant
differences. We then highlighted the reasons for such an outcome and attributed it to
imbalanced data sets, insignificant predictor variables and high dimensional data sets.

Chapter 8 evaluated whether or not the use of feature subset selection (FSS) meth-
ods had any significant affect on the classification accuracy of software fault prediction,
when used with two diverse learning algorithms: C4.5 and naı̈ve Bayes. We compared
a total of seven FSS methods, representing a mix of state of the art methods and an
evolutionary computation method, on five software fault prediction data sets from the
PROMISE data repository. Our findings showed that the use of these FSS methods
do not lead to statistically significant differences in the classification accuracies (mea-
sured using AUC) for C4.5 and naı̈ve Bayes. However, a smaller set of methods—CFS,
WRP and GP—consistently selected fewer attributes without degrading classification
accuracy.

Chapter 9 presented a search-based resource allocation method for bug fixing tasks.
We proposed models for the bug fixing process, the human resources and the capabil-
ity matching method between bug fixing activities and human resources. On the basis
of these models and our proposed method, the resources were allocated for bug fix-
ing activities using a genetic algorithm (GA). Depending on different objectives, three
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scenarios were discussed using an industrial data set, and the results showed that GA
was able to provide schedules having balanced different objectives and, thus, providing
maximum value for the organization. Comparison with hill-climbing showed that GA
gave statistically better results in terms of maximizing the value objective.

10.2 Discussion
This thesis explores the synergy between search-based software engineering (SBSE)
and predictive modeling for providing effective decision-support for V&V activities.
We have shown that search-based techniques are scalable in the context of large soft-
ware projects and, furthermore, that the results are consistently accurate. This also
comes with an added advantage with the explanatory value of the results, i.e., these
techniques are not black box approaches like the application of artificial neural net-
works to predictive modeling (discussed in Section 4.9). The identification of building
blocks and progressively improving overall fitness (Section 3.4) enables search-based
techniques to adapt to different operational situations. Additionally, since the search-
based techniques are automated, to a large extent, once an expert completes the design
of the search-based technique, the technique returns a near-optimal (or possibly an op-
timal solution) with respect to the fitness function used. This way the burden of search
shifts from the human to the machine. However, this search needs not to be fully au-
tomated (giving rise to human-in-the-loop or interactive evolution [129]). There is an
interesting trade-off in play here. Chapter 5 shows that on one hand, the human predic-
tions regarding the number of faults slipping through to test phases are characterized
by extreme fluctuations, while on the other hand, they are as accurate as the search-
based techniques. (However, the bottom line being that the search-based techniques
are always more consistently accurate.)

A synthesis of evidence on using GP for predictive modeling in software engi-
neering (Chapter 2) reveals that the use of GP, as being a potentially effective tool
in predictive modeling, has to be evaluated more on large-scale projects to increase
generalizability. Moreover, the performance of search-based techniques needs to be
compared against a larger set of more representative comparison groups. The synthesis
also shows that the available evidence present an opportunity of improving the design
of future studies (e.g., by explicitly stating the resampling strategy and the fitness func-
tion used). It is obvious, from reading Chapter 2, that research opportunities are plenty;
both in terms of empirically evaluating the use of search-based techniques and carrying
out methodological investigations to improve the design of predictive modeling studies.

The initial part of the thesis consists of empirical evaluations of search-based
techniques as a replacement for more traditional software reliability growth models
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(SRGMs) for estimating the future reliability of software. With the existence of a
large number of SRGMs, and the accompanying assumptions they require to be ful-
filled, a search-based technique like GP is an ideal replacement since GP evolution is
not dependent on any assumptions and is a general-purpose technique. The consis-
tently accurate performance of GP across multiple industrial data sets (Sections 3.5
and 3.6), attributed to the generation of progressively fitter solutions using building
blocks (Section 3.4), means that GP is indeed a general purpose replacement of tra-
ditional SRGMs. Furthermore, an automated mechanism of cross-release prediction
of faults is required, when considering the adoption of agile software development
methodologies with short-timed releases. GP, in comparison with typical machine
learning approaches and traditional SRGMs, comes out to be consistently accurate in
this prediction task (Section 4.7). The use of GP in varying operational situations is,
thus, validated.

We are mindful that while quantitative performance is of primary interest, certain
qualitative aspects also play a part in accepting new techniques. Solution transparency
and generality are added qualitative factors to go with the consistently accurate quanti-
tative results given by GP (Section 4.9). Ease of configuring the GP parameters, on the
other hand, is one qualitative factor that makes GP hard to use and represents interest-
ing future work to undertake (Section 10.4).

The thesis, while further expanding the scope of applying search-based techniques,
evaluates their use for predicting the number of faults slipping through to different
test phases. In addition to being in an industrial context and dealing with large-scale
projects, the comparison groups include human experts to investigate if search-based
techniques are competitive (compared to engineers). It is shown that the group of
search-based techniques consistently performs better than other techniques at all the
test phases (Section 5.4.2). Human expert predictions are also among the better tech-
niques at unit and integration test phases but are marked with extreme fluctuations for
function and integration test phases. This shows that, in one way, the human predictions
are limited in being consistently accurate, something that the search-based techniques
excel in. The generality of the search-based techniques is therefore impressive in pre-
dicting the number of faults slipping through (FST) to each of the test phases. The
results of predicting FST are then further evaluated in order to assess if FST can be
used as an effective predictor of fault-proneness at integration and system test phases.
This is unique since none of the previous studies on software quality classification
focuses on identifying fault-prone software components at different test phases (Sec-
tion 6.2) while making use of FST as a predictor of fault-proneness. The results shows
that FST is indeed a useful predictor of fault-proneness and that among the different
techniques, GP is able to show impressive AUC values (Section 6.6).

After having empirically evaluated the use of search-based techniques for a vari-
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ety of research themes, the thesis focuses next on methodological investigations rel-
evant for the design of predictive studies in software engineering. The first of these
methodological investigations are targeted at comparing a variety of resampling meth-
ods to predict fault-prone software components using GP as a classifier. The results
are interesting (Section 7.3.5), in that the various resampling methods did not differ
significantly; however, the results also indicate that there are other contributing factors
that have a synergetic effect on the outcome of software quality classification, e.g.,
imbalanced data sets, insignificant predictor variables and high dimensional data sets
(Section 7.5). The other methodological investigation in this thesis is targeted at as-
sessing the impact of different feature subset selection methods for software quality
classification. The outcomes are interesting in that the use of a search-based technique
like GP performs equally well in comparison with other state of the art feature subset
selection methods. The strength for a search-based technique like GP is that feature
selection is an implicit part of the GP evolution process and that the feature selection
is performed without human bias. Finally, this thesis then also provides a search-based
solution to triage and fix bugs by taking into account resource capability and availabil-
ity. This presents an automated way of effectively triaging bugs by striking a balance
between competing constraints.

10.3 Conclusions
As given in Section 1.1, the aim of this thesis was to evaluate the applicability of search-
based techniques across a variety of research themes within software V&V. The con-
text for the different studies in this thesis had been real software, representing both in-
dustrial and open-source projects. Having evaluated the use of search-based techniques
across several research themes, and in varying degrees of contexts consisting of indus-
trial and open-source software projects, the overall conclusion of the thesis is that the
accuracy and consistency of search-based techniques makes them an ideal tool to use
for improving input for decision-making, regarding software quality. Hence, this thesis
has shown that the application of these techniques are well suited for solving practical
problems within software V&V that are concerned with making predictions regarding
software quality. The search-based techniques have shown to be more general purpose
techniques, while not being dependent on assumptions common with other techniques.
Being more flexible than their traditional counterparts, search-based techniques con-
tribute towards automatic generation of relationships among process variables; that is
highly desirable considering the ever-shrinking development cycles. Also, this thesis
has provided early indications that the use of search-based techniques is indeed indus-
trially scalable.
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More specific conclusions, which can be drawn from this thesis, are given below:

1. The systematic review in Chapter 2 concluded that while there was evidence
in software engineering literature in support of using symbolic regression ap-
plication of GP for software quality classification, software fault prediction and
software reliability growth modeling; the results were inconclusive for software
cost/effort/size estimation (Section 2.4). Moreover, the symbolic regression ap-
plication of GP was not dependent on unrealistic assumptions that were common
in traditional SRGMs. Due to that reason, GP promised to be a valid tool in sit-
uations where different traditional models had inconsistent results. It was also
concluded that the variety of comparison groups were represented poorly in stud-
ies reporting GP’s application to predictive modeling in software engineering.

2. The Stage 1 study in Chapter 3 concluded that the evolutionary search mech-
anism of symbolic regression using GP was suitable for predicting the future
software reliability in terms of number of faults (Section 3.4). This suitability
was based on the identification of building blocks and progressively improving
overall fitness. Based on this conclusion, the use of GP for predicting the future
software reliability in an industrial context was deemed useful.

3. The Stage 2 study in Chapter 3 concluded that, based on the weekly fault count
data from three different industrial software projects, the results for goodness of
fit and prediction accuracy were statistically significant in favor of models built
using symbolic regression application of GP (Section 3.5). This result gave early
indications of the usefulness of GP as a prediction tool in an industrial context.

4. The Stage 3 study in Chapter 3 concluded that based on the comparative evalua-
tion of models from symbolic regression application of GP and three traditional
software reliability growth models, one out of three measures of model validity
favored the GP models. The measures for goodness of fit and model bias showed
that models built using symbolic regression application of GP were at least com-
petitive to traditional software reliability growth models (Section 3.6). This was
one of the early results that indicated GP to be at least as competitive as other
techniques for predicting future reliability of software in an industrial context.

5. The quantitative evaluation of models built using symbolic regression application
of GP in Chapter 4 showed that for cross-release fault predictions, they were
at least as competitive as other machine learning and traditional models (Sec-
tion 4.7). Hence, it was concluded that GP is a feasible prediction tool across
different releases of software. This indicated that the development team could
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use GP to make important decisions regarding the quality of their deliverables.
GP models also showed a decent ability to adapt to different time spans of re-
leases (on the basis of the different lengths of the testing sets for different data
sets). The study showed that GP was least affected by moderate differences in
the release durations and can predict decently with variable time units into fu-
ture. Additionally, having evaluated the performance on diverse data sets from
different application domains, it further pointed out the flexibility of GP, i.e.,
suited a variety of data sets.

6. Chapter 4 further concluded that there was a need to take into account qualitative
factors for assessing the practical utility of a prediction system. The solutions
given by the symbolic regression application of GP were open to interpretation
but they might be complex and might not be able to give logical explanation of
the relationships. Furthermore, the parameter tuning problem was time consum-
ing and therefore ease of configuration was not a strength for symbolic regression
application of GP (Sections 4.9 and 2.4).

7. Chapter 5 concluded that the group of search-based techniques were consistently
better in predicting FST at each test phase. It was also concluded that the human
predictions regarding the number of faults slipping through to various test phases
could be well supported by the use of search-based techniques in an industrial
context. The combination of human and automated search procedures (like any
of the search-based techniques) has the potential to provide improved prediction
results. The results of an industrial questionnaire concluded that the experts were
in agreement that such predictions were useful and highlighted usability aspects
that needed to be part of a multi-criteria based evaluation system (Section 5.6).

8. Another conclusion that could be drawn from Chapter 5 was that the search-
based techniques (and other better performing techniques) performed well out-
side their respective training ranges, i.e., the predictions were evaluated for 15
weeks of an on-going project after being trained on another baseline project data.
The over-fitting was within acceptable limits, and this was particularly encour-
aging considering the fact that we were dealing with large projects where the
degree of variability in fault occurrences can be large. This issue was also re-
lated to the amount of data available for training the different techniques, which,
in case of large projects is typically available.

9. Based on industrial data sets, Chapter 6 concluded that the faults-slip-through
data had the potential to be a generally useful predictor of fault-proneness at
integration and system test levels (Section 6.6). Moreover, the consistent per-
formance of GP at the two test levels further validated the use of search-based
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techniques as a software quality classification approach. Thus, collecting the
FST data in large-scale industrial projects was beneficial, not only in improving
the test level efficiency, but also in identifying fault-prone software components
from the non-fault prone ones.

10. Chapter 7 concluded that bootstrapping should be considered as a resampling
method of choice in predictive studies in software engineering. However, where
the statistical comparison of individual resampling methods was concerned, based
on AUC, there were no significant differences. This could be attributed to im-
balanced data sets, insignificant predictor variables and high dimensional data
sets. Hold-out validation performed less satisfactorily for comparatively smaller
data sets where LOOCV performed better due to optimal use of the training data.
For comparatively larger data sets 10-fold cross-validation was a better choice as
compared to LOOCV (Section 7.4).

11. Chapter 8 concluded that the use of various feature subset selection methods
do not lead to statistically significant differences in the classification accuracies
(measured using AUC) for C4.5 and naı̈ve Bayes. However, a smaller set of
methods—CFS, WRP and GP—consistently selected fewer attributes without
degrading classification accuracy (Section 8.5). Hence, the use of a search-based
technique like GP was validated as a potentially useful FSS method.

12. Chapter 9 concluded that GA was able to provide schedules having balanced
different objectives and brought maximum value for the organization. Compared
to hill-climbing, GA gave statistically better results in terms of maximizing the
value objective (Sections 9.6 and 9.7).

10.4 Future research

Through empirical investigations and the literature review conducted as part of this
thesis, we anticipate a promising future where there are further research opportunities
for evaluating the application of search-based techniques in software verification and
validation. Even though the end of each chapter in this thesis mention future work,
the following list highlights the most important future research opportunities. These
research opportunities are grouped into three different themes (scope expansion, algo-
rithmic enhancements and design enhancements):

• Scope expansion
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– Empirically evaluate the effectiveness of using search-based techniques in
prediction across other phases of the software development life cycle, such
as e.g. maintenance task effort.

– Empirically evaluate the use of other search-based approaches for predic-
tions, such as particle swarm optimization and a multi-criteria based GP
approach.

– A general multi-criteria based evaluation system needs to be benchmarked
that captures both the quantitative and the qualitative aspects of prediction
techniques.

– Empirically compare the faults-slip-through metric with other commonly
used predictors of fault proneness to quantify any differences.

– Empirically investigating the outcome of variants of bootstrapping for dif-
ferent software engineering data sets.

• Algorithmic enhancements

– Empirically evaluate the use of different fitness functions to better guide
search of feasible solutions for the search-based techniques.

– Investigate the mechanisms of finding compact and less complex GP solu-
tions.

– Investigate the potential of saving the state information during GP evolved
solutions so as to enhance the predictive accuracy on time-series nature of
data.

– Study the impact of different settings of GP parameters versus the resam-
pling methods so that one can assess how much variability in the outcome
can be attributed to each one of them.

– Compare a multi-criteria GP fitness function for feature subset selection,
e.g., one that combines cost of classification with accuracy.

• Design enhancements

– Investigate the potential of adaptive parameter control during a GP run to
ease parameter tuning for the GP algorithm.

– Evaluate the adaptive capability of the GP algorithm for different sets of
independent software metrics.

– Evaluate the effectiveness of GP predictions at finer levels of detail by col-
lecting different metrics at the code and/or module level.
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– Design of a probabilistic model on how likely different fault counts or slips
in earlier phases are for predicting fault-proneness in later phases.

Moreover, the above mentioned future work require developing tools to help en-
gineers and managers in using search-based approaches in their day to day activities
(e.g., implementing functions in SAS and developing toolboxes for MATLAB). Last
but not the least, there are further opportunities to evaluate existing applications of
search-based techniques in particular domains and, especially, in ongoing projects in
industry.
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[189] B. A. Kitchenham, T. Dybå, and M. Jørgensen. Evidence-based software en-
gineering. In Proceedings of the 26th International Conference on Software
Engineering (ICSE’04), Washington, DC, USA, 2004. IEEE Computer Society.

[190] B. A. Kitchenham and E. Mendes. Why comparative effort prediction studies
may be invalid. In Proceedings of the 5th International Conference on Predictor
Models in Software Engineering (PROMISE’09), New York, NY, USA, 2009.
ACM.

[191] B. A. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus within-
company cost estimation studies: A systematic review. IEEE Transactions on
Software Engineering, 33(5):316–329, 2007.

[192] B. A. Kitchenham, L. M. Pickard, and S. J. Linkman. An evaluation of some
design metrics. Software Engineering Journal, 5(1):50–58, 1990.

[193] B. A. Kitchenham, L. M. Pickard, S. MacDonell, and M. Shepperd. What accu-
racy statistics really measure? IEE Proceedings Software, 148(3), Jun 2001.

[194] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI’95), San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[195] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324, 1997.

[196] I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In
Proceedings of the European conference on Machine Learning (ECML’94), Se-
caucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

264



References

[197] A. Kordon, G. Smits, E. Jordaan, and E. Rightor. Robust soft sensors based
on integration of genetic programming, analytical neural networks, and support
vector machines. In Proceedings of the IEEE International Conference on E-
Commerce Technology (CEC’02), Los Alamitos, CA, USA, 2002. IEEE Com-
puter Society.

[198] M. Kotanchek, G. Smits, and A. Kordon. Industrial strength genetic program-
ming. Kluwer, 2003.

[199] S. Kotsiantis, I. Zaharakis, and P. Pintelas. Machine learning: A review of clas-
sification and combining techniques. Artificial Intelligence Review, 26(3):159 –
190, 2007.

[200] J. R. Koza. Genetic programming: On the programming of computers by means
of natural selection. MIT Press, Cambridge, MA, USA, 1992.

[201] W. B. Langdon and B. F. Buxton. Genetic programming for mining DNA chip
data from cancer patients. Genetic Programming and Evolvable Machines,
5(3):251–257, 2004.

[202] W. B. Langdon, S. Gustafson, and J. R. Koza. The genetic programming bibliog-
raphy. http://www.cs.bham.ac.uk/∼wbl/biblio/, 2009. Last checked: 13 Febru-
ary 2009.

[203] W. B. Langdon, R. Poli, N. F. McPhee, and J. R. Koza. Genetic programming:
An introduction and tutorial, with a survey of techniques and applications. In
J. Fulcher and L. C. Jain, editors, Computational Intelligence: A Compendium,
volume 115 of Studies in Computational Intelligence (SCI), chapter 22, pages
927–1028. Springer-Verlag, 2008.

[204] F. Lanubile and G. Visaggio. Evaluating predictive quality models derived
from software measures: Lessons learned. Journal of Systems and Software,
38(3):225 – 234, 1997.

[205] P. Laplante and N. Ahmad. Pavlov’s bugs: Matching repair policies with re-
wards. IT Professional, 11(4), 2009.

[206] N. Lavesson and P. Davidsson. Generic methods for multi-criteria evaluation. In
Proceedings of the SIAM International Conference on Data Mining (SDM’08),
2008.

265



References

[207] B. LeBaron and A. S. Weigend. A bootstrap evaluation of the effect of data split-
ting on financial time series. IEEE Transactions on Neural Networks, 9(1):213–
220, 1998.

[208] M. Lefley and M. Shepperd. Using genetic programming to improve software
effort estimation based on general data sets. In Proceedings of the 2003 Annual
Conference on Genetic and Evolutionary Computation (GECCO’03). ACM,
2003.

[209] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classifica-
tion models for software defect prediction: A proposed framework and novel
findings. IEEE Transactions on Software Engineering, 34(4):485–496, 2008.

[210] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam. Empirical evaluation
of defect projection models for widely-deployed production software systems.
In Proceedings of the 12th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (SIGSOFT’04/FSE-12), New York, NY, USA,
2004. ACM.

[211] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140):1–55, 1932.

[212] C. X. Ling, J. Huang, and H. Zhang. AUC: A statistically consistent and more
discriminating measure than accuracy. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), 2003.

[213] M. Lipow. Number of faults per line of code. IEEE Transactions on Software
Engineering, 8(4):437–439, 1982.

[214] H. Liu and R. Setiono. A probabilistic approach to feature selection—A fil-
ter solution. In Proceedings of International Conference on Machine Learning
(ICML’96), San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[215] Y. Liu and T. M. Khoshgoftaar. Genetic programming model for software quality
classification. In Proceedings of the 6th IEEE International Symposium on High-
Assurance Systems Engineering (HASE’01), Washington, DC, USA, 2001. IEEE
Computer Society.

[216] Y. Liu and T. M. Khoshgoftaar. Reducing overfitting in genetic programming
models for software quality classification. In Proceedings of the 8th IEEE In-
ternational Symposium on High-Assurance Systems Engineering (HASE’04),
Washington, DC, USA, 2004. IEEE Computer Society.

266



References

[217] Y. Liu, T. M. Khoshgoftaar, and N. Seliya. Evolutionary optimization of soft-
ware quality modeling with multiple repositories. IEEE Transactions on Soft-
ware Engineering, 36(6):852–864, 2010.

[218] Y. Liu, T. M. Khoshgoftaar, and J.-F. Yao. Developing an effective validation
strategy for genetic programming models based on multiple datasets. In Pro-
ceedings of the 2006 IEEE International Conference on Information Reuse and
Integration (IRI’06), 2006.

[219] J. Long. NASA IV&V metrics data program (MDP) data repository. http:
//mdp.ivv.nasa.gov/, 2011. Last checked: 15 March 2011.

[220] G. C. Low and D. R. Jeffery. Function points in the estimation and evaluation of
the software process. IEEE Transactions on Software Engineering, 16(1):64–71,
1990.

[221] S. Luke and L. Panait. Lexicographic parsimony pressure. In Proceedings of the
2002 Annual Genetic and Evolutionary Computation Conference (GECCO’02),
San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[222] S. Luke and L. Panait. A comparison of bloat control methods for genetic pro-
gramming. Evolutionary Computation, 14(3):309–344, 2006.

[223] M. R. Lyu. Handbook of software reliability engineering. IEEE Computer So-
ciety Press and McGraw-Hill, 1996.

[224] M. R. Lyu. Software reliability engineering: A roadmap. In Proceedings of
Future of Software Engineering at 29th International Conference on Software
Engineering (FOSE’07), Washington, DC, USA, 2007. IEEE Computer Society.

[225] M. R. Lyu and A. P. Nikora. Applying reliability models more effectively. IEEE
Software, 9(4), 1992.

[226] Y. Ma and B. Cukic. Adequate and precise evaluation of quality models in
software engineering studies. In Proceedings of the 3rd International Workshop
on Predictor Models in Software Engineering (PROMISE’07), Washington, DC,
USA, 2007. IEEE Computer Society.

[227] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd, and
S. Webster. An investigation of machine learning based prediction systems.
Journal of Systems and Software, 53(1):23–29, 2000.

267



References

[228] C. Mair and M. Shepperd. The consistency of empirical comparisons of regres-
sion and analogy-based software project cost prediction. In Proceedings of the
4th International Symposium on Empirical Software Engineering (ISESE’05),
Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[229] Y. K. Malaiya, N. Karunanithi, and P. Verma. Predictability measures for soft-
ware reliability models. In Proceedings of the 14th Annual International Com-
puter Software and Applications Conference (COMPSAC’90), 1990.

[230] The MathWorks, Inc. http://www.mathworks.com. Last checked: 20
April 2008.

[231] K. Matsumoto, K. Inoue, T. Kikuno, and K. Torii. Experimental evaluation of
software reliability growth models. In Proceedings of the 18th International
Symposium on Fault-Tolerant Computing (FTCS-18), 1988.

[232] T. J. McCabe. A complexity measure. In Proceedings of the 2nd International
Conference on Software Engineering (ICSE’76), Los Alamitos, CA, USA, 1976.
IEEE Computer Society Press.

[233] P. McMinn. Search-based software test data generation: A survey. Software
Testing, Verification and Reliability, 14(2):105–156, 2004.

[234] T. Menzies, J. DiStefano, A. Orrego, and R. M. Chapman. Assessing predic-
tors of software defects. In Proceedings of the Workshop on Predictive Soft-
ware Models, collocated with International Conference on Software Mainte-
nance (ICSM’04), 2004. http://menzies.us/pdf/04psm.pdf.

[235] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–
13, 2007.

[236] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum. Stable rankings for differ-
ent effort models. Automated Software Engineering, 17(4):409–437, 2010.

[237] Z. Michalewicz and D. B. Fogel. How to solve it: Modern heuristics. Springer
Verlag, second edition, 2004.

[238] N. Mittas and L. Angelis. Comparing cost prediction models by resampling
techniques. Journal of Systems and Software, 81(5):616–632, 2008.

268



References

[239] A. Mockus, D. M. Weiss, and P. Zhang. Understanding and predicting effort
in software projects. In Proceedings of the 25th International Conference on
Software Engineering (ICSE’03). IEEE Computer Society, 2003.

[240] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An empirical study
of software reuse vs. defect-density and stability. In Proceedings of the 26th
International Conference on Software Engineering (ICSE’04), Washington, DC,
USA, 2004. IEEE Computer Society.
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Table 1: Study quality assessment.
Criteria

A: Are the aims of the research/research questions clearly stated?
B: Do the study measures allow the research questions to be answered?
C: Is the sample representative of the population to which the results will generalize?
D: Is there a comparison group?
E: Is there an adequate description of the data collection methods?
F : Is there a description of the method used to analyze data?
G: Was statistical hypothesis testing undertaken?
H: Are all study questions answered?
I: Are the findings clearly stated and relate to the aims of research?
J: Are the parameter settings for the algorithms given?
K: Is there a description of the training and testing sets used for the model construction methods?

(a) Study quality assessment criteria

[280] [96] [180] [215] [173] [174] [216] [278] [218]
A

√ √ √ √ √ √ √ √ √

B
√ √ √ √ √ √ √ √ √

C ~× ~
√

~
√

~
√

~
√

~
√

~
√

~
√

~
√

D
√ √ √ √ √ √ √ √ √

E ~
√

~
√

~
√

~
√

~
√

~
√

~
√

~
√

~
√

F
√ √ √ √ √ √ √ √ √

G × × × × × × × × ×
H

√ √ √ √ √ √ √ √ √

I
√ √ √ √ √ √ √ √ √

J ~
√ √

~
√ √ √ √

~
√

×
√

K
√ √ √ √ √ √ √ √ √

(b) Study quality assessment for software quality classification studies
[89] [87] [279] [88] [56] [288] [208]

A
√ √ √ √ √ √ √

B
√ √ √ √ √ √ √

C
√

~
√ √ √ √ √ √

D
√ √ √ √ √ √ √

E ~
√ √ √ √ √ √ √

F
√ √ √ √ √ √ √

G × × × × ~
√

× ×
H

√ √ √ √ √ √ √

I
√ √ √ √ √ √ √

J
√ √ √ √ √ √ √

K
√ √ √ √ √ √ √

(c) Study quality assessment for software CES estima-
tion

[160] [161] [322] [355] [356] [6] [73] [262]
A

√ √ √ √ √ √ √ √

B
√ √ √ √ √ √ √ √

C ~
√

~
√

~
√

~
√

~
√ √ √

~
√

D
√ √ √ √ √ √ √ √

E
√ √ √

× × ~
√

~
√ √

F
√ √ √

~
√

~
√ √ √ √

G
√ √

× × ×
√ √ √

H
√ √ √ √ √ √ √ √

I
√ √ √

~
√

~
√ √ √ √

J ~
√

~
√ √

~
√

~
√ √ √ √

K × ×
√

× ×
√ √ √

(d) Study quality assessment for software fault prediction and
software reliability growth modeling
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Appendix B: Model training
procedure (Chapter 5)

This appendix discusses the parameter settings that have been considered for different
techniques during model selection. These settings may be used for a future replication
of this study and to quantify the impact of changing the parameter settings, perhaps
using different data sets. As given in Section 5.3.1, we use data from 45 weeks of the
baseline project to train the models while the results are evaluated on the data from 15
weeks of an on-going project. The experimental evaluation process is also summarized
in Procedure 1.

The least-square multiple regression does not require selection of parameters, rather
the coefficients are determined from the training data. Different estimators imple-
mented in the WEKA machine learning tool [123] have been evaluated for pace re-
gression, that includes empirical Bayes, ordinary least square, Akaike’s information
criterion (AIC) and risk inflation criterion (RIC). The estimator giving the least ARE
is selected as the best pace regression model.

The M5P technique requires setting the minimum number of instances at a leaf
node and has been varied in the range [2, 4, . . . , 10] with pruning and smoothing.
The model with minimum ARE is retained. The REPTree technique requires setting
the maximum depth of the tree, the minimum total weight of the instances in a leaf,
the minimum variance proportion at a node required for splitting, the number of folds
of data used for pruning and the seed value used for randomizing the data. We have
imposed no restriction on the maximum depth of the tree while the minimum total
weight of the instances in a leaf is varied in the range [2,4, . . . , 10]. The minimum
variance proportion at a node, the number of folds of data used for pruning and the
seed value used for randomization are kept constant at their default values of 0.0010, 3
and 1 respectively.
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Procedure 1 The model training procedure.
Train: Training dataset of 45 weeks
Test: Testing dataset of 15 weeks
P: Set of parameter settings for each technique
T: Set of techniques
for each t in T do

for each p in P do
Model = BuildModel (Train, t, P[t])
ARE [t, p] = GetResult (Test, Model)
output ARE

end for
return parameter[min(ARE)]

end for
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
BuildModel (TrainingData, Technique, ParameterSet)
// Train the technique using training data with parameters
GetResult (TestData, Model)
// Compute ARE of the trained model on the Test data

The K* instance-based technique requires setting the blending parameter that has
a value between 0% and 100%. This parameter has been varied in the range of [0, 20,
40, . . . , 100]. For k-NN, the number of neighbors has been varied in the range of [1, 3,
5, . . . , 15].

For SVM, two types of parameters have to be set by the user, i.e., values for the
epsilon parameter, ε and the regularization parameter, C. Setting the value of C near
the range of the output values has been found to be a successful heuristic. We therefore
vary C within the range [1, 3, . . . , 11]. The value of ε is varied in the range [0.001,
0.003] while the kernel used is the radial basis function. Training an artificial neural
network (ANN) requires deciding on the number of layers and the number of nodes at
each layer. We considered the ANN architecture with 1 input layer, 2 hidden layers
and 1 output layer. The number of independent variables in the problem determined
the number of input nodes. The two hidden layers used a varied number of nodes in
the range [1, 3, 5, 7], while the output layer used a single node. The hyperbolic tangent
sigmoid and linear transfer functions have been used for the hidden and output nodes
respectively. Finally the number of epochs used is 500 and the weights are updated
using a learning rate of 0.3 and a momentum of 0.2.

Model selection for Bagging involves deciding upon the size of the bag as a per-
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Table 2: GP control parameters.
Control parameter Value
Population size 50
Termination condition 2000 generations
Function set {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Ramped half-and-half method
Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1
Selection method roulette-wheel

centage of the training set size and the number of iterations to be performed. These two
parameters have been varied in the range [25, 50, 75, 100] and [5, 10, 15] respectively.
The REPTree technique is used as the base learner. For rotation forest, the number
of iterations have been varied in the range [5, 10, 15] and the base learner used is the
REPTree technique.

GP requires setting a number of control parameters. Although the affect of chang-
ing these control parameters on the end solution is still an active area of research,
we nevertheless experimented with different function and terminal sets. Initially we
experimented with a minimal set of functions and the terminal set containing the in-
dependent variable only. We incrementally increased the function set with additional
functions and later on also complemented the terminal set with a random constant. The
best model having the best fitness was chosen from all the runs of the GP system with
different variations of function and terminal sets. The GP programs were evaluated
according to the sum of absolute differences between the obtained and expected results
in all fitness cases, ∑

n
i=1 | ei− e

′
i |, where ei is the actual fault count data, e

′
i is the es-

timated value of the fault count data and n is the size of the data set used to train the
GP models. The control parameters that were chosen for the GP system are shown in
Table 2.

For GEP, the solutions are evaluated for fitness using mean squared error and the
control parameters are shown in Table 3.

The AIRS algorithm also require setting a number of parameters. While it is not
possible to experiment with all the different combinations of these parameters, how-
ever the value of k for the majority voting has been varied in the range [1, 3, 5, . . . , 15].
Rest of the parameters used were: Affinity threshold = 0.2, clonal rate = 10, hypermu-
tation rate = 2, mutation rate = 0.1, stimulation value = 0.9 and total resources = 150.
For PSO-ANN, the architecture similar to the basic ANN is followed except that the
weights are now optimized using PSO with the number of particles in the swarm set
to 25 and the number of iterations varied in the range [500, 1000, 15000, 2000]. The

285



Appendix B

Table 3: GEP control parameters.
Control Parameter Value
Population size 50
Genes per chromosome 4
Gene head length 8
Termination condition 2000 generations
Functions {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Random
Mutation rate, Inversion rate, IS transposition rate, Root transposition rate 0.04, 0.1, 0.1, 0.1
Gene transposition rate, One-point recombination rate 0.1, 0.3
Two-point recombination rate, Gene recombination rate 0.3, 0.1
Selection method roulette-wheel

mean squared error is used as the fitness function.
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In preparing for battle, I have always found that plans are useless,
but planning is indispensable.

Dwight D. Eisenhower (1890–1969)
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Software verification and validation (V&V) activi-
ties are critical for achieving software quality; ho-
wever, these activities also constitute a large part 
of the costs when developing software. Therefore 
efficient and effective software V&V activities are 
both a priority and a necessity considering the 
pressure to decrease time-to-market and the in-
tense competition faced by many, if not all, compa-
nies today. It is then perhaps not unexpected that 
decisions that affects software quality, e.g., how to 
allocate testing resources, develop testing schedu-
les and to decide when to stop testing, needs to 
be as stable and accurate as possible.

The objective of this thesis is to investigate how 
search-based techniques can support decision-
making and help control variation in software V&V 
activities, thereby indirectly improving software 
quality. Several themes in providing this support 
are investigated: predicting reliability of future 
software versions based on fault history; fault pre-
diction to improve test phase efficiency; assignme-
nt of resources to fixing faults; and distinguishing 
fault-prone software modules from non-faulty 
ones. A common element in these investigations 
is the use of search-based techniques, often also 
called metaheuristic techniques, for supporting 
the V&V decision-making processes. Search-based 
techniques are promising since, as many problems 

in real world, software V&V can be formulated as 
optimization problems where near optimal so-
lutions are often good enough. Moreover, these 
techniques are general optimization solutions that 
can potentially be applied across a larger variety 
of decision-making situations than other existing 
alternatives. Apart from presenting the current 
state of the art, in the form of a systematic lite-
rature review, and doing comparative evaluations 
of a variety of metaheuristic techniques on large-
scale projects (both industrial and open-source), 
this thesis also presents methodological investiga-
tions using search-based techniques that are rele-
vant to the task of software quality measurement 
and prediction.

The results of applying search-based techniques 
in large-scale projects, while investigating a variety 
of research themes, show that they consistently 
give competitive results in comparison with ex-
isting techniques. Based on the research findings, 
we conclude that search-based techniques are via-
ble techniques to use in supporting the decision-
making processes within software V&V activities. 
The accuracy and consistency of these techniques 
make them important tools when developing fu-
ture decision-support for effective management 
of software V&V activities. 
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