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A B S T R A C T

An effective error handling mechanism plays an important role to ensure the reliability and robustness of

the application of controller area network (CAN) in controlling dynamic systems. This paper addresses a

new online error handling approach or named per-sample-error-counting (PSeC) technique that tends to

replace native error handling protocol in controller area network (CAN). The mechanism is designed to

manage transmission errors of both sensor and control data in networked control system (NCS) used in

controlling dynamic system such that the stability of the feedback system is preserved. A new parameter

denoted as maximum allowable number of error burst (MAEB) is introduced in which MAEB is selected

based on available bandwidth of the CAN network. MAEB serves as the maximum number of attempt of

re-transmission of erroneous data per sample which allows the maximum transmission period to be

known and guaranteed for time-critical control system. The efficacy of the proposed method is verified

by applying the algorithm on the fourth order inverted pendulum system simulated on Matlab/Truetime

simulator and the performance is benchmarked with the existing CAN error management protocol. The

simulation run under various systems conditions demonstrate that the proposed method results in

superior system performance in handling data transmission error as well as meeting control system

requirement.

� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Networked control systems (NCSs) are real-time systems where
sensor, controller and actuator data packets are transmitted
through a shared communication network forming a closed loop
system. As depicted in Fig. 1, each loop of NCS consists of sensor,
controller and actuator nodes that are interconnected in a network,
where executing multiple control loops for spatially distributed
plants is viable. This flexible architecture of NCS is an obvious
alternative to the point-to-point communication system where it
has gained high popularity due to many advantages such as low
installation cost, easy maintenance, re-configurability and more
structured for fault diagnosis purposes, to list a few [1,2]. In
addition, with the advancement of high-speed low-cost micro-
computing technology, the possibility of operating at very high
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frequency which implies higher bandwidth availability has further
attracted the application of this network communication in control
system development and becoming more prevalent in many high-
end applications such as spacecraft [3], unmanned aircraft [4],
automotive [5] and factory automation [6]. Many excellent
literatures reporting the trend, design and result of NCS can be
found in [1,7–10].

In term of controlling dynamic systems that have strict
temporal requirement, high-speed serial bus communication has
been used as the ‘backbone’ or the enabler of NCS in the
application. Fieldbus technology such as PROFIBUS [11], WorldFIP
[12], ControlNet [13], DeviceNet [14], switched Ethernet [15,16]
and CAN are among the most popular fieldbuses that are being
adapted in application where each of this fieldbus has their own
specific protocol to handle data management that includes
arbitration process, data encapsulation and handling as well as
error management and confinement. The mechanisms of each
protocol that handle the bit and frames transmitted over the
network are being monitored ensuring the data is correctly
transmitted and received and the controlled system to perform
tasks assigned. The implementation of each of the mechanisms
does consume the bandwidth allocated in the network. Specifically
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Fig. 1. Configuration of NCS.
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to error management in CAN, erroneous data can be rooted
from many factors such as Electromagnetic Interference (EMI) [17–
19], dry solder on PCB, unsynchronized clock and hesienbug
[18,20].

In many application, erroneous data can lead to undesirable
result to the system being controlled and thus the error handling
feature is designed to provide error checking mechanism in CAN
protocol to perform not only overcoming the error, but also in a
timely manner. The basic idea of this feature is to detect errors and
retransmit automatically the affected messages. However, this
error handling feature may not be suitable to applications with
critical timing requirement, since repetitive data transmission can
increase data transmission delay that degrade the performance of
control system in the loop.

There are several works that has been done regarding data error
handling and faulty node confinement of CAN to enhance
dependability of network communication. In [21], a program
called ‘Monitor’ has been design to diagnose faults in CAN nodes.
The program has capability to check the memories including
random access memory (RAM) and read only memory (ROM) of
each CAN node, if the transmitted data is not identical to the data in
node memories, the program then discard the message and re-
transmit the correct data to the network. The program also has
capabilities to reset the bus-off nodes. In [22], a simple bus
guardian solution for the FlexCAN architecture is introduced to
manage data error and faulty nodes. This solution has demon-
strated it is more effective compare to native CAN protocol in
handling babbling idiot faulty nodes. In [23], a scheduling
technique has been designed to deal with data error in CAN
where this scheduling technique override the native error handling
of CAN. Gaujal and Navet (2005) in [20] performed a Markovian
analysis of the CAN network under the EMI burst and permanent
hardware failure. Based on the analysis, it is found that the system
reaches the bus-off mode rather too quickly when it is under EMI-
burst condition and two error confinement methods by quantify-
ing the progression of nodes toward the bus-off and error passive
modes are proposed. The experimental results validate the
proposed approach, however, the total execution time of the
algorithm is not known.

The operation of native error management of CAN protocol is to
retransmit erroneous data until it is successfully transmitted.
However, uncontrolled number of retransmitted data could cause
bandwidth overload and thus lead the performance deterioration
and system instability of NCS. Hence in this article, we propose a
new error handling technique in CAN where the closed loop control
system resides in the network. The technique named per-sample-
error-counting (PSeC) is designed based on online monitoring and
counting of erroneous sensor and control data at every sampling
instance. A parameter, denoted as maximum allowable number of
error burst (MAEB) is introduced to indicate the maximum number
of attempt of re-transmission of erroneous data per sample which
allows the maximum transmission period to be known and
guaranteed for time-critical control system. The newly proposed
PSeC method is shown to be effective to meet the time requirement
of linear closed loop control system and tends to replace native
error handling feature in CAN.

In the attempt to recover erroneous data in network, there exist
several techniques such as forward error correction (FEC), partial
order connection (POC) and automatic retransmission request
(ARQ) that would be suitable for certain class of applications. For
error handling protocol in CAN, ARQ technique has been adapted to
recover erroneous data [24]. In the process of correcting faulty data
in network, it involves two general steps which are: (1) error
detection and (2) recovery mechanism. For FEC and POC, it covers
both steps as reported in [25,26]. However for PSeC strategy
proposed in this work, it is focused on error detection mechanism
alone such that the decision resulted from this algorithm will be
used in the native CAN recovery mechanism technique based on
available bandwidth.

In real time system (m,k)-firm model is usually adapted to
evaluate the system performance as in the embedded application
shown in [27,28]. However from control point of view, this model
is less favorable since in the application of NCS in control system
that involve the control of fast dynamical system based on CAN
network, i.e. robotic arm, engine control, the performance and
stability of NCS is not only influenced by data transmission rate,
but also the data transmission delay related to system dynamic
stability that contribute a significant performance degradation in
NCS. PSeC strategy is formulated from the nature of data
transmission delay in CAN, subsequently creating the property
to control the deterministic and boundedness of NCS by limiting
the time bound of messages retransmission when the number of
error bursts exceed MAED, which is recommended from aspect of
system stability.

The rest of this paper is organized as follows. Section 2 covers
the fundamental of CAN protocol on data transmission and error
management within the scope that is sufficient for the develop-
ment of the PSeD method. Section 3 discusses the development of
task model and error model that encapsulates the time division of
message in CAN frame. Section 4 gives a brief on NCS model with
time delay. Section 5 covers the details on this newly proposed
new error handling technique and bandwidth allocation for control
data and non-control data. Section 6 shows the derivation of delay
analysis in CAN and also stability condition of NCS under error
burst. Simulation and analysis of the PSeD on inverted pendulum
system is shown in Section 7 with some discussions and the
conclusion is drawn in Section 8.

2. Overview of CAN protocol

CAN is an advanced serial bus system with high speed, high
reliability and low cost which make it suitable for many distributed
real time control applications. It was initially developed for
automotive use in late 1980s by Robert Bosch, but now CAN is
widely utilized in most real time automation system due to
robustness to electrical interferences, ability to self diagnose and
data errors repair, high performances and suitable for harsh
environment. CAN uses carrier sense multiple access protocol with
collision detection (CSMA/CD) and arbitration on message priority
as its communication protocol to ensures that a message is
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successfully transmitted to particular node. The most important
feature of CAN from the real-time perspective is its predictable
behavior by providing means for prioritized control of the
transmission medium by using an arbitration mechanism which
guarantees that the highest priority message that enters arbitra-
tion will be transmitted.

CAN is an advanced serial communication bus designed for
short messages transmission and currently it can operate at the
speed up to 1 Mbps. Each data transmission frames carry 0–8 bytes
of data, encapsulated with message identifier and other control
protocol bits. There are two versions of protocol that are widely
used: 2.0A (standard version) which supports 11-bit message
identifier and 2.0B (extended version) which supports both 11-bit
and 29-bit identifier. In this paper, we only consider standard
version 11-bit identifier of CAN data (the generalization of this
proposed method to CAN 2.0B is straight forward and purposely
omitted). The identifier is important in CAN data transmission as to
determine the priority of the messages. The lower the value of
message identifier means the higher priority of the message since
in CAN network, logic bit 0 is set as dominant bit and a logic bit 1 as
a recessive bit. A dominant bit state will always win arbitration
over a recessive bit state due to wired-AND configuration and this
serves as the mechanism to allow lower identifier values to have
higher priority message. As an illustration of this arbitration
sequence, Fig. 2 shows two nodes trying to send messages where
the value of message identifier of node A is lower than message
identifier of node B. At 4th bit, dominant bit of node A collides with
recessive bit of node B, where node A wins the arbitration of the
bus. Node A continues transmitting the message and node B has to
wait for the next idle period of network try to re-transmit the
message.

Besides the data and arbitration field, CAN frame also comprises
of Cyclic Redundancy Check (CRC) and the acknowledgment fields
which constitute 47 bits of normal CAN frame. However, during the
incidents of instantaneous six similar bits, i.e. ‘111111’ or ‘000000’,
CAN system will introduce a stuff bit in order to maintain the
network synchronization. The frame format is specified such that
only 34 of the 47 control bits are subjected to bit stuffing. Thus, the
maximum number of stuff bits in a message frame with n bytes of
data is b ð8n þ 34 � 1Þ=4 c . Hence, by considering size of data,
protocol control information and stuffing bits, the size of a
transmitted CAN message frame, denoted as f can be calculated to
Fig. 2. Node A wins arbitration over Node B.
become

f ¼ 8n þ 47 þ b 8n þ 34 � 1

4
c (1)

As explained in previous section, high-speed CAN message is
prone to errors during transmission due to EMI and possible
hardware or software faults. In order to overcome the situation,
CAN protocol also provide error handling mechanism to retain the
transmission of the erroneous messages. This mechanism is able to
handle all the five types of errors that are stuffing error, bit error,
checksum error, frame error and acknowledgment error. This
built-in CAN error detection is proven to be very efficient since the
probability of undetected transmission error is extremely small
and thus it can be assumed that all errors can be detected in our
analysis [29]. Once an error is detected, detecting node will
transmit an error flag containing six bits of the same polarity. This
is purposely to make the error globalized to all nodes. Each node
then discards their messages in order to give access for the sender
node to retransmit the erroneous message. However, the
retransmission of the message could be subjected to arbitration
with other messages during retransmission process. If any higher
priority messages get queued during the transmission and error is
signaled for the current message, then those messages with higher
priority will be transmitted before the erroneous message is re-
transmitted. This native error mechanism handling with retrans-
mission feature implies additional undesirable transmission delay
in the NCS that would possibly lead to degradation of system
performance or, in worst case, system instability.

To further compartmentalize the handling of CAN error
management, two types of error frame which are active frame
and passive frame are defined where the active error frame is
composed of six consecutive dominant bits while passive error
frame composed of six consecutive recessive bits. This bit sequence
actively violates the bit-stuffing rule. All other stations recognize
the resulting bit-stuffing error and in turn generate error frame
themselves, called superposed error flags. The error delimited field
(eight recessive bits) completes the error frame. Upon completion
of the error frame, bus activity return to normal and the
interrupted node attempts to resend the aborted message. Type
of transmitted error frame is specified by fault confinement
protocol based on receive error counter (REC) and transmit error
counter (TEC) [29]. Error signaling and recovery time is typically
between 17 and 31 bit times [30].

3. Task model and error model

As shown in Fig. 1, NCS configuration consists of sensor node,
controller node and actuator node with their dedicated pre-assigned
tasks which are sensor task, controller task and actuator task. Sensor
task is performed at sensor node and responsible to read sensor
value from system and send it to controller node via network. Sensor
task is clock driven and can be defined as TSs = (Ts, Cs, Ds, Ps, Fs, fs)
where Ts is the period, Cs is the worst case execution time, Ds is the
relative deadline (assumed to be equal to the period Ts), Ps is message
priority, Fs is number of frame and fs is size of message frame of the
transmitted sensor data. The worst case transmission time Lsc of the
message in an error-free scenario is given by

Lsc ¼
Fs f s

B
(2)

Controller task is executed at controller node, responsible to
retrieve sensor value from network, calculate desired control
signal value based on dedicated control algorithm and send it to
actuator node through network. Controller task is event driven that
will be executed once controller node receive sensor data from
sensor node via CAN network. Similarly, the controller can be
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defined as TSc = (Cc, Dc, Pc, Fc, fc) with execution time Cc, relative
deadline Dc, a message priority Pc, a number of frame Fc and size of
message frame fc of transmitted control signal data. In an error-free
situation, the worst case transmission time Lca of the message can
be defined as

Lca ¼
Fc f c

B
(3)

At the actuator node actuator task TSa, is responsible to retrieve
control signal value and send it to the physical input of system. It
should be noted that there are signal conditioning and scaling
processes involved that causes some delay in the actuation,
however, the magnitude of the delay is significantly small as
compared to transmission time and the delay effect can be ignored.
TSa is event driven which it will be executed upon receiving control
signal data from controller node. The task, with only two parameters
can be represented as TSa = (Ca, Da) has execution time Ca and relative
deadline Da. In this work, it is assumed that sensor data and control
data are transmitted in single frame, i.e. Fc = Fs = 1. Sensor data is set
to have the highest priority while the priority of control data is set to
be the next lower to sensor data priority.

Since interest of this work is on the overcoming error
transmission in CAN, it is required to characterize the errors
model before hand. Error model of this paper consists of the
following parameters:

(i) ni
sc: the number of error occurrences for sensor data which is

transmitted from sensor node to controller node for every
sampling instant i in period of Ts, i.e. ni

sc ¼ 1 for single error or
ni

sc > 1 for burst error.
(ii) ni

ca: the number of consecutive error for control data which is
transmitted from controller node to actuator node for every
sampling instant i in period of Ts, i.e. ni

ca ¼ 1 for single error or
ni

ca > 1 for burst error.
(iii) N: the maximum allowable number of error bursts that occur

in NCS data transmission in every sampling instant, as in N ¼
ni

sc þ ni
ca

(iv) Esc: the error rate for sensor data in a given time t

(v) Eca: the error rate for control signal data in a given time t.

The sensor data error rate, Esc for parameter (iv) and control
data error rate, Eca parameter in (iv) and (v) can be calculated as
follows:

Esc ¼
nesc

nt
(4)

Eca ¼
neca

nt
(5)

where nesc , neca and nt are the number of error occurrences for
sensor data, control data and total number sampling instant in a
given time, respectively.

4. NCS with delay model

A continuous time linear time invariant (LTI) system can be
described as state space model

ẋ ¼ Ax þ Bu

y ¼ Cx þ du
(6)

where x(t), u(t) and y(t) denote the state, control input and output
vectors, respectively. A, B, C and D are matrices of appropriate sizes
where A is state matrix, B is input matrix, C is output matrix and D

is feedforward matrix. Nowadays, since the control system is
prominently interfaced and executed by digital computer (i.e.
microprocessor), the system (6) can be represented in discrete
form. With having zero-order-hold element on its input and
sampling time Ts, system (6) becomes

xðk þ 1Þ ¼ AdxðkÞ þ BduðkÞ
yðkÞ ¼ CdxðkÞ þ DduðkÞ

(7)

where

Ad ¼ eAh; Bd ¼
Z Ts

0
eAtdtB

Cd ¼ C; Dd ¼ D

When system (6) is connected to NCS, the network will
introduce delay in data transmission and (7) can be represented as

xðk þ 1Þ ¼ AdxðkÞ þ Bduðk � ti
caÞ

yðkÞ ¼ CdxðkÞ þ Dduðk � tcaÞ
(8)

where ti
ca represent controller to actuator delay at every sampling

instant ith.
Assume that state feedback controller is designed for input of

system (7), thus control data can be described as

ud ¼ �Kxdðk � ti
scÞ (9)

where ti
sc is sensor to controller delay in every sampling instant ith

and K is controller gain. The value of K can be determined by using
various established methods such as pole placement or linear
quadratic regulator (LQR). Fig. 3 shows data transmission of sensor
data and control data via network under delay influence. In NCS, the
selection of sampling time Ts should be properly chosen since high
sampling rate can increase network load, thus leads to network
congestion and data loss, which in turn result in longer delay of the
signals. On the other hand, lower sampling rate will make the system
less tolerates to time delay. The ‘rules of thumb’ used by many
reported works in selecting the sampling time is to choose Ts > 10t
where t is the known time constant of the actual physical system to
be controlled, however from the view of digital hardware execution,
the speed and resources of the available computing resource should
be able to support the required sampling time.

In LTI system theory, ti
sc and ti

ca can be lumped together, such
that

ti
k ¼ ti

sc þ ti
ca (10)

where ti
k is known as total loop delay.

Other then selection of appropriate sampling time, it is also
important to select the so-called maximum allowable loop delay
(MALD) first in order to do the stability analysis of NCS. The
relationship between sampling time and maximum allowable loop
delay are as follows [31]

Ts þ F ¼ h (11)
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where h is maximum allowable equivalent delay bound and F is
value of MALD as in the maximum value of ti

k.

5. New error handling mechanism

In this section, we introduce per-sample-error-counter (PSeC)
mechanism, which purposely designed to replace native error
handling of CAN for NCS application. PSeC mechanism is operating
based on parameters ni

sc , ni
ca and N, which are defined in Section 3.

The PSeC algorithm is explained as follows:

(1) At sensor node, scheduler runs sensor task to obtain sensor
reading and send it to network. If error occurs when
transmitting sensor data to controller node, scheduler re-
Fig. 4. Flowchart of 
executes sensor task to obtain new sensor reading and send it
to network. If ni

sc > N, sensor data will not be sent to controller.
(2) Once controller node obtain sensor data from network,

scheduler will run controller task to calculate appropriate
control signal and send it to actuator node via network. If error
occurs when transmitting control data to actuator node,
scheduler will re-attempt to transmit previously sent control
data. If ni

ca > N � ni
sc , control signal will not be sent to actuator.

This is to prevent network overload at next instant of time, ith.

Fig. 4 shows the flowchart of the newly proposed PSeC
algorithm for clearer explanation. Note that the block (A) and
(B) in the figure show that the algorithm is implemented in sensor
node and controller node respectively. The maximum allowable
PSeC algorithm.



Fig. 5. Windows of control data period and non-control data period in error free situation.
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number of error bursts (MAEB), N will be derived in the next
section. In order to perform this proposed mechanism at sensor
and control nodes, it is require that both nodes should be in single-
shot transmission mode. This can be achieved by disabling the
automatic retransmission mechanism in CAN protocol. Therefore,
in order to use this algorithm, it is required to choose CAN
controllers that have this particular feature, e.g. Atmel
T89C51CCO2, Philips SJA1000 or Microchip MCP2515 [23]. Also,
in native error handling of CAN, all transmitted error frame will be
counted and recorded as Receive Error Counter (REC) and Transmit
Error Counter (TEC) by the affecting node. If value of TEC exceeds
255, the node will going to bus-off to prevent the node to transmit
or receive any frame. However, in this new error handling
mechanism, this feature should be disabled.

In NCS, non-control data may exist where it is required to be
transmitted via the same network. Example of non-control data is
Fig. 6. Data transmission in CAN under error occurrences s
the notification of event or sensor data for monitoring purpose.
Non-control data can be transmitted after control data transmis-
sion period. Therefore, in every sampling time Ts of NCS, the
bandwidth will be decomposed into two segments: control data
period and non-control data period. The control data period Tc is
allocated at the beginning of every interval Ts. Therefore, there is a
residual bandwidth Ts � Tc, denoted as Tnc, which can be allocated
to transmit non-control data. The window for control data period
Tc and non-control data period Tnc in every interval Ts is illustrated
in Fig. 5.

Non-control data can be generated by any nodes in network and
the data should be assigned to lower priority than control data.
Note that the non-control data might not be transmitted when the
error occurred in control data transmission in order to give access
for PSEC mechanism to perform data retransmission as shown in
Fig. 6. Hence, non-control data that is scheduled at period Tnc
ituation. Some of non-control data is not transmitted.



Fig. 7. Data transmission in CAN when error occur at control data using native error handling of CAN.
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should be a non-critical message which does not induce undesired
consequences if the data is not transmitted.

Data recovery mechanism that is provided by this PSeC
algorithm is different from the native error handling of CAN
protocol, where this built-in CAN protocol will attempt to
retransmit previous sensor data when there is an error in sensor
data transmission. However, the drawback is that the CAN
mechanism does not provide the facility to monitor the number
of consecutive data error bursts in every sampling instant and it
keeps retransmitting the data until it is successfully transmitted.
This may cause the control data to be transmitted after sampling
period of Ts and it will lead to an increasing loop delay on the next
sampling instant as illustrated in Fig. 7. On the other hand, PSeC
will obtain an updated value of sensor data when there is an error
Fig. 8. Data transmission in CAN when error occurs at con
in transmitting sensor data and also keep track the number of error
occurrences of ni

sc and ni
ca in every sampling instant. If sensor and

control data are unable to be transmitted in the period of Ts, these
data will be dropped, hence the data transmission on next
sampling instant is not affected as shown in Fig. 8. This will lead to
a better performance since in controlling dynamical systems, a
greatly delayed data is more harmful than no data at all [32].

6. Delay analysis and stability condition

In NCS, delay can degrade the performance of NCS and in the
worst case, it can destabilize the system. Therefore, the analysis of
delay is important in an attempt to preserve the system stability.
There are some assumptions have to be made to perform the
trol data using proposed error handling mechanism.
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analysis. Some of the assumptions have been established in the
previous section, however, for clarity purposes, they are re-iterated
with other newly proposed assumptions, where the lists can be
stated as follows:

(i) The analysis is done based on worst case scenario. Thus, sensor
data and control data are assumed to have maximum length
size of 135 bits. The worst case error frame size is 31 bits.

(ii) Filtering, buffering and packetizing delays are neglected.
(iii) All error occurrences can be detected.
(iv) No clock drifts in the system.
(v) All non-control data are non-critical messages.

The NCS configuration could be connected to a system with
multi-input multi-output (MIMO) model. Thus, there are few
sensors and actuators could be connected to sensor node and
actuator node. For this case, all obtained sensor values are packed
into one frame and be transmitted to the controller node. The
calculated control signal for multiple input are also transmitted in
one frame. In some cases especially in safety critical applications,
several sensors are required to measure each state variable of the
system. The readings of these sensors are then filtered by filtering
circuit or algorithm in order to get stable and reliable measure-
ment values before packetizing into data frame. Filtering circuit or
Fig. 9. Sensor configuration of system and the packetizing of s
algorithm will contribute some delay in the network, however, in
this analysis, this type of delay is assumed relatively small and can
be ignored. Fig. 9 illustrates the sensor configuration of the system,
and sensor and control data that are being packetized into single
CAN frame.

The analysis requires that the clock of all nodes in the network
to be synchronized in order to minimize the influence of jitter in
final results. Clock synchronization scheme on CAN protocol is can
be done by means of hardware implementation as proposed in [33]
or by means of clock synchronization in which two clock
synchronization messages are transmitted successfully, as pro-
posed in [34]. In this work, it is reasonably assumed that the period
of clock synchronization is much larger than sampling time Ts in
order to avoid the interference between the algorithm and clock
synchronization process.

The delay analysis is divided into two situations: (1) normal
network condition and (2) in the event of error occurrence
situation. The delay terms ti

sc and ti
ca which describe this situation

can be established as

ti
sc ¼ Lsc þ ni

scðLe þ LscÞ (12)

ti
ca ¼ Cc þ Ca þ Lca þ ni

caðLe þ LcaÞ (13)
ensor data and control single data into single CAN frame.



Fig. 10. An inverted pendulum system mounted on a cart.
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where ni
sc and ni

ca is a positive integer. Lsc, Lca and Le are
transmission time for sensor to controller, controller to actuator
and error frame, respectively, while Cc is execution time of
controller tasks and Ca is execution time of actuator task.

Based on assumption (i) in Section 6, the length of sensor data
and control data are identical, hence Lc = Lsc = Lca. Also, for the sake
of simplicity, it can be established that the relationship of Le in term
of Lc, subjected to (1), can be deduced to

Le �
Lc

4
(14)

From (10), (12) and (13), loop delay ti
k can be obtained as

ti
k ¼ Cc þ Ca þ 2Lc þ

5Lc

4
ðni

sc þ ni
caÞ (15)

Based on (15), it is obvious that in normal condition (i.e.
ni

sc ¼ ni
ca ¼ 0), the delay ti

sc and ti
ca should be constant for every

instant ith. However when there are occurrences of transmission
error in network, the delay ti

sc and ti
ca will become random. Error

occurrences in some actual systems are usually assumed to be
governed by probability distribution, e.g. Poisson distribution
[17,19], however in our simulation, errors are set to occur
periodically with constant error bursts length where it reflects
error occurrence in most control system with repetitive processes
[35].

In order to maximize MALD and to prevent network overload at
every sampling instant, it is proposed that Ts = F, and thus
sampling time Ts can be determined as follows:

Ts ¼
h
2

(16)

Also in order to preserve the stability of NCS, loop delay ti
k

should satisfy the following condition:

ti
k � Ts (17)

From (15) and (17), the sum of error burst ni
sc and ni

sc , denoted as
N should be restricted to the following inequality

N ¼ ni
sc þ ni

ca � b 4ðTs � Cc � Ca � 2LcÞ
5Lc

c (18)

If the number of error burst ni
sc and ni

ca violate the inequality
(18), it indicates that the control data is not able to be transmitted
within Ts.

The control data period Tc can be obtained from (15), when the
network is operated in normal operating condition without any
error occurred in data transmission, i.e. ni

sc ¼ ni
ca ¼ 0. Thus,

Tc ¼ Cc þ Ca þ 2Lc (19)

Hence the period for non-control data transmission Tnc is

Tnc ¼ Ts � Tc (20)

7. Simulation result and discussion

In order to show the effectiveness of the proposed method,
inverted pendulum mounted on a cart as shown in Fig. 10 is used as
the testbed. Inverted pendulum on a moving cart is a fourth order
system that serves as a very good example to illustrate the control
performance. Rotational and linear encoders are attached to
measure the control variables of the system which are the
pendulum angle, u(t), and the cart linear displacement, z(t). It is
assumed that the values of gravity acceleration g = 10 m s�2, mass
of the pendulum m = 0.1 kg, mass of the cart M = 67 kg and
distance from the mass m to the pivot point l = 1 m. It is also
assumed that the variation of pendulum angle from vertical u(t), is
relatively small so that the equation is linear. z(t) is the position of
the cart from reference point and u(t) is the force that applied to the
cart. By choosing the state variables as x1(t) = y(t), x2ðtÞ ¼ ẏðtÞ,
x3(t) = u(t), x4ðtÞ ¼ u̇ðtÞ, and the outputs of interest are x1(t) and
x3(t), one can obtain the following state space model (more
discussion about this model can be found in [36]):

ẋ1ðtÞ ¼ x2ðtÞ (21)

ẋ2ðtÞ ¼ 1

M
x3ðtÞ þ 1

M
uðtÞ (22)

ẋ3ðtÞ ¼ x4ðtÞ (23)

ẋ4ðtÞ ¼ 0x3ðtÞ þ 1

M
uðtÞ (24)

By rearranging Eqs. (21)–(24), the matrices of the system as
described in (6) becomes

A ¼

0 1 0 0
0 0 �0:015 0
0 0 0 01
0 0 10 0

2
664

3
775; B ¼

0
0:015
0
�0:015

2
664

3
775

C ¼

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

2
664

3
775; D ¼

0
0
0
0

2
664

3
775

The initial conditions for system are x3(0) = 0.1 and
x1(0) = x2(0) = x4(0) = 0. With CAN speed set to B = 125 kbps and
using the assumption (i) at Section 6, length of sensor and control
data Lc can be calculated using (2) or (3), which yields Lc = 1.08 ms.

The desired discrete closed loop poles for controller design are
chosen as 0.0498, 0.0183, 0.0067 and 0.0025. It is found that the
maximum allowable equivalent delay bound for chosen poles is
h = 90 ms and using (16), sampling time of the system can be
determined such that Ts = 45 ms. Then, the continuous time system
(6) can be transformed to discrete system of (7), yields

Ad ¼

1 0:045 0 0
0 1 �0:0007 0
0 0 1:01 0:0452
0 0 0:4515 1:01

2
664

3
775; Bd ¼

0
0:0007
0
�0:0007

2
664

3
775



Fig. 11. The screenshot of TrueTime simulation environment.

Pseudocode 1
Algorithm for sensor node.

1: SamplingTime = 0.045

2: FrameSize = 135

3: N = 28

4: i = 0

5: REPEAT every SamplingTime

6: {

7: nsc = 0;

8: i = i + 1;

9: READ SensorsValue

10: SEND SensorsValue to controller node

11: WHILE CurrentSimulationTime < i*SamplingTime

12: IF error frame detected

13: READ SensorsValue

14: SEND SensorsValue to controller node

15: nsc = nsc + 1;

16: IF nsc > N

17: BREAK

18: ENDIF

19: ENDIF

20: ENDWHILE

21: }

Pseudocode 2
Algorithm for controller node.

1: SamplingTime = 0.045

2: FrameSize = 135

3: N = 28

4: i = 0

5: IF receive sensor data

6: nca = 0

7: i = i + 1;

8: Calculate ControlSignal

9: SEND ControlSignal to actuator node

10: WHILE CurrentSimulationTime < i*SamplingTime

11: IF error frame detected

12: SEND ControlSignal to actuator node

13: nca = nca + 1;

14: IF nca > N – nsc

15: BREAK

16: ENDIF

17: ENDIF

18: ENDWHILE

19: ENDIF
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Cd ¼

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

2
664

3
775; Dd

0
0
0
0

2
664

3
775

By using pole placement method and the calculated sampling
time, the gains of state feedback controller can be determined as
K = 1 � 103[�1.5747 � 1.3816 � 6.4567 � 2.3844]T. By setting the
controller execution time Cc = 4 ms and actuator execution time
Ca = 0.5 ms, the non-control data period can be determined from
(19) and (20), yields Tnc = 38.34 ms. Also the value of maximum
consecutive error burst N can be calculated from (18), such that

N ¼ ni
sc þ ni

ca � 28 (25)

The simulation is performed until 10 s, which constitutes 222
sampling instances (i.e. t = 10, i = 1, 2, 3, . . ., 222, nt = 222). The
control objective of this system is to drive z(t) and u(t) from their
initial conditions to zero with least amount of overshoot in less
than 4 s. The performance of the proposed error handling
mechanism is compared to native error handling of CAN where
the performance measure is defined as integral square error (ISE)

ISE ¼
Z 1

0
½rðtÞ � cðtÞ�2dt (26)

where r(t) is desired trajectory and c(t) is output parameter where
the value need to be measured to show their performance. In this
case, r(t) = 0. The simulation results are categorized into 4 cases:

(1) 25% data error rate with ni
sc ¼ ni

ca ¼ 7.
(2) 75% data error rate with ni

sc ¼ ni
ca ¼ 7.

(3) 25% data error rate with ni
sc ¼ ni

ca ¼ 15.
(4) 75% data error rate with ni

sc ¼ ni
ca ¼ 15.

Simulation is performed by using Matlab/TrueTime simulator.
TrueTime is a Matlab/Simulink-based simulator for real-time
control systems which facilitates co-simulation of controller task
execution in real-time kernels, network transmissions, and
continuous plant dynamics [37]. Using TrueTime, one can easily
verify the analysis of NCS under influence of different scheduling
scheme, task execution, network delay and sampling time. Fig. 11
shows the screenshot of simulation environment where sensor,
actuator and controller node are constructed from TrueTime
Kernel block. The network is however developed from TrueTime
network block. The details procedure to setup each block can be
referred to [38]. The pseudocode for the sensor, controller and
actuator node are listed in Pseudocodes 1, 2 and 3, respectively.
Lines 12–19 at Pseudocode 1 and lines 11–17 at Pseudocode 2
reflect the PSeC mechanism, and variable nsc and nca should be
declared as global variables.



Pseudocode 3
Algorithm for actuator node.

1: IF receive control data

2: WRITE ControlSignal

3: SEND ControlSignal to input of system

4: ENDIF

Fig. 15. Response of the sytem for case 25% data error rate with with ni
sc ¼ ni

ca ¼ 15.
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Figs. 12 and 15 show the simulation results when number of
consecutive error bursts is ni

sc ¼ ni
ca ¼ 7. Under 25% error rate, it

can be noticed that the difference in the responses are very
minimal. However, under 75% data error rate, the PSeC method
gives better performance than native error handling of CAN in term
of overshoot size. The different value of z(t) and u(t) at overshoot
time are Dz(t) = 0.0315 m and Du(t) = 0.0195 = rad. This is
predictable since in this algorithm, in the occurrence of errors,
the updated data will be transmitted instead of previous value of
sensor data, as shown in block (A) in Fig. 4. The loop delay of the
system for both error handling mechanisms under 25% data error
Fig. 12. Response of the system for case 25% data error rate with ni
sc ¼ ni

ca ¼ 7.

Fig. 13. Loop delay of the system for case 25% data error rate and ni
sc ¼ ni

ca ¼ 7 using

native error handling of CAN.

Fig. 14. Loop delay of the system for case 25% data error rate with ni
sc ¼ ni

ca ¼ 7

using PSeC mechanism.
rate are varied from 16.11 ms to 6.66 ms as shown in Figs. 13 and
14, while under 75% data error rate, loop delay plot is also changed
from 16.11 ms to 6.66 ms but different plot pattern as shown in
Figs. 16 and 17.

Figs. 18 and 21 show the simulation when the number of
consecutive error ni

sc ¼ ni
ca ¼ 15, and these values violate the

stated bound (25). It is found that with 25% data rate error, both
error handling mechanisms still can preserve the system stability
but the performance of the system has degraded since the loop
delay is larger than the delay in the case ni

sc ¼ ni
ca ¼ 7. The loop of

the system for native error handling of CAN varying from 47.16 ms
and 6.66 ms as shown in Fig. 19 while loop delay for the new error
handling mechanism is altering from 26.91 ms, 6.66 ms and 0 ms,
as shown in Fig. 20. It should be noted that 0 ms of loop delay
means the data is dropped and will not be transmitted to the
actuator of the inverted pendulum. The difference between the
overshoot value of z(t)and u(t) are Dz(t) = 0.032 m and
Du(t) = 0.0143 rad. Under 75% data error rate, native CAN error
Fig. 16. Loop delay of the system for case 25% data error rate and ni
sc ¼ ni

ca ¼ 15

using native error handling of CAN.

Fig. 17. Loop delay of the system for case 25% data error rate with ni
sc ¼ ni

ca ¼ 15

using PSeC mechanism.



Fig. 18. Response of the system for 75% data error rate with with ni
sc ¼ ni

ca ¼ 7.

Fig. 19. Loop delay of the system for case 75% data error rate and ni
sc ¼ ni

ca ¼ 7 using

native error handling of CAN.

Fig. 20. Loop delay of the system for case 75% data error rate with ni
sc ¼ ni

ca ¼ 7

using PSeC mechanism.

Fig. 21. Response of the system for case 75% data error rate with ni
sc ¼ ni

ca ¼ 14.

Fig. 22. Loop delay of the system for case 75% data error rate and ni
sc ¼ ni

ca ¼ 15

using native error handling of CAN.

Fig. 23. Loop delay of the system for case 75% data error rate with ni
sc ¼ ni

ca ¼ 15

using PSeC mechanism.
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handling mechanism is unable to preserve system stability due to
network congestion (not shown in Fig. 21). As can be observed in
Fig. 22, this condition has led to increasing loop delay over
sampling instances, Ts that is caused by repetitive re-transmission
of control data. This situation, however does not occur under PSeC
Table 1
Performance comparison of native error handling of CAN and PSeC mechanism for cas

Data transmission

type

Error

rate (%)

Error burst pattern (error occur at sampling in

Sensor to controller 25 1 of every 4 samples, e.g.: i = {3, 7, 11, 15, 19, 

Controller to actuator 25 1 of every 4 sample, e.g.: i = {1, 5, 9, 13, 17, 21

Sensor to controller 75 3 of every 4 samples, e.g.: i = {1, 2, 3, 5, 6, 7, 9

13, . . ., 443}

Controller to actuator 75 3 of every 4 samples, e.g.: i = {2, 3, 4, 6, 7, 8, 1

14, 15, . . ., 444}
algorithm and it is obvious that the stability of the system is still
preserved. The mechanism will drop the data when the MAEB, N

exceeds the maximum bound (25) and thus prevents network
congestion. Fig. 23 shows the loop delay for PSeC mechanism is
varying from 26.91 ms, 6.66 ms and 0 ms.
e ni
sc ¼ ni

ca ¼ 7.

stant i) Native error handling of CAN PSeC mechanism

z(t) u(t) z(t) u(t)

23, . . ., 443} 25.85 � 10�3 3.703 � 10�3 22.81 � 10�3 3.133 � 10�3

, . . ., 441}

, 10, 11, 32.41 � 10�3 5.535 � 10�3 25.12 � 10�3 3.501 � 10�3

0, 11, 12,



Table 2
Performance comparison of native error handling of CAN and PSeC mechanism for case ni

sc ¼ ni
ca ¼ 15.

Data transmission

type

Error

rate (%)

Error burst pattern (error occur at sampling instant i) Native error handling of CAN PSeC mechanism

z(t) u(t) z(t) u(t)

Sensor to controller 25 1 of every 4 samples, e.g.: i = {3, 7, 11, 15, 19, 23, . . ., 443} 29.03 � 10�3 4.373 � 10�3 21.93 � 10�3 2.974 � 10�3

Controller to actuator 25 1 of every 4 sample, e.g.: i = {1, 5, 9, 13, 17, 21, . . ., 441}

Sensor to controller 75 3 of every 4 samples, e.g.: i = {1, 2, 3, 5, 6, 7, 9, 10, 11,

13, . . ., 443}

Unstable Unstable 33.5 � 10�3 5.237 � 10�3

Controller to actuator 75 3 of every 4 samples, e.g.: i = {2, 3, 4, 6, 7, 8, 10, 11, 12,

14, 15, . . ., 444}
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Tables 1 and 2 shows the performance comparison of both PSeC
and native CAN error handling mechanism based on (26) where
lower value of ISE means a better control system performance. For
case ni

sc ¼ ni
ca ¼ 7, under 25% data error rate, the ISE different

performance of z(t) and u(t) are DISE(z(t)) = 3.04 � 10�3 and
DISE(u(t)) = 5.7 � 10�4, while under 75% data error rate, the
difference would be larger, that are DISE(z(t)) = 7.29 � 10�3 and
DISE(u(t)) = 2.031 � 10�3. For case ni

sc ¼ ni
ca ¼ 15, under 25% data

error rate, the ISE different performance of z(t) and u(t) are
DISE(z(t)) = 7.29 � 10�3 and DISE(u(t)) = 1.399 � 10�3. The ISE

performance difference under 75% data error rate cannot be
measured since the system response under the native CAN error
handling is unstable.

8. Conclusion

This article discussed a newly error handling mechanism,
denoted as PSeD in CAN by introducing a maximum allowable
number of error bursts (MAEB) that occur within every sampling
time unit. The effectiveness of this method is demonstrated by
applying the algorithm to 4th order system of inverted
pendulum. From the simulation results, it can be seen that
PSeD promotes a better performance of the system as compared
to native CAN error handling mechanism for single loop NCS and
proven to be superior than native error handling of CAN. For
future works, the analysis of this new error handling technique
under multi-frame control data, multi-loop of NCS and the error
occurrences that governed by probability distribution shall be
investigated.
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affect performance? Analysis and simulation of timing using Jitterbug and
TrueTime, IEEE Control Systems Magazine 23 (3) (2003) 16–30.

[38] A. Cervin, D. Henriksson, M. Ohlin, TrueTime 2.0 beta 5—Reference manual,
Department of Automatic Control, Lund University, Sweden, 2010.

M. B. Nor Shah received the M. Eng degree in 2011 in
Mechatronic and Automatic Control from Universiti
Teknologi Malaysia, where he is currently working
toward the Ph.D. degree in Electrical Engineering
(Control). He is also fellow of Universiti Teknikal
Malaysia, Melaka. His current research interests are
networked control system, real-time control system,
robust control, controller area network (CAN) and fault
in network.

A. R. Husain received the B.Sc. degree in electrical and
computer engineering from The Ohio State University,
Columbus, Ohio, U.S.A., in 1997, M.Sc. degree in
Mechatronics from University of Newcastle Upon Tyne,
U.K., in 2003, and Ph.D. in Electrical Engineering
(Control) from Universiti Teknologi Malaysia (UTM)
in 2009. Before joining UTM, he worked as an engineer
in semiconductor industry for several years specializing
in precision molding and IC trimming process. He has
taught courses in introduction to electrical engineering,
microcontroller based system, modeling and control,
and real-time control system. His research interests
include control of dynamic and network control system,
real-time control system, and system with delay.
S. Punnekkat received the Master of Statistics degree
and the Master of Technology in Computer Science
degree with honors from the Indian Statistical Institute,
New Delhi, India, in 1982 and 1984, respectively and
the Doctor of Philosophy degree in computer science
from the University of York, U.K., in 1997. He is
currently a Professor in dependable software engineer-
ing at Mälardalen University, Västerås, Sweden and the
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