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Abstract: This paper presents a computer-vision based marker-free method for gait-impairment detection in Patients with 

Parkinson’s disease (PWP). The system is based upon the idea that a normal human body attains equilibrium during the 

gait by aligning the body posture with Axis-of-Gravity (AOG) using feet as the base of support. In contrast, PWP appear 

to be falling forward as they are less-able to align their body with AOG due to rigid muscular tone. A normal gait exhibits 

periodic stride-cycles with stride-angle around 45o between the legs, whereas PWP walk with shortened stride-angle with 

high variability between the stride-cycles. In order to analyze Parkinsonian-gait (PG), subjects were videotaped with 

several gait-cycles. The subject’s body was segmented using a color-segmentation method to form a silhouette. The 

silhouette was skeletonized for motion cues extraction. The motion cues analyzed were stride-cycles (based on the cyclic 

leg motion of skeleton) and posture lean (based on the angle between leaned torso of skeleton and AOG). Cosine 

similarity between an imaginary perfect gait pattern and the subject gait patterns produced 100% recognition rate of PG 

for 4 normal-controls and 3 PWP. Results suggested that the method is a promising tool to be used for PG assessment in 

home-environment.  

Keywords: Gait impairment, Parkinson’s disease, Gait video analysis, Image processing. 

1. INTRODUCTION 

 Parkinsonian gait (PG) develops with the passage of time 
as a result of Parkinson’s disease (PD) features i.e. 
bradykinesia, postural stability and rigidity in muscular tone 
[1]. Normally a person walks upright with steady steps and 
even strides. Distinctive PG has features as stooped posture, 
short shuffling steps (festination) and slowness to start 
walking [2]. PWP appear to be falling forward [3]. Levodopa 
helps to reduce bradykinesia and rigidity in PG [4]. However 
with longer treatment, levodopa effects wear off. There may 
be fluctuations in drug response resulting in ON-OFF 
phenomenon [5]. Drug response fluctuations are corrected 
with smaller and more frequent dose adjustments which 
demands accurate timely assessment of gait impairment.  

 Wearable accelerometers and sensors have been used in 
gait assessment methods by researchers. Gait assessment 
systems were composed of Electrogoniometers and Moving 
Light Displays. Subjects were asked to wear joint markers 
which may cause patient’s discomfort [6] and consume 
significant setup time. These problems are tackled using 
marker-free systems because such systems do not require 
physical contact. Especially in biomedical applications (like 
rehabilitation monitoring after orthopedic surgeries and 
neurological disorder assessment) the hardware setup can be 
effectively reduced using a marker free gait assessment 
system giving the patient maximum possible comfort during 
the assessment. 
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 Howard Lee et al. [7] investigated digital image 
processing methods for gait assessment to detect 
neurological disorders. Swing distances and joint angles of 
subjects were calculated from selected frames in a gait video. 
Based on these features, the system identified PG in the 
subjects. The constraint in this work was the setup procedure 
in which a novel colored dress had been specifically 
designed for patients for correct image segmentation. 
Working with still images was another drawback because 
information about gait cycle frequency and human posture 
could be obtained from the video clips. R.D. Green et al. [8] 
extended the research for PG recognition. The environment 
settings as used by Howard Lee et al. [7] were used to 
identify gait abnormalities in video images. On the basis of 
wave-form gait cycles, this system correctly classified 94% 
of subjects diagnosed with PD with one false negative. Cho 
CW et al. [6] applied Linear Discriminant Analysis on still 
images to identify PG. The system achieved 95.49% 
classification accuracy for 1529 test cases.  

 This paper aims to propose a simple vision-based PG 
recognition algorithm based on the assessment of the human 
posture lean and stride cycles during the gait. The main 
objective is to introduce a marker-free gait assessment in a 
realistic setup for monitoring. The paper is divided as 
follows. Section 2 gives an overview of the system. Results 
are elaborated in section 3. Section 4 depicts the conclusion 
and the future work. 

2. SYSTEM DESCRIPTION 

 A block diagram of the proposed PG recognition 
algorithm is shown in Fig. (1). The subject’s gait is first 
recorded using a camera. The foreground pixels of the 
human body are segmented from the background pixels 
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based on the pixel brightness in each frame. In this way, the 
need for novel colored dress for laboratory experiment as 
used by RD Green and Howard Lee [7, 8] is eliminated. The 
image enhancements are done to extract the 2D silhouette 
from the gait video frames. The silhouette is isolated with a 
bounding rectangle to estimate the height and width of the 
subject. Once the height and width of silhouette is achieved, 
it is compared with a human model [9] to find head, torso 
and leg segments. Skeleton is formed by computing the 
medial points of each body segment. The motion cues are 
extracted from the skeleton. Two motion cues analyzed are 
the cyclic motion of legs and the posture lean of the subject 
during the gait. These two cues are compared with the cues 
of an imaginary perfect gait pattern to assess the gait 
impairment. The working units in the algorithm are detailed 
below. Functions available in the OpenCV [10] (Open 
Computer Vision) library are utilized to develop the 
algorithm in C++ programming environment. 

2.1. Background Subtraction 

 The subjects were asked to walk parallel in front of the 
camera during a video recording of 20 seconds with frame 
rate kept as 5 frames per second (fps). Each video frame 

img[m,n]  of pixel resolution ‘m x n’ is transformed from 
RGB color space to the HSI color space [11]. The 

foreground pixels of image ],[ nmimg are segmented from 
the background pixels to produce a binary image based on 
the brightness threshold ‘  ’as shown in equation 1.1. 

img[m, n] (S, I ) img[m, n] = 1
img[m, n] < (S, I ) img[m, n] = 0{ }  (1.1) 

Where, ‘S’ and ‘I’ are the thresholding values of Saturation 

and Intensity respectively for image img[m, n] in the HSI 

space. The dark pixel values of background are eliminated 

and the foreground pixels which represent the human body 

are preserved in the image. The binarized image is filtered in 

order to remove small blobs which possibly do not represent 

the body segments due to their small size. Anomalies in this 

filtered image are removed by the application of 

morphological dilation followed by erosion. These operators 

eliminate small holes in the obtained silhouette and robustify 

the pixels of thin body segments. 

2.2. Silhouette Isolation 

 The obtained silhouette is isolated using a bounding 
rectangle as shown in Fig. (2b). The x and y coordinates of 
top-left vertex of the bounding rectangle is denoted as (xmin, 
ymin). The x and y coordinates of bottom-right vertex is 
represented as (xmax, ymax). The coordinates of the bounding 

 

Fig. (1). A vision-based algorithm for Parkinsonian Gait recognition. 

 

a. Original Image 

 

b. Bounding Rectangle 

Fig. (2). Silhouette isolation. 
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box are used to find the silhouette’s height Sh and width Sw 
as given in equations 1.2 and 1.3 respectively. 

Sh = ymax ymin  (1.2) 

Sw = xmax xmin  (1.3) 

2.3. Model Fitting and Skeletonization 

 The silhouette is mapped to a gait model (previously 
described by Jeffrey, Faezah and Safabaksh [9, 12]) using 
values of the silhouette’s height Sh and the width Sw. The 
head, torso and leg segments in the silhouette are estimated 
by dividing the bounding rectangle into the anatomical 
proportions shown in Fig. (3). According to the anatomical 
proportions, the head segment comprises of the upper 13% 
portion of the silhouette’s height Sh. The width of the head 
segment is 10% of silhouette’s width Sw. The torso segment 
is comprised of 28.8% of Sh. The width of the torso segment 
is 17% of Sw. The legs are comprised of the lower 53% 
proportion of the silhouette’s height Sh. 

 Once the proportions of the body segments are separated 
from the silhouette, the segments are skeletonized by 
computing the medial points of each body segment as shown 
in Fig. (4a). The centre of gravity (COG) of the binarized 
silhouette is calculated using equation 1.4 and 1.5. 
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Where N represents the number of white pixels belonging to 
the silhouette and (xi, yi) being the x and y coordinates of 
white pixels in the silhouette. The body is skeletonized by 
joining the tangents of the medial points to the COG as 
shown in Fig. (4b). The tangent which joins the head 
segment to the COG is called the Torso Vector (TV). The 
angle between the Axis of Gravity (AOG) and the TV 
denotes the lean angle of the silhouette’s posture. The two 
tangents that join the left and the right feet to the COG 
respectively are called the Feet Vectors (FVs). The angle 
between the two FVs represents the stride angle. Notice that 
the larger the stride angle of the subject during the gait, the 
larger will be the stride length in the gait cycle. 

2.4. Motion Cue Extraction 

 The easiest parameter to be measured quantitatively 
among temporal and spatial gait parameters is the walking 
speed (meters/sec) because the motion and alignment of body 
joints are strongly influenced by the velocity throughout the 
gait cycle [13]. Studies revealed that cadence and speed are 
gait features which are robust to dopa-medication [4]. The 
speed during the gait is related to two variables; the stride 
cycles and the stride length. Further, the PWP have the 
tendency to lean forward during the gait [2]. The focus of this 
work is therefore emphasized on the two motion cues i.e. the 
posture lean and the stride cycles during the gait. 

 

Fig. (3). Human Model Proportions [9, 12]. 

 

a. Medial Points 

 

b. Skeleton encircled with COG 

Fig. (4). Skeletonization. 
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 The motion cues are computed from the silhouette’s 
skeleton. The posture lean is estimated by computing the 
lean angle of skeleton in each video frame. To execute this 
approach, AOG is formed in the image

 
img[m, n] by drawing 

a vertical line passing through the silhouette’s COG as given 
in line equation 1.6. 

AOG = xc
 

(1.6) 

 The 
c
x (i.e. x-coordinate of the point COG) acts as the x-

intercept for the line AOG. The torso vector (TV) is 
computed by joining the x and y coordinates of the centre of 
head segment (denoted by xh and yh respectively) to the COG 
with the tangent given in equation 1.7. 

TV = (xh xc, yh yc )  (1.7) 

 The cosine between the unit vectors TVu and AOGu is 
computed to find the posture-lean angle lean as given in 
equation 1.8. 

cos lean = TVu AOGu  (1.8) 

 The stride cycles are estimated from the cyclic leg 
movement of skeleton in each video frame. The stride angle 
is the maximum opening between the front and back feet in a 
stride. To estimate the stride angle, the feet vectors are 
computed by joining the bottom-most medial coordinates of 
left and the right feet segments with two tangents to the 
COG respectively as given in equations 1.9 and 1.10. 

FV1 = (x f1 xc, y f1 yc )  (1.9) 

FV2 = (x f 2 xc, y f 2 yc )  (1.10) 

Where (xf1, yf1) and (xf2, yf2) are the bottom-most medial 

coordinates of the left and the right feet of skeleton 

respectively. The cosine between the unit vectors FV1
u

and 

  
FV

2
u is computed to find the stride angle stride as given in 

equation 1.11. 

cos stride = FV1u FV2u  (1.11) 

 The posture lean angle lean and stride angle stride of a 
normal subject and a patient diagnosed with PD respectively 
are shown in Fig. (5). 

2.5. Motion Cues Matching 

 The main idea behind the matching of the motion cue 

patterns is to compute cosine similarity between subject’s 

gait pattern and an imaginary perfect gait pattern. Jeffrey et 

al. [12] revealed that the PWP walk with shortened stride 

angle with high and variable stride frequency. Murray P. et 

al. [14] depicted that, a normal gait exhibits constant stride 

frequency though that the stride length and stride angle 

varies depending upon the age of subject. They studied the 

walking patterns of 60 normal subjects based on the age and 

height distribution using a metronome. They found the mean 

stride length of a normal gait to be 78.4 ± 5.9 cm. We 

estimated an average leg height based on the human model 

proportions [9, 12] using the body heights of 60 normal 

subjects mentioned by Murray P. et al. [14].  

 Using the value of average leg height (93cms), an 

isosceles triangle is formed with two equal triangular sides 

as feet vectors FV1 = FV2 and triangular base equal to the 

mean stride length (78.4cms) as shown in Fig. (6). A bisector 

is drawn from the vertex COG against the triangular base 

which produces a right-triangle ABC. With the average leg 

height taken as perpendicular BCand the half of mean stride 

length taken as base AB , the angle stride
2  

is computed to yield 

stride value in equation 2. 

0
6.458.228.22

22
=+=+==

oostridestride
psstride

 (2) 

 We called the stride value in equation 2 as a perfect stride 

angle value denoted by ps. The cosine of ps is 0.7. Note that 

the cosine for 0o is equal to 1 and that the cosine values 

decrease as the stride angle increases. A comparison between 

 

a. Normal Gait 

 

b. Parkinsonian Gait 

Fig. (5). Trigonometric evaluation to find the perfect stride angle ps (based on Murray P. et al. [14]). 
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Fig. (6). A comparison between the stride patterns of Normal Gait and PG is shown. Note that the time intervals t1…tn between the strides for 

n gait cycles are varying in PG. Moreover, the distances d1…dn between the cosines of stride and ps for n gait cycles are farther in PG as 

compared to the normal gait. 

 

A (Normal Gait) 

 

B (Parkinsonian Gait) 

Fig. (7). A comparison between the stride patterns of Normal Gait and PG is shown. Note that the time intervals t1…tn between the strides for 

n gait cycles are varying in PG. Moreover, the distances d1…dn between the cosines of stride and ps for n gait cycles are farther in PG as 

compared to the normal gait. 
 

the normal subject’s strides and a PD patient’s strides is 
given in Fig. (7) when they were asked to walk from right to 
left in front of the camera. Notice that the normal gait (Fig. 
7A) yielded periodic stride pattern during the gait-cycles 
whereas the PG (Fig. 7B) exhibited irregular pattern of 
strides during the gait cycles.  

 A peak-finder algorithm [15] has been used to detect the 
valleys in gait pattern. Note that a valley is a cos stride value 
in a gait cycle. We assumed a minimum stride between the 
FVs during a normal gait to be 25o.  A threshold of 0.1 (i.e. 
cos T = cos0o – cos25o = 0.1) has been used to detect the 
valley points in the gait pattern. It is possible that the peak-
finder algorithm may not detect a valley in the gait pattern 
with the given threshold. Especially in case of PG, the 
muscular constrictions in the feet of PWP results in stride 
shorter than 25o. In this condition, the algorithm is re-iterated 
with the adjusted threshold value to 0.01 so that the 
minimum stride up to 10o can be detected (i.e. cos T = cos 0o- 
cos 10o = 0.01). The valleys i1…in in patterns of normal gait 
and PG are shown in Fig. (7A and 7B) respectively. Notice 

that the numbers of valleys are comparatively larger in 
number in the pattern of PG than the normal gait which 
illustrates the reduced step length and shorter stride angle in 
gait patterns of PWP. 

 Based on the assumption that an imaginary perfect gait 
exhibits constant stride frequency with stride angle ps, the 
subject’s strides may be matched with the perfect strides by 
computing the cosine distance 

i
d between the stride and ps  

for a gait cycle i (equation 3.1). 

di = cos stridei cos ps  for, i=1,….,n (3.1) 

Where n is the total number of gait cycles. The distance 
equation depicts that the larger the value of di, the larger will 
be the cosine difference between the patterns of normal and 
the perfect gait. The stride variability in subject’s gait pattern 
can be represented by computing the mean of the overall 
distance d1… dn as given in equation 3.2. 

davg =
dii=1

n

n
 for, i=1,….,n (3.2) 
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 Note that the PG pattern (shown in Fig. 7B) yields higher 
stride variability as compared to the normal gait pattern 
(shown in Fig. 7A).  

 The periodic gait pattern should yield constant time 
interval for each gait cycle. Time variations in the gait cycles 
may be found by computing the residuals between the 
intervals. The residuals 

i
r  are computed by subtracting the 

time interval 
i
t  in a gait cycle i by the overall mean 

(represented as tavg) of total intervals t1…tn for gait cycles n 
(equation 4.1). 

ri =| ti tavg |  for, i=1,….,n (4.1) 

 The mean ravg of residual values r1...rn for gait cycles n 
(equation 4.2) is yet another feature for the assessment of 
gait anomalies in PWP as it detects shuffling and festination 
in gait.  

ravg =
rii=1

n

n
 for, i=1,….,n (4.2) 

 The stooped posture of PWP during the gait is 
determined by the posture lean angle lean. We assume that a 
perfect gait exhibits an erect posture throughout the gait with 
the lean angle 0o denoted as PL . The cosine of PL is equal 
to 1. A comparison of the posture lean between the normal 
gait and the PG is shown in Figs. (8A and 8B) respectively.  
The normal gait yielded a smoother graph for the posture 
lean angle per frame. The cosine values of posture lean angle 

lean in a normal gait were found closed to the cosine values 
of PL. In case of PG, abrupt changes in the graph of posture 
lean angle per frame were observed as well as the cosine 
values of posture lean angle per frame were found farther 
from the cosine value of ps. 

 Matching between the patterns of subject’s leaned 
posture and a perfect erect posture is performed by 
computing the cosine distance lj between them (equation 
5.1). 

l j = cos PL cos leanj  for, j=1,….,m (5.1) 

Where, m is the total number of gait video-frames. The mean 
lavg of cosine distance l1...lm has been computed to yield a 
single value to depict posture lean (equation 5.2). 

lavg =
l jj=1

m

m
 (5.2) 

 The gait features i.e. stride variability davg, residual mean 
ravg and posture lean lavg are normalized within a range 0-to-
1. A Support-Vector Machine (SVM) attribute evaluator 
based on Recursive Feature Elimination [16] has been used 
to weight each attribute. A set of 49 samples each with the 
three gait features have been trained in the SVM using 10-
fold cross validation to rank the attributes. The square of the 
weight assigned by the SVM-based attribute evaluator is 
used to rank each class separately based on the one-vs.-all 
method. The classifier ranked the features lavg, davg and ravg 
based on the given dataset as 3, 2 and 1 with the weights as 
2.5, 2.5 and 1 respectively. The gait error E can be computed 
by the weighted average of gait features (equation 6.1). The 
difference of E from perfect gait G yields a gait match 
percentage (equation 6.2). 

  
E =

2.5l
avg

+ 2.5d
avg

+ r
avg

6  (6.1) 

  
G% = (1 E) 100

 (6.2) 

3. RESULTS 

 Several gait cycles of a group of four normal controls n1... 
n4 and three PWP p1, p2 and p3 were assessed using the 
described motion cue assessment algorithm. The gait 
features davg, ravg and lavg are computed for gait cycles n for 
each subject. The overall gait matching G% (equation 6.2) is 
computed for each subject. The results showing the gait 
quality for each subject respectively are shown in Table 1.  

 It is observed from the experiments that the gait patterns 
from the normal controls showed high percentage of gait 
matching G% with the perfect gait pattern. The normal 
controls n1, n2 and n3 exhibited low stride variability davg 
which resulted in higher G% values i.e. 92.6%, 87% and 
88.3% respectively. The normal control n4 showed high 
stride variability davg which resulted in low G% value of 
71%. All of the normal controls n1 … n4 produced low values 
of posture lean lavg and residual mean ravg. 

 In case of PWP, the gait matching between the 
pathological gait patterns and the perfect gait pattern were 

 

A (Normal Gait Posture) 

 

B (Parkinsonian Gait Posture) 

Fig. (8). A comparison between the posture lean in a normal gait and PG is shown. Note that the posture pattern in PG shows high lean angle 

value per frame as compared to the normal gait. 
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fairly low i.e. G% was equal to 16.8%, 7.3% and 58.6% for 
p1, p2 and p3 respectively. The subject p3 though showed low 
value of lean in the posture lavg (i.e. 0.033) which resulted in 
gait matching of 58.6%.  An overall gait matching threshold 
of 70% was selected to discriminate between the normal and 
the Parkinsonian gait which resulted in 100% correct 
recognition for 7 subjects. 

4. DISCUSSION 

 In conclusion, a simple computer-vision based 
methodology was developed for assessment of Parkinsonian 
gait. The result is a marker-free approach, which may be 
feasible in terms of portability in the home environment for 
the assessment of gait of PWP. It comprises a realistic 
approach based on the human body posture relative to the 
body’s centre of gravity for monitoring purposes. Features 
such as the posture lean angle, the stride variability and the 
mean of residuals between the stride intervals proved 
efficient features for the PG assessment. An SVM-based 
attribute evaluator was used to weight the different gait 
features. Based on these features and using Cosine Similarity 
matching with the imaginary perfect gait pattern, the system 
identified the PG in 7 subjects (3 PWP and 4 normal 
controls) with complete accuracy. The idea of using Cosine 
Similarity matching to a “perfect pattern” makes the 
algorithm computationally inexpensive. 

 The previous Linear Discriminant Analysis [6] and 
correlation [8] methods though produced 95% and 94% 
recognition rates for PG on other data sets but they are 
computationally complicated and expensive. These 
assessment methods required markers to be placed on the 
subject’s body. The approaches [6-8] using the Principal 
Component Analysis and General Regression Neural 
Network required extensive laboratory setups and 
prerequisites for the experiments thus making the methods 
unfeasible to be used for assessment in the home 
environment. The marker-free gait assessment method based 
on cosine similarity described in this paper is the least 
computationally expensive due to distance computations. 
The method does not require complex setup which makes it 
feasible to be used for gait assessment in home-environment. 

 This novel image processing technique has however a 
few limitations associated: The perfect stride angle ps was 
estimated from gait patterns recorded using a metronome 
[14] which was used as a benchmark to differentiate between 
the stride patterns of normal gait and PG. This is in contrast 

to the real-life where the normal gait speed and cadence vary 
between age and height groups. The other limitation in this 
method is the need of color contrast between subject’s 
apparel and background for color-segmentation. 

 In future, the proposed system will be tested on a larger 

clinically rated database to assess level of gait impairment 

based on the symptom severity. Different statistical methods 

and machine learning methods will be evaluated for ability 

to score overall gait impairment based on the gait features 

described in this paper. The algorithm will hopefully have 

the potential to aid clinicians in the following of Parkinson’s 

disease treatment, when used in conjunction with monitoring 

the other symptoms of the disease. 
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