
	 40	 computer	 Published by the IEEE Computer Society	 0018-9162/13/$31.00 © 2013 IEEE

Cover Fe ature

Cristina Seceleanu and Ivica Crnkovic, Mälardalen University, Sweden

Component models with a rich specifica-

tion—that is, component models built for 

reasoning—facilitate the use of different 

analysis and prediction techniques that 

simplify a system’s design while increas-

ing trust in its correct functioning.

T he recent boom in hardware development has 
helped developers create software that can 
manage sophisticated processes and applica-
tions. With fewer hardware-related performance 

constraints as a result of Moore’s law, it might seem that 
software development would somehow become simpler, 
but that is not the case. Consider, for example, the auto-
motive industry’s latest attempt to increase safety: cars 
that can detect a pedestrian crossing the road and then 
stop themselves to avoid collision. The hardware involved 
consists of different computing units to operate the vari-
ous software components—namely, a field-programmable 
gate array (FPGA) to handle the image frames produced 
by the stereovision camera system, a GPU to run object 
recognition, and a CPU to handle system control.

To realize such a system, its developers must meet sev-
eral challenges that go beyond pure functionality: 

•• performance beyond the system simply processing 
information in a given time frame; 

•• dependability, reliability, availability, and synchroni-
zation with real-time requirements so that the system 

does not react improperly, or too early or too late; 
•• optimized use of memory and other electronic re-
sources due to manufacturing savings without 
compromising software correctness; and

•• control over software development and maintenance 
costs. 

A trial-and-error implementation that includes unit and 
system testing is a possible solution for ensuring that the 
implementation fulfills these mixed requirements, but it is 
far from a good one. Any technology that comes equipped 
with analysis techniques for assessing basic software prop-
erties such as functionality, as well as extrafunctional 
properties (EFPs; they are also known as nonfunctional 
or quality attributes) such as safety, timeliness, reliability, 
and resource usage, has higher trustworthiness, due to 
its ability to uncover potential trouble spots before actual 
system implementation.

The most common method of software and system de-
velopment today is component-based; systems are built 
from existing components. By reusing hardware or soft-
ware components, developers can use knowledge of their 
properties to predict the new system’s properties. Compo-
nent models with a rich specification—that is, component 
models built for reasoning—facilitate the use of different 
analysis and prediction techniques that simplify a system’s 
design while increasing trust in its correct functioning. In 
other words, the better information about components we 
have, the better we can reason about the system. 

WHY COMPONENTS?
Componentization is a basic software engineering prin-

ciple inspired by the ancient Greek and Roman strategy of 
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“divide and rule.” In the computational context, it means 
breaking down complex systems and managing the 
smaller pieces separately. Components and the relation-
ships between them are the basic elements of a top-down 
architectural analysis.1 

But components are not only the result of top-down 
analysis: they are also building blocks. The idea of software 
components is as old as software engineering itself. At the 
first software engineering conference in 1968, M. Douglas 
McIlroy’s keynote referred to “mass-produced” software 
components2 and “software component factories,” the 
enterprises that had started developing components for 
future systems. These components are not designed ac-
cording to system requirements—rather, the requirements 
are adapted to the already existing components. 

 If a developer chooses to reuse existing components, 
the development process becomes a combination of a 
top-down and a bottom-up approach, with the top-down 
perspective driven by an overall architectural analysis 
and the bottom-up using the components themselves as 
a starting point. The overall function of a system built 
from components is a result of component function com-
position; similarly, the system’s EFPs are the result of 
composing component EFPs.

A component can be a large subsystem, a set of classes 
in an object-oriented approach, a single class providing a 
service, or a simple, directly translatable function to an im-
plementation in a programming language. This generality 
gives components their flexibility and wide applicabil-
ity, but it also precludes them from providing substantial 
support in automated analysis due to difficulties in their 
precise specifications. 

 A significantly more efficient and simpler way to de-
velop software systems is to specify components more 
precisely and formally, but doing so requires specifying a 
component beyond its architectural units—for example, it 
is not enough to specify the interface; specification of dif-
ferent EFPs is also required, such as component execution 
time, memory usage, and so forth. The component-based 
software engineering (CBSE) community has hosted sev-
eral discussions about component specifications and 
produced many different definitions—for instance, varying 
opinions of whether a “component” is an executable unit or 
a model of an executable unit eventually led to the realiza-
tion that a unique definition is impossible. Instead, a model 
can define the standards for properties that individual 
components should have and the methods for compos-
ing or combining them. Here, the concept of “component 
properties” comprises both the functional properties and 
the EFPs of individual components. 

In the component-based approach, functionality is 
expressed in the form of an interface—a functional speci-
fication or entry point for the services that the component 
provides (the provided interface) or the services that the 

component uses (the required interface). The existence of 
both required and provided interfaces enables different 
types of reasoning that use component dependencies. For 
instance, if component A allows input values between 1 
and 100, it is possible to check whether component B pro-
vides data to component A in the same range or smaller. 
The interface provides information at the syntax level that 
enables type checking in component compositions, which 
helps developers catch type incompatibilities when com-
posing components.

A more advanced interface specification would include 
functional semantics such as an interface contract, which 
asserts both required and provided interfaces, thereby let-
ting the developer reason about context correctness—here, 
context is the environment in which the component is  
executing. Interface contracts also enable reasoning about 
system-level properties by combining components using 

their contract-based interfaces. A component behavior 
specification can also be part of the interface; it typically 
consists of different variants of state machines, represent-
ing the component’s internal states and state changes. If 
combined with the functional interface and contracts, the 
behavioral specification enables reasoning about com-
ponent behavior in a specific context or about the entire 
system’s behavior. 

To simplify software development in a component-
based approach, the first step is to encapsulate both 
functional properties and EFPs. This enables direct reuse 
of a component instead of developing and verifying a new 
one. The second step is to provide composition rules for 
both functional properties and EFPs. In an ideal world, fol-
lowing both of these steps would make it possible to easily 
construct complex systems and, through compositional 
reasoning, predict their properties. In the real word, this 
goal has yet to be achieved. 

WHAT CAN WE REASON ABOUT?
Reasoning relies on two pillars of software develop-

ment: composition and encapsulation. Composition 
increases development effectiveness by applying formally 
defined rules that facilitate analysis, while encapsulation 
improves development efficiency through the philosophy 
of “reason once, use many times.”

Component composition 
The act of composing components includes building the 

To simplify software development in a 
component-based approach, the first step 
is to encapsulate both functional and 
extrafunctional properties.
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mechanism for component interaction. Such  a mechanism 
results in an assembly that is characterized by a function 
(composed from the involved components’ functions) and 
a set of EFPs (composed from the involved components’ 
EFPs).

Component bindings, which are mechanisms to con-
nect the components, enable component interaction by 
allowing one component’s interface to be connected to 
another’s. The component model’s rules of composition 
define the types of components that are acceptable in 
a composition, their correct bindings, and the system’s 
global properties. 

We distinguish two types of bindings. A horizontal bind-
ing represents the connection of a component’s provided 
interface with a subsequent component’s required inter-
face. This assembly does not necessarily constitute a new 
component; it is just an assembly of interacting compo-
nents, and the resulting composition is called a horizontal 
composition. A vertical binding is an assembly that con-
stitutes a new composite component that complies with 
the model’s interface; the new composite component can 
be connected to other components in the same way as 
any other component complying with its model. Figure 1 
shows this: here, the new component Service has the same 
interface type as the constituent components Client and 
Server. The sidebar “Generic Component Specification” 
gives formal definitions of some of the important terms in 
component-based development.

A component model that enables hierarchical composi-
tions is a hierarchical component model, a powerful design 
option that enables functionality encapsulation on several 
levels via the same composition mechanism. Hierarchical 
component models allow the description of finely grained 
complex behaviors in the form of subcomponents nested 
within the same “host” composite component. A composite 
component can be a complex composition unit, containing 
many interconnected subcomponents. A specification of 

such components, which includes both 
the functional and EFP specifications, 
must be derived from the underlying 
components and then analyzed for 
both consistency and correct binding, 
as well as with respect to properties 
related to port access and data-flow 
semantics. Once its correctness is en-
sured, the component can be reused 
without repeating the analysis process.

For particular system architectures, 
the component compositions could be 
associated with port and data-flow  
requirements, which can be assessed 
by formal analysis at the architectural 
design level. Think back to the auto-
matic pedestrian-detection system 

example from the introduction: given that the compo-
nents and their connectors benefit from a formal semantic 
description, the associated reasoning framework should 
support the analysis of the system’s architectural proper-
ties with respect to port access to ensure that specific data 
is not missed. For instance, the developer could check that 
the pedestrian-detector component’s input signal is never 
written twice without being read between writings. This 
kind of safety-related analysis helps the designer by un-
covering problems that could otherwise propagate to later 
design stages, where detecting them comes at extra cost.      

Functional properties of components and composi-
tions. Verifying functionality is an essential yet classic 
endeavor in system verification. Usually, functional prop-
erties describe the relationships between component and 
system variables and constrain the values associated 
with system operations or state changes.3 For instance, a 
functional property of an antilock braking system (ABS) 
might require that for certain values of the slip rate, the 
brake actuator always releases and no brake is applied; to 
prevent the car from hitting a pedestrian, the developer 
would need to ensure that the brake is activated when a 
person crossing the road is detected at a specified distance 
from the car’s front bumper. 

At the binding level, the designer can reason about 
functional properties by checking interface contract cor-
rectness—for example, in the client-server horizontal 
binding in Figure 1, verifying interface contract correctness 
amounts to checking that the client component’s provided 
interface is equivalent or contained in the server compo-
nent’s required interface. The contract specification has 
the major advantage of simplifying the verification of bind-
ing correctness, by reducing it to proving simple Boolean 
conditions. We exemplify the concept below. 

Consider a well-defined (that is, one that has a specified 
interface and consistent properties) component model CM 
and two components C

1 and C2 that comply with CM, as 

<<component>>
Client

<<component>>
Server

Horizontal binding

<<component>>
Client

<<component>>
Server

<<component>>
Service

Vertical binding

<<component>>

Figure 1. Horizontal and vertical binding of components. Vertical binding results 
in a new component: the new component Service has the same interface type as 
the constituent components Client and Server. 
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specified by their required-provided interfaces, {preC1}, 
{postC1}, {preC2}, and {postC2}, respectively (we use {…} 
to denote an assertion):

{preC1} C1 {postC1}, {preC2} C2 {postC2} 

The correctness (consistency) of their horizontal binding 
entails discharging the following proof obligation: the 
precondition of C1, preC1, must satisfy the contract that 
establishes the postcondition of C1, postC1, which should 
imply the precondition of C2, preC2.

Extrafunctional properties of components and 
compositions. The composition of certain EFPs is well 
understood in principle. For instance, in most cases, 
composing the static memory and energy used by inter-
connected components, respectively, ends up in adding the 
values of the resources used by each component—hence, 
static memory and energy consumption are additive, 
meaning that the semantics of the composition operator 
(⊕) is known (see the “Generic Component Specification” 
sidebar). However, in many situations, the composition is 
not straightforward and cannot be easily generalized. One 
challenge, for instance, is that the composition operator 
depends on the context in which the component is used—
for instance, a composite component’s response time does 
not depend solely on each subcomponent’s response time 
but also on the underlying scheduling mechanisms. EFPs 
can vary depending on several factors and choices, includ-
ing the overall system architecture and the underlying 
platform’s characteristics. 

To be able to reason about component properties in 
general, we need an unambiguous form of component 
semantics—essentially, behavioral semantics—as a way 
of expressing what to check, next to which we also need 
to provide a formalized property and tools to support the 
reasoning. An analysis can equate to a verification that 
returns a yes or no answer, or it can come in the form of 
quantitative analysis that includes statistical or probabi-
listic techniques. 

Given a well-defined behavioral model M of component 
C, some environment assumptions G, and an initial state s

0 
from which the model starts executing, we can formally 
express the verification of C with respect to property r as 
follows: 

Γ, M, s0 ⊨ ρ,

which means that the property ρ should hold for all execu-
tions of M, within the context specified by Γ, and starting 
from s0. 

Encapsulation
We have seen that a component interface encapsulat-

ing functional behavior (including functional properties), 

together with well-defined rules of component composi-
tions form the prerequisite for high-level predictions that 
include analysis of proper component bindings. We argue 
further that a component model that goes beyond such 
interfaces enables diverse analyses at various levels of  
abstraction, simplifying component selection, develop-
ment, and system design. 

Generic Component 
Specification

S ome formal definitions of important terms in component-
based development give an indication of this model’s 

power and flexibility.
Component. A component C is specified by a set of 

functional properties expressed as an interface I and a set of 
extrafunctional properties P: 

C = <I, P>

Here, we abstract away other possible mechanisms that can 
be otherwise encapsulated in the component model. 

Interface. In its complete form, an interface I specifies the 
provided interface Ip, the required interface Ir, the contract 
specification Ic, and the behavior specification Ib:

I = <Ip, Ir, Ic, Ib>.

Compliance with a component model. If a component  
C = <I, P> complies with a component model CM, then both its 
functional and extrafunctional properties comply with the 
component model:

C ⊨ CM ⇒ I, P ⊨ CM.

Component composition. Assuming that the component 
function is expressed by interface I, and extrafunctional prop-
erties by a set P, a composition (denoted by ⊕) of two 
components C1 = <I1 , P1> and C2 = <I2, P2> is defined as follows:

C1 ⊕ C2 =  <I1 ⊕ I2, P1 ⊕ P2>.

Binding. A binding defines a connection between compo-
nents, realized as a composition of component interfaces. 
Assuming two components C1 = <I1, P1> and C2 = <I2, P2>  that 
comply with a particular component model CM, that is,

C1, C2 ⊨ CM ⇒ I1, I2, P1, P2 ⊨ CM,

we can define two types of bindings (interface 
compositions):

Horizontal binding: H = C1 o C2 ⇒ IH = I1 o I2

Vertical binding: V = C1 o C2⇒ IV = I1 o I2, where IV ⊨ CM.

Vertical composition. The result of a vertical composition of 
C1 and C2 is component V = <Iv, Pv>, which complies with the 
component model CM with respect to both functional and 
extrafunctional properties: 

V = C1 ⊕ C2 ⇒

V= <IV, PV> | (IV = I1 ⊕  I2, IV ⊨ CM) and (PV = P1 ⊕ P2, PV ⊨ CM).
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The two pillars on which any component-based design 
should rely are reuse and predictability. The first principle 
can be achieved by allowing hierarchical compositions 
of components, meaning that components and their con-
nectors are nested (up to arbitrary application-dictated 
depths) within host or top-level components. Predictabil-
ity can be increased by requiring a read-execute-write  
semantics from the component model, meaning that once 
a component is triggered, its execution is functionally inde-
pendent of any concurrent activity (the execution cannot 
be interrupted). This also facilitates analysis: component 
executions can be modeled analytically by input-out-
put functions. However, such semantics can be rather 

strict, preventing parallel computing, so one option is to 
specify a component at various levels of abstraction by 
using different communication styles. One example of 
such specification on more than one abstraction level is 
ProCom,4 a component model for designing vehicular and 
telecom systems. 

To address the issue of reuse, ProCom consists of two 
layers: ProSys, which allows loosely coupled, coarse-
grained components that communicate via message 
passing, and ProSave, which relies on time-triggered, 
pipe-and-filter communication and strict run-to-
completion execution semantics. The two layers enable 
analysis at the earliest development stages, giving devel-
opers insight into system behavior, whether the design 
includes fully developed components or unformed ones. 
The analysis can be performed at various design stages, 
so the component model can consequently store a pleth-
ora of analysis results. 

For analysis purposes, developers will want to be able 
to associate attributes with components and subsystems 
for specifying different functional and extrafunctional 
characteristics.5 Some attributes might be represented 
by single numbers—for example, worst-case execution 
time (WCET) or static memory usage. However, for more 
complex functional and extrafunctional behavior such as 
timing, resource consumption, and reliability, the number- 
based annotations are not enough. If we consider re-
source usage, the attributes must represent various rates 
of resource consumption for continuous resources such 
as energy—or edge probabilities to analyze component 
reliability—to understand the causes of potential trouble 
spots and prepare for model refactoring. Thus, possibly 
complex behavioral models of components’ and compo-
sitions’ internal workings need to be encapsulated within 

the component model itself. One such resource-aware 
behavioral model that works for component-based de-
velopment is the dense-time, state-based hierarchical 
modeling language REMES,6 which is used with ProCom. 
REMES describes ProCom component behavior by rep-
resenting possible behavioral modes and their function 
(as assignments or conditionals), timing constraints (as 
mode invariants), and resource usage (as mode annota-
tions in terms of linear differential equations or mode 
assignments). 

 The encapsulation that simplifies component-based 
system design and facilitates the prediction of possible 
errors at early design stages can be represented by three 
levels of component “knowledge” required to equip the 
component model. The first is the functional specifica-
tion (in the form of a signature), and contracts connected 
to the interface, including execution semantics such as 
read-execute-write; the second is component behavior, or 
the internal states and transitions serving as the seman-
tics of a state-based model; and the third is made of EFPs 
that can be expressed in different forms, such as a value 
or a model. The sidebar “Rich Interface Component Model  
Example: ProCom” shows examples of architectural de-
signs built with ProCom; the sidebar “Extrafunctional 
Property and Behavior Encapsulation in ProCom” shows 
the specification of EFPs and behavior in ProCom.

T oday’s software is characterized by its continuous 
and rapid evolution, increasing complexity, dynamic 
runtime environment, and intensive interaction. For 

most software, a bottom-up approach with support for 
dynamic composition and adaptation is the key to suc-
cessful development. A component-based approach that 
enables the reuse of black-box software components with 
encapsulated functionality and well-defined properties 
in the form of contract-based interface specification sup-
ports this type of development. The more encapsulated 
reasoning is supported in component models, the more 
predictable software solutions can become. 

However, this approach also has serious challenges: 
compositional reasoning is complex and, in many cases, 
not achievable; rich component specification requires 
additional efforts that do not pay off immediately, and 
overspecified components are less reusable. Complex-
ity in compositional reasoning is especially tricky—the  
response time, for example, of two combined components 
does not depend just on each component’s response times 
but also on the environment, such as the underlying sched-
uling policy. 

 Formalisms are getting simpler and system behav-
ior more predictable when more rules are enforced on 
component models. Strict read-execute-write component 
execution semantics, the separation of a component’s 

The more encapsulated reasoning is 
supported in component models, the more 
predictable software solutions can become. 
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Rich Interface Component Model Example: 
ProCom

P roCom is an example of a component model that, due to  
its rich interface, enables the design of a large variety of 

products, but also the modeling and analysis of important 
properties of embedded systems. The interface richness is 
realized through different interaction types, precise execution 
semantics, and component-level specification of 
extrafunctional properties.

Figure A shows the upper-level ProSys for overall system 
design, and Figure B shows the lower-level ProSave for sub- 
system design.

The upper-level ProSys components, such as Stability Con-
trol System, are coarse-grained, with message-type interface 
and connectors implemented as asynchronous named commu-
nication—for example, Yaw angle. 

The lower-level ProSave components such as Computing 
Actual Direction are fine-grained with synchronous communi-
cation, separation of control flow (modeled by trigger ports) 
from data flow (modeled by data ports), and using read- 
execute-write execution semantics. This enables modeling  
and predictions of timing properties such as execution and 
response times.1

Reference
	 1.	 J. Carlson, “Timing Analysis of Component-Based Embedded  

Systems,” Proc. 15th Int’l ACM SIGSOFT Symp. Component-Based  
Software Eng., ACM, 2012, pp. 151-156.
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control interface from the data interface, and time- 
triggered scheduling, as implemented in the ProSave level 
of ProCom, enable predictable timing properties.7 How-
ever, strict execution semantics limit the design space—for 
example, a loop, regularly used in feedback controls, 
cannot be implemented directly using ProSave. 

 A proper tradeoff between flexibility and predictability 
could lead to an effective and predictable component-
based development. A component model does not need 
to support all possible concerns—different domains have 
different issues, a fact reflected in the design of various 
component models that encapsulate different formalisms 
that enable reasoning related to component properties and 
their compositions. The sidebar “Component Models for 
Reasoning” provides some examples.8,9

Some of the reasons why it is difficult to embed sim-
plicity in software design are beyond components—for 
example, the unwillingness to replace proprietary software 

with off-the-shelf components or software from the open 
source community—but perhaps by integrating compo-
nent-based ideas into their builds, developers can start 
simplifying the overall process. 
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Extrafunctional Property and Behavior 
Encapsulation in ProCom 

T he ProCom component model enables specification of 
extrafunctional properties as particular values that can be 

obtained from measurement, calculation, or estimation. One 
part of the extrafunctional property specification is the model 
of the context for which the specification is valid. 

Formally, we specify an extrafunctional property as an attri-
bute A of type TA with a set of values V. The value itself includes 

data D (a measured value), metadata MD (value metrics or 
some other additional data), and Ct (a context or a set of condi-
tions valid for the considered extrafunctional property; Ct can, 
for example, represent the CPU type, the scheduling algo-
rithm, or another condition that has influence on the attribute 
value): 

A = <TA, V+> ; V = <D, MD, Ct*>.

Note that the same attribute can have different 
values for different contexts, as well as in the 
same context—for example, we can have 
different values of an attribute defined in 
different phases of the component life cycle, as 
an attribute can be estimated or predicted 
during the development phase but measured 
during runtime. 

ProCom provides mechanisms to specify cer-
tain component attributes such as WCET and 
static memory usage, and enables specification  
of additional attributes of components or of any 
other architectural element such as interface  
elements, connectors, and primitive or composite 
components. 

An example of behavior encapsulation in 
ProCom is resource usage. We can model 
resources such as CPU, memory, energy, and 
bandwidth together with the component behav-
ior by using the REMES modeling language. 
Figure C shows an example of a REMES model 
describing the behavior of a ProCom component 
that controls the temperature in a nuclear tank via 
rods for cooling. 

HCController
Constants

Heat_Cool
x<=C_HC
false

Constants
Variables
Resources
cpu'=5

Variables
Resources

Idle

true
Constants
Variables
Resources

mem+=10, x:=0

x=C_HC

temp:=temp+temp_HC-tempROD  mem+=80
bdw+=15, mem-=10

Entry

Init
Exit
Write

Initialization:
 constants: 
       int C_HC:= 25, temp_HC:=3;
 variables:      
       local clock x;
       interface read int tempROD:= 0;
       interface write int temp:= 7;    
resources:              
   ТA mem; TB bdw; TC cpu; 

UU
Inv Inv

Figure C. REMES model of a ProCom component controlling 
temperature. The resources are declared as “resource” variables (mem, 
bdw, cpu), and the model describes the component’s behavior modes 
(Idle, Heat_Cool), each mode’s function (temp:=temp+temp_HC-temp 
ROD), timing constraints (x<=C_HC), and mode behavior with respect 
to resources (cpu’ = 5, mem+=10).
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Component Models for Reasoning

A lthough the overall principles of component models are 
quite well defined, in practice they can differ in both their 

support and design. The following examples offer some good 
places to start with component-based reasoning:

•	 AUTOSAR (AUTomotive Open System Architecture; www.
autosar.org/index.php?p=3&) is the new standard in the 
automotive industry for component models with basic 
functionality. 

•	 The BIP (Behavior, Interaction, Priority; www-verimag.
imag.fr/Rigorous-Design-of-Component-Based.html) 
framework is used for modeling heterogeneous real-time 
components. 

•	 BlueArX is a component model used in the automotive 
control domain. It supports the modeling of timing, 
memory usage, and the generic specification of other 
properties. 

•	 Fractal (http://fractal.ow2.org) is a modular, extensible 
component model that can be customized through the 
notion of a component control membrane.  

•	 Palladio (http://sdqweb.ipd.kit.edu/wiki/Palladio_ 
Component_Model) provides a domain-specific modeling 
language for component-based software architectures 
that is tuned to enable early life-cycle performance 
predictions. 

•	 ProCom (www.idt.mdh.se/pride/?id=documentation-
publications) is a component model for real-time and 
embedded systems that targets the domains of vehicular 
and telecommunication systems, enabling predictability 
of timing properties and resource utilization. It provides a 
framework for reasoning encapsulation. 

•	 RoboCop (Robust Open Component Based Software Archi- 
tecture for Configurable Devices; www.hitech-projects. 
com/euprojects/robocop) is a component model devel-
oped for the high-volume consumer device domain.

•	 The Rubus (www.arcticus-systems.com/index.
php?pageId=11) component model is intended for small, 
resource-constrained embedded systems. It provides  
reasoning encapsulation and composition of real-time 
properties. 
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