
Towards an Impact Analysis for Component Based Real-Time
Product Line Architectures

Christer Norström
Mälardalen University

Mälardalen Real-Time research Centre
Dept. of Computer Engineering

cen@mdh.se

Anders Wall
Mälardalen University

Mälardalen Real-Time research Centre
Dept. of Computer Engineering

awl@mdh.se

Magnus Larsson
ABB Automation

Technology Products
mlo@mdh.se

Abstract

In this paper we propose a method for predicting the
consequences of adding new components to an existing
product line in the real-time systems domain. We refer to
such a prediction as an impact analysis. New components
are added as new features are introduced in the product
line. Adding components to a real-time system may affect
the temporal correctness of the system. In our approach to
product line architectures, products are constructed by
assembling components. By having a prediction enabled
component technology as the underlying component
technology, we can predict the behavior of an assembly of
components. We demonstrate our approach by an
example in which temporal correctness and consistency
between versions of components is predicted.

1. I oduction
A

(PLA
benef
from
archit
metho
within
comp
design
such s
existi
produ
distin
set of
functi
servic
may
variat
param
differ
more
while
variat

requirements will be implemented by adding new
components or by using different variants of existing
components.

The flexibility is not only specified in the functional
domain. Also non-functional properties may be subject for
variability. For instance, in the real-time systems domain
we are interested in the temporal behavior of a system as
it is considered correct only if it performs correct function
at correct time, i.e. temporal correctness. Consequently,
by adding the temporal domain we must not only manage
functional flexibility but also temporal flexibility. For
instance, the frequency with which a particular component
executes may vary between a high-end product and a low-
end product due different demands from the controlled
process.

One of the main problems in constructing and
maintaining a PLA is to express and verify product
properties derived from the properties of the individual
components. To be able to predict the product properties

ntr

pplying the concept of product-line architectures
), is one way to achieve component reuse and
its from component-based development. A PLA
a software system’s perspective is a common

ecture, a set of common strategies, tools, and
ds that are shared among several different products
 a particular domain [1,2]. Thus, not only

onents are reused, but also the architecture and the
 strategies that initially were chosen. Examples of
trategies are strategies for adding new features to an

ng PLA and strategies for providing variability. A
ct line consists of different products that are
guished by different features but they also share a
 common features. Typically, features realize a set of
onal, and non-functional requirement (e.g. quality of
es, temporal constraints, etc.). Variations in features
be obtained in different ways, e.g. applying

ions in a flexible software architecture,
eterization of existing components, by using

ent implementations of components. In a PLA it is
likely that the software architecture is a constant,

 flexibility is achieved through component
ions. New functional, or non-functional

from the component properties, we define a prediction-
enabled component technology (PECT) similar to the one
proposed in [3]. In a PECT there are both a constructive
model and an analytical model. Examples of such
analytical models on a component are different temporal
attributes such as the frequencies with which a component
executes and the version dependency among components.
While a constructive model deals with operational
(functional), properties, analytical model describes non-
functional properties. From the predictability point of
view, obtaining new functional features of the products is
straightforward as they come directly from the functional
properties of components. On the opposite, the non-
functional properties of products are hard to predict. For
example, adding components with new functional features
may degrade the quality of services of a product and,
consequently, affect the temporal correctness. Moreover,
a product line strategy can be focused on product families
with the same functional properties, but different non-
functional properties, e.g., scalability, flexibility, and
safety. For this reason, the ability to derive non-functional
product properties from the properties of the components

plays a significant role for PLA. Furthermore, as
developing software products according to the PLA
approach is based on reuse and repeatable processes, the
findings and measurements from previously developed
product versions can be taken as input to the method
proposed in this paper which may give more accurate
predictions.

In this paper we present a component concept that
provides means for performing an impact analysis. The
aim of impact analysis is to predict the consequences of
altering a system, i.e. adding new functionality or
changing existing components. This is especially
important in a PLA perspective where components and
architectures are reused and customized for different
products. The analysis is based on the concept of PECT,
which is integrated into our component model developed
for use in real-time product line architectures. We
demonstrate the analytical models by an example showing
how they can be used to derive properties of an assembly
and analyze the impact of, e.g. adding new features to a
product. However, the intention of this work is to provide
a framework in which analytical properties can be added
to the model such that any interesting property of an
assembly can be expressed and analyzed. In particular we
illustrate our approach by presenting how two different
non-functional properties, temporal correctness, and
version consistent, can be analyzed.

The remainder of the paper is outlined as follows:
Section 2 gives an introduction to components and
assemblies of components[3,4]. Section 3 elaborates on
the different properties of assemblies. Section 4 discusses
the concept of impact analysis, and finally Section 5
concludes the paper.

2. Components and Assemblies
In order to enable analyze properties of component-

based products, we must have means for specifying
analytical properties of components and identify
synchronization and communication between them.
Different component models specify this to different
extent. Most of them do not treat non-functional
properties. Our component model is based on the port-
based object approach in which components are
connected to each other by data ports that constitutes a
components data interface [5]. This component model
extends the expressiveness of port-based objects and is
presented in a simplified manner hereinafter. For a more
detailed description we refer to [6].

In Figure 1, our component meta-model is depicted in
UML-fashion. Components have in and out ports which
resembles the data interface. Also, a component
encapsulates services, which provide the actual functional
behavior. Besides having data interfaces, defined by their
ports, components in the framework have two additional

interfaces, control interface, and parameterization
interface. The execution of, and synchronization among
components is controlled through its control interface by
associating a task to the interface. A task provides a
thread of execution that is defined and restricted by a set
of attributes, e.g. priority, frequency. A task in our
framework can be based on any task model defined by the
used real-time operating system (RTOS). A task is a
runtime mechanism and hence, it is a constructive part of
a component. However, note that some of the attributes of
a task are required when, together with some analytical
properties, analyzing temporal properties of an assembly.
The parameterization interface defines the points of
variation of a component’s behavior.

«constructive»
Component

+execute()
-componentName : String

«constructive»
Port

-portName : String
-dataType : String

1..n

«constructive»
service

-service : functionPtr
-input : Port[]
-output : Port

0..n

«constructive»
Parameter

-parameterName : String
-parameterType : String

0..n

«analytic»
Property

-propertyName : String
-propertyType : String

«constructive»
Task

-precedes : Task
-mutex : Task

«constructive»
PeriodicTask

-periodTime : Time
-priority : Integer

0..n

Figure 1. The component model
The property class that is stereotyped as analytic

provides the information needed by the different analyses
we are interested in performing on an assembly. We will
refer to such a property as an analytical property. An
analytical component property usually does not have a
correspondence in a component instance. A typical
example of such a property would be the execution time
of a service of a component. The execution time is
derived from the source code, or by measurements, for the
purpose of modeling and analysis of a system and has no
correspondence as such in the runtime. The analytical
model of a component is defined by its analytical
properties.

For further discussions we need definitions of certain
terms in our component model. In this model we shall
emphasize the real-time properties. Formally we define
the constructive part of the component model depicted in
Figure 1 as:

Definition 1. A component c is a tuple 〈f, P, I, O, C, sc〉,
where f is the service encapsulated by c, P is the set of
parameters, I is the set of in-ports, O is the set of out-
ports, C is the control interface and sc is the state of
component c. �

A component’s state is updated by the service within a
component and remains in between consecutive
executions of a component.

 An assembly is a specific configuration of a set of
components that also defines the components
interconnections. The union of all its component’s states
gives the state of an assembly. Formally we define an
assembly as:

Definition 2. An assembly A is a tuple 〈C(A), R*〉, where
C(A) ⊆ C is the set of components in A, and R* is the set
of relations valid between C(A) in A, and C is a set of all
components encapsulated in the product �

Note that an assembly does not necessary corresponds
to a product. While in some cases we are interested in
properties of the product, in some cases we may want to
analyze properties of a sub-part of the complete product.
In both cases we will refer to an assembly. An assembly is
only a conceptual- and analytical view of a complete
product that exists for the analysis of a particular property,
and has not necessarily a constructive correspondence.

In order to construct an assembly, we must be able to
connect components with each other via some relation. In
our definition of an assembly we have three kinds or
relations among components that belongs to the set R,
precedence, mutual exclusion (mutex), and data-flow
connections.

Precedence and mutual exclusion specify the
synchronization among tasks that controls the execution
of components. Formally we define precedence and
mutual exclusion as:

Definition 3. A precedence relation, →, is a binary,
transitive relation among a pair of tasks 〈τi, τj〉 ∈ Τ×Τ,
such that, if τi→τj, then τj may start its n:th execution
earliest at the end of τi’s n:th execution where i ≠ j and n
is the number of invocations of τi, andτj. �

Definition 4. A mutual exclusion relation, ⊗ , is a binary,
symmetric relation among pair of tasks 〈τi, τj〉 ∈ Τ×Τ,
such that if τi ⊗ τj, then neither τi nor τj is permitted to
execute while the corresponding party, or a transitively
related party is executing and i ≠ j. �

Besides synchronization, we can also specify data-
flow relations among components in an assembly. Data-
flow connections specify the data that are exchanged
between components in an assembly through their ports.
We define the data-flow relation as:

Definition 5. A data flow connection =, is a binary, anti-
symmetric relation among pair of ports on components,
〈ci.ix cj.oy〉 ∈ C.I×C.O, such that if ci.ix = cj.oy then ci’s in
port ix is connected to cj’s out port ox. �

3. Properties of an Assembly
The intention of our work is to provide a framework in

which new properties of an assembly could be taken into
consideration and predicted for the purpose of analyzing
the impact that the introduction of a new component in the
system have. The general idea is that if the model has to
be extended with a new predictable property, new analytic
properties can be defined and new property theories be
developed. The property theory defines how a particular
property of an assembly is calculated, e.g. theories for
verifying the temporal correctness. For instance, if we
require an assembly to be type correct, i.e. the types of
connected data ports are correct, we must add a method
for checking this property and doing so require an
analytical property on data ports which carries the type
information. Furthermore, we are using the prediction
technologies in a product line perspective, i.e. we will
discuss properties that are important when developing and
maintaining product line architectures.

There are several realistic scenarios describing
activities that a product line may undergo during its
lifetime. We have not identified all possible scenarios but
highlighting some relevant cases and propose examples of
properties that are interesting from their perspective.

Scenario 1: New features will eventually be added to a
product line or a specific product within the product line.
This new feature might be implemented by a set of new
components as well as new versions of old components
already existing as part of the reusable assets in the
product line. Doing this, there is a potential risk that
components could end up being incompatible with
components already used in the product, both with respect
to version and variants. This scenario is also related to
maintenance of a product that may alter the characteristics
of a particular component. This change of characteristics
is possibly acceptable for one particular product, but what
are the consequences in the rest of the product line?

Scenario 2: As we operate in the real-time systems
domain, we are also interested in predicting the temporal
behavior of an assembly. Adding component to-, or
changing components in a product or product line, may
violate the temporal constraints in the system. The reason
for violating the temporal constraints could be an over-
utilization of the available resources in the system
architecture. A big share of existing real-time systems are
embedded systems, thus resources are usually limited.

Scenario 3: When an assembly of components is
composed it is of importance to be able to predict if all
component interactions are type correct. In a port based
component model the components read the outputs from
other components at the start of the execution. If the
output type is not the same as the type of the input then
we have a fault which can lead to a failure of the system.

Hence we want to predict if an assembly is type correct
before deploying it.

The scenarios discussed above also apply to the
assembly of a new product, based on pre-existing reusable
components. We have to make sure that the product is
feasible both with respect to the functional behavior and
the temporal behavior.

We will refer to the analysis of relevant properties of
assemblies in a product line prospective as impact
analysis. Thus, we want to analyze the impact of a
change, e.g. installing new features in a product,
maintaining existing components, construct a completely
new product based on reusable assets within the product
line.

To illustrate predictability of assemblies for the
specified component model, we shall discuss two concrete
examples of assembly’s properties from a real-time
product line’s point of view: consistent, and end-to-end
deadlines. These properties are of completely different
nature. Consistent is typically a property of a complete
product. End-to-end deadline only concerns a subset of
components in a complete product assembly. Moreover,
there can be several end-to-end deadline requirements
within the same assembly with respect to a subset of
components from the full assembly.

3.1 The end-to-end temporal property
The second example of properties is related to

temporal constraints. The temporal correctness is of vital
importance in the real-time systems domain. Moreover,
the temporal requirements on a real-time system are
seldom presented in terms of the temporal attributes
provided by the RTOS or as simple deadlines for
individual components. Typically they are considered on a
higher level; for instance jitter constraints for the control
performance, end-to-end deadlines, response times, etc.
Designing a real-time system is partly a matter of
transforming such high-level temporal requirements to the
attributes available in the task model at run-time, typically
considering priorities and frequencies. In our approach the
high-level temporal requirements are specified as
properties on an assembly, e.g. end-to-end deadline, and
the implementation of those requirements, e.g.
frequencies, priorities, execution times, are specified as
analytical properties on components.

A concrete example of a temporal property is end-to-
end deadline. An end-to-end deadline, A.e2e, specifies a
temporal requirement on a set of components. It defines
the maximum distance between an input stimuli and the
output response given. Typically, the end-to-end property
requirements in hard real-time systems must be met, while
in soft real-time systems a particular confidence of
meeting the requirement may be sufficient. Statistical

verification of a prediction theory can be performed to
show how reliable the prediction actually is, e.g. the
confidence in the estimated worst-case execution time.

Verifying that a temporal property of the assembly is
feasible, we verify that our temporal implementation is
correct. However, this verification is correct under the
assumption that all prerequisites are correct (For example,
the execution time of a component, which is a component
property). Consequently, the correctness of a property of
an assembly depends on the confidence we have in
analytical properties. The concept of credentials as
presented in [7] includes a notion of confidence associated
with a component property. The execution time can be
statically analyzed given the source code, or empirically
measured in runtime [8]. Empirical validation of the
prediction theory is also needed to prove the soundness of
the theory.

Figure 2 shows an example where four components
have been instantiated from the model presented in Figure
1. The infrastructure in which those components will
execute (the RTOS) has a scheduling policy based on
fixed priorities. The task model consequently specifies the
level of priority and the frequency of each task. When
defining an assembly we also must specify how the
assembly is build. There are not only the properties of the
components that determine the properties of an assembly,
but also the assembly architecture; we must define how
the assembly is built. For example, in a pipe-filter
architecture the dataflow between components (i.e. the
precedence relations) must be specified. In this example
we define the precedence property and ports connections.
We also add an analytical property that specifies how
many times components are supposed to be executed.

Component c1 has two preconditions, the first one
express the precedence relation and the second the
connection of ports.

The figure shows four components where c1 reads the
out ports of c0 and c2, c3 reads the out ports of c1. c0
precedes c1 and c1 precedes c2, while c3 can execute
independently (i.e. c0 → c1 and c1 → c2). Below is the
components described according to definition 1:

c0 = 〈f, P0, Ø, {o1}, f(Ø, {o1}) , τ0, s0〉

c1 = 〈g, P1, {i1}, {o2, o3}, g({i1}, {o2, o3}) , τ1, s1〉 (1)

c2 = 〈h, P2, {i2}, {o4}, h({i2}, {o4}) , τ2, s2〉

c3 = 〈x, P3, {i3}, {o5}, x({i3}, {o5}) , τ3, s3〉

There are many views of one assembly depending on
the relations of components. In our example we have two
views, one is for precedence of components and another
that shows how the components are connected through
ports. The assembly in our example according to
definition 2 is:

inports = {}
outports = {O0}
periodTime : Time = 50
priority : int = 1
deadline : uint = 5

«constructive»
C0 : Component

inports = {I1}
outports = {O1}
periodTime : Time = 100
priority : int = 2
deadline : uint = 10

«constructive»
C1 : Component

inports = {I2}
outports = {O2}
periodTime : Time = 20
priority : int = 4
deadline : uint = 20

«constructive»
C2 : Component

«precondition»
{C1.n_executed > C2.n_executed}

inports = {I3}
outports = {O3}
periodTime : Time = 30
priority : int = 3
deadline : uint = 12

«constructive»
C3 : Component

«precondition»
{C1.O1=C2.I2}

«precondition»
{C1.O1=C3.I3}

«precondition»
{C0.O0 = C1.I1}

«precondition»
{C0.n_executed > C1.n_executed}

Figure 2. Four components with precedence and
connection relations specified using constraints

A = 〈 {c0, c1, c2, c3},
 {Rprecedence = {c0→c1, c1→c2},
 {RConnection= {(o1, i1), (o1, i2), (o2, i3)}}〉. (2)

One view of the assembly is the one

APrecedence = 〈 {c0, c1, c2, c3}, RPrecedence 〉. (3)

The other view is

 AConnection = 〈 {c0, c1, c2, c3}, RConnection 〉. (4)

We shell analyzed a high-level requirement of the
assembly, namely end-to-end deadline, A.e2e.

An end-to-end deadline constraint can be defined as a
property on the assembly A.e2e which can be calculated
as

A.e2e = Max(ResponseTime(c2), ResponseTime(c3)) –
 EarliestStartTime(c0). (5)

 An end-to-end deadline is consequently constraining
the maximum time interval between start of the first
component in an assembly and the finish of the last
component in the assembly. Formally we define A.e2e in
a general expression as:

Definition 6. An end-2-end property of assembly A,
A.e2e, is A.e2e = Max(R(ci)) – Min(StartTime(cj))

,where ci, cj∈ C(A), Max(R(ci)) is the maximum response
time of ci, and Min(StartTime(cj)) in the minimum earliest
start time of cj. �

Calculating the response time of components based on
the attributes provided in a fixed-priority based RTOS is
done with response time analysis [9]. However, different
methods must be utilized if a different scheduling policy
is provided by the RTOS, e.g. earliest-deadline-first.
Thus, the definition of a particular property may vary due
to mechanisms provided by the infrastructure in which the
system will execute.

In our particular example we are using fixed priority
scheduling in which we calculate the response time of
component ci, R(ci), as:

wcetc
Tc
cR

cBwcetccR j
chpc j

i
n

iii
n

ij

.
.

)(
)(.)(

)(

1 ∑
∈∀

+

++= (6)

,where B is the blocking time, hp(ci), is the set of
components having tasks with higher priority than
component i, and cj.wcet is the worst-case execution time
of component ci.

The earliest-start time can also be calculated with
equation 6 by assuming that all components execute as
fast as possible, i.e. with their best-case execution time
(bcet). Furthermore, the start time will be approximately
equal to the response time if we assume an execution time
equal to zero of the component whose earliest start time is
subject for the analysis.

The end-to-end property is a typical example of a
property that may be defined on only part of a complete
product. In

Figure 2 it can be seen that c0, c1 and c2 are connected
with the precedence relation but c3 can execute anytime
when in the ready queue. It is of importance to be able to
calculate the e2e property for c0, c1 and c2 only. Our
proposal is that the property shall be defined for parts of
the assembly with respect to a relation. In our example we
can say that c3 is independent from the other components
with respect to precedence. Hence A.e2e over {c0, c1, c2}
can be calculated with the response time of c2. By having
this notation it is possible to define properties that reflects
parts of the assembly.

As discussed above, different task models will affect
the set of analytical properties on components and how
temporal properties of assemblies are calculated. Equation
6 shows how to calculate the response time for a system
with periodic tasks and static priorities. However, if
systems are event based and uses the earliest-deadline first
scheduling algorithm new theories for verifying the
temporal behavior are required. Thus, components,
assemblies and the execution model affect the property
theory. Hence, each of these has to be defined before we

start reason about temporal properties of assemblies.

3.2 The version consistency property
In a product line approach the handling of consistency

is a 2-dimensional problem. A component in a product
line may be compatible with- or dependent of several
different variants of other components. For instance, A
GUI component for an embedded system could differ
between products in a product line, e.g. high-end products
with a color display and low-end products with
monochrome displays. The color display and the
monochrome displays are variants of the same feature, i.e.
the feature of presenting information graphically to a user
of the system. In turn, there can exist several versions of
every variant of a component. Typically new versions
emerge from error corrections and from new functionality
being added.

Version

Variant

Figure 3. The 2-dimensional version-variant
concept
A version of a component can be defined by having an

analytic property on the component. Also dependencies
between components are express through such a property.
In our model we allow a component to depend on several
different variants of a component but only one distinct
version of each variant.

The consistent property, A.consistent, is related to a
capability to predict consistency of an assembly. An
assembly is considered consistent if the versions of each
component are correct according to the specification of a
product in the product line. The specified features of a
product determine which components, and in particular
which components version should be included in a
product. To be able to guarantee consistency we need to
specify what versions of components a product depends
on.

This idea of having version dependencies is very
similar to how .NET assemblies use meta-data to describe
dependencies to other assemblies [10]. Dependencies can
be expressed and assured using OCL constraints for the
components. A new constraint has been added to all

components that state how the dependencies shall be
evaluated and regarded analyzing the assembly.

For the purpose of predicting variant- and version
consistence on an assembly, we must introduce the
analytical property depends on a component, c.depends.
The property c.depends is a set containing all components
and their variant and version, which component c
consistently can be assembled with. A tuple <C, variant,
version> identifies a variantand version of a component.

In many component models multiple versions of the
same component may not coexist. In those cases there is a
risk that components are assembled in an inconsistent
way, by means of having the assembly include two or
more different versions of the very same component. It is
desired to prevent such invalid assemblies by being able
to predict whether an assembly is consistent or not.

The consistency of all variants and versions in an
assembly can be calculated with the following formula.
The property consistent is of type boolean.

Definition 7. An assembly A is variant- and version
consistent, A.consistent if:

A.consistent = ∀ 〈〈ci, variant, x〉, 〈 ci, variant, y〉〉 ∈ V×V:
x=y

,where V , cU
)(

.
ACc

i

i

dependsc
∈

= i∈ C(A), variant is a

component variant and x,y are versions. �

That is, the assembly is consistent if a component does
not appear twice with different version in the union set of
all dependencies.

4. Impact Analysis
Before the new component is added we want to predict

the impact it has to the system. For instance we want to
calculate A.consistent and A.e2e over {c0, c1, c2} and {c3,
c4}. We refer to such an analysis as impact analysis.

The e2e property, or any other temporal property of an
assembly, may be affected by adding new components to
a product. Assume, for instance, a fixed-priority
scheduled system. The majority of the commercial
available RTOS belong to this class. Moreover, assume
that priorities are assigned to tasks according to the
deadline-monotonic algorithm, i.e. the task with the
shortest deadline is assigned the highest priority. Adding a
component that has a unique deadline in such a system
may require the rest of the system to undergo a new
priority assignment, unless it has the latest deadline.
Consequently, it is important to formalize the algorithm or
strategy used for priority assignment as a property of an
assembly. If such formalization does not exist, evolution
and maintenance of the system may become expensive.
Note that adding a component with lower priority than all

existing components is no guarantee for a temporal
correct system. Such a component can still affect the
temporal correctness through, e.g. shared resources
resulting in priority inversion.

In order to predict the need for reassigning priorities in
a fixed-priority system we introduce a boolean property
on an assembly that the pre-existing priority assignment
still will be valid after adding a new component,
A.priority. The theory for this property varies according to
the strategy for assigning priorities; just as the theory
A.e2e varies depending on the scheduling policy.

Adding a component ci will not affect the priority
assignment according to deadline-monotonic if:

Definition 8. The priority assignment of an assembly A
with a correct priority assignment, is still valid, A.priority
when adding component ci if:

A.priority = ∃ cj∀ ck∈ C(A): ci.d=cj.d ∨ ci.d< ck.d

,where c.d is the deadline for the task that controls the
execution of componet c. �

We illustrate the problem of adding a new component
to a product line by continuing the example in Section 3.1.
We introduce a new component c4 which is dependent on
the execution of c3 and the output from c3 and c2. Such a
component is presented in Figure 4. The component c4
also express its version relation to other components.
Component c4 depends on a particular version of c3. The
dependencies are expressed using a precondition that
asserts that the correct version of c3 is in c4’s list depends
on.

inports = {I4, I5}
outports = {}
periodTime : Time = 40
priority : int = ?
deadline : uint = 15

«constructive»
C4 : Component

«precondition»
{C3.O3 = C4.I4,
C2.O2 = C4,I5 }

«precondition»
{C3.n_executed > C4.n_executed}

«precondition»
{C4.depends.includes(C3.version)}

Figure 4. A new component c4 is added to
represent a new feature of a product.

Applying the property theory for A.priority indicates
that the priority assignment currently existing in the
assembly must be revised as the new component has an
unique deadline that is shorter than the deadline for
component c2. Note that the priority of a task only can be
decided in relation to every other task in a system.

In a similar way we can define, and apply, any other
important property theory in order to analyze the impact
of adding a new component to a system.

5. Conclusion
In this paper we have proposed the use of a prediction-

enabled component technology for developing and
maintaining component based product line architecture in
the real-time system’s domain. We have extended an
existing component model with analytical models that
specifies the properties needed for predicting the different
properties of a component assembly. As examples of
properties that are interesting from a real-time product
line architecture’s point of view, we define the end-to-end
deadline property and the type consistent property.

We have used the concept of impact analysis. In the
impact analysis the effect of introducing new components
in a product line architecture is predicted. The new
components could be due to the introduction of new
features in the product line or maintenance of existing
components that potentially alter the characteristics of a
component.

The ideas are presented in the paper as concrete
examples of two properties on assemblies. However, the
presented methodology is supposed to be the base to a
general framework in which new assembly properties
could be included as the need for them emerges. As a
consequence of introducing a new assembly property, new
analytical properties on the components may be needed.

As future work we will develop the property theories
presented in this paper further as well as the framework
concept. As a base for this work we will implement the
component model and provide a tool for specifying and
analyzing systems based in the component model. Such a
tool should support the framework ideas. Thus, it must
provide means for extending the component’s analytical
model with new analytical properties and to define new
property theories on assemblies.

Another application of the ideas presented in this
paper is a principle for handling dynamically configurable
systems. Consumer-products such as cellular phones may
be configured/customized by the consumer himself, e.g.
by downloading a new feature to the phone. Thus, the
end-customer assembles products based on a product line
architecture. By distributing the analytical model together
with the constructive software, the system itself can
predict the impact the new feature will have on the
system. Based on such an analysis the system can decide
whether to accept the new product as valid or not.

6. References

 [1] Bosch J., Design & Use of Software Architectures,
Addison-Wesley, 2000.

 [2] Clements P. and Northrop L., Software Product Lines:
Practices and Patterns, Addison-Wesley, 2001.

 [3] Hissam, S. A., Moreno, G. A., Stafford, J., and Wallnau,
K. C., Packaging Predictable Assembly with Prediction-
Enabled Component Technology, report Technical report
CMU/SEI-2001-TR-024 ESC-TR-2001-024, 2001.

 [4] Wallnau K. C. and Stafford J., "Ensembles: Abstractions
for A New Class of Design Problem", In Proceedings of
27th Euromicro Conference, 2001.

 [5] Stewart D.B., Volpe R.A., and Khosla P.K., Design of
Dynamically Reconfigurable Real-Time Software Using
Port-Based Objects, IEEE Transaction on Software
Engineering, volume 23, issue 12, 1997.

 [6] Wall A. and Norström C., "A Component Model for
Embedded Real-Time Software product-Lines", In
Proceedings of 4th IFAC conference on Fieldbus
Systems and their Applications, 2001.

 [7] Shaw M., "Truth vs Knowledge: The Difference
Between What a Component Does and What We Know
It Does", In Proceedings of 8th International Workshop
on Software Specification and Design, 1996.

 [8] Lim S.S., Bae Y. H., Jang C. T., Rhee B. D., Min S. L.,
Park C. Y., Shin H., Park K., and Ki C. S., An Accurate
Worst-Case Timing Analysis for RISK Processors, IEEE
Transaction on Software Engineering, volume 21, issue
7, 1995.

 [9] Audsley N.C., Burns A., Richardson M. F., Tindell K.,
and Wellings A. J., Applying New Scheduling Theory to
Static Priority Preemptive Scheduling, Software
Engineering Journal, volume 5, issue 8, 1993.

 [10] Thai T. and Lam H., .NET Framework, O´Reilly, 2001.

