Efficient Compile-Time Analysis of Cache
Behaviour for Programs with |IF Statements

Xavier Vera
Institutionen for Datateknik
Malardalens Hogskola
Visteras, Sweden

xavier.vera@mdh.se

Abstract. This paper presents an analytical method
for analysing efficiently the cache behaviour of perfect
loop nests containing IF statements with compile-time-
analysable conditionals. We discuss the derivations of
reuse vectors in the presence of IF statements, present
miss equations for characterising the cache behaviour of
a program and give algorithms for solving these equa-
tions for cache misses. We show that our method, to-
gether with loop sinking, can be used to analyse a large
number of imperfect loop mests that cannot be anal-
ysed previously — 17% more loop nests than previ-
ously in SPECfp95, Perfect Suite, Livermore kernels,
Linpack and Lapack. Validation against cache simu-
lation demonstrates the efficiency and accuracy of our
method. Qur method can be used to guide compiler
cache optimisations and improve the performance of
cache simulators and profilers.

1 Introduction

Data caches are widely used to bridge the increasing
performance gap between processors and main memo-
ries. However, caches are effective only when programs
exhibit sufficient data locality in their memory access
patterns. Programmers and optimising compilers often
restructure a program to improve its cache behaviour.
In both cases, it is necessary to have detailed knowl-
edge about the number of cache misses and their causes
in the program.

While a large number of locality enhancement trans-
formations exist [31], the models used for evaluating
their benefits are often heuristic or approximate. For
example, tiling [5, 15, 17, 23, 33, 34] and padding
[16, 22] can reduce cache misses if appropriate tile sizes
and pad sizes are chosen. In the case of matrix multi-
plication and SOR-like kernels, some heuristics-based
cost models [8, 17, 22, 23, 30] can help make these
choices. However, even in these simple cases, no model

Jingling Xue

School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia

jxue@cse.unsw.edu.au

has emerged as a widely acceptable solution. It is well-
known that the optimal tile and pad sizes are sensitive
to the problem size, array base addresses and cache
parameters. We need better models that can deter-
mine not only the number of cache misses but also help
us understand the causes behind these misses. These
models can then be employed to guide various optimi-
sations to reduce cache misses in a systematic manner.

In the last few years, several compile-time analyti-
cal methods have been proposed to statically predict
the cache behaviour of a program [4, 6, 11, 13, 14, 26].
At this early stage, all these research efforts have fo-
cused on loop-oriented programs operating on arrays.
Such a method consists of (a) a procedure for setting up
mathematical formulas to characterise the cache misses
in a program and (b) an algorithm for finding cache
misses (and their causes, if required) from these formu-
las. These formulas describe the relationships among
loop indices, array sizes, base addresses and the cache
parameters for cache misses in the program.

The Cache Miss Equations (CMEs) [13] make use
of Wolf and Lam’s reuse vectors [30] to characterise
the cache misses in a program using a set of Diophan-
tine equations (consisting of actually equalities and in-
equalities). This seminal work demonstrates the pos-
sibility of choosing desirable tile and pad sizes by rea-
soning about these equations rather than solving them
for cache misses. However, computing the ezact num-
ber of cache misses from the CMEs when required is
expensive. Some statistics-based methods have been
reported to produce efficiently a reasonable estimate
of such misses [4, 14, 26] from the CMEs. The CMEs
are limited to isolated perfect loop nests consisting of
straight-line assignments. Recently, an attempt for ez-
actly modelling the cache behaviour of loop nests using
Presburger formulas is made in [6]. While the cache
misses for both perfect and imperfect loop nests con-
taining possibly IF statements can be specified, they

do not yet have a practical algorithm for finding cache
misses from this specification.

This paper extends the CMEs so that perfect loop
nests with IF statements can be analysed. We make
the following contributions. First, we present an an-
alytical method for analysing efficiently the cache be-
haviour of perfect loop nests containing IF statements
with a good degree of accuracy. In particular, we de-
scribe for the first time how to quantify reuse exactly
and approximately in the presence of IF statements and
some complications that may arise when group reuse is
approximated. While our cold miss equations are sim-
ilar to those in the CMEs [13], our replacement miss
equations are formulated and solved differently since
the references being analysed are potentially accessed
in different parts of the iteration space (referred to as
RISs). Second, we give two algorithms for finding cache
misses from these our miss equations and discuss our
prototyping implementation. FindMisses is exact and
is useful for analysing programs of small sizes. Fs-
timateMisses, based on the sampling theory [26], is
capable of analysing large programs efficiently with a
user-defined confidence. We have extended that theory
so that the sampling technique works when the RISs
for different references are different. We have also de-
veloped an algorithm for computing the volume of any
possible non-convex RIS for sampling purposes. Third,
we demonstrate how our method can also be used to
analyse those imperfect loop nests that are sinkable by
loop sinking. Finally, we have analysed the loop nests
from SPEC{p95, Perfect Suite, Livermore kernels, Lin-
pack and Lapack. Our method enables 17% more loop
nests in these benchmarks to be analysed than pre-
viously. We present our experimental results for some
kernel loop nests to validate the efficiency and accuracy
of our method. This work represents a useful step to-
wards a mechanical analysis of complex language con-
structs.

The rest of this paper is organised as follows. Sec-
tion 2 defines the cache architectures used. Section 3
describes our loop nest model. Section 4 discusses
the derivation of reuse vectors when IF statements are
present. Section 5 presents our analytical method. Sec-
tion 6 applies our method to analyse imperfect loop
nests. Section 7 presents experimental results. Sec-
tion 8 discusses the related work. Section 9 concludes
the paper and discusses some future work.

2 Cache Model

We assume a uniprocessor with a k-way set-
associative cache using LRU replacement. In the case
of write misses, we assume a fetch-on-write policy so
that writes and reads are modelled identically. This
model is used in the recent analytical work [6, 11, 13].
In a k-way set-associative cache, a cache set contains

PROGRAM COND
PARAMETER (N = 512, M = 512)
REAL*8 a(N+1,M+1), b(N-+1,M+1), z(N+1,M+1)
REAL*8 vnew(N+1,M+1), unew(N+1,M+1)
DO I, =1N
DO I, = 1M

a(l1+1,I>) = b(I1+1,12)+H z(I1+1,Io+1) | £ Ref

IF (I,+1.GE.200) THEN

vnew(I1,Io+1) = 14| z(I,I>+1) | £ Ref>

ENDIF
IF (I,.LE.100) THEN

unew([l,Ig) = b(11,12)+ Z(Il,lz) é Refg

ENDIF
ENDDO
ENDDO
END

Figure 1. A running example.

k distinct cache lines. C; and Ly denote the cache size
and cache line size (in array elements), respectively.

A memory line refers to a cache-line-sized block in
the memory while a cache line refers to the actual block
in which a memory line is mapped. Let Mem_Addrg(7)
be the memory address accessed by reference R at an
iteration 7’ of a loop nest. Let Mem_Lineg(7) and
Cache_Setr(7) be the memory line and cache set to
which Mempg_Addr(?) is mapped, respectively.

3 Program Model

Programs under consideration are perfect loop nests
with affine loop bounds and affine array subscript ex-
pressions. A perfect loop nest of depth n is represented
as an n-dimensional convex polyhedron in Z" called
the iteration space of the nest. Every iteration (or
point) in the iteration space is identified by its index
vector 7 = (iy,42,...,in), where iy is the index of the
k-th loop in the nest. The four lexicographic operators,
<, =, = and =, are used in the usual manner [31].

Our analytical method can deal with any IF con-
ditionals involving loop indices and compile-time con-
stants. In loop-oriented programs with regular compu-
tations, almost all data-independent conditionals are
affine expressions of loop indices and compile-time con-
stants involving possibly operators such as ABS, MOD,
MAX and MIN. In all programs that we analysed from
SPEC{p95, Perfect Suite, Livermore Kernels, Linpack
and Lapack, we have not found any single IF condi-
tional that is data-independent but not also affine.

We define the reference iteration space (RIS) of a
reference as the set of iteration points where the ref-
erence is accessed. While we can analyse complex IF
conditionals (resulting in non-convex RISs), the RISs
in practical programs are found to be simple. In our

L] §
7|
=~
/_—/I =

A
f \\|><6

N TR
v : N %

L
(a) Refs (b) Refi (c) Refa

Figure 2. RISs of the z references in Figure 1.

running example given in Figure 1, the RISs for the
three z references, as shown in Figure 2, are all convex.
Note that the RIS for Ref; is the entire iteration space.

4 Reuse Vectors

Like the CMEs [13], our analytical method relies on
reuse vectors to quantify the data reuse and specify the
cache misses in a loop nest. To make this paper as self-
contained as possible, the concept of reuse vectors is
introduced and some previous work on computing reuse
vectors recalled. Then we describe our formulas for
deriving the required reuse vectors in the presence of IF
statements. Solving these formulas exactly is possible
but expensive (and unnecessary). We describe how to
find an accurate approximation efficiently and provide
our justifications based on an analysis of these formulas
and some array reference statistics in benchmarks.

The concept of reuse vectors was introduced by Wolf
and Lam in [30] as a mathematical representation to
determine the direction and distance of data reuse be-
tween uniformly generated references. Let R, (p for
‘producer’) and R, (c for ‘consumer’) be two uniformly
generated references A(H7 + &,) and A(H7 + &), re-
spectively.! Let 7 > 0 be an integer vector. R, at
iteration 7' (with the memory access A(H7'+ é)) reuses
potentially from R, at ©— 7 (with the memory access
AH(@—7) + ¢)) if

Mem_Linegr_ (¥) = Mem_Lineg, (7~)
Then 7 is said to be a reuse vector. It represents a
potential reuse in the cache between the two memory
accesses since the memory line touched in the cache at
the first access (at 7 — 7) may have been evicted from
the cache before it gets reused at the second access (at
7). As is customary, 7 is temporal (reusing the same

L They are uniformly generated since their subscript expres-
sions share the same linear part H [30].

element) if the following additional equality also holds:
Mem_Addrg, () = Mem_Addrg,(V—T)

and spatial (reusing the same cache line but not the
same element) otherwise. In addition, the reuse is said
to be a self reuse if R, and R, are identical and a group
reuse otherwise. Thus, there are four kinds of reuse
(vectors): self-temporal, group-temporal, self-spatial
and group-spatial (vectors).

Wolf and Lam [30] discuss how to compute reuse
vectors for perfect loop nests consisting of straight-line
assignments, assuming effectively that all RISs are the
entire iteration space. By quantifying the reuse of a
loop nest using a vector space spanned by (elemen-
tary) reuse vectors, they apply unimodular and tiling
transformations to improve parallelism and locality in
the nest. Later, Xue and Huang [34] describe an exten-
sion to allow non-elementary reuse vectors to be repre-
sented exactly. The CMEs [13] make use of reuse vec-
tors to specify the cache misses in a loop nest consist-
ing of straight-line assignments. Note that all arrays
in FORTRAN are column-major. If the columns of ev-
ery array are aligned at the memory line boundaries,
Wolf and Lam’s reuse framework provides all reuse vec-
tors required. Otherwise, some extra reuse vectors are
needed to represent cross-column reuse cases. Consider
Figure 1, where z is a 2-D array of size (N+1) x (M +1).
Suppose that a cache line has four array elements and
that z(N —1,1), z(N, 1), 2(N +1,1) and 2(1,2) reside
in a common memory line in that order. For Refs, i.e.,
z(I1, 1), the access z(N — 1,1) at iteration (N — 1,1)
may potentially reuse this memory line in the cache
touched by the access z(1,2) at the earlier iteration
(1,2). This reuse is described by the self-spatial reuse
vector (N —1,1) — (1,2) = (IV — 2,—1). For details
on computing Wolf and Lam’s reuse vectors, see [30].
For some ad hoc techniques on computing cross-column
reuse vectors required by the CMEs, see [3, 13].

Self reuse vectors for a reference are computed as
before except that its RIS may be a subset of the itera-
tion space. Section 4.1 describes below how to compute
group-temporal reuse vectors in the presence of IF con-
ditionals and some complications that may arise. Sec-
tion 4.2 does the same for group-spatial reuse vectors.

4.1 Group-Temporal Reuse

Using the same notations as before, R, at iteration 7’
reuses potentially from R, at ¥—7 via a group-temporal
reuse vector >~ 6, which is a solution to:

Mem_Addrg, (7)) = Mem_Addrg,(7—7)
7 € RISk, (1)
=7 € RISE,

where the first equality constraint is equivalent to:

Hi = & -@. 2)

The difficulty in solving (1) (exactly and efficiently) is
that RISk, and RISk, may not be identical.

If the IF conditionals guarding R, and R, are affine,
which is usually the case for regular computations, then
RISg, and RIS, are representable as convex polyhe-
dra. We can use the Omega Calculator [20] to solve
these constraints exactly for #. But this is expensive
and unnecessary (at least for regular computations).

dim(ker(H))
RISRC:RISRP? -0 | -1 | >1 | >1
YES 92.66 | 5.21 | 0.46 | 5.67
NO 1.32 | 0.28 | 0.07 | 0.35
YES+NO 93.98 | 5.49 | 0.53 | 6.02

Table 1. A classification of producer-
consumer pairs in the programs in Table 3 for
group-temporal reuse. All references are first
moved into the innermost loop by loop sink-
ing (see Section 6). Each producer-consumer
pair is then identified from a common perfect
nest. In each category, the total number of
qualifying pairs over the grand total is given.

The complexity of solving (1) and (2) depends on
two factors: (a) the dimensionality of ker(H) (i.e., the
kernel of H) and (b) whether RISg, = RISg, holds or
not. By dividing all producer-consumer pairs from the
benchmark programs listed in Table 3 into categories,
Table 1 presents the percentage of the total number of
qualifying pairs in each category over the grand total.

The reuse vectors are derived from (1) as follows. If
dim(ker(H)) = 0, satisfied by 93.98% pairs as shown
in Column 1, (2) has either a single solution or zero
solutions. The solution thus found (if any) is taken
as the solution to (1) with its last two constraints on
RISg, and RISg, dropped. Any resulting superflu-
ous reuse vectors will be ignored due to the presence of
the first constraint in our replacement miss equations
(6). If dim(ker(H)) > 1, satisfied by the remaining
6.02% pairs as shown in Column 4, (2) has either in-
finitely many or zero solutions. There are two cases.
If RISk, = RISR,, (1) is solved using the techniques
developed for loop nests containing no IF statements
and described in [3, 13, 30, 34]. If RISg. # RISg,, we
replace both with a common convex superset and solve
(1) approximately again using [3, 13, 30, 34]. Our ex-
perimental results show that the entire iteration space
is a good choice for the common superset, which avoids
us from having to calculate a superset otherwise.

Figure 3 illustrates some complications for a patho-
logical case when RISg, and RISR, are approximated
by a common superset. R, at its left boundary point
(I1,I) may reuse R. at its right boundary point
(30, I) along (I; —30,0). Thus, the set of reuse vectors

DO 1, = 0,400
DO I, = 0,140
IF (7,.LE.30) THEN

(] it

ENDIF
IF (I, +I.GE.200) THEN

1,}(30,0)

(170,0)

.
(i :

ENDIF O RISk,
ENDDO
ENDDO [RISR,
(a) Code (b) RISs

Figure 3. Derivation of group-temporal reuse.

is {(30,0), (31,0),...,(170,0)}. If the two RISs were
identical (i.e., replaced with a common superset), the
single vector (0,0) would describe correctly the group-
temporal reuse from R. to R,. However, when our
replacement miss equations (6) are solved, ¥ = (0,0)
will be effectively ignored since RISk, and RISk, do
not overlap. Since not all reuse vectors are used, the
number of cache misses for R, on its left boundary may
be over-estimated. For practical applications, such an
over-estimation should be negligible because (a) the
over-estimation occurs only on a facet of a RIS (e.g.,
R),’s left boundary in the example) and (b) the under-
lying reference may reuse on the facet via other reuse
vectors. In the example, R, may reuse from itself along
the self-spatial reuse vector (1,—1). Thus, only a small
fraction of these boundary points are mis-predicted.

Our justifications for approximating group-temporal
use when RISr, # RISg, are summarised below.
First, the approximation happens rarely — 0.35% pairs
for a collection of benchmarks (Table 1). Second, one
of the two involved RISs is often the superset of the
other (e.g., a cube v.s. one of its facets). So Figure 3
is only hypothetical. Third, even for Figure 3, any
over-estimation of cache misses occurs only on facets
of a RIS as discussed in the preceding paragraph. Fi-
nally, the accuracy of such an approximation has been
validated by extensive experiments against cache sim-
ulation.

4.2 Group-Spatial Reuse

R. at ¥ reuses potentially from R, at ¥ — 7, where
7= 0is a group-spatial reuse vector solved from:

Mem_Lineg (©) = Mem_Lineg, (v —7)
€ RISk, (3)
S

RIS,

7
T—7
Let 2, be the first row of H and H' be the submatrix

of H without its first row. Let &, (&/) be obtained from
¢p (€.) with its first entry removed. To find the spatial

DO I; = 1,100
DO I = 1,100
(I,.LE.10) THEN

-A (In, Iy + 1)

ENDIF
(I — I,.GE. 20) THEN|

[irr

ENDIF
ENDDO
[ENDDO

Ip)

(a) Code (b) RISs

Figure 4. Derivation of group-spatial reuse.

reuse across the same array column (in FORTRAN),
the first equality constraint in (3) can be rewritten to:

H'? = ¢ —¢&!
4
A < L @

where L; is the cache line size in array elements.

As in the case of group-temporal reuse, solving (3)
exactly is possible but expensive. Table 2 gives the
group-spatial reuse version of Table 1. If RIS, #
RISR,, we solve (3) approximately by replacing RIS,
and RISg, with a common superset.

dim(ker(H"))

RISRCZRISRP? :0 | :1 | >1 |
YES 0 | 92.66 | 5.67 | 98.33
NO 0 1.32 | 0.35 | 1.67
YES+NO 0]9398 | 6.02 | 100

Table 2. A version of Table 3 for group-spatial
reuse. Note how both tables are related.

A version of Figure 3 is given in Figure 4.
By replacing RISr, and RISk, with a com-
mon superset, the set of group-spatial reuse vec-
tors, {(12,1),(13,1),...,(90,1)}, will be under-
approximated by a subset in our implementation.

Our justifications for approximating group-temporal
reuse described at the end of Section 4.1 carry over to
group-spatial reuse. For the benchmark statistics given
in Table 2, only 1.67% producer-consumer pairs need
to be approximated. In addition, if dim(ker(H)) = 1,
represented by 93.98% pairs in Table 2, the number of
solutions to (4) is finite due to the inequality present
in (4) unless i’ Lker(H) (i.e., the dot product of A’ and
the unique vector in ker(H) is 0). This is the case for
Figure 4.

5 Analytical Method

In this section, we present the miss equations as a
specification of the cache misses in a loop nest. We

then discuss two algorithms for finding cache misses
from these equations. In particular, our replacement
miss equations are formulated and solved differently
from those in the CMEs [13] since the involved RISs
can be different. We also describe an algorithm for
computing efficiently the volume of a RIS for sampling
purposes.

5.1 FormingtheMiss Equations

A reference R at an iteration 7" suffers from a com-
pulsory or cold miss if Mem_Lineg(?) is being ac-
cessed for the very first time and a replacement miss if
Mem_Lineg(7) was accessed before and evicted later so
that it is no longer in the cache when Mem_Addrg(?)
is accessed. Note that replacement misses encompass
both capacity and conflict misses.

There are two types of miss equations: compulsory
or cold miss equations and replacement miss equations.
These equations are formulated for a single generic
reuse vector of a fixed but arbitrary reference. If the
reference has only that reuse vector, the solutions to
the cold miss equations represent precisely the cold
misses of the reference, and the solutions to the re-
placement equations represent precisely the replace-
ment misses of the reference. If the reference has other
reuse vectors, the solutions to the two types of equa-
tions represent only potential cache misses. Determin-
ing cache misses in this case is discussed in Section 5.2.

In this section, we describe the miss equations for a
single reference R, along a single reuse vector . Let
R, be the reference such that R, reuses from R, along
7. Let R; be an intervening reference that may pre-
vent such a reuse from being realised. Here, the sub-
scripts ¢, p and ¢ denote mnemonically “consuming”,
“producing” and “intervening” references, respectively.
Let RISg,, RIS, RISg, be the RISs for R., R, and
R;, respectively. It is important to note that some or
all of the three references can be identical.

5.1.1 Cold Miss Equations

The cold miss equations for R. along 7 are to inves-
tigate if the memory line Mem_Linegr,(7) accessed by
R, at iteration 7' is accessed for the first time. It then
follows that R, suffers a cold miss at iteration 7 along
7 if 7’is a solution to the following equations:

7€ RISR,
and
(v—7 ¢ RISk, (5)
or
Mem_Liner, (i) # Mem_Lineg, (I — 7))

If # is temporal, the second equation, which always
evaluates to false (due to the temporal reuse), is re-
dundant. Then the cold miss equations simplify to:

I
A
N\
fé»of i a3t 7—F<§\\
L
(a) Ri = Refs (b) Ri = Refi (c) Ri = Refs

Figure 5. The interference sets with the three
z references when R. = R, = Ref; along
7 = (1,0) for the running example. For illus-
tration purposes, the point € RISg.r, being
analysed is chosen such that ¢ RISg.¢, and
7¢ RISR.y,. In €ach case, the interference set
consists of the solid line(s) and 7or 77— 7 if the
corresponding point is a fat point.

7€ RISy,
7—7¢ RISk,

5.1.2 Replacement Miss Equations

The replacement miss equations for R, along 7 are to
investigate if R, at iteration 7 can reuse the memory
line that R, accessed at iteration 7'—7 subject to the in-
terferences of the memory accesses from R; at all points
executed between 7 — 7 and 7. These interferences are
known as self-interferences if R. and R; are identical
and cross-interferences otherwise.

The iteration points at which an interference may
occur are the points located between 7 — 7 and 7 and
contained in RISg,. All these points belong to a so-
called interference set, denoted Jg,. Whether the two
end points 7’ and 7’— 7 are included depends on whether
some or all three references are identical or not and the
relative lexical order of these references. In all cases,
the interference set for R; is defined as follows:

Jr, = {J€ RISk,

TEKT—TT>}

where ‘<’ is ‘[" if R; is lexically after R, and ‘(" oth-
erwise and >’ is ‘|’ if R; is lexically before R. and ‘)’
otherwise. A reference is neither lexically before nor
lexically after itself. Figure 5 shows the interference
sets with the three z references when Ref; is analysed
along its self-spatial reuse vector = (1,0).

There is potentially a cache set contention if the
cache set accessed by R, at 7 (which is the same as
accessed by R, at ©— 7 due to the reuse) is the same as
any of the cache sets accessed by R; at every 7€ Jg,.
The replacement miss equations for an interference at

- S .
7 along 7 are given as follows:

Mem_Lineg, (V) = Mem_Lineg, (v — 7)
7€ RISR,
7— 1€ RISR, (6)
Cache_Setg,_ (¥) = Cache_Setg,(J)
.TE JRi

where the first three lines dictate the reuse of a memory
line from R, to R. along 7" and the last two lines define
all possible interferences of R. caused by R;.

In a k-way set-associative cache with a LRU replace-
ment policy, it takes at least k different cache set con-
tentions to cause the least-recently-used cache line to
be evicted from the cache set. We use the technique
presented in [13] to deal with this case.

5.2 Finding the Cache Misses

In Section 5.1, we presented the miss equations for a
single reuse vector of a reference. To find precisely the
cache misses of a reference, its multiple reuse vectors
must be considered at once. Figure 6 gives two algo-
rithms used in our experiments for finding the cache
misses from the miss equations. FindMisses analyses
all points in all RISs and is practical only for loop nests
of small problem sizes. EstimateMisses analyses a sam-
ple for every RIS and is capable of analysing any pro-
gram with a good degree of accuracy.

FindMisses finds the cache misses of a reference by
considering its reuse vectors in lexicographically in-
creasing order <. The solutions to the cold miss equa-
tions of R along the present reuse vector 7 are indeter-
minate and need to be examined further using the other
reuse vectors of the reference. All the other points can
be classified into either hits and misses using the re-
placement miss equations of R along . Once all reuse
vectors are exhausted, the points that remain indeter-
minate are cold misses for the reference R being anal-
ysed. The miss ratio for a reference and that for the
loop nest are calculated in the normal manner.

Since all points in a RIS are analysed, FindMisses
works as long as all IF conditionals can be evaluated at
every iteration point at compile time. These compile-
time-analysable conditionals include all expressions in-
volving loop indices and compile-time constants only.

In lines 9 — 12 of MissAnalyser, every point exam-
ined is not a solution to the cold miss equations (5).
Thus, the replacement miss equations (6) can be sim-
plified to:

Cache_Setg, (¥) = Cache_Setg,(J)
.TE JRi

EstimateMisses operates in exactly the same way
as FindMisses except that a sample from every RIS is
analysed. This allows us to analyse programs of large

Algorithm MissAnalyser
for each reference R
Sort its reuse vectors in increasing order <
Hgr =10 // Hits for R
RMg =10 // Replacement misses for R
CMr = S(R) // Cold misses for R initially
for each reuse vector ¥ of R in the sorted list
CMpy = solutions of R’s cold miss along 7
for each 7€ (CMpr — CMpg)
if 715 a "replacement” hit along 7
Hr = Hr U {T}
else
RMgr = RMgr U {i}
CMg = CMp

Miss_Ratio(R) = \SMpltlMnl

Loop_Nest_Miss_Ratio =

Y R IRISR|XMiss_Ratio(R)

>R IRISR|

Algorithm FindMisses

for each reference R (in no particular order)
S(R) = RISg // analyse all points

MissAnalyser

Algorithm EstimateMisses
c 1s the confidence percentage from the user
w is the confidence interval from the user
for each reference R (in no particular order)
compute the volume of RISr
if RISR is too small to achieve (c,w)
if RISR is large enough to achieve
the default (¢, w") = (90%,0.15)
S(R) = a sample (¢',w') of RISk
else
S(R) = RISr // analyse all points
else
S(R) = a sample (c,w) of RISg
MissAnalyser

Figure 6. Two algorithms for computing cache misses from cold and replacement equations.

problem sizes effectively and efficiently. The technical
details for the statistical sampling technique used in
this work can be found in [26]. However, we have made
modifications necessary to deal with the fact that RISs
can be different and possibly non-convex (in theory).

EstimateMisses expects the user to enter values to
the two parameters: the confidence percentage ¢ and
the confidence width w, where 0% < ¢ < 100% and
0 < w < 1[26]. The two input values determine
the size of the sample taken from RISk and also
impose a lower bound on |RISg|. If a RIS is too
small to achieve (c,w), we either use the default val-
ues (¢,w') = (90%,0.15) (which requires a sample
size of 72 points and |RISgr| > 1440 [26]) or anal-
yse all points in RISk (when |RISg| < 1440). The
meanings of ¢ and w are such that if we run FEsti-
mateMisses many times, the real miss ratio for each
R obtained in ¢ of these runs will lie in the interval
[Miss_Ratio(R) — w/2, Miss_Ratio(R) + w/2]. How-
ever, this interpretation does not apply to the miss ra-
tio for the entire loop nest given in line 15. In all our
experiments, real and estimated miss ratios are close.

Thus, the statistical sampling technique used re-
quires the size of every RIS to be calculated. Our
algorithm for computing the volume of an RIS is de-
scribed as follows. If the IF conditions guarding a ref-
erence form a union of convex polyhedra, then the cor-
responding RIS is a union of convex polyhedra because
the iteration space is convex. The number of points
contained in such a RIS is calculated by slicing the
RIS recursively into regions of lower and lower dimen-
sions until eventually every region is either empty or
a (one-dimensional) union of line segments so that the
points in the region can be counted easily. This algo-
rithm, while exponential in terms of the dimension of

the iteration space, is very efficient for practical pro-
grams with simple loop bounds and affine conditionals.
Other methods for computing the volume of a convex
polytope also exist [7, 21].

If a reference R is guarded by some non-affine condi-
tionals, then RISg can be arbitrarily complex. There
is not any general method for computing the volume of
RISEg. In our implementation, we compute the volume
of such a RIS by proceeding as before with all non-affine
conditionals ignored and then count only those points
that satisfy all non-affine conditionals. This simple ex-
tension has not been used in our experiments since we
have not found any data-independent conditionals that
are not affine in all programs analysed.

6 Analysing Imperfect Loop Nests

We can now analyse an important class of imperfect
loop nests, i.e., those that can be made perfect by loop
sinking [31]. The necessary and sufficient conditions
for the legality of loop sinking can be found in [32].

A perfect loop nest is considered non-analysable
when it has (a) a function call, (b) a return statement,
(c) a non-affine loop bound or (d) a non-constant loop
stride. Table 3 shows the coverage of our method for a
collection of benchmark programs. For each program,
the table summarises the number of perfect loop nests
analysable previously [13, 26], the number of imper-
fect loop nests both sinkable and analysable now and
the relative percentage increase. An imperfect loop
nest that is sinkable but non-analysable is not included
in our statistics. The number of imperfect loop nests
that are sinkable and analysable is quite large. We
can analyse 262 more nests — 17.10% more than what
could be analysed previously. For programs such as

Benchmark [Program Anélgs;l;ale i"lr?:g bsl:bfg Increase (%)
Tomcatv 2 0 0.00
Swim 16 0 0.00
Su2cor 33 5 15.15
Hydro2D) 81 2 2.47
Mgrid 10 1 10.00
SPECHYS = o 18 p) 111
Apsi 72 19 26.39
Turb3D 19 10 52.63
Fppp 12 0 0.00
Wave 141 40 28.37
CSS 45 4 8.89
LGSI 64 0 0.00
LWSI 11 7 63.64
MTSI 30 1 3.33
NASI 105 12 11.43
OCSI 40 11 27.50
PERFECT SDSI 52 17 32.59
SMSI 46 29 63.04
SRSI 105 15 14.29
TFSI 56 7 12.50
WSSI 98 33 33.67
Livermore | Kernels 12 4 33.33
Linpack Kernels 21 0 0.00
Lapack Kernels 443 43 9.71
| TOTAL [1532 [262 [1710 |

Table 3. Analysable loop nests

Turb3D, SMSI and LWSI, the improvements are im-
pressive reaching 52.63%, 63.04% and 63.34%, respec-
tively.

When collecting the above loop statistics, we find
that the number of loop nests with affine conditionals
is quite small. This is not surprising since such a loop
nest would have been written as an imperfect loop nest
in the first place! However, there are a large number of
loop nests (about 277) with data-dependent condition-
als in the above benchmarks analysed. Their successful
analysis will be an interesting future research topic.

By applying loop sinking, we are analysing exactly
the same references accessed in exactly the same order
as in the original program. First, an IF conditional
introduced for a reference in the transformed program
serves only to identify the domain in which the refer-
ence is accessed. The loop indices involved in the IF
conditional are assumed to be register-allocated. Sec-
ond, loop sinking guarantees that all references in the
transformed program are accessed in the same order as
they are in the original program.

7 Experiments

Figure 7 depicts the framework used in finding cache
misses from the miss equations and for validating the
accuracy of our method against a simulator. We have
implemented our method in the Coyote Miss Equations
solver [3]. We have written a program to obtain the
base addresses and the relative access order of refer-

[Cache Parameters }

[Loop Nest (with Conditionals)]

£~ \

[Genera.ting Reuse Vectors [The Polaris IR]

y \

[Forming the Miss Equations] [Lower—Level IR]

ﬁ e base addresses

e order of refs
Solving the Miss Equations

(Gacte Simuaior}<—
FindMisses
or
FEstimateMisses @

Figure 7. A framework for analysis and evalu-
ation.

ences from a load-store lower-level IR, which is pro-
duced from the Polaris IR [9] of the loop nest being
analysed using Ictineo [2]. The same information ob-
tained is fed to both our method and the simulator.

We have analysed a range of programs from
SPEC{p95, Perfect Suite, Livermore Kernels, Linpack
and Lapack. We present our experimental results for
our running example from Figure 1 and the three loop
nests given in Figure 8. The problem sizes are those as
given in the programs unless specified otherwise. In all
cases, an array element is assumed to take 8 byes. The
execution times of FindMisses and EstimateMisses are
obtained on a 933MHz Pentium III PC. All simulation
results are obtained using a trace-driven simulator.

7.1 FindMisses

This algorithm finds the cache misses from the miss
equations by analysing all iteration points (i.e., all
memory accesses) in the loop nest. It is computation-
ally expensive for large iteration spaces since it per-
forms essentially a compile-time cache simulation of
the loop nest. However, this algorithm can be used
ideally to evaluate the accuracy of our method, in par-
ticular, our reuse vector analysis. Table 4 compares
FindMisses and a cache simulator for caches of differ-
ent associativities. The absolute error between the miss
ratios in both cases in all examples is negligible. The
execution times in all cases indicate that analysing all
points is too expensive to be used at compile-time in
guiding compiler optimisations.

Some further discussions are provided below. Note
that COND is our running example from Figure 1 and

PROGRAM LU
PARAMETER (N = 100)
REAL*8 a(N,N)
DO i=1,N
DO j = i+1,N
a(j,i) = a(j,i)/a(i,i)
DO k = i+1,N

it1,N
IF (k .EQ. i+1) THEN
a(j,i) = a(j,i)/a(i,i)

PARAMETER (ns = 20, natoms = 100)
DOUBLE PRECISION xt, yt, xc, ye, zc
DOUBLE PRECISION zero, wsin, wcos, z, Xs
DIMENSION xc(natoms, ns), yc(natoms, ns)
DIMENSION zc (natoms, ns), xt (natoms)
DIMENSION wsin (1), weos(1), zero(1), z(1)
DIMENSION xs(1), yt (natoms)
DOi=1,ns,1
xt(1) = xt(2)+weos(1)
xt(3) = xt(1)
yt(2) = zero(1)
DOj=1,ns, 1
yt(1) = yt(2)+wsin(1)
yt(3) = yt(2)-wsin(1)
z(1) = zero(1)
DOk =1, ns, 1
DO 1 = 1, natoms, 1
xe(Lk) = xt(l)
ve(Lk) = yt(l)
ze(Lk) = z(1)
ENDDO
(1) = 2(1)+4xs(1)
ENDDO
¥4(2) = yt(2)+xs(1)
ENDDO
xt(2) = xt(2)+xs(1)
ENDDO
END

. ENDIF
a(j,k) = a(jk)-a(j,i)+a(ik a(j,k) = a(j,k)-aj,i)*a(i,k)
EN(DD)O (-aliDralik) ENDDO
ENDDO ENDDO
ENDDO ENDDO
END END
PROGRAM MM '
PARAMETER (N=100 DO i =1,N
REAL*8 a(N,N), b(N,N), ¢(N,N) DgoJ = 1,111N
DO i=1,N =1,
DO j =1,N IF (k.EQ.1) THEN
a(i,j) =0 E;I(]iji%‘: 0
DO k = 1,N
a(i,j) = a(i,j)+b(i,k)rc(k,j a(i,j) = a(i,j)+b(i,k)*c(k,j)
EN(D,b)0 (i,)+b (i, k)*c(k,j) paLd) S
ENDDO ENDDO
ENDDO ENDDO
END END
PROGRAM LWSI 5o i—1 ne 1
=1, ns,

DO j=1,ns,1

ENDDO
ENDDO
END

DOk = 1, ns, 1
DO I = 1, natoms, 1

IF (j.EQ.1 .AND. k.EQ.1

_AND. 1.EQ.1) THEN

xt(1) = xt(2)+wecos(1)

xt(3) = xt(1)

yt(2) = zero(1)

ENDIF

IF (k.EQ.1 .AND. 1.EQ.1) THEN

yt(1) = yt(2)+wsin(1)

yt(3) = yt(2)-wsin(1)

7(1) = zero(1)

ENDIF

xe(lk) = xt(l)

ye(lk) = yt(l)

ze(Lk) = z(1)

IF (1.EQ.natoms) THEN

2(1) = z(1)+xs(1)

ENDIF

IF (k.EQ.ns .AND. .EQ.natoms) THEN
yi(2) = yt(2)+xs(1)
ENDIF

IF (j.EQ.ns .AND. k.EQ.ns
_AND. 1.EQ.natoms) THEN
xt(2) = xt(2)+xs(1)
ENDIF

ENDDO

ENDDO

Figure 8. Three examples (with original and transformed programs): LU (without pivoting) is taken
from Lapack, LWSI is a 4-D imperfect loop nest from LWSI and MM is from Livermore kernels.

Prog. |Cache| i ™7 37, [Sim.[F.M. | Brr [Sim.| F.M.

[#Cache Misses | Miss Ratio [Abs.[Exe.T (secs)

COND|2-way [1157335(1157335(81.22| 81.22 [0.00|0.58|100.20

direct [1164004(1164004(81.69| 81.69 [0.00(0.53| 55.20

4-way |1157335|1157335(81.22| 81.22 |0.00|0.58|176.54

direct | 81440 85193|6.13| 6.41 [0.28(0.32| 63.09
2-way| 57441 70643|4.32| 5.31 [0.99(0.33| 65.03
4-way| 61278| 77461|4.61| 5.83 |1.22|0.34| 67.80

MM [2-way| 262699| 262702|6.55 | 6.55 |0.00|1.04| 59.15

direct | 287697| 287700(7.17| 7.17 [0.00(1.02| 55.11

4-way| 262699| 262702|6.55| 6.55 |0.00|1.10| 65.28

LWSI |2-way | 622025 645149(15.45| 16.02 [0.57|1.48|161.38

direct | 423748| 446473(10.52| 11.08 [0.56(1.41| 76.80

4-way| 600053| 623578(14.90| 15.48 |0.58|1.52|232.41

Table 4. Cache misses for (Cs, Ls) =(32KB,32B)
and execution times for FindMisses (F.M.).

LU, MM and LWSI are the kernels given in Figure 8.
COND Both FindMisses and the simulator yield the

same results in all cache configurations.

LU FindMisses over-estimates the cache misses in all

cache configurations used. The mis-predictions are
due to the lack of reuse vectors to describe the

reuse that exists among the non-uniformly gener-
ated references: a(7,1), a(i,i), a(j,k) and a(i,k). For
example, a(%,i) accesses a(1,1) and a(j,i) accesses
a(2,1) at the same iteration (1,1, 2). Both accesses
are to the same cache line. The lack of a reuse
vector to describe this particular reuse results in
the memory access a(1,1) to be classified incor-
rectly as a miss. To validate this assumption, we
ran FindMisses by adding four additional group-
spatial reuse vectors: (0,0, 0) from a(j,1) to a(i, i),
(0,1,0) from a(i,%) to a(j,1), (0,0,0) from a(j, k)
to a(i, k) and (0,1,0) from a(i, k) to a(j, k). The
cache misses obtained for the “direct”, “2-way”
and “4-way” cases have been reduced to 81553,
64704 and 71200, respectively. As a result, the
absolute errors in these cases have been reduced
to 0.00, 0.55 and 0.75, respectively.

MM FindMisses over-estimates the number of misses

in all three cases by a margin of three. The three
mis-predictions are due to the lack of reuse vec-
tors to describe the spatial reuse between refer-
ences b(i,k) and c(k,j). The base addresses for b
and c are 230136 and 310136, respectively. Thus,
the memory addresses of b5(98,100), b(99,100),

Miss Ratio [Abs. Exe.T (secs)

Prog. | Cache i ™ T F M | Brr | Sim. | B.M.
direct 81.69 | 81.29 0.40 0.53 0.26

COND | 2-way | 81.22 | 80.92 0.30 0.58 0.49
4-way 81.22 | 80.92 0.30 0.58 0.92

direct 6.13 6.49 0.36 0.32 0.20

LU 2-way 4.32 5.18 0.86 0.33 0.22
4-way 4.61 5.73 1.12 0.34 0.23

direct 7.17 7.18 0.01 1.02 0.12

MM 2-way 6.55 6.44 0.11 1.04 0.11
4-way 6.55 6.44 0.11 1.10 0.13

direct 10.52 10.93 0.41 1.41 0.17

LWSI 2-way 15.45 | 15.54 0.09 1.48 0.35
4-way 14.90 14.93 0.03 1.52 0.40

Table 5. Miss ratios for (Cs, Ls) =(32KB,32B)
and execution times of EstimateMisses (E.M.)
(c =95% and w = 0.05).

b(100,100) and ¢(1,1) are 310112, 310120, 310128
and 310136, respectively. This implies that all four
elements reside in the same memory line (starting
at 475). A simple analysis shows that the access
b(i,100) at iteration (7,1,100) reuses this memory
line brought into the cache by the access ¢(1,1) at
iteration (7,1,1), where 98 < ¢ < 100. Due to the
lack of reuse vectors, these three accesses to b are
classified as misses.

LWSI The transformed program by loop sinking con-
sists of five conditionals some of which are quite
complex. In our experiments, the five scalars
(zero,wsin,wcos,z and xs) are treated as one-
dimensional arrays of a single element each, which
happen to reside in four different memory lines
with other array variables. FindMisses over-
estimates the cache misses by about the same mar-
gin in three cases due to the lack of reuse vectors to
describe the reuse among all these memory lines.

7.2 EstimateMisses

This algorithm finds cache misses from the miss
equations of a reference by taking a sample from its
RIS. Table 5 shows the accuracy and efficiency of Esti-
mateMisses using a 95% confidence percentage with an
interval width of 0.05. In all but one case, the differ-
ence between the estimated miss ratio and the real one
is less than 1.0. The difference in the exceptional 4-way
LU case is 1.12. This is due to the lack of reuse vectors
for describing the reuse among the non-uniformly gen-
erated references as discussed previously. To validate
this assumption, we ran EstimateMisses by adding the
same four additional group-spatial reuse vectors as be-
fore: (0,0,0) from a(j,%) to a(i,4), (0,1,0) from a(i,1)
to a(4,7), (0,0,0) from a(j,k) to a(i,k) and (0,1,0)
from a(i,k) to a(j,k). The miss ratios for the loop

10

Miss Ratio [Abs.[Exe.T (secs)

Program | Cache| 57 T 37 [Forr | Sim. | E.M.
C#1 [82.42] 82.22 [0.20] 2.19 | 0.60

COND /a9 192.15] 93.82 [0.33] 2.22 | 0.63
N=M=1000 |23 13727 31.10 |0.37| 2.16 | 0.61
C#1 [19.33] 19.99 |0.66|349.41| 0.56

LU C#2 [44.71] 44.77 |0.06| 387.5 | 1.81
N=1000 |ZZ3T623] 6.44 [0.21[363.26] 1.12
C#1 [13.97| 13.68 [0.29|68.77 | 0.13

MM C#2 [50.03| 50.03 [0.00| 74.82 | 0.17
N=M=400 |zr3 7633 6.04 [0.29]68.21 0.14
DWSI | C#1 [36.79] 37.20 |0.50| 244.7 | 0.43
ns=50 | C#2 |78.35| 78.07 |0.62] 262.4| 0.85
natoms=1000] C#3 [15.27] 15.37 [0.10|244.32] 0.3

C#1: (Cs,Ls, k) = (64KB, 16B, direct)
C#2: (Cs,Ls, k) =(32KB, 8B, 2)
C#3: (Cs,Ls, k) = (128KB, 32B, 4)

Table 6. Cache misses for three different
cache configurations and execution times of
EstimateMisses (E.M.) (c = 95% and w = 0.05).

nest obtained for the “direct”, “2-way” and “4-way”
cases have been reduced to 6.35, 4.85 and 5.42, respec-
tively. As a result, the absolute errors in these cases
have been reduced to 0.22, 0.53 and 0.81, respectively.

The execution times in all cases are less than a sec-
ond on a 933MHz Pentium III PC.

Table 6 evaluates EstimateMisses further for differ-
ent problem sizes on different cache configurations.

8 Related Work

Programs must exhibit sufficient locality to achieve
good cache performance. Compiler optimisations for
improving the cache behaviour need to have detailed
knowledge about the number and causes of cache
misses. Such an information can be obtained by
time-consuming cache simulation [25] and architecture-
dependent hardware counters [1].

Analytical methods use mathematical formulas to
provide a characterisation of a program’s cache be-
haviour so that we can not only obtain the number of
cache misses but also reason about the causes of such
misses from these formulas. The ultimate goal is to
develop an analytical method that can provide accu-
rate assessments of when and why cache misses occur
using a reasonable amount of computational resources
(e.g., CPU time, memory and disk usage). Then such
a method will be useful in guiding various automatic
memory optimisations and also in improving the sim-
ulation times of cache simulators and profilers.

Porterfield [19] introduces the concept of overflow
iteration for predicting the miss ratio for a fully set-
associative LRU cache. Ferrante, Sarkar and Thrash
[10] provide closed-form formulas to estimate the ca-
pacity misses of a loop nest. Temam, Fricker and Jalby

[24] also consider conflict misses but for a subset of ar-
ray references studied in this paper. Wolf and Lam
[30] propose to use vectors to describe data reuse for
uniformly generated references in a perfect loop nest.
They also use reuse vectors to derive an estimate of
cache misses to guide their data locality algorithm.
Xue and Huang [34] report an improvement. Gannon,
Jalby and Gallivan [12] and Wolfe [31] discuss the use
of reference window for predicting cache misses.

The CMEs [13, 14] represent a more ambitious ana-
lytical method in an attempt to provide a more accu-
rate analysis of cache misses. This framework is tar-
geted at perfect loop nests consisting of straight-line as-
signments with affine loop bounds and data accesses. If
all reuse vectors of a reference are used, all cache misses
for the reference can be found from the CMEs provided
all the points in the reference’s RIS are analysed. Un-
fortunately, analysing all points this way is expensive
as shown in Table 4. An efficient implementation of the
CME framework based on polyhedral theory and sta-
tistical sampling techniques is reported in [26, 27]. In
principle, programs of arbitrary problem sizes can be
analysed efficiently. The estimated miss ratio is known
to fall within a confidence interval with a confidence
percentage.

Fraguela, Doallo and Zapata [11] rely on a proba-
bilistic argument to analyse the same class of loop nests
as the CMEs. While they have applied their method
to some imperfect loop nests, the pair of references in-
volved must be from a single perfect loop nest.

Chatterjee et al [6] present a method for ezactly
modelling the cache behaviour of loop nests. They
use Presburger formulas to specify a program’s cache
misses, the Omega Calculator [20] to simplify the for-
mulas, PolyLib [29] to obtain an indiscriminating union
of polytopes, and finally, Ehrhart polynomials to count
the number of integer points (i.e. misses) in each poly-
tope [7]. While the cache misses for both perfect and
imperfect loop nests containing possibly IF statements
can be specified, they do not yet have a practical algo-
rithm for finding cache misses from this specification.

In [28], we present a method for analysing the cache
behaviour of whole programs (consisting of parallel
loop nests and call statements) with regular compu-
tations. In this paper, we describe our technique for
analysing loop nests with IF conditionals, which is the
basis for the HPCA paper but was cited only as a tech-
nical report there due to space limitations.

There has been a great deal of research on applying
loop and data transformations to improve the cache
performance of loop-oriented codes [13, 16, 18, 22, 31,
30]. In particular, researchers have explored the use
of various compiler heuristics and simple cache cost
models to choose appropriate tile sizes [5, 8, 15, 30]
and appropriate padding amounts [16, 22]. Analytical
methods promise to provide more accurate knowledge

11

about cache misses to guide a range of compiler opti-
misations.

9 Conclusion

We have presented an analytical method for
analysing the cache behaviour of perfect loop nests
containing IF statements with compile-time-analysable
conditionals. In the presence of these conditionals, dif-
ferent references may be executed in different parts of
iteration spaces, which are not necessarily convex. We
described how reuse vectors are calculated and how the
miss equations are formed and solved. Our replacement
miss equations are formulated and solved by taking into
account the fact that the RISs for different references
can be different. We have presented two algorithms
for finding the cache misses from these miss equations.
FindMisses, which analyses all points in a reference it-
eration space, is applicable to programs of small prob-
lem sizes. In addition, this algorithm has been used
to evaluate the accuracy of our analytical framework.
EstimateMisses analyses a sample of a reference itera-
tion space and achieves close to real cache miss ratio
in practical cases efficiently. We have done extensive
experiments over a range of programs. Our experimen-
tal results show that our method, together with loop
sinking, can be used to analyse 17% more loop nests in
SPEC{p95, Perfect Suite, Livermore kernels, Linpack
and Lapack than previously [13, 26].

While this work represents a useful step towards a
mechanical analysis of complex program constructs,
there are several important constructs that are still
non-analysable, including data-dependent conditionals
and pointers. We are presently working on developing
an analytical method for their efficient analysis. We
intend to investigate benefits and limitations of this
challenging but important research direction.

10 Acknowledgements

Thanks to Josep Llosa of Universitat Politécnica de
Catalunya for his helpful comments on an early draft
of this paper. This work has been supported by an
Australian Research Council Grant A10007149.

References

[1] G. Ammons, T. Ball, and J. Larus. Exploiting hard-
ware performance counters with flow and context sen-
sitive profiling. In ACM SIGPLAN’97 Conference on
Programming Language Design and Implementation
(PLDI’97), pages 85-96, 1997.

E. Ayguadé, C. Barrado, A. Gonzélez, J. Labarta,
J. Llosa, D. Lépez, S. Moreno, D. Padua, F. Reig,
Q. Riera, and M. Valero. Ictineo: a tool for research

[10]

[11]

[12]

[13]

[14]

[15]

[16]

on ILP. In Supercomputing’96, 1996. Research Exhibit
“Polaris at Work”.

N. Bermudo and X. Vera. Coyote project: Docu-
mentation. Technical Report MRTC Report 39/2001,
Malardalens Hogskola, Oct. 2001.

N. Bermudo, X. Vera, A. Gonzdlez, and J. Llosa. An
efficient solver for cache miss equations. In IEEE In-
ternational Symposium on Performance Analysis of
Systems and Software (ISPASS’00), 2000.

S. Carr and K. Kennedy. Compiler blockability of nu-
merical algorithms. In Supercomputing ’92, pages 114—
124, Minneapolis, Minn., Nov. 1992.

S. Chatterjee, E. Parker, P. J. Hanlon, and A. R.
Lebeck. Exact analysis of the cache behavior of
nested loops. In ACM SIGPLAN’01 Conference on
Programming Language Design and Implementation
(PLDI’01), 2001.

P. Clauss. Counting solutions to linear and non-linear
constraints through Ehrhart polynomials. In ACM In-
ternational Conference on Supercomputing (ICS’96),
pages 278-285, Philadelphia, 1996.

S. Coleman and K. S. McKinley. Tile size selection us-
ing cache organization and data layout. In ACM SIG-
PLAN’95 Conference on Programming Language De-
sign and Implementation (PLDI’95), pages 279-290,
June 1995.

K. A. Faigin, J. P. Hoeflinger, D. A. Padua, P. M.
Petersen, and S. A. Weatherford. The Polaris inter-
nal representation. International Journal of Parallel
Programming, 22(5):553-586, Oct. 1994.

J. Ferrante, V. Sarkar, and W. Thrash. On estimat-
ing and enhancing cache effectiveness. In Jth Work-
shop on languages and compilers for parallel comput-
ing (LCPC’91), pages 328-343, 1991.

B. B. Fraguela, R. Doallo, and E. L. Zapata. Auto-
matic analytical modeling for the estimation of cache
misses. In International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT’99),
1999.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for
cache and local memory management by global pro-
gram transformations. Journal of Parallel and Dis-
tributed Computing, 5:587-616, 1988.

S. Ghosh, M. Martonosi, and S. Malik. Cache miss
equations: a compiler framework for analyzing and
tuning memory behavior. ACM Transactions on
Programming Languages and Systems, 21(4):703-746,
1999.

S. Ghosh, M. Martonosi, and S. Malik. Auto-
mated cache optimizations using CME driven diag-
nosis. In International Conference on Supercomputing
(ICS’00), pages 316-326, 2000.

F. Irigoin and R. Triolet. Supernode partitioning. In
15th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 319-329, San Diego, Cal-
ifornia., Jan. 1988.

M. Kandemir, A. Choudhary, J. Ramanujam, and
P. Banerjee. Improving locality using loop and data
transformations in an integrated framework. In In-
ternational Conference on Microprogramming and Mi-
croarchitecture, pages 285296, 1998.

12

[17]

[23]

[24]

[25]

[26]

[27]

I. Kodukul, N. Ahmed, and K. Pingali. Data-centric
multi-level blocking. In ACM SIGPLAN ’97 Con-
ference on Programming Language Design and Im-
plementation (PLDI’97), pages 346-357, Las Vegas,,
1997.

K. McKinley, S. Carr, and C.-W. Tseng. Improv-
ing data locality with loop transformations. ACM
Transactions on Programming Languages and Sys-
tems, 18(4):424-453, Jul. 1996.

A. K. Porterfield. Software Methods for improvement
of cache performance on supercomputer applications.
PhD thesis, Department of Computer Science, Rice
University, May 1989.

W. Pugh. The omega test: A fast and practical inte-
ger programming algorithm for dependence analysis.
Commun. ACM, 35(8):102-114, Aug. 1992.

W. Pugh. Counting solutions to Presburger formu-
las: how and why. In ACM SIGPLAN’94 Conference
on Programming Language Design and Implementa-
tion (PLDI’9/), pages 121-134, 1994.

G. Rivera and C.-W. Tseng. Data transformations
for eliminating conflict misses. In ACM SIGPLAN’98
Conference on Programming Language Design and Im-
plementation (PLDI’98), pages 38-49, 1998.

Y. Song and Z. Li. New tiling techniques to improve
cache temporal locality. In ACM SIGPLAN ’99 Con-
ference on Programming Language Design and Imple-

mentation (PLDI’99), pages 215-228, May 1999.

O. Temam, C. Fricker, and W. Jalby. Cache inter-
ference phenomena. In ACM SIGMETRICS’94 Con-
ference on Measurement and Modeling of Computer
Systems, pages 261-271, May 1994.

R. A. Uhlig and T. N. Mudge. Trace-driven mem-
ory simulation: a survey. ACM Computing Surveys,
29(3):128-170, Sept. 1997.

X. Vera, J. Llosa, A. Gonzdalez, and N. Bermudo. A
fast and accurate approach to analyze cache memory
behavior. In European Conference on Parallel Com-
puting (Europar’00), 2000.

X. Vera, J. Llosa, A. Gonzalez, and C. Ciuraneta. A
fast implementation of cache miss equations. In 8th In-
ternational Workshop on Compilers for Parallel Com-
puters (CPC’00), 2000.

X. Vera and J. Xue. Let’s study whole-program cache
behaviour analytically. In International Conference on
High Performance Computer Architecture (HPCA-8),
pages 175-186, Cambridge, Feb. 2002.

D. Wilde. A library for doing polyhedral operations.

Technical report, Oregon State University, 1993.

M. E. Wolf and M. S. Lam. A data locality optimiz-
ing algorithm. In ACM SIGPLAN’91 Conference on
Programming Language Design and Implementation
(PLDI’91), pages 30—44, Toronto, Ont., Jun. 1991.
M. J. Wolfe. High performance compilers for parallel
computing. Addison-Wesley, 1996.

J. Xue. Unimodular transformations of non-perfectly
nested loops. Parallel Computing, 22(12):1621-1645,
1997.

J. Xue. Loop Tiling for Parallelism. Kluwer Academic
Publishers, Aug. 2000.

J. Xue and C.-H. Huang. Reuse-driven tiling for data
locality. International Journal of Parallel Program-
ming, 26(6):671-696, 1998.

