
	 40	 computer	 Published by the IEEE Computer Society	 0018-9162/13/$31.00 © 2013 IEEE

Cover Fe ature

Cristina Seceleanu and Ivica Crnkovic, Mälardalen University, Sweden

Component models with a rich specifica-

tion—that is, component models built for

reasoning—facilitate the use of different

analysis and prediction techniques that

simplify a system’s design while increas-

ing trust in its correct functioning.

T he recent boom in hardware development has
helped developers create software that can
manage sophisticated processes and applica-
tions. With fewer hardware-related performance

constraints as a result of Moore’s law, it might seem that
software development would somehow become simpler,
but that is not the case. Consider, for example, the auto-
motive industry’s latest attempt to increase safety: cars
that can detect a pedestrian crossing the road and then
stop themselves to avoid collision. The hardware involved
consists of different computing units to operate the vari-
ous software components—namely, a field-programmable
gate array (FPGA) to handle the image frames produced
by the stereovision camera system, a GPU to run object
recognition, and a CPU to handle system control.

To realize such a system, its developers must meet sev-
eral challenges that go beyond pure functionality:

•• performance beyond the system simply processing
information in a given time frame;

•• dependability, reliability, availability, and synchroni-
zation with real-time requirements so that the system

does not react improperly, or too early or too late;
•• optimized use of memory and other electronic re-
sources due to manufacturing savings without
compromising software correctness; and

•• control over software development and maintenance
costs.

A trial-and-error implementation that includes unit and
system testing is a possible solution for ensuring that the
implementation fulfills these mixed requirements, but it is
far from a good one. Any technology that comes equipped
with analysis techniques for assessing basic software prop-
erties such as functionality, as well as extrafunctional
properties (EFPs; they are also known as nonfunctional
or quality attributes) such as safety, timeliness, reliability,
and resource usage, has higher trustworthiness, due to
its ability to uncover potential trouble spots before actual
system implementation.

The most common method of software and system de-
velopment today is component-based; systems are built
from existing components. By reusing hardware or soft-
ware components, developers can use knowledge of their
properties to predict the new system’s properties. Compo-
nent models with a rich specification—that is, component
models built for reasoning—facilitate the use of different
analysis and prediction techniques that simplify a system’s
design while increasing trust in its correct functioning. In
other words, the better information about components we
have, the better we can reason about the system.

WHY COMPONENTS?
Componentization is a basic software engineering prin-

ciple inspired by the ancient Greek and Roman strategy of

Component
Models for
Reasoning

	 NOVEMBER 2013	 41

“divide and rule.” In the computational context, it means
breaking down complex systems and managing the
smaller pieces separately. Components and the relation-
ships between them are the basic elements of a top-down
architectural analysis.1

But components are not only the result of top-down
analysis: they are also building blocks. The idea of software
components is as old as software engineering itself. At the
first software engineering conference in 1968, M. Douglas
McIlroy’s keynote referred to “mass-produced” software
components2 and “software component factories,” the
enterprises that had started developing components for
future systems. These components are not designed ac-
cording to system requirements—rather, the requirements
are adapted to the already existing components.

 If a developer chooses to reuse existing components,
the development process becomes a combination of a
top-down and a bottom-up approach, with the top-down
perspective driven by an overall architectural analysis
and the bottom-up using the components themselves as
a starting point. The overall function of a system built
from components is a result of component function com-
position; similarly, the system’s EFPs are the result of
composing component EFPs.

A component can be a large subsystem, a set of classes
in an object-oriented approach, a single class providing a
service, or a simple, directly translatable function to an im-
plementation in a programming language. This generality
gives components their flexibility and wide applicabil-
ity, but it also precludes them from providing substantial
support in automated analysis due to difficulties in their
precise specifications.

 A significantly more efficient and simpler way to de-
velop software systems is to specify components more
precisely and formally, but doing so requires specifying a
component beyond its architectural units—for example, it
is not enough to specify the interface; specification of dif-
ferent EFPs is also required, such as component execution
time, memory usage, and so forth. The component-based
software engineering (CBSE) community has hosted sev-
eral discussions about component specifications and
produced many different definitions—for instance, varying
opinions of whether a “component” is an executable unit or
a model of an executable unit eventually led to the realiza-
tion that a unique definition is impossible. Instead, a model
can define the standards for properties that individual
components should have and the methods for compos-
ing or combining them. Here, the concept of “component
properties” comprises both the functional properties and
the EFPs of individual components.

In the component-based approach, functionality is
expressed in the form of an interface—a functional speci-
fication or entry point for the services that the component
provides (the provided interface) or the services that the

component uses (the required interface). The existence of
both required and provided interfaces enables different
types of reasoning that use component dependencies. For
instance, if component A allows input values between 1
and 100, it is possible to check whether component B pro-
vides data to component A in the same range or smaller.
The interface provides information at the syntax level that
enables type checking in component compositions, which
helps developers catch type incompatibilities when com-
posing components.

A more advanced interface specification would include
functional semantics such as an interface contract, which
asserts both required and provided interfaces, thereby let-
ting the developer reason about context correctness—here,
context is the environment in which the component is
executing. Interface contracts also enable reasoning about
system-level properties by combining components using

their contract-based interfaces. A component behavior
specification can also be part of the interface; it typically
consists of different variants of state machines, represent-
ing the component’s internal states and state changes. If
combined with the functional interface and contracts, the
behavioral specification enables reasoning about com-
ponent behavior in a specific context or about the entire
system’s behavior.

To simplify software development in a component-
based approach, the first step is to encapsulate both
functional properties and EFPs. This enables direct reuse
of a component instead of developing and verifying a new
one. The second step is to provide composition rules for
both functional properties and EFPs. In an ideal world, fol-
lowing both of these steps would make it possible to easily
construct complex systems and, through compositional
reasoning, predict their properties. In the real word, this
goal has yet to be achieved.

WHAT CAN WE REASON ABOUT?
Reasoning relies on two pillars of software develop-

ment: composition and encapsulation. Composition
increases development effectiveness by applying formally
defined rules that facilitate analysis, while encapsulation
improves development efficiency through the philosophy
of “reason once, use many times.”

Component composition
The act of composing components includes building the

To simplify software development in a
component-based approach, the first step
is to encapsulate both functional and
extrafunctional properties.

	 42	 computer

Cover Fe ature

mechanism for component interaction. Such a mechanism
results in an assembly that is characterized by a function
(composed from the involved components’ functions) and
a set of EFPs (composed from the involved components’
EFPs).

Component bindings, which are mechanisms to con-
nect the components, enable component interaction by
allowing one component’s interface to be connected to
another’s. The component model’s rules of composition
define the types of components that are acceptable in
a composition, their correct bindings, and the system’s
global properties.

We distinguish two types of bindings. A horizontal bind-
ing represents the connection of a component’s provided
interface with a subsequent component’s required inter-
face. This assembly does not necessarily constitute a new
component; it is just an assembly of interacting compo-
nents, and the resulting composition is called a horizontal
composition. A vertical binding is an assembly that con-
stitutes a new composite component that complies with
the model’s interface; the new composite component can
be connected to other components in the same way as
any other component complying with its model. Figure 1
shows this: here, the new component Service has the same
interface type as the constituent components Client and
Server. The sidebar “Generic Component Specification”
gives formal definitions of some of the important terms in
component-based development.

A component model that enables hierarchical composi-
tions is a hierarchical component model, a powerful design
option that enables functionality encapsulation on several
levels via the same composition mechanism. Hierarchical
component models allow the description of finely grained
complex behaviors in the form of subcomponents nested
within the same “host” composite component. A composite
component can be a complex composition unit, containing
many interconnected subcomponents. A specification of

such components, which includes both
the functional and EFP specifications,
must be derived from the underlying
components and then analyzed for
both consistency and correct binding,
as well as with respect to properties
related to port access and data-flow
semantics. Once its correctness is en-
sured, the component can be reused
without repeating the analysis process.

For particular system architectures,
the component compositions could be
associated with port and data-flow
requirements, which can be assessed
by formal analysis at the architectural
design level. Think back to the auto-
matic pedestrian-detection system

example from the introduction: given that the compo-
nents and their connectors benefit from a formal semantic
description, the associated reasoning framework should
support the analysis of the system’s architectural proper-
ties with respect to port access to ensure that specific data
is not missed. For instance, the developer could check that
the pedestrian-detector component’s input signal is never
written twice without being read between writings. This
kind of safety-related analysis helps the designer by un-
covering problems that could otherwise propagate to later
design stages, where detecting them comes at extra cost.

Functional properties of components and composi-
tions. Verifying functionality is an essential yet classic
endeavor in system verification. Usually, functional prop-
erties describe the relationships between component and
system variables and constrain the values associated
with system operations or state changes.3 For instance, a
functional property of an antilock braking system (ABS)
might require that for certain values of the slip rate, the
brake actuator always releases and no brake is applied; to
prevent the car from hitting a pedestrian, the developer
would need to ensure that the brake is activated when a
person crossing the road is detected at a specified distance
from the car’s front bumper.

At the binding level, the designer can reason about
functional properties by checking interface contract cor-
rectness—for example, in the client-server horizontal
binding in Figure 1, verifying interface contract correctness
amounts to checking that the client component’s provided
interface is equivalent or contained in the server compo-
nent’s required interface. The contract specification has
the major advantage of simplifying the verification of bind-
ing correctness, by reducing it to proving simple Boolean
conditions. We exemplify the concept below.

Consider a well-defined (that is, one that has a specified
interface and consistent properties) component model CM
and two components C

1 and C2 that comply with CM, as

<<component>>
Client

<<component>>
Server

Horizontal binding

<<component>>
Client

<<component>>
Server

<<component>>
Service

Vertical binding

<<component>>

Figure 1. Horizontal and vertical binding of components. Vertical binding results
in a new component: the new component Service has the same interface type as
the constituent components Client and Server.

	 NOVEMBER 2013	 43

specified by their required-provided interfaces, {preC1},
{postC1}, {preC2}, and {postC2}, respectively (we use {…}
to denote an assertion):

{preC1} C1 {postC1}, {preC2} C2 {postC2}

The correctness (consistency) of their horizontal binding
entails discharging the following proof obligation: the
precondition of C1, preC1, must satisfy the contract that
establishes the postcondition of C1, postC1, which should
imply the precondition of C2, preC2.

Extrafunctional properties of components and
compositions. The composition of certain EFPs is well
understood in principle. For instance, in most cases,
composing the static memory and energy used by inter-
connected components, respectively, ends up in adding the
values of the resources used by each component—hence,
static memory and energy consumption are additive,
meaning that the semantics of the composition operator
(⊕) is known (see the “Generic Component Specification”
sidebar). However, in many situations, the composition is
not straightforward and cannot be easily generalized. One
challenge, for instance, is that the composition operator
depends on the context in which the component is used—
for instance, a composite component’s response time does
not depend solely on each subcomponent’s response time
but also on the underlying scheduling mechanisms. EFPs
can vary depending on several factors and choices, includ-
ing the overall system architecture and the underlying
platform’s characteristics.

To be able to reason about component properties in
general, we need an unambiguous form of component
semantics—essentially, behavioral semantics—as a way
of expressing what to check, next to which we also need
to provide a formalized property and tools to support the
reasoning. An analysis can equate to a verification that
returns a yes or no answer, or it can come in the form of
quantitative analysis that includes statistical or probabi-
listic techniques.

Given a well-defined behavioral model M of component
C, some environment assumptions G, and an initial state s

0
from which the model starts executing, we can formally
express the verification of C with respect to property r as
follows:

Γ, M, s0 ⊨ ρ,

which means that the property ρ should hold for all execu-
tions of M, within the context specified by Γ, and starting
from s0.

Encapsulation
We have seen that a component interface encapsulat-

ing functional behavior (including functional properties),

together with well-defined rules of component composi-
tions form the prerequisite for high-level predictions that
include analysis of proper component bindings. We argue
further that a component model that goes beyond such
interfaces enables diverse analyses at various levels of
abstraction, simplifying component selection, develop-
ment, and system design.

Generic Component
Specification

S ome formal definitions of important terms in component-
based development give an indication of this model’s

power and flexibility.
Component. A component C is specified by a set of

functional properties expressed as an interface I and a set of
extrafunctional properties P:

C = <I, P>

Here, we abstract away other possible mechanisms that can
be otherwise encapsulated in the component model.

Interface. In its complete form, an interface I specifies the
provided interface Ip, the required interface Ir, the contract
specification Ic, and the behavior specification Ib:

I = <Ip, Ir, Ic, Ib>.

Compliance with a component model. If a component
C = <I, P> complies with a component model CM, then both its
functional and extrafunctional properties comply with the
component model:

C ⊨ CM ⇒ I, P ⊨ CM.

Component composition. Assuming that the component
function is expressed by interface I, and extrafunctional prop-
erties by a set P, a composition (denoted by ⊕) of two
components C1 = <I1 , P1> and C2 = <I2, P2> is defined as follows:

C1 ⊕ C2 = <I1 ⊕ I2, P1 ⊕ P2>.

Binding. A binding defines a connection between compo-
nents, realized as a composition of component interfaces.
Assuming two components C1 = <I1, P1> and C2 = <I2, P2> that
comply with a particular component model CM, that is,

C1, C2 ⊨ CM ⇒ I1, I2, P1, P2 ⊨ CM,

we can define two types of bindings (interface
compositions):

Horizontal binding: H = C1 o C2 ⇒ IH = I1 o I2

Vertical binding: V = C1 o C2⇒ IV = I1 o I2, where IV ⊨ CM.

Vertical composition. The result of a vertical composition of
C1 and C2 is component V = <Iv, Pv>, which complies with the
component model CM with respect to both functional and
extrafunctional properties:

V = C1 ⊕ C2 ⇒

V= <IV, PV> | (IV = I1 ⊕ I2, IV ⊨ CM) and (PV = P1 ⊕ P2, PV ⊨ CM).

	 44	 computer

Cover Fe ature

The two pillars on which any component-based design
should rely are reuse and predictability. The first principle
can be achieved by allowing hierarchical compositions
of components, meaning that components and their con-
nectors are nested (up to arbitrary application-dictated
depths) within host or top-level components. Predictabil-
ity can be increased by requiring a read-execute-write
semantics from the component model, meaning that once
a component is triggered, its execution is functionally inde-
pendent of any concurrent activity (the execution cannot
be interrupted). This also facilitates analysis: component
executions can be modeled analytically by input-out-
put functions. However, such semantics can be rather

strict, preventing parallel computing, so one option is to
specify a component at various levels of abstraction by
using different communication styles. One example of
such specification on more than one abstraction level is
ProCom,4 a component model for designing vehicular and
telecom systems.

To address the issue of reuse, ProCom consists of two
layers: ProSys, which allows loosely coupled, coarse-
grained components that communicate via message
passing, and ProSave, which relies on time-triggered,
pipe-and-filter communication and strict run-to-
completion execution semantics. The two layers enable
analysis at the earliest development stages, giving devel-
opers insight into system behavior, whether the design
includes fully developed components or unformed ones.
The analysis can be performed at various design stages,
so the component model can consequently store a pleth-
ora of analysis results.

For analysis purposes, developers will want to be able
to associate attributes with components and subsystems
for specifying different functional and extrafunctional
characteristics.5 Some attributes might be represented
by single numbers—for example, worst-case execution
time (WCET) or static memory usage. However, for more
complex functional and extrafunctional behavior such as
timing, resource consumption, and reliability, the number-
based annotations are not enough. If we consider re-
source usage, the attributes must represent various rates
of resource consumption for continuous resources such
as energy—or edge probabilities to analyze component
reliability—to understand the causes of potential trouble
spots and prepare for model refactoring. Thus, possibly
complex behavioral models of components’ and compo-
sitions’ internal workings need to be encapsulated within

the component model itself. One such resource-aware
behavioral model that works for component-based de-
velopment is the dense-time, state-based hierarchical
modeling language REMES,6 which is used with ProCom.
REMES describes ProCom component behavior by rep-
resenting possible behavioral modes and their function
(as assignments or conditionals), timing constraints (as
mode invariants), and resource usage (as mode annota-
tions in terms of linear differential equations or mode
assignments).

 The encapsulation that simplifies component-based
system design and facilitates the prediction of possible
errors at early design stages can be represented by three
levels of component “knowledge” required to equip the
component model. The first is the functional specifica-
tion (in the form of a signature), and contracts connected
to the interface, including execution semantics such as
read-execute-write; the second is component behavior, or
the internal states and transitions serving as the seman-
tics of a state-based model; and the third is made of EFPs
that can be expressed in different forms, such as a value
or a model. The sidebar “Rich Interface Component Model
Example: ProCom” shows examples of architectural de-
signs built with ProCom; the sidebar “Extrafunctional
Property and Behavior Encapsulation in ProCom” shows
the specification of EFPs and behavior in ProCom.

T oday’s software is characterized by its continuous
and rapid evolution, increasing complexity, dynamic
runtime environment, and intensive interaction. For

most software, a bottom-up approach with support for
dynamic composition and adaptation is the key to suc-
cessful development. A component-based approach that
enables the reuse of black-box software components with
encapsulated functionality and well-defined properties
in the form of contract-based interface specification sup-
ports this type of development. The more encapsulated
reasoning is supported in component models, the more
predictable software solutions can become.

However, this approach also has serious challenges:
compositional reasoning is complex and, in many cases,
not achievable; rich component specification requires
additional efforts that do not pay off immediately, and
overspecified components are less reusable. Complex-
ity in compositional reasoning is especially tricky—the
response time, for example, of two combined components
does not depend just on each component’s response times
but also on the environment, such as the underlying sched-
uling policy.

 Formalisms are getting simpler and system behav-
ior more predictable when more rules are enforced on
component models. Strict read-execute-write component
execution semantics, the separation of a component’s

The more encapsulated reasoning is
supported in component models, the more
predictable software solutions can become.

	 NOVEMBER 2013	 45

Rich Interface Component Model Example:
ProCom

P roCom is an example of a component model that, due to
its rich interface, enables the design of a large variety of

products, but also the modeling and analysis of important
properties of embedded systems. The interface richness is
realized through different interaction types, precise execution
semantics, and component-level specification of
extrafunctional properties.

Figure A shows the upper-level ProSys for overall system
design, and Figure B shows the lower-level ProSave for sub-
system design.

The upper-level ProSys components, such as Stability Con-
trol System, are coarse-grained, with message-type interface
and connectors implemented as asynchronous named commu-
nication—for example, Yaw angle.

The lower-level ProSave components such as Computing
Actual Direction are fine-grained with synchronous communi-
cation, separation of control flow (modeled by trigger ports)
from data flow (modeled by data ports), and using read-
execute-write execution semantics. This enables modeling
and predictions of timing properties such as execution and
response times.1

Reference
	 1.	 J. Carlson, “Timing Analysis of Component-Based Embedded

Systems,” Proc. 15th Int’l ACM SIGSOFT Symp. Component-Based
Software Eng., ACM, 2012, pp. 151-156.

Yaw angle

Yaw sensor

Lateral
acceleration

sensor

Wheels
speed
sensor

Steering
wheel angle

sensor

Lateral accel.

Steering angle

LF wheel speed

RF wheel speed

LRwheel speed

RR wheel speed

Traction
control
system

Antilock
braking
system

Throttle adjust.

Throttle adjust.

Brakes pressure

Brakes pressure

Brakes pressure

Ac
tiv

ity
 in

dic
at

or

Th
ro

ttl
e a

dju
st.

Brakes pressure

Brake
valves

Combiner

Stability
control
system

Figure A. Car stability system architectural design using ProSys components that enable asynchronous communication
using messages, which is convenient for subsystems distributed in a network.

Detecting
sliding

Computing
braking
pressure

and throttle

Lateral acceleration

Computing
actual

direction

Computing
desired

direction

Yaw angle

LF wheel speed

RF wheel speed

LR wheel speed

RR wheel speed

Steering angle

50 Hz

Stability Control System

Throttle
adjust.

Brakes
pressure

Figure B. Car stability subsystem architectural design using ProSave components that enable synchronous
communication using pipe & filter architectural style and a separation of control flow from data flow. This simple style is
suitable for local communication and for a precise prediction of timing properties.

	 46	 computer

Cover Fe ature

control interface from the data interface, and time-
triggered scheduling, as implemented in the ProSave level
of ProCom, enable predictable timing properties.7 How-
ever, strict execution semantics limit the design space—for
example, a loop, regularly used in feedback controls,
cannot be implemented directly using ProSave.

 A proper tradeoff between flexibility and predictability
could lead to an effective and predictable component-
based development. A component model does not need
to support all possible concerns—different domains have
different issues, a fact reflected in the design of various
component models that encapsulate different formalisms
that enable reasoning related to component properties and
their compositions. The sidebar “Component Models for
Reasoning” provides some examples.8,9

Some of the reasons why it is difficult to embed sim-
plicity in software design are beyond components—for
example, the unwillingness to replace proprietary software

with off-the-shelf components or software from the open
source community—but perhaps by integrating compo-
nent-based ideas into their builds, developers can start
simplifying the overall process.

 References
	 1.	 L. Bass, P. Clements, and R. Kazman, Software Architecture

in Practice, Addison-Wesley 1997.
	 2.	 M.D. McIlroy, “Mass Produced Software Components,”

Software Engineering, Report on a Conference Sponsored
by the NATO Science Committee, October 1968, P. Naur and
B. Randell, eds., Scientific Affairs Division, NATO, 1969, pp.
138-155; http://cm.bell-labs.com/cm/cs/who/doug/compo-
nents.txt.

	 3.	 J. Hatcliff et al., “Behavioral Interface Specification Lan-
guages,” ACM Computing Surveys, vol. 44, no. 3, 2012,
article 16.

Extrafunctional Property and Behavior
Encapsulation in ProCom

T he ProCom component model enables specification of
extrafunctional properties as particular values that can be

obtained from measurement, calculation, or estimation. One
part of the extrafunctional property specification is the model
of the context for which the specification is valid.

Formally, we specify an extrafunctional property as an attri-
bute A of type TA with a set of values V. The value itself includes

data D (a measured value), metadata MD (value metrics or
some other additional data), and Ct (a context or a set of condi-
tions valid for the considered extrafunctional property; Ct can,
for example, represent the CPU type, the scheduling algo-
rithm, or another condition that has influence on the attribute
value):

A = <TA, V+> ; V = <D, MD, Ct*>.

Note that the same attribute can have different
values for different contexts, as well as in the
same context—for example, we can have
different values of an attribute defined in
different phases of the component life cycle, as
an attribute can be estimated or predicted
during the development phase but measured
during runtime.

ProCom provides mechanisms to specify cer-
tain component attributes such as WCET and
static memory usage, and enables specification
of additional attributes of components or of any
other architectural element such as interface
elements, connectors, and primitive or composite
components.

An example of behavior encapsulation in
ProCom is resource usage. We can model
resources such as CPU, memory, energy, and
bandwidth together with the component behav-
ior by using the REMES modeling language.
Figure C shows an example of a REMES model
describing the behavior of a ProCom component
that controls the temperature in a nuclear tank via
rods for cooling.

HCController
Constants

Heat_Cool
x<=C_HC
false

Constants
Variables
Resources
cpu'=5

Variables
Resources

Idle

true
Constants
Variables
Resources

mem+=10, x:=0

x=C_HC

temp:=temp+temp_HC-tempROD mem+=80
bdw+=15, mem-=10

Entry

Init
Exit
Write

Initialization:
 constants:
 int C_HC:= 25, temp_HC:=3;
 variables:
 local clock x;
 interface read int tempROD:= 0;
 interface write int temp:= 7;
resources:
 ТA mem; TB bdw; TC cpu;

UU
Inv Inv

Figure C. REMES model of a ProCom component controlling
temperature. The resources are declared as “resource” variables (mem,
bdw, cpu), and the model describes the component’s behavior modes
(Idle, Heat_Cool), each mode’s function (temp:=temp+temp_HC-temp
ROD), timing constraints (x<=C_HC), and mode behavior with respect
to resources (cpu’ = 5, mem+=10).

	 NOVEMBER 2013	 47

	 4.	 S. Sentilles et al., “A Component Model for Control-
Intensive Distributed Embedded Systems,” Proc. 11th
Int’l Symp. Component Based Software Engineering (CBSE
2008), LNCS 5282, Springer, 2008, pp. 310-317.

	 5.	 S. Sentilles, “Managing Extra-Functional Properties in
Component-Based Development of Embedded Systems,”
doctoral dissertation, IDT, Mälardalen Univ., Sweden, June
2012.

	 6.	 C. Seceleanu, A.Vulgarakis, and P. Pettersson, “REMES: A
Resource Model for Embedded Systems,” Proc. 14th IEEE
Int’l Conf. Eng. of Complex Computer Systems (ICECCS
2009), IEEE CS, 2009, pp. 84-94.

	 7.	 J. Carlson, “Timing Analysis of Component-Based Em-
bedded Systems,” Proc. 15th Int’l ACM SIGSOFT Symp.
Component Based Software Eng., ACM, 2012, pp. 151-156.

	 8.	 I. Crnkovic et al., “Classification Framework for Software
Component Models,” IEEE Trans. Software Eng., vol. 37, no.
5, 2011, pp. 593-615.

	 9.	 K.-K. Lau and W. Zheng, “Software Component Models,”
IEEE Trans. Software Eng., vol. 33, no. 10, 2007, pp. 709-724.

Cristina Seceleanu is a senior lecturer in the Embedded
Systems Division at Mälardalen University, Sweden, where
she co-leads the Formal Modeling and Analysis of Embedded
Systems group. Her research focuses on developing formal
models and verification techniques for designing predict-
able real-time embedded systems and service-oriented
systems. Seceleanu received a PhD in computer science
from the Åbo Akademi and Turku Centre for Computer
Science, Åbo/Turku, Finland. She is a member of IEEE and
ACM. Contact her at cristina.seceleanu@mdh.se.

Ivica Crnkovic is a professor of industrial software engi-
neering at Mälardalen University, Sweden, where he is the
administrative leader of the Software Engineering Lab-
oratory and the scientific leader of industrial software
engineering research. His research interests include com-
ponent-based software engineering, software architecture,
software configuration management, and software devel-
opment environments and tools. Crnkovic received a PhD
in computer science from the University of Zagreb, Croatia.
Contact him at ivica.crnkovic@mdh.se.

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

Component Models for Reasoning

A lthough the overall principles of component models are
quite well defined, in practice they can differ in both their

support and design. The following examples offer some good
places to start with component-based reasoning:

•	 AUTOSAR (AUTomotive Open System Architecture; www.
autosar.org/index.php?p=3&) is the new standard in the
automotive industry for component models with basic
functionality.

•	 The BIP (Behavior, Interaction, Priority; www-verimag.
imag.fr/Rigorous-Design-of-Component-Based.html)
framework is used for modeling heterogeneous real-time
components.

•	 BlueArX is a component model used in the automotive
control domain. It supports the modeling of timing,
memory usage, and the generic specification of other
properties.

•	 Fractal (http://fractal.ow2.org) is a modular, extensible
component model that can be customized through the
notion of a component control membrane.

•	 Palladio (http://sdqweb.ipd.kit.edu/wiki/Palladio_
Component_Model) provides a domain-specific modeling
language for component-based software architectures
that is tuned to enable early life-cycle performance
predictions.

•	 ProCom (www.idt.mdh.se/pride/?id=documentation-
publications) is a component model for real-time and
embedded systems that targets the domains of vehicular
and telecommunication systems, enabling predictability
of timing properties and resource utilization. It provides a
framework for reasoning encapsulation.

•	 RoboCop (Robust Open Component Based Software Archi-
tecture for Configurable Devices; www.hitech-projects.
com/euprojects/robocop) is a component model devel-
oped for the high-volume consumer device domain.

•	 The Rubus (www.arcticus-systems.com/index.
php?pageId=11) component model is intended for small,
resource-constrained embedded systems. It provides
reasoning encapsulation and composition of real-time
properties.

www.computer.org/itpro

