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Abstract. Cloud computing provides a flexible infrastructure for IT industries 

to run their High Performance Computing (HPC) applications. Cloud providers 

deliver such computing infrastructures through a set of data centers called a 

cloud federation. The data centers of a cloud federation are usually distributed 

over the world. The profit of cloud providers strongly depends on the cost of 

energy consumption. As the data centers are located in various corners of the 

world, the cost of energy consumption and the amount of CO2 emission in dif-

ferent data centers varies significantly. Therefore, a proper allocation of HPC 

applications in such systems can result in a decrease of CO2 emission and a 

substantial increase of the providers’ profit. Reduction of CO2 emission also 

mitigates the destructive environmental impacts. In this paper, the problem of 

scheduling HPC applications on a geographically distributed cloud federation is 

scrutinized. To address the problem, we propose a two-level scheduler which is 

able to reach a good compromise between CO2 emission and the profit of cloud 

provider. The scheduler should also satisfy all HPC applications’ deadline and 

memory constraints. Simulation results based on a real intensive workload indi-

cate that the proposed scheduler reduces the CO2 emission by 11% while at the 

same time it improves the provider’s profit in average.      

Keywords: Cloud Computing, Data Center, Energy-aware scheduling, CO2 

emission, Multi-objective optimization 

1 Introduction 

Cloud computing has emerged as a new paradigm to support the utility computing 

idea [1]. The advantages of this computing model motivate the IT industries, which 

require a High Performance Computing (HPC) infrastructure to run IT applications, to 

utilize this model and have access to a flexible HPC infrastructure. Cloud providers 

promise to prepare such infrastructure on demand with a minimum investment for 

customers through the cloud data centers. The data centers are geographically distrib-

uted over the world to support users in any corner of the world. In such a large-scale 

system, energy-efficient computing is a tremendous challenge [2]. 

 Cloud data centers consume a large amount of energy which directly affects the 

cost of services. Based on a set of recent estimations, energy consumption strongly 



contributes to the total operational cost of data centers [3]. Higher energy consump-

tion would make the services more expensive. In addition, an increase of the energy 

consumption will result in destructive impacts on the environment along with more 

greenhouse gas emissions [4]. In 2007, Gartner estimated that the Information and 

Communication Technologies (ICT) industry generates about 2% of the total global 

CO2 emissions, which is equal to the aviation industry [5]. 

In this paper, the problem of scheduling HPC applications in the geographically 

distributed data centers (i.e., a cloud federation) is investigated. The goal is to sched-

ule a set of HPC applications in such a way that carbon emission is minimized and the 

profit of the cloud provider is maximized. As the locations of data centers are spread 

over the world, the energy efficiency factors such as electricity cost, carbon emission 

rate and Coefficient of Performance (COP) usually vary across various data centers. 

In addition, in order to provide a solution suitable for real-time applications, the pro-

posed scheduler attempts to meet application deadlines. Moreover, memory constraint 

is considered to present a realistic solution that can run on cloud federation hardware. 

The problem is formulated as an Integer Linear Programming (ILP) and then in order 

to cope with the ILP problem, a two-level scheduling algorithm is introduced. The 

scheduler is an online scheduling approach in which the federation-level is the first 

level scheduler and The Highest Execution time-Lowest Power consumption (HELP) 

scheduler is the second one. The former scheduler is based on a powerful meta-

heuristic approach known as the Imperialist Competitive Algorithm (ICA) [6]. Fur-

thermore, to increase the convergence speed of ICA, a fast local search inspired from 

the Taboo search is applied. The latter scheduler is a greedy heuristic algorithm em-

ployed as a local scheduler at each data center. These two schedulers cooperate with 

each other in such a way that the memory and deadline constraints are satisfied while 

achieves a right compromise between the profit and the amount of CO2 emission. 

The main contributions of this paper can be expressed as: 1) Proposing an online 

scheduling approach which works based on a two-level scheduling architecture, 2) 

Considering heterogeneous resources, 3) Contemplating real-time HPC applications 

and various system constraints. 

The remainder of this paper is organized as follows. A short brief of the related 

works are reviewed in Section 2. The problem definition is stated in Section 3. After 

describing the problem and underlying models, Section 4 discusses the proposed solu-

tion. Section 5 evaluates the solution approach and presents the obtained results. Fi-

nally, concluding remarks and future works are presented in Section 6.     

2 Related Works 

The energy consumption of data centers has been recently considered in several 

works. However, most of these approaches focus on scheduling of applications within 

one data center. CO2 emission has been ignored in a wide range of previous works. 

There are some studies in Grids which investigate energy efficiency of resources in 

multiple locations, similar to our work. Orgerie et al proposed a prediction algorithm 

that consolidate workloads on a portion of CPUs and turn off unused CPUs [7]. Patel 



et al. investigated allocating Grid workload at different data centers considering tem-

perature [8]. The main goal of their work is reducing the temperature based on the 

energy efficiency at different data centers however, they ignored the CO2 emission.   

In the scope of cloud computing, a similar problem has discussed recently. Garg et 

al. have considered reducing the CO2 footprint of cloud data centers by presenting a 

carbon-aware green cloud architecture [9]. They have also proposed some heuristics 

for scheduling of HPC workloads in several data centers [10]. They considered the 

provider’s profit and CO2 emission as the scheduling objectives. Although the pro-

posed heuristics strive to find a good tradeoff between objectives, this approach can 

only optimize one goal at time. Kessaci et al. [11] have solved the same problem by 

using a meta-heuristic approach. They have proposed a meta-scheduler using a multi-

objective genetic algorithm to optimize the objectives. Both mentioned studies, con-

sider a homogeneous data center in which the servers are the same despite the differ-

ence with other data centers’ servers.       

This work is different from the mentioned works, because it addresses the problem 

of scheduling HPC workloads in heterogeneous cloud data centers. The proposed 

method uses a two level scheduler to make the scheduling decisions. The scheduler 

considers both the CO2 emission of each data center and the profit of cloud provider.  

3 Problem Definition 

3.1 System Model 

The system is a set C of c data centers which compose a cloud federation. Execution 

price, CO2 emission rate, electricity price and COP are considered as energy efficien-

cy factors. These factors vary across different data centers depending on their loca-

tions, architectural designs and management systems. In addition, the number and 

heterogeneity of servers within the data centers directly impact on the complexity of 

the problem.  Each data center is a set P of p heterogeneous servers. Each server also 

has a specific amount of memory.  

The presumed service delivery model in this work is the Infrastructure-as-a-Service 

(IaaS). The service presented by the cloud provider is the offering of an infrastructure 

to run the clients’ HPC applications. A set A consists of N elements represents the 

applications. Each application has a deadline that must be met. A user submits his 

requirement for an application    in the form of a tuple (   
,    

,      
,    

), where 

   
is the deadline to complete   ,    

 is the number of CPUs needed to execute   , 

     
 is a vector that represents the execution time of    on server    when that server 

is operating at the maximum frequency,    
 is the memory required by   .  

3.2 Energy Model 

The energy consumption of a data center is related to IT equipment such as servers 

and network, or other auxiliary equipment like cooling equipment and lightning. The 

lightning portion could be neglected because of its little impact on the total energy 



consumption of a data center [11]. As the energy consumption of the servers and cool-

ing system are accountable for the significant portion of a datacenter’s energy con-

sumption, we ignore the network energy in this work, and it can be considered as part 

of our future work. 

Due to the heterogeneity of servers within the data centers, the energy consumption 

of each application depends on both the data center to which the application is as-

signed and the server within the data center to which the application is allocated. 

Therefore, the server which is in charge of running the application should be known 

in order to calculate the total energy consumption by a set of applications. It should be 

mentioned that in this work, only energy usage of the CUP is considered as the energy 

consumption of a server. In other words, the energy consumption by other compo-

nents (e.g., memory and disk) is ignored because CPU is the dominant part in terms of 

energy consumption when running CPU-intensive workloads.  Hence, the power con-

sumption in each server is derived from the power model in Complementary Metal-

Oxide Semiconductor (CMOS) logic circuits which is defined by  

                           (1) 

where    is the number of switches per clock cycle,    is the total capacitance load, V 

is the supply voltage, f is the frequency,       is the leakage current and        is the 

power dissipation resulting from switching between a voltage to another. As    and    

are constant, we replace their product by  . Moreover, the second part of the equation 

represents the static consumption, let it be β. In CMOS processors the voltage can be 

expressed as a linear function of the frequency and thus,     can be replaced by   . 

Therefore, the energy consumption of the computing equipment for execution of    is 

computed by      

        
      ∑     

   
     

         

 
       (2) 

where     is equal to one if    is assigned to the jth server and otherwise, it is zero. 

The energy consumed by the cooling equipment is directly related to the location of 

the data center due to variance of temperature. The COP parameter could be used to 

compare the energy consumption of the cooling system [12,13]. The COP indicates 

the ratio of energy consumed for execution of the service to the amount of energy 

which is required for cooling the system. Indeed, COP represents the efficiency of the 

cooling system. Although the COP varies over time, we suppose that it is constant 

during our scheduling period. The energy consumption of the cooling equipment of 

the data center   ,    
  , is defined by 

    
      

      ⁄  (3) 

According to Eq. 2 and 3, total energy consumed by application    executing on data 

center    is computed by 

      
            

         
            ⁄         

   (4) 



3.3 CO2 Emission Model 

The amount of CO2 emissions of the data center    is related to a coefficient. This 

coefficient,    
   , is determined based on the method that the required electricity of    

is generated. As we know, there are different ways for generating electricity such as 

using fossil fuels like oil and natural gas or using renewable resources like water, 

solar and wind power. The renewable resources are green and will make less destruc-

tive impacts on the environment. Due to the diverse methods of generating electricity 

in various places, the value of    
    is different for each cloud data center. The CO2 

emission due to the execution of application    on the data center    is computed by 

         
     

           
      (5) 

where    
    is the CO2 emission rate of   . As a result, the total CO2 emission incurred 

by the execution of all HPC applications is defined by 

            ∑ ∑         
    

   
 
    (6) 

3.4 Profit Model 

Profit is equal to income minus cost. In this paper, we define the income as the price 

that should be paid by the user. Also, the cost is the price which is incurred by elec-

tricity usage. The achieved profit due to the execution of application ai in the data 

center ci is computed by 

         
    

      
     

      
         

      (7) 

where      
 is the average execution time of    on   ,    

  is the static price of   ,    
  is 

electricity price of the area in which the    is located and      
      is the total energy 

consumption of    on   . Therefore, the total profit can be computed as          by 

           ∑ ∑         
    

   
 
    (8) 

4 Proposed Solution 

In this section, an online scheduling algorithm is suggested to cope with the men-

tioned problem. The architecture of the proposed solution consists of a two-level 

scheduling algorithm. In the following, the architecture is explained in details and it is 

demonstrated how this scheduling architecture can be applied. 

4.1 Architecture 

Federation-level Scheduler: This scheduler is located at the high level to partition 

a set of applications among the available data centers in a cloud federation. In this 



level, the applications are mapped to the data centers in such a way that a right com-

promise between the profits and CO2 emission can be achieved. Although this deci-

sion is made at the federation level, the high-level scheduler should be aware of serv-

ers which are executing the applications. However, in most of the previous studies 

only homogenous data centers are taken into account in which the high-level sched-

uler does not need to be aware of data center-level scheduling. Because, if the servers 

of a data center are the same, calculating the energy consumed by the application is 

not dependent to which server of this data center is executing the application. Never-

theless, we introduce an intelligent architecture which is able to separate these two 

scheduling levels even for heterogeneous data centers and provides us a two-level 

scheduler. The federation-level scheduler is inspired by the ICA algorithm intensified 

by a fast local search. As we mentioned above, ICA is responsible to find an appro-

priate mapping of services among the data centers. Each mapping is represented by a 

vector of N elements, and each element is an integer value between one and c. The 

vector is called SM. Fig. 2 shows an illustrative example for a mapping of services. 

The third element of this example is two, which means that the third application is 

mapped to the second data center. 

 
Fig 1. Representation for mapping of services to the data centers 

Furthermore, this representation causes satisfaction of the no redundancy constraint 

in the sense that each application should be mapped to no more than one data center. 

Section 4.2 describes the ICA in more details. 

Data Center-level Scheduler: Each data center has a local scheduler.  The submit-

ted applications to this data center are scheduled by the corresponding scheduler. The 

scheduler at this level aims to find an allocation which can meet the memory and 

deadline constraints while at same time it attempts to minimize the energy consump-

tion. Decreasing the energy consumption potentially leads to mitigation of CO2 emis-

sion and increasing the cloud provider profit. It should be noted that the data center-

level scheduler may not be able to find a feasible allocation. In other words, if all the 

applications mapped to this data center are allocated to its servers, then some applica-

tions may miss their deadlines or the sum of memory demands by the applications 

exceeds the available memory on the servers. It can happen because the mapping of 

services onto the data centers is done at the federation-level irrespective of schedula-

bility consideration within the data centers. Accordingly, the second-level scheduler 

attempts to allocate all services in a feasible manner and if it fails, then it tries to allo-

cate the most possible number of services without violation of the constraints. Finally, 

it returns the number of services that could not be scheduled in this data center. Based 

on the value achieved from all data centers, Eq. 9 defines a penalty function to calcu-

late the total percentage of unscheduled services. 

       
∑       

   

 
  (9) 

where   is an assignment of services to the servers, and        represents the number 

of unscheduled services by the assignment   in the ith data center. The second-level 



scheduler receives a mapping of services onto the data centers from the ICA as an 

input and it generates both   and      . The HELP algorithm is suggested in this 

paper as the data center scheduler and it will be explained in Section 4.3.   

 

4.2 Imperialist Competitive Algorithm (ICA) 

ICA is used to find a right compromise between profit and CO2 emission. ICA, a so-

cio-politically inspired optimization strategy, was originally proposed from the work 

of Atashpaz-Gargari and Lucas [6]. It begins by an initial population similar to many 

other evolutionary algorithms. Population individuals called country are divided into 

two groups: colonies and imperialists. Imperialists are selected from the best countries 

(i.e. the lowest cost countries) and the remaining countries form the colonies. All the 

colonies of the initial population are divided among the imperialists based on their 

power. The power of an imperialist is inversely proportional to its cost. The imperial-

ists with lower costs (i.e. higher powers) will achieve more colonies. The next step in 

the algorithm is moving colonies to their relevant imperialists. The movement is a 

simple assimilation policy which is modeled by a directed vector from a colony to the 

corresponding imperialist. If the assimilation causes any colony to have a lower cost 

compared to its imperialist then, they will change their positions. Subsequently, the 

revolution process begins between the empires. Each imperialist along with its colo-

nies form an empire. The total cost of an empire is determined by the cost of its impe-

rialist along with the cost of its colonies. This fact is modeled by the following equa-

tion. 

                                                          (10) 

where     is the total cost of the nth empire and ε is the colonies impact rate which is 

a positive number between zero and one. Increasing ε will increase the role of the 

colonies in determining the total power of an empire. It should be mentioned that each 

country (either empire or colony) is corresponding to a mapping like Fig. 1. Further-

more, C(i) represents the cost of the ith mapping. To compute C(i), the ith mapping is 

given as an input to the HELP algorithm and then it returns an assignment of services 

to the servers namely, Xi. Subsequently, C(i) can be achieved by Eq. 11. 

                                        (11) 

where   is the penalty coefficient and it is applied to scale the penalty value to the 

proper range. For evaluations, its value is set to 10.   and   are the coefficients which 

can tune the importance of the CO2 emission and profit respectively. All the coeffi-

cients should be selected in such a way that solving the above-mentioned problem to 

be equal to find a right compromise between the objectives (profit and carbon emis-

sion) while all the constraints are met.  

The competition among imperialists forms the basis of the algorithm. During the 

competition, weak empires collapse and the most powerful ones remain. This process 

continues until the stopping condition is met. In the imperialistic competition, the 

weakest colony of the weakest empire will be exchanged from its current empire to 

another empire with the most likelihood to possess it. The imperialist competition will 



gradually result in an increase in the power of the powerful empires and a decrease in 

the power of the weak ones. Any empire that cannot succeed in the competition to 

increase its power will ultimately collapse.  

The final step in the algorithm is global war. If the best imperialist in the imperial-

istic competition did not get any better after a certain iteration time, the global condi-

tion is satisfied. This way a new empire will be formed with the same random amount 

of the initial population as in the initialization step. Then the best empires from the 

new existing empires will be selected and the algorithm repeats again. Global war can 

efficiently lead to escape from local optima. The algorithm stops when the stopping 

condition is satisfied. It can be simply defined as the time when only one empire is 

left. The pseudo code of the ICA is provided in Alg. I. 

In this scheduling architecture, the second-level scheduler plays a supplementary 

role for the high-level scheduler. As the information must be prepared quickly, a sim-

ple heuristic is proposed to solve the optimization problem at each data center. 

 

ALGORITHM I. ICA 

1. Initialize the empires randomly; 

2. Move the colonies towards their empires (Assimilation); 

3. Randomly change characteristics of some countries (Revolution); 

4. if there is a colony which TCcol < TCimp then 

5.      Exchange the positions of that imperialist and colony; 

6. end if 

7. Compute the total cost of all empires (TCemp); 

8. Pick the weakest colony from the weakest empire and give to the em-

pire that has the most likelihood to possess it; 

9. if there is an empire with no colonies then 

10.      Eliminate this empire; 

11. end if 

12. if there is only one empire then 

13.      Stop condition satisfied; 

14. else 

15.      go to 2; 

16. end if 

4.3 Highest Execution time-Lowest Power consumption (HELP) Heuristic 

The execution time of HELP should be short enough to make it practically beneficial. 

Indeed, its run time must be admissible because the federation-level scheduler would 

run it several times. Hence, HELP is implemented based on a simple and quick idea. 

It schedules longer applications on the servers which have lower power consumption. 

As a result, the system will save energy consumption. It is worth noting that the men-

tioned application and system constraints are also taken into account by HELP. 

First of all, HELP sorts the applications according to their deadlines in ascending 

manner. Then, an application is picked up from the sorted list and is scheduled on a 

server which has the minimum value of “HELP Score”. This metric is calculated for 



each application and has a different value for each server. The various values are be-

cause of different execution time of each application on each server’s type. The 

“HELP Score” is computer by 

               
     

   
     

        
 (12) 

where      
 is the execution time of application    and    

   
     

 is the power con-

sumption of the   . HELP attempts to schedule an application on a server with the 

minimum value of the HELP_Score which is able to satisfy all the constraints. If no 

one of the servers can meet the constraints, then HELP leaves the application and tries 

to allocate the next application. In addition, if the application requires more than one 

server, it will cover its needs from other servers. Therefore, it is common for an appli-

cation to be scheduled on more than one server. In this case, in order to satisfy the 

application’s deadline, the longest completion time of the application on the assigned 

servers should be less than the corresponding deadline.      

  

5 Performance Evaluation 

As the proposed solution is designed for cloud federations, it is essential to perform 

evaluations on large-scale cloud data centers. However, it is difficult to conduct simi-

lar and repeatable experiments on a real cloud federation. To cope with problem, sim-

ulation has used as a common solution to evaluate energy-aware scheduling. Thus, the 

addressed system is simulated precisely considering all entities and constraints. 

To model the HPC applications, we use workload traces from Feitelson’s Parallel 

Workload Archive (PWA) [14]. The PWA provides workload traces that reflect the 

characteristics of real parallel applications. We obtain the submit time, requested 

number of CPUs and actual runtime of applications from the PWA. Also, the method-

ology proposed by [15] is used to synthetically assign deadlines through two classes 

namely Low Urgency (LU) and High Urgency (HU). We suppose that 20% of all 

applications belong to the HU class and the other 80% belong to the LU class. In ad-

dition, three classes of application arrival rates are considered in our experiments, 

Low, Medium and High. We vary the original workload by changing the submit time 

of the applications. Each move from an arrival rate class to another means ten times 

more applications are arriving during the same period of time. In the other words, 

each time we divide the submission time by 10. Furthermore, the initial values of ICA 

are presented in Tab. 1. Finally, the scheduling period in our algorithm is set to 50s. 

Table 1. Initial values of ICA 

Parameter Description Value 

Ncountry Number of initial countries 80 

Nimp Number of initial imperialists 8 

R Revolution Rate 0.1 

Af Assimilation Coefficient 2 

  Colonies impact rate 0.02 



A cloud federation which is composed of 8 geographically distributed data centers 

with different configurations is modeled as listed in Tab. 2 similar to [10,11]. Carbon 

emission rates and electricity prices are derived from the data provided by US De-

partment of Energy [16] and Energy Information Administration [17]. These values 

are average over the entire region that the cloud data center is located. Each data cen-

ter consists of several heterogeneous servers. We consider three different types of 

servers which are tabulated in Tab. 3. The power related parameters are derived from 

a recent work presented by [10]. For the lowest frequency   
   , we use the same 

value as used by Garg et al. [10], i.e. the minimum frequency is 37.5% of   
   .  

To evaluate the proposed algorithm, scheduling of 4026 HPC applications is simulat-

ed. The proposed solution is compared with the Genetic Algorithm proposed earlier 

by Y. Kessaci [11]. The two algorithms are compared in three different situations. 

Each situation is defined by values of   and   which are used to weight the objectives. 

Also, experiments conducted for each situation are in three different classes of service 

arrival rates. In the first situation (   ,    ), the CO2 emission is only considered 

and the algorithm has attempted to minimize its value. The second situation establish-

es equilibrium of both objectives. Finally, the last situation considers provider’s prof-

it. The CO2 emission is neglected in this situation and the profit is maximized.   

Table 2. Characteristics of the cloud data centers 

Location 
CO2 Emission rate 

(kg/kWh) 

Electricity Price 

($/kWh) 
COP 

Number of 

Servers 

New York, USA 0.389 0.15 3.052 2050 

Pennsylvania, USA 0.574 0.09 1.691 2600 

California, USA 0.275 0.13 2.196 650 

Ohio, USA 0.817 0.09 1.270 540 

North Carolina, USA 0.563 0.07 1.843 600 

Texas, USA 0.664 0.1 1.608 350 

France 0.083 0.17 0.915 200 

Australia 0.924 0.11 3.099 250 

As the Tab. 4 indicates, the proposed algorithm produces better solutions in comparison with 

the traditional GA approach. The proposed scheduling architecture outperforms 9% in terms of 

the profit. Additionally, its average execution time is shorter than GA for all experiments. It 

should be noted that the increase in execution time of each situation is related to the increase in 

the number of arrival services which makes the problem space larger. 

Table 3.  Table 4. Characteristics of the servers 

Type 
CPU power factors CPU frequency level Disk 

(GB) 

Memory 

(GB)       
      

   
 

1 65 7.5 1.8 1.630324 500 4 

2 90 4.5 3.0 2.154435 600 8 

3 105 6.5 3.0 2.00639 900 16 

 



Table 5. Simulation results 

 

Service 

arrival 

rate 

Proposed algorithm Genetic Algorithm 

Avg. 

Profit ($) 

Avg. CO2 

(kg) 

Avg. 

Execution 

Time (ms) 

Avg. 

Profit ($) 

Avg. CO2 

(kg) 

Avg.  

Execution 

Time (ms) 

  = 1 

  = 0 

Low 2406443 9571 42 2165798 10528 46 

Medium 8502658 36349 58 6802126 43618 65 

High 23541377 148057 203 22364308 177668 231 

  = 0.5 

  = 0.5 

Low 3526578 12083 43 3350249 13291 48 

Medium 10628601 58117 62 9034310 69742 69 

High 28681040 283250 199 25812936 368225 221 

  = 0 

  = 1 

Low 4715584 18088 41 3772467 19896 47 

Medium 12920499 77207 65 11628449 84927 71 

High 32523725 382502 213 30897539 459002 235 

 

In addition, the generated results are in form of Pareto solutions. Consequently, the 

system designers can choose appropriate   and   values to reach an acceptable level 

of CO2 emission and profit. In the other words, cloud providers will be able to present 

flexible infrastructures with the lowest cost and destructive environmental impacts.  

6 Conclusion and Future Works 

In this paper, the problem of scheduling HPC applications on a set of heterogeneous 

data centers which are located all over the world is investigated. The problem has two 

objectives, minimizing CO2 emissions and maximizing cloud provider’s profit. We 

used energy efficiency metrics of each data center such as CO2 emission rate and 

COP, which change from one location to another. As the solution, a two-level sched-

uling algorithm is proposed which combines two meta-heuristic and heuristic algo-

rithms. The first level scheduler, federation-level, utilizes ICA to solve its bi-objective 

optimization problem. Due to heterogeneity of the cloud data centers, the scheduling 

decision making is directly related to the servers which the applications are scheduled 

on. Therefore, the second level scheduler, data center-level, schedules its assigned 

applications and provides required information for the federation-level scheduler. The 

proposed approach is simulated precisely and has been evaluated using realistic work-

load traces. Based on the results, the proposed scheduling approach outperforms other 

mentioned related work which is based on Genetic Algorithm. For future works, we 

plan to integrate Dynamic Voltage Frequency Scaling (DVFS) techniques to save 

more energy. 
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