
International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

Manuscript
Received:

27, Aug., 2013

Revised:
10, Sep., 2013

Accepted:

18, Sep., 2013

Published:

15, Nov., 2013

Keywords

Non-Functio

nal

Requirement

s,

Trade-off

analysis,

UML,

Model-Based

Development

,

Quality

attributes,

Non-Functio

nal

Properties,

Extra-Functi

onal

Properties.

Abstract One common goal followed by

software engineers is to deliver a product

which satisfies the requirements of different

stakeholders. Software requirements are

generally categorized into functional and

Non-Functional Requirements (NFRs).

While NFRs may not be the main focus in

developing some applications, there are

systems and domains where the satisfaction

of NFRs is even critical and one of the main

factors which can determine the success or

failure of the delivered product, notably in

embedded systems. While the satisfaction of

functional requirements can be decomposed

and determined locally, NFRs are

interconnected and have impacts on each

other. For this reason, they cannot be

considered in isolation and a careful balance

and trade-off among them needs to be

established. We provide a generic

model-based approach to evaluate the

satisfaction of NFRs taking into account

their mutual impacts and dependencies. By

providing indicators regarding the

satisfaction level of NFRs in the system, the

approach enables to compare different

system design models and also identify parts

of the system which can be good candidates

for modification in order to achieve better

satisfaction levels.

1. Introduction

In software engineering, there are different types of

programming languages and development methods that

have been introduced to develop software systems in

different domains. There is one common goal that is

inherent in all these different development tools and

methodologies, and that is to help build a software system

which satisfies the set of requirements that are defined for

it. While the focus has usually been mainly on functional

requirements [1, 2] inadequate attention and improper

handling of Non-Functional Requirements (NFRs) has been

identified as one of the important factors for failure of many

project [3, 4]. In spite of this fact, NFRs are still rarely

taken into account so seriously as functional requirements

Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin; Mälardalen

Real-Time Research Centre (MRTC); Mälardalen University; Västerås,

Sweden; {mehrdad.sadatmand, Antonio-cicchetti, mikael-sjodin}@

mdh.se.

and not considered as first-class entities in software

architecture [5]. Part of this is due to the fact that NFRs are

usually defined at a high abstraction level and specified in

an informal way [6, 5]. Therefore, there need to be

appropriate tools and methods to incorporate them at earlier

phases of development and in design models along with

functional requirements. Integration of NFRs and FRs is

especially important considering that having a different set

of NFRs for the same FRs can result in different

architectural decisions and implementations [6, 7].

While NFRs might receive less attention and degree of

importance in certain systems such as desktop applications,

however, they can be critical in certain domains such as in

real-time and embedded systems. In these systems, there are

different set of constraints and limitations on available

resources and therefore, a successful design and

implementation depends heavily on how it can satisfy the

non-functional requirements of the system [8]. Examples of

such limitations that get formulated in the form of NFRs can

be limited amount of available memory, limited energy

resources, and so on. Therefore, it is important to be able to

evaluate different design models and alternatives with

respect to the satisfaction of NFRs. For example, in one

design, to fulfill security requirements, a stronger

encryption algorithm might be used than another design

alternative. However, using a stronger encryption algorithm

may lead to consuming more memory or processing

capacity and CPU time, and this way, it impacts memory

and performance requirements (if there are any defined).

This brings us to the next challenge with respect to NFRs

and it is that NFRs are interconnected and have

dependencies and for this reason, cannot be considered in

isolation. Therefore, designers should be able to carefully

identify how satisfying and fulfilling one requirements can

impair the satisfaction of other NFRs in the system.

Establishing and maintaining such interdependencies during

the development process and the lifecycle of the product is

also an important point taking into account the evolution of

software architecture and introduction of new requirements

or modifying existing ones. Moreover, not only NFRs can

have impacts on each other, but also an NFR usually

crosscuts different parts of a system. For example,

achieving security in a system requires design decisions for

different parts of a system spanning from user interfaces

(e.g., what a user can enter as input), database backends,

communication protocols, network topology and so on.

Model-based development (MBD) is a promising

approach to cope with the design complexity of systems

such as those in real-time embedded domain. It helps to

Model-Based Trade-off Analysis of Non-Functional

Requirements: An Automated UML-Based Approach
Mehrdad Saadatmand

 1, , Antonio Cicchetti
 2

, & Mikael Sjödin
 3

 International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

 International Journal Publishers Group (IJPG) ©

576

raise the abstraction level (and hiding unnecessary details

and complexities in each viewpoint), perform analysis at

earlier phases of the development and also enables

automatic generation of code from the models [9]. By

providing views of the system at a high abstraction level,

MBD concepts can also be used to model NFRs, which as

stated are usually defined at a high abstraction level, and

incorporate them with other parts of the system. Analysis of

NFRs can then be performed on the model and also the

model of NFRs can be maintained as a development artifact.

In this paper we introduce a UML profile [10, 11] for

modeling NFRs in a generic way and regardless of their

type (i.e., performance, availability, and so on), to enable

performing trade-off analysis on them. By including

important information about each requirement in the model,

such as its priority and also its relationships to other

requirements and functional parts of the system, the

dependencies and impacts of NFRs are analyzed to provide

system designers with information about how good a system

design is in terms of the satisfaction of its NFRs. It also

helps to identify parts of the system in which violations and

deviations have occurred that deserve more attention. Based

on this information, system designers can also compare

different design models and alternatives. Another approach

for modeling NFRs could be to define a Domain-Specific

Language (DSL) from scratch (i.e., non-UML based

approaches), however, using UML and its profiling

mechanism to extend it and define new modeling semantics

has some advantages. Introducing a DSL requires extra

efforts on training the developers, while most developers

may already be familiar or even using UML. For this

reason, it can also serve as a unifying factor between

different development teams (e.g., to communicate design

decisions). Moreover, there is a big variety of different

UML tools which are already available and can be used

off-the-shelf. Also, integrating NFRs with functional parts

of the systems will be more straightforward, such as when

there already exist UML models of the system and the

model of NFRs based on our introduced profile can be

constructed and integrated with them (e.g., legacy systems).

A comparison of advantages and disadvantages of using

DSLs and UML profiles for defining new modeling

semantics are discussed in detail in [10, 12].

Using the suggested profile for modeling NFRs, not

only NFRs can be modeled and integrated with already

existing functional models of the system, but it is also

intended to be used for constructing the NFR model at the

beginning of the development process and to perform

analysis of their trade-offs, especially when enough

information about their impacts and dependencies are

available. The model may then gradually grow, be

integrated with functional parts as they get designed, and

automatic analysis of NFRs can be done iteratively when

any changes that can affect NFRs are made.

The remainder of the paper is structured as follows. In

Section 2, NFRs and their characteristics are introduced and

the challenges related to NFRs during the development

process are identified and discussed. In Section 3, we

formulate and summarize the characteristics that different

solutions for managing the trade-offs of NFRs should be

able to provide to cope with the identified challenges.

Section 4 describes in the detail the suggested UML profile

and its modeling semantics including the rules and formulas

that are defined for performing trade-off analysis on the

models of NFRs. An application of the profile and how

analysis is performed on NFRs is provided in Section 5

using a selected part of the NFR model of a mobile phone.

Discussion of different aspects of the proposed approach is

offered in Section 6. In Section 7, related works are

investigated and finally in Section 8, a summary of the work

is provided and conclusions are drawn.

2. Non-Functional Requirements

A. Definitions

A requirement is basically an expression of a need [13]

and in developing software systems, there can be different

stakeholders with their own specific requirements [14].

Some requirements, such as those related to the user

interface, may originate from the customer or end-user side,

while some other requirements may be due to the selection

of a particular development process (e.g., agile or

model-based development). Also, there are different

standards and regulations that may need to be followed in

the development of a software system which bring along

additional sets of requirements. Examples of such standards

could be different safety standards that a safety-critical

system should conform to, for instance, in avionics,

automotive, and medical systems.

In systems engineering, requirements are usually

categorized as functional and non-functional [13]. Simply

stated, functional requirements state what a system should

do and are sometimes identified as capabilities of a software

product [14], whereas non-functional requirements define

how the system should perform or as mentioned in [15] a

non-functional requirement is “an attribute or a constraint

on a system”. A list of different definitions for

non-functional requirements are collected in [16]. An

example for functional requirements could be that a system

should be able to read input from a text file. A

non-functional requirement could be that the process of

reading the input file should not take more than 10

milliseconds; this requirement is basically an expression of

a performance need in the system.

The IEEE standards, 610.12-1990 and ISO/IEC/IEEE

24765:2010(E) [17, 18] provide the following definitions

for requirement, and functional and non-functional

requirements (quoted):

 Requirement:

1. a condition or capability needed by a

user to solve a problem or achieve an

objective.

2. a condition or capability that must be

met or possessed by a system, system

component, product, or service to

satisfy an agreement, standard,

Saadatmand et al.: Model-Based Trade-off Analysis of Non-Functional Requirements: An Automated UML-Based Approach.

International Journal Publishers Group (IJPG) ©

577

specification, or other formally

imposed documents.

3. a documented representation of a

condition or capability as in (1) or (2).

4. a condition or capability that must be

met or possessed by a system, product,

service, result, or component to satisfy

a contract, standard, specification, or

other formally imposed document.

 Functional Requirement:

1. a statement that identifies what a

product or process must accomplish to

produce required behavior and/or

results.

2. a requirement that specifies a function

that a system or system component

must be able to perform.

 Non-Functional Requirement: a software

requirement that describes not what the software

will do but how the software will do it (i.e.,

design constraints). Examples: software

performance requirements, software external

interface requirements, software design

constraints, and software quality attributes.

Non-functional requirements are sometimes

difficult to test, so they are usually evaluated

subjectively.

Moreover, a requirement can be refined (into smaller,

more detailed and fine-grained ones) and this way a

hierarchy of requirements can be created. The term derived

requirement is also offered by the IEEE standards,

610.12-1990 and ISO/IEC/IEEE 24765:2010(E), which is

defined as:

 Derived Requirement:

1. a lower-level requirement that is

determined to be necessary for a

top-level requirement to be met.

2. a requirement that is not explicitly

stated in customer requirements, but is

inferred from contextual requirements

(such as applicable standards, laws,

policies, common practices, and

management decisions) or from

requirements needed to specify a

product or service component.

In this context, the term extra-functional is also used at

times as an equivalent of non-functional to change the focus

and take away and replace the negative aspect that is

inherent in 'non'. On the other hand, there is the concept of

non-functional/extra-functional property (NFP/EFP), which

is often confused with NFRs. As a type of requirements,

NFRs are also expression of a need which are generally

stated in an informal way, while a property is a statement

that can be asserted formally, and therefore, it can be

analyzed and proven. An example of extra-functional

properties could be the worst-case execution time of a

component in a system which may be calculated statically

or measured. Therefore, saying that “the worst-case

execution of component A is 5ms” or that “the execution

time of component A never exceed 10ms” are actually

expression of properties. On the other hand, “the execution

time of component A should never exceed 10ms” is a

non-functional requirement and an expression of a need.

The key point here is that a property per se does not tell us

much about its validity, and it is only when it is considered

along with its related requirement(s) that we can determine

whether it is acceptable and good for a specific design or

not. In other words, if we know that the worst-case

execution time of a component is 5ms, we cannot determine

whether it can be considered a good value or not, unless we

check it against the requirements. While for one system this

value of 5ms could be acceptable, for other systems this

may be considered as problematic and lead to the violation

of requirements. Considering such a relationship between an

NFR and an extra-functional property, to satisfy an NFR, its

related extra-functional properties should have valid values.

For example, to satisfy performance and schedulability

requirements in a real-time system, execution and response

time values (among others) should remain within a valid

range. Understanding the differences between these two

terms is important in some works (such as this paper), while

in other contexts, their differences can be ignored and using

these two terms as equivalents can be safe. In [19], NFP is

used instead of NFR when talking about the final product

implying that the requirement has been concretized and

become an actual property of it.

B. Characteristics and Challenges

Addressing NFRs in the development of a software

product is a challenging task. Aside from the fact that often

times NFRs are expressed in a natural language and

informally, they have some characteristics that makes their

consideration in the development process complicated. In

contrast to FRs which are typically realized locally and

implemented one by one and step by step in an incremental

manner while the software product is being built, NFRs do

not follow such a pattern. In this respect, NFRs can be

considered as specification of global constraints on the

software product, such as security, performance, availability

and so on [5] which can crosscut different parts of a system.

Also in satisfying NFRs, the dependencies among them

should not be neglected, as satisfying one NFR can affect

and impair the satisfaction of other NFRs in the system.

Therefore, performing trade-off analysis to establish balance

among NFRs and identify such mutual impacts is necessary.

There are also other issues that contribute to the

complexity of managing NFRs in the development process.

For example, organizational structures of companies and the

way they are divided into different development

departments and sub-departments usually fit functional

requirements; as these requirements can be (more easily)

 International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

 International Journal Publishers Group (IJPG) ©

578

implemented in separation from each other and then

integrated to satisfy a parent requirement (considering a

hierarchy of requirements consisting of refinements of each)

[20, 21]. On the other hand, a non-functional requirement

such as security, availability, or user-friendliness crosscuts

different parts of the system and requires a more holistic

view and a top-down approach [21]. Another problem

which is mostly observed in large organizations is that

different teams may have different interpretations of an

NFR, or vice versa, refer to one NFR using different terms

[20]. Therefore, a coherent way of representing and defining

NFRs, and also establishing and maintaining traceability

links among them can be helpful to mitigate such problems.

Issues related to traceability between NFRs can also occur

easily during the development process [22]. For example,

code tweaks that one development team may do to improve

performance, which may affect security or memory

consumption, can become hidden and lost to other teams.

Considering that NFRs are usually specified in an

informal and abstract way [5, 9], providing a more formal

approach using model-based development which enables to

raise the abstraction level can help with the treatment of

NFRs during the development process. Dealing explicitly

with NFRs and incorporating them in different phases of

development becomes more important especially

considering the increasing number of systems in which

NFRs are critical such as real-time embedded systems.

Moreover, an explicit treatment of NFRs facilitates the

predictability of the system in terms of the quality

properties of the final product in a more reliable and

reasonable way [19].

Sometimes the approaches for the explicit treatment of

NFRs are categorized into two groups: product-oriented and

process-oriented [23]. The former approaches try to

formalize NFRs in the final product in order to perform

evaluation on the degree to which requirements are met. In

the latter approaches, NFRs are considered along with

functional requirements to justify design decisions and

guide and rationalize the development process and

construction of the software in terms of its NFRs [23, 19].

3. Addressing the Challenges of

NFRs

Considering the nature of NFRs and to cope with the

challenges that have been discussed so far in managing

and treatment of them in the development process, we

formulate here the key features that are required in order

to model NFRs and enable performing trade-off analysis

among them to evaluate a system design with respect to

the satisfaction of its NFRs.

Traceability of design decisions related to an NFR: An
NFR can crosscut different parts of a system and there

needs to be a mechanism to identify the parts that

contribute to its satisfaction. Establishing such a

relationship is especially important after performing

trade-off analysis in order to identify which parts of the

system should be replaced or modified in order to

improve the satisfaction of an NFR. On the other hand, in

maintaining a system, it is important to find out which

requirement(s) a specific part of a system is related to

and as a result of which requirement(s) that part has been

implemented. Such information can easily become lost in

complex systems and also as the system ages.

Traceability between an NFR and its refinements: as

mentioned before, during the whole development process,

high level NFRs get refined into more fine-grained ones

which leads to the formation of a hierarchy and

tree-structure of NFRs and parent-child relationships

among them. Therefore, in order to evaluate the

satisfaction of one NFR in the system, it is necessary to

keep track of its refinements and the children

requirements originated from it at lower levels of

requirements hierarchy. The evaluation of an NFR, is

thus, performed recursively by evaluating to what degree

its refinements have been satisfied. As an example of

such refinements, we can name security as an NFR

which can then be refined into lower level and more

concrete requirements such as encryption of data and

access control mechanisms.

Impact of an NFR on other NFRs: Due to the impacts

that NFRs have on each other and the interdependencies

among them, an NFR cannot be considered in isolation in

a system in order to satisfy and achieve it. System

designers should be able to identify the impacts that a

system feature and design decision that is made to satisfy

one NFR can have on other NFRs. Examples of such

impacts can be more tangible in embedded systems. For

instance, performing heavy computations by an

encryption component in an embedded system can lead

to consuming more battery. Therefore, it is important to

be able to identify and include such impacts and side

effects as part of the system design models.

Priority of an NFR: In a system, different NFRs can have

different levels of importance. It is necessary to know the

importance of each NFR to be able to compare them and

resolve conflicts among them (reduce the impact of one

NFR in favor of another) to improve the overall

satisfaction of NFRs. Considering priorities for NFRs is

also important to capture the preferences of customers.

Similarly, priorities can also be considered for different

features implemented to satisfy an NFR.

Satisfaction level of an NFR: To enable comparison of a

system design against the specifications of the system

and customer requirements and also to compare different

design alternatives, it is needed to evaluate, specify and

Saadatmand et al.: Model-Based Trade-off Analysis of Non-Functional Requirements: An Automated UML-Based Approach.

International Journal Publishers Group (IJPG) ©

579

represent the satisfaction degree/level of an NFR in the

system. The end goal is that system designers should be

able to get an idea to what extent each NFR is satisfied

and how good a system design is in terms of the

satisfaction of its NFRs. After analyzing the

dependencies and impacts of NFRs and determining their

satisfaction levels, as the next step, it can be judged

whether the satisfaction level of an NFR is acceptable or

not. This phase can probably be done by checking and

consulting with the stakeholders, if needed.

Coherent terms for NFRs: It was discussed that

especially in large organizations, it can happen that

different departments and development teams may have

their own interpretations for each NFR or use different

terms to refer to an NFR. By providing a coherent and

consistent representation and notation for NFRs and also

establishing traceability links for them (to other NFRs as

well as to design elements implementing each), it

becomes possible to mitigate such inconsistency

problems. This problem can be very subtle and easily

remain unnoticed [20].

Coherent measurements of NFRs: To enable the

comparison of different NFRs and performing trade-off

analysis among them, specification of the satisfaction

level and impact values of NFRs should follow a

coherent representation. This means that the criteria or

metrics that are used should be such that to allow

pair-wise comparison of NFRs (e.g. using the same types,

scales and units, or a convertible format).

4. Suggested Approach

This section is devoted to the illustration of the

proposed UML profile enabling the modeling of NFRs

and hence their trade-off analysis. Therefore, in the

following we first introduce some basic concepts about

UML profiles that underpin the technicalities of our

proposal.

A. UML Profiles

As mentioned before in this article, thanks to MBD the

early evaluation of quality attributes can dramatically save

development time and verification and validation costs. The

underlying assumption is that the adopted modeling means

are capable of carrying by enough details to perform reliable

evaluations.

Historically there have been two different ways of

addressing language expressiveness limitations, either UML

profiling or designing a new DSL from scratch. The former

exploits a possibility given by the UML to extend itself,

while the latter prescribes building a new modeling

language specifically tailored to the domain taken into

account. Both approaches have their own advantages and

drawbacks [10, 12], the discussion of which goes beyond

the scope of this article. However, it is worth noting that,

especially in industrial settings, UML profiles are typically

preferred due to multiple (practical) reasons: UML is a de

facto standard for modeling industrial software systems,

therefore it is expectable the existence of a „legacy‟

including models, tools, skilled personnel, and so forth;

UML profiles, as will be discussed below, are still UML

models, thus compatible with other models, and even more

important, with existing UML tool formats. We opted for a

UML profile as the means for supporting the modeling of

NFRs details to enable their trade-off analysis. Nonetheless,

there are no limitations from the expressiveness perspective

preventing the realization of the same kind of modeling

support by adopting the DSL solution.

UML has been conceived from the beginning as a general

purpose language, therefore it does not contain any

domain-specific concept. On the contrary, it allows to

model any kind of reality abstraction thanks to its

expressiveness. Preservation of generality comes at the cost

of lack of precise semantics and ambiguities that can be

fixed by exploiting UML profiles. It is worth mentioning

that the UML language can be refined by adding, removing,

and changing the available concepts, thus creating a new

DSL [10]. However, models created by means of such a

new language would be not compatible with other UML

models and tools. Consequently, UML has been equipped

with modeling concepts able to specialize the language

itself, i.e. profiles [11].

A Profile is a specialization of an existing UML

modeling concept; for instance, profiles can be created not

only for classes and relationships, but also for states in

Activity Diagrams, actors in Use Cases, messages in

Sequence Diagrams, and so forth. Interface is a famous

example of profile for Class. When exploited, the profile

allows users to recognize that what they have in their hands

is not a regular UML Class but an Interface, and act

appropriately (that is, give a precise semantic to the kind of

object taken into account). Profiles can be also enriched by

adding new attributes and properties, called Tagged Values

(simply referred to as properties in this work). In this way,

information can be provided as specifically pertaining to the

introduced profile. In the next section, we show how this

powerful concept can be used to store NFRs information in

order to enable trade-off analysis at the design level of

abstraction.

B. NFR Profile

Based on the challenges identified in Section 3, we have

created a UML profile to define NFRs as model elements

and include necessary information (in the form of properties

of model elements and different relationships among them)

to enable performing trade-off analysis and evaluating the

design with the respect to the satisfaction of NFRs. The

structure of the defined profile is depicted in Fig. 1. The

profile consists of several key stereotypes and properties

that are described as follows:

 International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

 International Journal Publishers Group (IJPG) ©

580

System: In the hierarchy of NFRs, the root node will

represent the system itself which can have several different

NFRs represented in the model at the lower levels of the

hierarchy as children model elements. The System

stereotype is used to annotate this root model element as the

system. The system is also considered as the context of the

analysis.

SatisfactionValue: This property is used to represent the

satisfaction degree of the model element it belongs to and to

what extent it has been fulfilled. As can be seen in Fig. 1,

several stereotypes have this property. In case of the System

stereotype, the value of this property shows the total

calculated satisfaction value for the system (described later).

This value is calculated and set by the analysis engine and

the users cannot set it.

NFR: NFRs in the system are stereotyped and annotated

with this defined stereotype. Since NFRs can have other

NFRs as refinements and thus as children nodes, an

association relationship to itself (reflexive aggregation) has

been defined for it.

Feature: A feature in the system that is defined to satisfy

an NFR is identified by using this stereotype. It is basically

the equivalent of Operationalization concept in NFR

framework and Softgoal Interdependency Graph (SIG) [24]

or tactics as used in [1] (described later in the work).

NFRContributes: This stereotype is used to indicate that

an NFR or Feature contributes directly to the satisfaction of

another one. It has a property called contributionValue that

specifies the degree of this contribution.

NFRImpacts: this is similar to NFRContributes

stereotype but is used to include the impact of a model

element on other NFRs in the system in a quantitative

manner. In other words, this stereotype is defined to capture

the side effects of features and NFRs. ImpactValue property

of this stereotype shows the degree of the impact. A positive

value for the ImpactValue implies a positive side effect, and

a negative one implies a negative side effect accordingly.

NFRCooperates: When there are more than one element

that are defined to work together in satisfying an NFR, this

stereotype is used to annotate and show such a cooperation

relationship between them. This concept is similar to the

AND relation in the NFR framework and SIG (another

reason to provide this stereotype to explicitly specify such

cooperation relationships is to help with the extensibility of

the suggested approach in future to include different design

alternatives in the form of OR relationships in the same

design model, when needed).

NFRApplies: This stereotype is defined to enable the

possibility to relate the NFR model to functional model

elements (e.g. an NFR that applies to a component). For

instance, if there is already a UML model of the system

available (e.g., a class diagram), with this stereotype it can

be specified to which part of that model an NFR or Feature

applies and is related to.

Rationale: The rationale behind having an NFR or

Feature and any other description about it can be captured

and specified in this property. Both NFR and Feature

stereotypes have this property.

Priority: This property which exists in both NFR and

Feature stereotypes captures the preferences of customers

(and also developers priorities when relevant and applicable)

and their priorities in terms of the relative importance of

NFRs and Features.

DeviationIndicator: By taking into account the priority

and the satisfaction value of an NFR or Feature, a value for

this property is calculated (as will be described soon) and

provided which indicates to the designer the importance and

Fig. 1. NFR Profile

Saadatmand et al.: Model-Based Trade-off Analysis of Non-Functional Requirements: An Automated UML-Based Approach.

International Journal Publishers Group (IJPG) ©

581

magnitude of how much the satisfaction of an NFR or

Feature has deviated or been violated. The deviation

indicator value basically shows and helps to identify which

parts of the system have deviated more from the

specification (i.e., from being fully satisfied) and may need

to be modified to achieve a better satisfaction level. This

value is also calculated and set by the analysis engine and

the users cannot set it. While the satisfaction value does not

reflect user preferences and priorities, the deviation

indicator value identifies to the designers which parts need

to be considered first with respect to the preferences and

priorities of the customers. This is especially helpful and

beneficial for identifying such parts in complex systems.

To use the profile and perform calculations, there are

several rules that are defined on model elements and their

relationships and how to set and calculate values for

different properties:

 The priority for an element can be set to one of the

following values: 1 (very low), 2 (low), 3

(medium), 4 (high), 5 (very high).

 The satisfaction value for each leaf node is always

considered to be 1.

 The contribution value of the NFRContributes link

connecting a child node to its parent can be set as a

positive value between 0 and 1, but the sum of the

contribution values of the links connecting children

nodes (refinement/lower level elements) to their

parent should always be less or equal to 1.

 The contribution of a child node to its parent is

calculated by multiplying the satisfactionValue of

the child node by the contributionValue of the

NFRContributes link that connects it to the parent.

 For NFRImpacts links, the allowed range of values

is between -1 and 1. A negative value on the

NFRImpacts relationship shows the negative

impact of the source element on the target.

 The total impact value of other nodes on a node

(denoted as I) is calculated as follows: if the sum

of all impact values is positive and not greater than

1, then the total impact value will be this sum,

however, if the sum is greater than 1, then the total

impact value on the node will be 1. On the other

hand, if the sum of all impact values is negative

and not less than -1, then the total impact value

will be this sum, however, if the sum is less than -1

(e.g., -1.5 or -2), then the total impact value on the

node will be set as -1. Note that the value of I in

this calculation will always be between -1 and 1.

This is summarized by the following formula,

considering that ij is the impact value of another

node on the node for which we want to calculate

the total impact value:

 To calculate the satisfactionValue of a node, first

the total contributions from all of its children nodes

are calculated, and then the total impact value is

also taken into account. If sk is the satisfaction

value for each child node of a node, lk is the value

on the link that connects the child node k to its

parent node (NFRContributes relationship), and I is

the total impact value, the satisfaction value of the

parent node is calculated as:

Considering the above rules and formulas, the

satisfaction value of a node will be in the range of 0

and 1. To perform these calculations, nodes are

navigated and traversed starting from leaf nodes

(considering that the satisfaction of leaf nodes is 1)

and values are calculated using the above formulas

upwards toward the top element which is the

system.

 The DeviationIndicator is calculated after the

calculation of satisfaction value using the

following formula:

 Based on this calculation and considering that the

SatisfactionValue is always between 0 and 1 and

priority is an integer value between 1 and 5, the

value of DeviationIndicator will be in the range of

[0,5]. The perfect situation is when the

DeviationIndicator value is 0, and the more this

value increases the more is the deviation from the

desired design, and thus, it indicates a bigger and

more severe problem.

C. Implementation

The profile and its concepts that were described are

implemented using MDT Papyrus [25] in Eclipse [26]. To

navigate and transform a model that is annotated with our

suggested UML profile, a model-to-model (M2M)

transformation is also developed using QVT Operational

language (QVT-O) [27]. The transformation incorporates all

the rules for performing calculations and reads as input a

UML model annotated with our profile, traverses the nodes

 International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

 International Journal Publishers Group (IJPG) ©

582

and calculates satisfaction and deviation values and writes

the results back in the same model. This means that we use

an in-place transformation (i.e. input and output models are

the same) to perform the analysis on the model. A recursive

algorithm is executed as part of the transformation which

starts from the System node. To calculate the total

satisfaction value of the system, it first retrieves the children

NFRs of the system node and recursively performs

calculations on each of them based on the defined formulas

and rules; meaning that all the children of that node are

again retrieved and this continues until it reaches a leaf node

whose satisfaction value will be considered 1. In other

words, for each node, first all the links that are stereotyped

with NFRContributes or NFRImpacts are retrieved. A node

which does not have such a link is then considered a leaf

node, while for other nodes, the source node of the link is

retrieved (which will be another node); hence the recursion.

5. Usage Example

In this section we show the applicability of the approach

and how it is used for modeling NFRs and performing

analysis on them to evaluate the satisfiability (by this term

we mean the ability to satisfy the NFRs) of a model and also

compare it with other design alternatives. Fig. 2 shows

NFRs that are defined for part of a mobile phone system

using our profile in Papyrus. One NFR is defined for the

quality of the pictures that are taken by the mobile phone.

This NFR which can for example state that the quality of

the picture should not be below a certain level is represented

in the model simply as Camera Picture Quality.

Similarly, another NFR is defined to represent the

requirement on efficient use of battery and energy

consumption in the mobile phone, denoted as Battery

Life NFR in the model. To satisfy the Camera Picture

Quality NFR, the possibility to use flash for taking

pictures, and also a specific type of lens have been

considered (modeled as Flash and Lens features). To

satisfy and achieve the requirement related to the battery life

of the mobile phone, automatic adjustment of brightness

level and also automatic standby mode (e.g., when the

phone is in idle state) have been designed.

NFRContributes stereotype is used to annotate the

relationship between each feature and the NFR to which it

contributes. Moreover, the dependencies and impacts of

NFRs and features on each are modeled using the

NFRImpacts stereotype, which as mentioned before can

have positive or negative values. Since the use of the flash

has a negative impact on the battery level and consumes

energy, the value of the NFRImpacts relationship between

the Flash feature and Battery Life NFR, which shows

the magnitude of this impact is specified as a negative

number. Importance of different NFRs and features for the

customer and his/her preferences are captured by the

priority property. The initial values of

satisfactionValue and deviationIndicator

properties are zero indicating that no calculation has been

done on the model yet.

To analyze the model and perform calculations based on

the formulas defined for the profile (which are implemented

as part of the transformation code), the model is fed as input

to the transformation. The calculations are done using the

recursive algorithm that was described before. In case of the

mobile phone example here, the Flash and Lens features

will be identified as leaf nodes and thus their satisfaction

values are set to 1. The satisfaction value of Camera

Picture Quality is calculated as the satisfaction value

of Flash multiplied by the contribution value of the

NFRContributes links that connects it to the Camera

Fig. 2. NFRs for the mobile phone system (before analysis)

Saadatmand et al.: Model-Based Trade-off Analysis of Non-Functional Requirements: An Automated UML-Based Approach.

International Journal Publishers Group (IJPG) ©

583

Picture Quality plus the same multiplication done on

the Lens and its NFRContributes link: 1*0.4+1*0.6=1.

The same calculations are done to obtain the satisfaction

value for Battery Life, however, in this case there is an

impact from the use of the Flash feature. Therefore its

satisfaction value is calculated as: 1*0.5+1*0.5-0.8=0.20.

Fig. 4 shows the analyzed model of the system. The

discrepancy that is observed in the calculated satisfaction

value for Battery Life, that is 0.1999… instead of being 0.20,

is due to the OCL implementation of real numbers that are

used in QVT.

The total satisfaction value which is calculated for the

System node is therefore: 1*0.3+0.2*0.7=0.44. Having

the satisfaction values of NFRs and features in the model,

the deviation indicator values can now be calculated using

Formula 2. The deviation indicator value for the leaf nodes

will always result in 0 as their satisfaction values are set to 1.

For the Camera Picture Quality whose satisfaction

value is also 1 the deviation indicator value will be

4-4*1.0=0 as well. However for Battery Life, this

value will be 5-5*0.2=4. This high deviation indicator value

(compared to other parts) in the model shows the designers

that this part of the model requires a more careful attention.

Such parts could be good candidates for modification and

refactoring in order to improve the satisfiability of the

system. Considering the deviation indicator value of the

Fig. 4. Analyzed model of the system

Fig. 3. Analyzed model of the system without the Flash feature

 International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

 International Journal Publishers Group (IJPG) ©

584

Battery Life, and by investigating the elements that

have impacts on it (here only the Flash feature), it can

imply that the type of the flash that is selected to be used in

this system and model of mobile phone is not good enough

in terms of energy consumption and a more energy efficient

flash can be used to improve the satisfiability of the system.

In this rather simple example, we could have also guessed

the issue with the type of flash that is used, based on the

magnitude of the impact that it has on the Battery Life

in the system; especially that it is the only impact on

Battery Life (there could, for example, exist other

NFRs and features with positive or negative impacts on it as

well). However, in more complex systems with lots of

dependencies and mutual impacts and taking into account

the priorities of the customers, identifying the parts that

have quite major (negative) effects on the satisfiability of

the system and thus are of utmost importance to be

re-considered could be a real staggering challenge.

Fig. 3 shows the model of the system but without the

Flash feature, which could represent a different model and

family of mobile phones. By performing analysis on this

model, the total satisfaction value of 0.88 is calculated for

this design of the mobile phone; versus 0.44 in the model

which included the flash. On the other hand, removing the

flash, as can be seen from the analyzed model, has led to

some deviaiton (1.6) in the Camera Picture Quality

NFR.

6. Discussion

As was demonstrated in the previous section, our

suggested approach enables designers to compare different

design alternatives with respect to the satisfaction of NFRs

by taking into account interdependencies and impacts of

NFRs as well as the features that are designed to satisfy and

fulfill each. This can help the designers in making decisions

when building a system. Moreover, the approach provides

for several other interesting features which we discuss here.

Considering that we can now evaluate the satisfiability of a

system design and compare different design alternatives, it

becomes also possible to use the suggested approach in

optimization of design models with respect to their NFRs.

For example, in the mobile phone system, if there is a kind

of repository of NFRs and features to choose from, it

becomes possible to perform a series of analysis in order to

find a set of NFRs and features which lead to the highest

possible satisfaction value for the Battery Life NFR,

for instance (or even the whole system). However, this may

not be as simple as it sounds due to the famous state-space

explosion problem [28] that can happen in bigger and more

complex systems.

Another use of the suggested approach could be to

support runtime adaptation and building re-configurable

systems. For instance, in case of power consumption in the

mobile phone system example, if at runtime it is detected

that the battery level has fallen beyond a certain level, an

analysis can be performed using the introduced approach to

find alternatives and identify a set of features that incur

minimum impact on the battery consumption and then

replace active components in the system accordingly to

make the system go into a power-saving mode. To reach

such an adaptive behavior, the analysis part may or may not

be done at runtime. In other words, different design

alternatives may have been considered and analyzed offline,

and then based on desired Quality-of-Service (QoS) levels

at runtime, a different architecture may be adopted to

re-configure the system (similar to design diversity

techniques [29]).

To enable performing a quantitative type of analysis

which in turn gives designers the possibility to more

carefully evaluate a model as well as different parts of it and

also compare it with other alternatives, it was assumed that

the designers can specify the necessary values (in this case,

contribution and impact values). There are some methods

that help with providing such quantitative information (as

will be discussed in the related work section), however, as

also mentioned in [18, 1], deciding on these values is

usually a subjective task, whose precisions can be improved

and increased through the use of the different methods. On

the other hand, our suggested approach is deemed more

suitable in Component-Based Design (CBD) of systems

[30], where a system is built by composing and as an

assembly of already existing components, and thus, more

information and knowledge about the characteristics and

behaviors of the different constituting features of the system

are available. Such information could be memory usage,

execution time, energy consumption and similar properties

which help designers to specify more accurate quantified

values in the NFR model. For example, if there is an NFR

which specifies that the actual throughput should not be

lower than a certain level, however, a protocol is used to

satisfy security requirements which is known to double the

amount of transmitted packets due to the transmission of

security related information, then the impact of this feature

on the bandwidth NFR can be specified as -0.5 indicating

that it consumes half of the bandwidth to pass the additional

information. Also, in this work we assumed that the

satisfaction values of leaf nodes are always 1, meaning that

they are/will be fully implemented. If, for any specific

reasons, the system needs to be analyzed using not-fully

implemented features, then this assumption and rule can be

relaxed to also enable specifying values between 0 and 1 for

leaf nodes.

7. Related Work

One of the fundamental works in the field of

non-functional requirements is the NFR Framework which

is proposed in [24]. It is a process- and goal-oriented

approach which makes use of Softgoal Interdependency

Graphs (SIG) to represent NFRs. In this approach NFRs are

refined into other fine-grained NFRs and also entities that

function to satisfy NFRs which are termed as

Operationalization. The dependencies and contributions of

Saadatmand et al.: Model-Based Trade-off Analysis of Non-Functional Requirements: An Automated UML-Based Approach.

International Journal Publishers Group (IJPG) ©

585

NFRs are specified using make, hurt, help, break and

undetermined relationship types. Besides NFR softgoals,

and operationalizating softgoals, NFR framework also

introduces claim softgoals which convey the rationale and

argument for or against a design decision. In addition, it

provides notations to mark critical NFRs in the graph as a

way to specify priorities on NFRs, and also an evaluation

procedure to determine the satisfaction and conflicts of

NFRs. NFR Framework is basically a qualitative approach

for evaluation of NFRs and their impacts and dependencies,

which although is quite useful for capturing NFRs and their

relationships, but evaluating the satisfaction of NFRs is not

easy [1] and hard to automate. Moreover, the criticality

concept in NFR framework may be more suitable for

developers and does not convey enough information for

prioritization of NFRs particularly from the customer's

perspective and also for performing trade-off analysis. In [1],

QSIG is introduced which is basically a quantified version

of SIG. It enables to perform quantitative evaluation of

impacts and trade-offs among NFRs. Our work is inspired

by the QSIG approach in the sense that the structure of the

UML model that is built is similar to that of QSIG, and as in

QSIG, we also defined a set of rules for calculations of

different values, although our rules are different to be more

suitable for complex systems where, for example, an NFR

may be impacted by several different NFRs. We also

introduced the concept of deviation indicator which is

especially useful in such situations in complex systems to

identify problematic parts of them. Also in QSIG, there is

no explicit concept of priority for capturing customers‟

preferences and the impact of one NFR on another is

assumed to also convey priorities. This is also another

fundamental difference as we believe the concept of impact

and priority should be separate, considering that the impact

of an NFR on another one should be evaluated per se, while

the customer priority for that the latter NFR can show the

designers the meaning and importance of such impact

especially when the deviation indicator is also taken into

account. Moreover, in [1], no automation mechanism for the

calculations is discussed, and while the QSIG graph is used

to make decisions as a separate document with no

connection to the functional parts, the integration of NFRs

with functional parts are actually done at the code level

through the notation of classpects [31] and irrespective of

the constructed graph. In contrast, we enable the integration

of NFRs with functional parts at the model level and the

analysis of NFRs is also done automatically. In the case that

the code is to be generated from the models later on, the

concept of classpects could be considered as an interesting

method for the integration of NFRs in the implementation

code, if the code is based on an aspect-oriented and

object-oriented language (as classpects is basically a

concept unifying classes and aspects for such languages).

The work in [2] introduces FQQSIG which is a fuzzy

quantitative and qualitative softgoal interdependency graph

representation for analysis of NFRs in trustworthy software,

however it offers no solution for the integration of NFRs

with other parts of the system. On the other hand, although

both QSIG and FQQSIG approaches provide solutions for

evaluating different design alternatives, one subtle but

important difference that our suggested modeling solution

has is that the main idea in our work is to maintain the NFR

model throughout the development process and perform

analysis whenever and as many times as needed, such as

when a new requirement is added or an existing one is

modified, as well as when a new design model is created

which should be evaluated and compared with the old one

in terms of the satisfiability of its NFRs. Such an approach

and vision on NFRs is important in managing NFRs

throughout the development lifecycle, particularly,

considering all the related challenges of NFRs which we

discussed in this paper.

Another important work in the area of evaluation of

different systems designs and architectures, and identifying

the trade-offs of competing quality attributes is the

Architecture Trade-off Analysis Model (ATAM) [7]. It is a

spiral model of design and risk mitigation process that helps

to find the dependencies among quality attributes which are

referred in ATAM as trade-off points. These trade-off points

are considered to be caused and derived from architectural

elements that are important for and affected by multiple

attributes. This method is helpful at the beginning of

development process to evaluate different designs and

architectures and select one, however, it does not help that

much to address the challenges of NFRs that we discussed

in this paper such as integration with functional

requirements, and its usefulness also decreases when a more

fine-grained analysis is needed [1]. Automation of this

analysis approach and thus its applicability for large and

complex systems is another weakness of this method,

particularly, in cases where trade-off analysis might need to

be done several times during the development process and

lifecycle of a product.

While deciding on the satisfaction of NFRs is mainly

considered to be subjective, there are several works that try

to provide quantifications for NFRs to ease their evaluation

and analysis. Kassab et al. in [3, 32] offer a method to

quantify NFR size in a software project based on the

functional size measurement method to help with the

estimation of effects of NFRs on the effort of building the

software in a quantitative manner. In a more recent work in

[33], Kassab also proposes to incorporate Analytical

Hierarchy Process (AHP) with the NFR framework. AHP is

a mathematical based trade-off technique whose

combination with the NFR framework enables to

quantitatively deal with ambiguities, trade-offs, priorities

and interdependencies among NFRs and operationalizations.

An approach is introduced in [4] which makes use of

Requirements Hierarchy Approach (RHA) as a quantifiable

method to measure and manipulate the effects that NFRs

have on a system. It does so by capturing the effects of

functional requirements. In [34], an approach for

quantifying NFRs based on the characteristics of and

information from execution domain, application domain and

component architectures is suggested. Moreover, an

interesting quantitative approach for discovering the

dependencies of quality metrics and identifying their

impacts in the architecture of a system is provided in [35].

 International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

 International Journal Publishers Group (IJPG) ©

586

While models used to be thought mainly just as

another form of documentation during the development

process, with the introduction of model-based development

and further maturation of this field, models have got a more

important role as in the automatic generation of code and

performing different types of analysis at earlier phases of

development, and thus saving time and effort by identifying

problems earlier. Aligned with this direction, there are

several works that provide different forms of solutions for

modeling requirements. For modeling SIG and concepts of

NFR framework to represent NFRs as UML elements, a

UML profile is provided in [36] to help with integration of

the graph of NFRs with functional parts of the system (that

are modeled in UML). Considering that NFRs and design

decisions are usually specified in an informal way and as a

separate document with poor or no traceability to

architectural elements, [37] offers two UML profiles for

modeling design decisions and NFRs as first-class entities

in software architecture and to maintain traceability between

them and architectural elements in the system. The profile

for modeling NFRs in this work, offers six stereotypes for

modeling reliability, security, performance, modifiability,

and scalability each with their own specific and different set

of fixed properties, such as a property called 'effort' for

modifiability requirement, and 'response_time' for

performance. In contrast, in our work, we have tried to

provide a generic way for modeling for all NFRs regarding

of their specificities (i.e., performance or security, etc.), and

more importantly, with the goal of enabling designers to

perform trade-off analysis on them.

In the telecommunication domain, the

Telecommunication Standardization Sector (ITU-T) [38]

has suggested User Requirements Notation (URN) for

modeling requirements which consists of Goal-Oriented

Requirement Language (GRL) and Use Case Maps (UCM).

GRL is basically defined to models goals and

non-functional requirements in the form goals and sub-goals,

while UCM is used to describe functional scenarios. There

are also some works done to define these languages as UML

profiles such as [39] for GRL. As another example, for

modeling security requirements, UMLsec [40] is suggested

that comes with an analysis suite which enables performing

analysis on the model to identify violations of security

requirements. SysML [41] which is both an extension and

subset of UML 2 was offered by Object Management Group

(OMG) for system engineering. SysML enables to represent

requirements as first-class model elements by providing a

package for generic modeling of requirements (both NFRs

and FRs) and the relationships among them. Different types

of associations which are provided in SysML to model the

relationships between the requirements include: copy,

deriveReqt, satisfy, verify, refine and trace. While SysML

does not specifically focus on NFRs and analysis of them,

our approach and SysML can be used together to

complement each other. EAST-ADL [42] which is

developed for modeling software architecture and electronic

parts of automotive systems, makes use of SysML

requirements semantics for modeling requirements and

specializes them to match the needs of automotive domain

(e.g., definition of timing, delay and safety requirements).

In relation to our discussion on non-functional requirements

and the difference between a requirement and a property, it

is worth here to also mention the UML profile for Modeling

and Analysis of Real-time Embedded Systems (MARTE)

[43] which offers a rich set of semantics for modeling

non-functional properties and supporting analysis of them,

such as performance and schedulability analysis.

8. Summary and Conclusion

In this paper, we introduced a UML-based approach for

generic modeling of NFRs and automatically performing

trade-off analysis on them. By identifying and discussing

different challenges related to the treatment of NFRs during

the development process, we formulated what information

is required to be incorporated in the models of NFRs to

include them as first-class entities as part of a system's

architecture and enable their trade-off analysis. Through an

example, it was demonstrated how the approach can be

applied and how it helps to evaluate a system design with

respect to the satisfaction of its NFRs. It was also shown

that using the suggested approach designers can evaluate

different design alternatives and get a better idea of the

satisfiability of each. Moreover, the analysis highlights

problematic parts of the system through the deviation

indicator value which hints to the designers which parts of

the system need to be reconsidered and are good candidates

for improvement, taking into account the preferences of the

customers. As another contribution of this work, we applied

a model transformation technique to provide support for

automatic analysis of the model. The possibility to analyze

models of NFRs in an automatic way is particularly

essential for large and complex systems and also to ease

performing the analysis as many times as needed. The latter

is also useful in the evolution of software architecture [44]

as requirements and features are modified or new ones are

added during the lifecycle of a software product and thus

analysis of NFRs (including different design alternatives)

may need to be performed again and again.

It was also discussed how the introduced approach can

be extended and used in other contexts and as part of other

solutions such as in optimizing a system design in terms of

the satisfaction of its NFRs and also for providing runtime

adaptation mechanisms and to manage different QoS levels

of a system. As future directions of this work, quantification

of NFRs and how to evaluate and provide more accurate

values for them is an interesting research topic in order to

reduce possible inaccuracies related to their subjective

specifications. Extending our approach to incorporate other

available methods such as FQQSIG [2] in which NFRs and

their related relationships are specified in a qualitative

manner and then through a fuzzification process

quantitative values are determined for them could also be

another possible direction of this work. Along with this goal,

it would be interesting to include several algorithms and

Saadatmand et al.: Model-Based Trade-off Analysis of Non-Functional Requirements: An Automated UML-Based Approach.

International Journal Publishers Group (IJPG) ©

587

methods in the analysis engine which the user may then

select to use, and offer the approach as a complete tool suite.

One point to remember though is that since the evaluation

of NFRs and quality attributes is basically a subjective task,

the methods and tools provided for this purpose serve

actually as helpers for system designers to make better and

more accurate evaluations and decisions.

Acknowledgment

This work has been partially supported by the Swedish

Knowledge Foundation (KKS) through the ITS-EASY

industrial research school [45] and by Xdin AB [46] in the

scope of the MBAT European Project [47].

References

[1] T. Marew, J.-S. Lee, D.-H. Bae, Tactics based approach for

integrating non-functional requirements in object-oriented

analysis and design, The Journal of Systems and Software 82

(2009) 1642–1656.

[2] M.-X. Zhu, X.-X. Luo, X.-H. Chen, D. D. Wu, A

non-functional requirements tradeoff model in trustworthy

software, Elsevier Journal of Information Sciences 191

(2012) 61–75.

[3] M. Kassab, O. Ormandjieva, M. Daneva, A. Abran,

“Software process and product measurement”,

Springer-Verlag, Berlin, Heidelberg, 2008, Ch.

Non-Functional Requirements Size Measurement Method

(NFSM) with COSMIC-FFP, pp. 168–182.

[4] A. J. Ryan, An approach to quantitative non-functional

requirements in software development, in: Proceedings of

the 34th Annual Government Electronics and Information

Association Conference, 2000.

[5] N. Rosa, P. Cunha, G. Justo, Processnfl: a language for

describing non- functional properties, in: Proceedings of the

35th Annual Hawaii International Conference on System

Sciences, 2002. HICSS. 2002, pp. 3676 –3685.

[6] Y. Liu, Z. Ma, W. Shao, Integrating non-functional

requirement modeling into model driven development

method, in: 17th Asia Pacific Software Engineering

Conference (APSEC), 2010, 2010, pp. 98–107.

doi:10.1109/APSEC.2010.21.

[7] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,

J. Carriere, The architecture tradeoff analysis method, in:

Fourth IEEE International Conference on Engineering of

Complex Computer Systems, 1998. ICECCS ‟98.

Proceedings. , 1998, pp. 68 –78.

[8] T. Henzinger, J. Sifakis, The embedded systems design

challenge, in: J. Misra, T. Nipkow, E. Sekerinski (Eds.), FM

2006: Formal Methods, Vol. 4085 of Lecture Notes in

Computer Science, Springer Berlin / Heidelberg, pp. 1–15.

[9] B. Selic, The pragmatics of model-driven development,

IEEE Software Journal 20 (2003) 19–25.

[10] B. Selic, A systematic approach to domain-specific language

design using uml, in: 10th IEEE International Symposium on

Object and Component-Oriented Real-Time Distributed

Computing, 2007. ISORC ‟07., 2007, pp. 2 –9.

[11] L. Fuentes-Fernandez, A. Vallecillo-Moreno, An Introduction

to UML Profiles, in: R. F. Calvo (Ed.), The European Journal

for the Informatics Professional - UML and Model

Engineering, Vol. V, 2004.

[12] I. Weisemoller, A. Schurr, A comparison of standard

compliant ways to define domain specific languages,

Springer-Verlag, Berlin, Heidelberg,2008, pp. 47–58.

[13] G. Kotonya, I. Sommerville, Requirements engineering with

viewpoints, Software Engineering Journal 11 (1) (1996) 5 –

18.

[14] P. Sawyer, G. Kotonya, Chapter 2-Software Requirements, in:

Guide to the Software Engineering Body of Knowledge,

IEEE Computer Society, 2001.

[15] M. Glinz, On non-functional requirements, in: 15th IEEE

International Requirements Engineering Conference, New

Delhi, India, 2007, pp. 21–26.

[16] L. Chung, J. C. Prado Leite, Conceptual modeling:

Foundations and applications, Springer-Verlag, Berlin,

Heidelberg, 2009, Ch. On Non- Functional Requirements in

Software Engineering, pp. 363–379.

[17] IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std 610.12-1990.

[18] Systems and software engineering – Vocabulary (IEEE

Standard), ISO/IEC/IEEE 24765:2010(E).

[19] N. S. Rosa, G. R. R. Justo, P. R. F. Cunha, A framework for

building non-functional software architectures, in:

Proceedings of the 2001 ACM symposium on Applied

computing, SAC ‟01, ACM, New York, NY, USA, 2001, pp.

141–147.

[20] M. Saadatmand, A. Cicchetti, M. Sj¨odin, Uml-based

modeling of non- functional requirements in

telecommunication systems, in: The Sixth International

Conference on Software Engineering Advances (ICSEA),

2011.

[21] A. Borg, A. Yong, P. Carlshamre, K. Sandahl, The bad

conscience of requirements engineering : An investigation in

real-world treatment of non-functional requirements, in:

Third Conference on Software Engineering Research and

Practice in Sweden (SERPS‟03), Lund :, 2003.

[22] A. Borg, M. Patel, K. Sandahl, Good practice and

improvement model of handling capacity requirements of

large telecommunication systems, in: RE ‟06: Proceedings of

the 14th IEEE International Requirements Engineering

Conference, Washington, DC, USA, 2006.

[23] J. Mylopoulos, L. Chung, B. Nixon, Representing and using

nonfunc- tional requirements: a process-oriented approach,

Software Engineering, IEEE Transactions on 18 (6) (1992)

483 –497. doi:10.1109/32.142871.

[24] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos,

Non-Functional Requirements in Software Engineering, Vol.

5 of International Series in Software Engineering, Springer,

1999.

[25] MDT Papyrus,

http://www.eclipse.org/modeling/mdt/papyrus/ , Last

Accessed: August 2013.

[26] Eclipse Modeling Framework Project (EMF),

http://www.eclipse.org/modeling/emf/, Last Accessed:

August 2013.

[27] QVT Operational Language, http://www.eclipse.org/m2m/ ,

Last Accessed: August 2013.

[28] A. Valmari, The state explosion problem, in: Lectures on

Petri Nets I: Basic Models, Advances in Petri Nets, the

volumes are based on the Advanced Course on Petri Nets,

Springer-Verlag, London, UK, UK, 1998, pp. 429–528.

[29] J. P. J. Kelly, T. I. McVittie, W. I. Yamamoto, Implementing

design diversity to achieve fault tolerance, IEEE Software

Journal 8 (1991) 61–71.

[30] I. Crnkovic, M. Chaudron, S. Larsson, Component-based

development process and component lifecycle, in: Software

 International Journal of Advanced Computer Science, Vol. 3, No. 11, Pp. 575-588, Nov., 2013.

 International Journal Publishers Group (IJPG) ©

588

Engineering Advances, International Conference on, 2006, p.

44. doi:10.1109/ICSEA.2006.261300.

[31] H. Rajan, K. J. Sullivan, Classpects: unifying aspect- and

object- oriented language design, in: Proceedings of the 27th

international con- ference on Software engineering,

ICSE ‟05, ACM, New York, NY, USA, 2005, pp. 59–68.

[32] M. Kassab, M. Daneva, O. Ormandjieva, Early quantitative

assessment of non-functional requirements (June 2007).

URL http://doc.utwente.nl/64134/

[33] Mohamad Kassab, An integrated approach of AHP and NFRs

framework, IEEE Seventh International Conference on

Research Challenges in Information Science (RCIS), vol.,

no., pp.1,8, 29-31 May 2013, doi:

10.1109/RCIS.2013.6577705

[34] R. Hill, J. Wang, K. Nahrstedt, Quantifying non-functional

require-ments: A process oriented approach, in: Proceedings

of the Requirements Engineering Conference, 12th IEEE

International, IEEE Computer Society, Washington, DC,

USA, 2004, pp. 352–353.

[35] A. Mentis, P. Katsaros, L. Angelis, G. Kakarontzas,

Quantification of interacting runtime qualities in software

architectures: Insights from transaction processing in

client-server architectures, Information and Software

Technology Journal 52 (12) (2010) 1331–1345.

[36] S. Supakkul, A uml profile for goal-oriented and use

casedriven representation of nfrs and frs, in: In Proceedings

of the 3rd International Conference on Software Engineering

Research, Management and Applications, 2005, pp. 112–

121.

[37] L. Zhu, I. Gorton, Uml profiles for design decisions and

non-functional requirements, in: Proceedings of the Second

Workshop on SHAring and Reusing architectural Knowledge

Architecture, Rationale, and Design Intent, SHARK-ADI ‟07,

IEEE Computer Society, Washington, DC, USA, 2007, pp.

8–.

[38] Telecommunication Standardization Sector (ITU-T),

http://www.itu.int/en/pages/default.aspx, Last Accessed:

August 2013.

[39] M. R. Abid, D. Amyot, S. S. Som´e, G. Mussbacher, A uml

profile for goal-oriented modeling, in: Procs. of SDL‟09,

2009.

[40] J. Jurjens, Umlsec: Extending uml for secure systems

development, in: UML ‟02: Proceedings of the 5th

International Conference on The Unified Modeling

Language, Springer-Verlag, London, UK, 2002, pp. 412–

425.

[41] OMG SysML Specifcation, http://www.sysml.org/specs.htm,

Last Accessed: August 2013.

[42] EAST-ADL Specification V2.1, http://www.atesst.org Last

Accessed: August 2013.

[43] OMG, MARTE specification, http://www.omgmarte.org,

Last Accessed: August 2013.

[44] H. Pei-Breivold, I. Crnkovic, M. Larsson, A systematic

review of software architecture evolution research, in:

Journal of Information and Software Technology, Elsevier,

doi:10.1016/j.infsof.2011.06.002, 2011.

[45] ITS-EASY post graduate industrial research school for

embedded software and systems,

http://www.mrtc.mdh.se/projects/ itseasy/ , Last Accessed:

August 2013.

[46] Xdin AB, http://xdin.com/ , Last Accessed: August 2013.

[47] MBAT Project: Combined Model-based Analysis and Testing

of Embedded Systems, http://www.mbat-artemis.eu/home/,

Last Accessed: August 2013.

