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Abstract 

In this paper we propose a method for predicting the 
consequences of adding new components to an existing 
product line in the real-time systems domain. We refer to 
such a prediction as an impact analysis. New components 
are added as new features are introduced in the product 
line. Adding components to a real-time system may affect 
the temporal correctness of the system. In our approach to 
product line architectures, products are constructed by 
assembling components. By having a prediction enabled 
component technology as the underlying component 
technology, we can predict the behavior of an assembly of 
components. We demonstrate our approach by an 
example in which temporal correctness and consistency 
between versions of components is predicted. 
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requirements will be implemented by adding new 
components or by using different variants of existing 
components. 

The flexibility is not only specified in the functional 
domain. Also non-functional properties may be subject for 
variability. For instance, in the real-time systems domain 
we are interested in the temporal behavior of a system as 
it is considered correct only if it performs correct function 
at correct time, i.e. temporal correctness. Consequently, 
by adding the temporal domain we must not only manage 
functional flexibility but also temporal flexibility. For 
instance, the frequency with which a particular component 
executes may vary between a high-end product and a low-
end product due different demands from the controlled 
process.  

One of the main problems in constructing and 
maintaining a PLA is to express and verify product 
properties derived from the properties of the individual 
components. To be able to predict the product properties 
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from the component properties, we define a prediction-
enabled component technology (PECT) similar to the one 
proposed in [3]. In a PECT there are both a constructive 
model and an analytical model. Examples of such 
analytical models on a component are different temporal 
attributes such as the frequencies with which a component 
executes and the version dependency among components. 
While a constructive model deals with operational 
(functional), properties, analytical model describes non-
functional properties. From the predictability point of 
view, obtaining new functional features of the products is 
straightforward as they come directly from the functional 
properties of components. On the opposite, the non-
functional properties of products are hard to predict. For 
example, adding components with new functional features 
may degrade the quality of services of a product and, 
consequently, affect the temporal correctness. Moreover, 
a product line strategy can be focused on product families 
with the same functional properties, but different non-
functional properties, e.g., scalability, flexibility, and 
safety. For this reason, the ability to derive non-functional 
product properties from the properties of the components 



plays a significant role for PLA. Furthermore, as 
developing software products according to the PLA 
approach is based on reuse and repeatable processes, the 
findings and measurements from previously developed 
product versions can be taken as input to the method 
proposed in this paper which may give more accurate 
predictions.  

In this paper we present a component concept that 
provides means for performing an impact analysis. The 
aim of impact analysis is to predict the consequences of 
altering a system, i.e. adding new functionality or 
changing existing components. This is especially 
important in a PLA perspective where components and 
architectures are reused and customized for different 
products. The analysis is based on the concept of PECT, 
which is integrated into our component model developed 
for use in real-time product line architectures. We 
demonstrate the analytical models by an example showing 
how they can be used to derive properties of an assembly 
and analyze the impact of, e.g. adding new features to a 
product. However, the intention of this work is to provide 
a framework in which analytical properties can be added 
to the model such that any interesting property of an 
assembly can be expressed and analyzed. In particular we 
illustrate our approach by presenting how two different 
non-functional properties, temporal correctness, and 
version consistent, can be analyzed.  

The remainder of the paper is outlined as follows: 
Section 2 gives an introduction to components and 
assemblies of components[3,4]. Section 3 elaborates on 
the different properties of assemblies. Section 4 discusses 
the concept of impact analysis, and finally Section 5 
concludes the paper.   

2. Components and Assemblies 
In order to enable analyze properties of component-

based products, we must have means for specifying 
analytical properties of components and identify 
synchronization and communication between them. 
Different component models specify this to different 
extent. Most of them do not treat non-functional 
properties. Our component model is based on the port-
based object approach in which components are 
connected to each other by data ports that constitutes a 
components data interface [5]. This component model 
extends the expressiveness of port-based objects and is 
presented in a simplified manner hereinafter. For a more 
detailed description we refer to [6]. 

In Figure 1, our component meta-model is depicted in 
UML-fashion. Components have in and out ports which 
resembles the data interface. Also, a component 
encapsulates services, which provide the actual functional 
behavior. Besides having data interfaces, defined by their 
ports, components in the framework have two additional 

interfaces, control interface, and parameterization 
interface. The execution of, and synchronization among 
components is controlled through its control interface by 
associating a task to the interface. A task provides a 
thread of execution that is defined and restricted by a set 
of attributes, e.g. priority, frequency. A task in our 
framework can be based on any task model defined by the 
used real-time operating system (RTOS). A task is a 
runtime mechanism and hence, it is a constructive part of 
a component. However, note that some of the attributes of 
a task are required when, together with some analytical 
properties, analyzing temporal properties of an assembly. 
The parameterization interface defines the points of 
variation of a component’s behavior. 

«constructive»
Component

+execute()
-componentName : String

«constructive»
Port

-portName : String
-dataType : String

1..n

«constructive»
service

-service : functionPtr
-input : Port[]
-output : Port

0..n

«constructive»
Parameter

-parameterName : String
-parameterType : String

0..n

«analytic»
Property

-propertyName : String
-propertyType : String

«constructive»
Task

-precedes : Task
-mutex : Task

«constructive»
PeriodicTask

-periodTime : Time
-priority : Integer

0..n

Figure 1. The component model 
The property class that is stereotyped as analytic 

provides the information needed by the different analyses 
we are interested in performing on an assembly. We will 
refer to such a property as an analytical property. An 
analytical component property usually does not have a 
correspondence in a component instance. A typical 
example of such a property would be the execution time 
of a service of a component. The execution time is 
derived from the source code, or by measurements, for the 
purpose of modeling and analysis of a system and has no 
correspondence as such in the runtime. The analytical 
model of a component is defined by its analytical 
properties.  

For further discussions we need definitions of certain 
terms in our component model. In this model we shall 
emphasize the real-time properties. Formally we define 
the constructive part of the component model depicted in 
Figure 1 as: 

Definition 1. A component c is a tuple 〈f, P, I, O, C, sc〉, 
where f is the service encapsulated by c, P is the set of 
parameters, I is the set of in-ports, O is the set of out-
ports, C is the control interface and sc is the state of 
component c. � 

 



A component’s state is updated by the service within a 
component and remains in between consecutive 
executions of a component. 

 An assembly is a specific configuration of a set of 
components that also defines the components 
interconnections. The union of all its component’s states 
gives the state of an assembly. Formally we define an 
assembly as: 

Definition 2. An assembly A is a tuple 〈C(A), R*〉, where 
C(A) ⊆  C is the set of components in A, and R* is the set 
of relations valid between C(A) in A, and C is a set of all 
components encapsulated in the product � 

Note that an assembly does not necessary corresponds 
to a product. While in some cases we are interested in 
properties of the product, in some cases we may want to 
analyze properties of a sub-part of the complete product. 
In both cases we will refer to an assembly. An assembly is 
only a conceptual- and analytical view of a complete 
product that exists for the analysis of a particular property, 
and has not necessarily a constructive correspondence. 

In order to construct an assembly, we must be able to 
connect components with each other via some relation. In 
our definition of an assembly we have three kinds or 
relations among components that belongs to the set R, 
precedence, mutual exclusion (mutex), and data-flow 
connections. 

Precedence and mutual exclusion specify the 
synchronization among tasks that controls the execution 
of components. Formally we define precedence and 
mutual exclusion as: 

Definition 3. A precedence relation, →, is a binary, 
transitive relation among a pair of tasks 〈τi, τj〉 ∈  Τ×Τ, 
such that, if τi→τj, then τj may start its n:th execution 
earliest at the end of τi’s n:th execution where i ≠ j and n 
is the number of invocations of τi, andτj. � 

Definition 4. A mutual exclusion relation, ⊗ , is a binary, 
symmetric relation among pair of tasks 〈τi, τj〉 ∈  Τ×Τ, 
such that if τi ⊗  τj, then neither τi nor τj is permitted to 
execute while the corresponding party, or a transitively 
related party is executing and i  ≠ j. � 

Besides synchronization, we can also specify data-
flow relations among components in an assembly. Data-
flow connections specify the data that are exchanged 
between components in an assembly through their ports. 
We define the data-flow relation as: 

Definition 5. A data flow connection =, is a binary, anti-
symmetric relation among pair of ports on components, 
〈ci.ix cj.oy〉 ∈  C.I×C.O, such that if ci.ix = cj.oy then ci’s in 
port ix is connected to cj’s out port ox. � 

3. Properties of an Assembly 
The intention of our work is to provide a framework in 

which new properties of an assembly could be taken into 
consideration and predicted for the purpose of analyzing 
the impact that the introduction of a new component in the 
system have. The general idea is that if the model has to 
be extended with a new predictable property, new analytic 
properties can be defined and new property theories be 
developed. The property theory defines how a particular 
property of an assembly is calculated, e.g. theories for 
verifying the temporal correctness. For instance, if we 
require an assembly to be type correct, i.e. the types of 
connected data ports are correct, we must add a method 
for checking this property and doing so require an 
analytical property on data ports which carries the type 
information. Furthermore, we are using the prediction 
technologies in a product line perspective, i.e. we will 
discuss properties that are important when developing and 
maintaining product line architectures.  

There are several realistic scenarios describing 
activities that a product line may undergo during its 
lifetime. We have not identified all possible scenarios but 
highlighting some relevant cases and propose examples of 
properties that are interesting from their perspective.  

Scenario 1: New features will eventually be added to a 
product line or a specific product within the product line. 
This new feature might be implemented by a set of new 
components as well as new versions of old components 
already existing as part of the reusable assets in the 
product line. Doing this, there is a potential risk that 
components could end up being incompatible with 
components already used in the product, both with respect 
to version and variants. This scenario is also related to 
maintenance of a product that may alter the characteristics 
of a particular component. This change of characteristics 
is possibly acceptable for one particular product, but what 
are the consequences in the rest of the product line? 

Scenario 2: As we operate in the real-time systems 
domain, we are also interested in predicting the temporal 
behavior of an assembly. Adding component to-, or 
changing components in a product or product line, may 
violate the temporal constraints in the system. The reason 
for violating the temporal constraints could be an over-
utilization of the available resources in the system 
architecture. A big share of existing real-time systems are 
embedded systems, thus resources are usually limited. 

Scenario 3: When an assembly of components is 
composed it is of importance to be able to predict if all 
component interactions are type correct. In a port based 
component model the components read the outputs from 
other components at the start of the execution. If the 
output type is not the same as the type of the input then 
we have a fault which can lead to a failure of the system. 

 



Hence we want to predict if an assembly is type correct 
before deploying it. 

The scenarios discussed above also apply to the 
assembly of a new product, based on pre-existing reusable 
components. We have to make sure that the product is 
feasible both with respect to the functional behavior and 
the temporal behavior. 

We will refer to the analysis of relevant properties of 
assemblies in a product line prospective as impact 
analysis. Thus, we want to analyze the impact of a 
change, e.g. installing new features in a product, 
maintaining existing components, construct a completely 
new product based on reusable assets within the product 
line. 

To illustrate predictability of assemblies for the 
specified component model, we shall discuss two concrete 
examples of assembly’s properties from a real-time 
product line’s point of view: consistent, and end-to-end 
deadlines. These properties are of completely different 
nature. Consistent is typically a property of a complete 
product. End-to-end deadline only concerns a subset of 
components in a complete product assembly. Moreover, 
there can be several end-to-end deadline requirements 
within the same assembly with respect to a subset of 
components from the full assembly. 

3.1 The end-to-end temporal property 
The second example of properties is related to 

temporal constraints. The temporal correctness is of vital 
importance in the real-time systems domain. Moreover, 
the temporal requirements on a real-time system are 
seldom presented in terms of the temporal attributes 
provided by the RTOS or as simple deadlines for 
individual components. Typically they are considered on a 
higher level; for instance jitter constraints for the control 
performance, end-to-end deadlines, response times, etc. 
Designing a real-time system is partly a matter of 
transforming such high-level temporal requirements to the 
attributes available in the task model at run-time, typically 
considering priorities and frequencies. In our approach the 
high-level temporal requirements are specified as 
properties on an assembly, e.g. end-to-end deadline, and 
the implementation of those requirements, e.g. 
frequencies, priorities, execution times, are specified as 
analytical properties on components.  

A concrete example of a temporal property is end-to-
end deadline. An end-to-end deadline, A.e2e, specifies a 
temporal requirement on a set of components. It defines 
the maximum distance between an input stimuli and the 
output response given. Typically, the end-to-end property 
requirements in hard real-time systems must be met, while 
in soft real-time systems a particular confidence of 
meeting the requirement may be sufficient. Statistical 

verification of a prediction theory can be performed to 
show how reliable the prediction actually is, e.g. the 
confidence in the estimated worst-case execution time. 

Verifying that a temporal property of the assembly is 
feasible, we verify that our temporal implementation is 
correct. However, this verification is correct under the 
assumption that all prerequisites are correct (For example, 
the execution time of a component, which is a component 
property). Consequently, the correctness of a property of 
an assembly depends on the confidence we have in 
analytical properties. The concept of credentials as 
presented in [7] includes a notion of confidence associated 
with a component property. The execution time can be 
statically analyzed given the source code, or empirically 
measured in runtime [8]. Empirical validation of the 
prediction theory is also needed to prove the soundness of 
the theory. 

Figure 2 shows an example where four components 
have been instantiated from the model presented in Figure 
1. The infrastructure in which those components will 
execute (the RTOS) has a scheduling policy based on 
fixed priorities. The task model consequently specifies the 
level of priority and the frequency of each task.  When 
defining an assembly we also must specify how the 
assembly is build. There are not only the properties of the 
components that determine the properties of an assembly, 
but also the assembly architecture; we must define how 
the assembly is built. For example, in a pipe-filter 
architecture the dataflow between components (i.e. the 
precedence relations) must be specified. In this example 
we define the precedence property and ports connections. 
We also add an analytical property that specifies how 
many times components are supposed to be executed.   

Component c1 has two preconditions, the first one 
express the precedence relation and the second the 
connection of ports.  

The figure shows four components where c1 reads the 
out ports of c0 and c2, c3 reads the out ports of c1. c0 
precedes c1 and c1 precedes c2, while c3 can execute 
independently (i.e. c0 → c1 and c1 → c2). Below is the 
components described according to definition 1: 

c0 = 〈f, P0, Ø, {o1}, f(Ø, {o1}) , τ0, s0〉 

c1 = 〈g, P1, {i1}, {o2, o3}, g({i1}, {o2, o3}) , τ1, s1〉 (1) 

c2 = 〈h, P2, {i2}, {o4}, h({i2}, {o4}) , τ2,  s2〉 

c3 = 〈x, P3, {i3}, {o5}, x({i3}, {o5}) , τ3, s3〉 

There are many views of one assembly depending on 
the relations of components. In our example we have two 
views, one is for precedence of components and another 
that shows how the components are connected through 
ports. The assembly in our example according to 
definition 2 is: 

 



inports = {}
outports = {O0}
periodTime : Time = 50
priority : int = 1
deadline : uint = 5

«constructive»
C0 : Component

inports = {I1}
outports = {O1}
periodTime : Time = 100
priority : int = 2
deadline : uint = 10

«constructive»
C1 : Component

inports = {I2}
outports = {O2}
periodTime : Time = 20
priority : int = 4
deadline : uint = 20

«constructive»
C2 : Component

«precondition»
{C1.n_executed > C2.n_executed}

inports = {I3}
outports = {O3}
periodTime : Time = 30
priority : int = 3
deadline : uint = 12

«constructive»
C3 : Component

«precondition»
{C1.O1=C2.I2}

«precondition»
{C1.O1=C3.I3}

«precondition»
{C0.O0 = C1.I1}

«precondition»
{C0.n_executed > C1.n_executed}

 

Figure 2. Four components with precedence and 
connection relations specified using constraints 

 

A = 〈 {c0, c1, c2, c3},  
          {Rprecedence = {c0→c1, c1→c2},  
          {RConnection= {(o1, i1), (o1, i2), (o2, i3)}}〉.  (2) 

 

One view of the assembly is the one  

APrecedence = 〈 {c0, c1, c2, c3}, RPrecedence 〉. (3)  

The other view is 

 AConnection = 〈 {c0, c1, c2, c3}, RConnection 〉. (4) 

We shell analyzed a high-level requirement of the 
assembly, namely end-to-end deadline, A.e2e. 

An end-to-end deadline constraint can be defined as a 
property on the assembly A.e2e which can be calculated 
as  

A.e2e = Max(ResponseTime(c2), ResponseTime(c3)) –  
              EarliestStartTime(c0). (5) 

 An end-to-end deadline is consequently constraining 
the maximum time interval between start of the first 
component in an assembly and the finish of the last 
component in the assembly. Formally we define A.e2e in 
a general expression as: 

Definition 6. An end-2-end property of assembly A, 
A.e2e, is  A.e2e = Max(R(ci)) –  Min(StartTime(cj)) 

,where ci, cj∈ C(A), Max(R(ci)) is the maximum response 
time of ci, and Min(StartTime(cj)) in the minimum earliest 
start time of cj.   � 

Calculating the response time of components based on 
the attributes provided in a fixed-priority based RTOS is 
done with response time analysis [9]. However, different 
methods must be utilized if a different scheduling policy 
is provided by the RTOS, e.g. earliest-deadline-first. 
Thus, the definition of a particular property may vary due 
to mechanisms provided by the infrastructure in which the 
system will execute.  

In our particular example we are using fixed priority 
scheduling in which we calculate the response time of 
component ci, R(ci), as: 
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,where B is the blocking time, hp(ci), is the set of 
components having tasks with higher priority than 
component i, and cj.wcet is the worst-case execution time 
of component ci.  

The earliest-start time can also be calculated with 
equation 6 by assuming that all components execute as 
fast as possible, i.e. with their best-case execution time 
(bcet). Furthermore, the start time will be approximately 
equal to the response time if we assume an execution time 
equal to zero of the component whose earliest start time is 
subject for the analysis.  

The end-to-end property is a typical example of a 
property that may be defined on only part of a complete 
product. In  

Figure 2 it can be seen that c0, c1 and c2 are connected 
with the precedence relation but c3 can execute anytime 
when in the ready queue. It is of importance to be able to 
calculate the e2e property for c0, c1 and c2 only. Our 
proposal is that the property shall be defined for parts of 
the assembly with respect to a relation. In our example we 
can say that c3 is independent from the other components 
with respect to precedence. Hence A.e2e over {c0, c1, c2} 
can be calculated with the response time of c2. By having 
this notation it is possible to define properties that reflects 
parts of the assembly.  

As discussed above, different task models will affect 
the set of analytical properties on components and how 
temporal properties of assemblies are calculated. Equation 
6 shows how to calculate the response time for a system 
with periodic tasks and static priorities. However, if 
systems are event based and uses the earliest-deadline first 
scheduling algorithm new theories for verifying the 
temporal behavior are required. Thus, components, 
assemblies and the execution model affect the property 
theory. Hence, each of these has to be defined before we 

 



start reason about temporal properties of assemblies.  

3.2 The version consistency property 
In a product line approach the handling of consistency 

is a 2-dimensional problem. A component in a product 
line may be compatible with- or dependent of several 
different variants of other components. For instance, A 
GUI component for an embedded system could differ 
between products in a product line, e.g. high-end products 
with a color display and low-end products with 
monochrome displays. The color display and the 
monochrome displays are variants of the same feature, i.e. 
the feature of presenting information graphically to a user 
of the system. In turn, there can exist several versions of 
every variant of a component. Typically new versions 
emerge from error corrections and from new functionality 
being added.  

Version

Variant 
 

Figure 3. The 2-dimensional version-variant 
concept 
A version of a component can be defined by having an 

analytic property on the component. Also dependencies 
between components are express through such a property. 
In our model we allow a component to depend on several 
different variants of a component but only one distinct 
version of each variant.  

The consistent property, A.consistent, is related to a 
capability to predict consistency of an assembly. An 
assembly is considered consistent if the versions of each 
component are correct according to the specification of a 
product in the product line. The specified features of a 
product determine which components, and in particular 
which components version should be included in a 
product. To be able to guarantee consistency we need to 
specify what versions of components a product depends 
on.  

This idea of having version dependencies is very 
similar to how .NET assemblies use meta-data to describe 
dependencies to other assemblies [10]. Dependencies can 
be expressed and assured using OCL constraints for the 
components. A new constraint has been added to all 

components that state how the dependencies shall be 
evaluated and regarded analyzing the assembly. 

For the purpose of predicting variant- and version 
consistence on an assembly, we must introduce the 
analytical property depends on a component, c.depends. 
The property c.depends is a set containing all components 
and their variant and version, which component c 
consistently can be assembled with. A tuple <C, variant, 
version> identifies a variantand version of a component. 

In many component models multiple versions of the 
same component may not coexist. In those cases there is a 
risk that components are assembled in an inconsistent 
way, by means of having the assembly include two or 
more different versions of the very same component. It is 
desired to prevent such invalid assemblies by being able 
to predict whether an assembly is consistent or not.  

The consistency of all variants and versions in an 
assembly can be calculated with the following formula. 
The property consistent is of type boolean. 

Definition 7. An assembly A is variant- and version 
consistent, A.consistent if: 

A.consistent = ∀  〈〈ci, variant, x〉, 〈 ci, variant, y〉〉 ∈ V×V: 
x=y 

,where V , cU
)(

.
ACc

i

i

dependsc
∈

= i∈ C(A), variant is a 

component variant and x,y are versions. � 

That is, the assembly is consistent if a component does 
not appear twice with different version in the union set of 
all dependencies.  

4. Impact Analysis 
Before the new component is added we want to predict 

the impact it has to the system. For instance we want to 
calculate A.consistent and A.e2e over {c0, c1, c2} and  {c3, 
c4}. We refer to such an analysis as impact analysis. 

The e2e property, or any other temporal property of an 
assembly, may be affected by adding new components to 
a product. Assume, for instance, a fixed-priority 
scheduled system. The majority of the commercial 
available RTOS belong to this class.  Moreover, assume 
that priorities are assigned to tasks according to the 
deadline-monotonic algorithm, i.e. the task with the 
shortest deadline is assigned the highest priority. Adding a 
component that has a unique deadline in such a system 
may require the rest of the system to undergo a new 
priority assignment, unless it has the latest deadline. 
Consequently, it is important to formalize the algorithm or 
strategy used for priority assignment as a property of an 
assembly. If such formalization does not exist, evolution 
and maintenance of the system may become expensive. 
Note that adding a component with lower priority than all 

 



existing components is no guarantee for a temporal 
correct system. Such a component can still affect the 
temporal correctness through, e.g. shared resources 
resulting in priority inversion.  

In order to predict the need for reassigning priorities in 
a fixed-priority system we introduce a boolean property 
on an assembly that the pre-existing priority assignment 
still will be valid after adding a new component, 
A.priority. The theory for this property varies according to 
the strategy for assigning priorities; just as the theory 
A.e2e varies depending on the scheduling policy.  

Adding a component ci will not affect the priority 
assignment according to deadline-monotonic if: 

Definition 8. The priority assignment of an assembly A 
with a correct priority assignment, is still valid, A.priority 
when adding component ci if: 

A.priority = ∃  cj∀ ck∈ C(A): ci.d=cj.d ∨  ci.d< ck.d 

,where c.d is the deadline for the task that controls the 
execution of componet c.  � 

We illustrate the problem of adding a new component 
to a product line by continuing the example in Section 3.1. 
We introduce a new component c4 which is dependent on 
the execution of c3 and the output from c3 and c2. Such a 
component is presented in Figure 4. The component c4 
also express its version relation to other components. 
Component c4 depends on a particular version of c3. The 
dependencies are expressed using a precondition that 
asserts that the correct version of c3 is in c4’s list depends 
on.  

inports = {I4, I5}
outports = {}
periodTime : Time = 40
priority : int = ?
deadline : uint = 15

«constructive»
C4 : Component

«precondition»
{C3.O3 = C4.I4,
C2.O2 = C4,I5 }

«precondition»
{C3.n_executed > C4.n_executed}

«precondition»
{C4.depends.includes(C3.version)}

 

Figure 4. A new component c4 is added to 
represent a new feature of a product. 

Applying the property theory for A.priority indicates 
that the priority assignment currently existing in the 
assembly must be revised as the new component has an 
unique deadline that is shorter than the deadline for 
component c2. Note that the priority of a task only can be 
decided in relation to every other task in a system.  

In a similar way we can define, and apply, any other 
important property theory in order to analyze the impact 
of adding a new component to a system.  

5. Conclusion 
In this paper we have proposed the use of a prediction-

enabled component technology for developing and 
maintaining component based product line architecture in 
the real-time system’s domain. We have extended an 
existing component model with analytical models that 
specifies the properties needed for predicting the different 
properties of a component assembly. As examples of 
properties that are interesting from a real-time product 
line architecture’s point of view, we define the end-to-end 
deadline property and the type consistent property.  

We have used the concept of impact analysis. In the 
impact analysis the effect of introducing new components 
in a product line architecture is predicted. The new 
components could be due to the introduction of new 
features in the product line or maintenance of existing 
components that potentially alter the characteristics of a 
component.  

The ideas are presented in the paper as concrete 
examples of two properties on assemblies. However, the 
presented methodology is supposed to be the base to a 
general framework in which new assembly properties 
could be included as the need for them emerges. As a 
consequence of introducing a new assembly property, new 
analytical properties on the components may be needed.  

As future work we will develop the property theories 
presented in this paper further as well as the framework 
concept. As a base for this work we will implement the 
component model and provide a tool for specifying and 
analyzing systems based in the component model. Such a 
tool should support the framework ideas. Thus, it must 
provide means for extending the component’s analytical 
model with new analytical properties and to define new 
property theories on assemblies.  

Another application of the ideas presented in this 
paper is a principle for handling dynamically configurable 
systems. Consumer-products such as cellular phones may 
be configured/customized by the consumer himself, e.g. 
by downloading a new feature to the phone. Thus, the 
end-customer assembles products based on a product line 
architecture. By distributing the analytical model together 
with the constructive software, the system itself can 
predict the impact the new feature will have on the 
system. Based on such an analysis the system can decide 
whether to accept the new product as valid or not.  
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