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Abstract—For resource-constrained embedded real-time sys-
tems, resource-efficient approaches are very important. Such an
approach is presented in this paper, targeting systems where
a critical application is partitioned on a multi-core platform
and the remaining capacity on each core is provided to a non-
critical application using resource reservation techniques. To
exploit the potential parallelism of the non-critical application,
global scheduling is used for its constituent tasks. Previously, we
enabled intra-application resource sharing for such a framework,
i.e. each application has its own dedicated set of resources.
In this paper, we enable inter-application resource sharing, in
particular between the critical application and the non-critical
application. This effectively enables resource sharing in a hybrid
partitioned/global scheduling framework on multiprocessors. For
resource sharing, we use a spin-based synchronization protocol.
We derive blocking bounds and extend existing schedulability
analysis for such a system.

I. INTRODUCTION

The trend from the traditional single-core1 processors to
multi-core processors for embedded systems, demands for a
proper scheduling framework for multiprocessors. For em-
bedded real-time systems, which are resource constrained,
such a framework must support resource-efficient approaches.
From an industrial point of view, co-existence of multiple
independently developed real-time applications on a shared
multi-core platform is an effective and a resource-efficient
solution, since it allows re-usability of applications and de-
creases system power consumption and costs. Whereas each
application initially had the entire platform at its disposal, a
move towards a shared multi-core platform may result in inter-
application resource sharing, however, e.g. operating system
primitives, buffers, and memory mapped I/O. Moreover, these
applications may have different criticality levels. In this paper
we consider two criticality levels , i.e. critical and non-critical,
and we present an approach enabling resource sharing between
critical and non-critical applications on a multi-core platform.

Traditionally, two scheduling approaches exist for multi-
processor systems called partitioned and global scheduling.
Under partitioned scheduling, tasks are statically assigned to
processors at design time and will only execute on those
processors during run-time. Under global scheduling, tasks are
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1In this text we will use core and processor interchangeably.

selected from a system wide unique global queue at run time
and are scheduled on any available processor. Although global
scheduling better utilizes the processors’ capacity compared
to partitioned scheduling, it introduces more overhead due to
potential migrations of tasks among processors.

In practice, such as the automotive industry [1], critical
applications are partitioned on multi-core platforms. Resource-
efficient solutions for embedded systems suggest to further
utilize the remaining capacity on each core. In this paper,
we target such a resource-efficient platform where a crit-
ical application is partitioned and the remaining capacity
on each core is made available to a non-critical application
through resource-reservation techniques. Resource reservation
techniques (servers) are used to guarantee temporal isolation
between critical and non-critical applications which can bound
the interference of non-critical application to the critical appli-
cation. To exploit the potential parallelism of the non-critical
application on the multi-core platform, global scheduling is
offered to schedule its constituent tasks.

A specific instantiation of such a framework has been
studied in [29] assuming tasks share no resources, except the
CPU. In [3], we enabled intra-application resource sharing
assuming each application has a dedicated set of resources.
In this paper, we enable inter-application resource sharing.
This gives rise to three challenges. Firstly, resource-reservation
techniques provide temporal isolation for a core but not for
other shared resources. Secondly, existing synchronization
protocols cannot be used without modification due to hy-
brid partitioned/global scheduling structure. Thirdly, blocking
terms have to be bounded, and derived bounds have to be
incorporated in the existing response time analysis introduced
in [29]. We briefly consider the first two challenges in more
detail below.

Enabling inter-application resource sharing endangers the
predictability of the critical application, because a task of the
non-critical application may use the resource for a longer time
than anticipated. To address this problem, we assume that our
platform supports three different types of shared resources:
(i) resources with guaranteed bounds on access times, such
as operating system primitives, (ii) abortable resources, where
access can be aborted upon an overrun of anticipated access
times, making the resources available to other tasks [27],
[19], and (iii) resources where a roll-back mechanism can be
used upon an overrun, similar to [5]. The latter two types of
resources require a monitoring mechanism, similar to resource978-1-4673-7711-9/15/$31.00 c© 2015 IEEE



reservation. To accommodate for the overhead of a roll back
in the analysis, the anticipated resource-access time can be
inflated with the maximum overhead of a roll-back.

The existing synchronization approaches, which have been
presented for either partitioned or globally scheduled systems,
cannot be used without modifications for our hybrid parti-
tioned/global framework. In this work, we provide a resource-
sharing protocol based on FIFO-queues and a spin-based
locking technique, where a task performs a busy-wait loop
(called also spin) whenever a request on a global resource
cannot be immediately satisfied. An important quality of spin-
based protocols is that on every processor only one task at the
time can request and access a global resource. Preserving that
quality guarantees several interesting properties such as: (i) the
size of the global FIFO queues are bound to the number of
processors in the system, (ii) a task may experience blocking
from at most one resource access of any lower priority task
on the same core, and (iii) one stack can be used for the tasks
statically allocated to a core.

Contributions: In this paper, we enable resource sharing for
a hybrid partitioned/global scheduling framework. We modify
existing spin-based protocols such that interesting properties of
spin-based approaches are maintained for our framework. We
bound the blocking delays incurred to the tasks in the system
and incorporate these bounds in the existing schedulability
analysis proposed for this hybrid system.

The rest of this paper is structured as follows: Section II
summarizes the existing related works in this context. Sec-
tion III defines the model of our system and provides the
resource sharing rules. Sections IV presents an overview of
the existing analysis and spin-based approach. Sections V
and VI present the blocking bounds incurred to partitioned and
globally scheduled tasks, respectively. Sections VII and VIII
present the new response time analysis based on the resource
sharing parameters and the schedulability test steps for this
framework, respectively. Finally, Section IX concludes.

II. RELATED WORKS

Hierarchical scheduling in combination with resource reser-
vation techniques for multiprocessor platforms has been stud-
ied [14], [26], [20], [29] where it is assumed that tasks are
independent and they do not share any resources other than the
CPU. A significant amount of work has been presented in the
context of multiprocessor resource sharing. In the following,
we briefly present the most related synchronization protocols
for multiprocessor systems.

The Distributed Priority Ceiling Protocol (DPCP) is a
suspension-based synchronization protocol presented in [23]
which has been developed for partitioned static priority
scheduling. The Multiprocessor Priority Ceiling Protocol
(MPCP) which is a variant of the Priority Ceiling Proto-
col (PCP) [25] for multi-core platforms was introduced for
partitioned systems [24], [23]. MPCP is a suspension-based
protocol. The Multiprocessor Stack Resource Policy (MSRP)
which is an extension of the Stack Resource Policy (SRP) [6]
for multiprocessors has been introduced in [17] for partitioned
systems. MSRP is a spin-based approach.

The Flexible Multiprocessor Locking Protocol (FMLP) has
been introduced in [9] under two variants for partitioned
and global scheduling respectively. FMLP uses spin-based
approach and suspension-based approaches for short and long
resources, respectively. The partitioned FMLP was extended
for fixed priority scheduling in [10]. A synchronization pro-
tocol called O(m) Locking Protocol (OMLP) which is a
suspension-based approach, has been proposed in [11], for
both partitioned and global scheduling.

The Multiprocessor Synchronization Protocol for Open
Systems (MSOS) presented in [22], is a suspension-based
preemptive synchronization protocol that has been developed
for compositional independently-developed real-time applica-
tions. Later in [4] MSOS was extended for priority-based
applications which has shown improvement in the schedula-
bility performance. In [12] resource sharing for cluster-based
scheduling has been presented. Under cluster-based scheduling
tasks are bounded to clusters of processors and are scheduled
globally within each cluster. In [16], a schedulability analysis
based on worst-case response times has been presented under
fixed priority global scheduling for PIP and Parallel PCP (P-
PCP) synchronization protocols.

All aforementioned synchronization protocols have been
introduced either for partitioned or globally scheduled systems,
and cannot be used under the hybrid scheduling framework
presented in this paper.

III. SYSTEM MODEL

A. Task Model

Each task τi is presented by < Ci, Di, Ti > and is
constituted of an infinite sequence of jobs. Ci is the worst-case
execution time of any job of τi, Di is the relative deadline and
Ti is the minimum inter arrival time between two successive
jobs of task τi. We assume a constrained-deadline task model,
i.e., Di ≤ Ti. The priority of a task τi is denoted by ρi, where
ρi > ρj if i > j. ai and di denote the arrival time and the
absolute deadline of any job instant of a task τi, respectively.

B. Architecture and Scheduling Strategy

Our system model consists of m identical unit capacity
processors. The systems consist of two different types of
tasks: (i) tasks which are partitioned over the platform and
are referred to as non-migrating tasks, and (ii) tasks which are
scheduled globally within a set of servers which are referred
to as migrating tasks. The remaining capacity on each core (if
any) is provided to migrating tasks by means of a server on that
core which uses a similar technique as synchronized deferrable
servers (similar to [29]). For the sake of presentation simplicity
we assume that each core accommodates one server which
has the highest priority on the core similar to [29]. However,
the model and accompanying analysis can be generalized to
the case where server may have any arbitrary priority as
in [28]. This maybe helpful if some tasks related to the set of
partitioned tasks have tight finalization jitter constraints due
to belonging to a critical application. Thus, to remove the
effects of induced jitter by the server, the server may get a
priority lower than that of such tasks on the core. Moreover,



the analysis can also be extended to accommodate multiple
servers per core similar to [28].

In this work, since inter-application resource sharing is
enabled, deferrable servers cannot be used precisely as in [29]
without adjustments. We have provided refinements to the
technique of these servers by Definition 6 in Section III-D and
Rules 15 and 16 in Section III-E5 so that we can use them
under our resource sharing approach. We use SPk

to denote the
server dedicated to a processor Pk. The total budget of a server
SPk

is denoted by CPk
. For ease of presentation, a common

replenishment period Ts is used for all servers similar to [29],
however each server can have a different replenishment period.

Moreover, the set of migrating and non-migrating tasks in
the system are denoted by T m and T nm, respectively. The
set of non-migrating tasks allocated to a processor Pk is
denoted by T nm

Pk
. The priority of non-migrating tasks related

to applications are assigned according to a fixed priority
algorithm (e.g. the rate monotonic (RM) technique) on a
processor. The priority of the server SPk

is denoted by ρSk
and

is the highest priority on the core, i.e., higher than the highest
priority in the set T nm

Pk
(see Def. 1). The reason is that, based

on the resource efficient model of the scheduling framework
used here, the budget of the server on a core is determined
by the available slack from the non-migrating tasks on that
core. Thus, the interference from the server to non-migrating
tasks on the same core does not jeopardize the scheduling of
those tasks. Further, by setting the priority of the server to
the highest on a processor, no extra local blocking delay is
imposed to the non-migrating tasks from the server on the
same core. Note that, non-migrating tasks and migrating tasks
belong to different applications, therefore, the priority of non-
migrating tasks is irrelevant from those of migrating tasks.

The partitioning technique used for non-migrating tasks
is not the focus of this work and we leave it as a future
optimization step. Due to the complexity of the problem, for
the first step, we assume that there exists an allocation solution.

C. Resource Sharing Parameters

Two types of resources may exist in the system: local and
global resources. Local resources are those that are accessed
by tasks on the same processor, only whereas global resources
are accessed by tasks on more than one processor. By such
definition, local resources are used by non-migrating tasks
only. Further, all resources accessed by migrating tasks are
global resources by definition. RL

Pk
denotes the set of local

resources that are accessed by (jobs of) tasks on a processor
Pk.RSLi andRSGi denote the set of local and global resources
accessed by jobs of a task τi, respectively. Moreover, the
longest execution time among all requests of any job of a task
τi on a resource Rq is denoted by Csi,q . Maximum number of
requests for any global resource and a specific global resource
Rq of a task τi ∈ TPk

are denoted by nGi and nGi,q , respectively.
We use RSi, ni and ni,q , to denote the set of resources

accessed by jobs of a task τi, the maximum number of resource
requests of any job of a task τi on any resource and on a
specific resource Rq , respectively. Nested access of resources
is not the focus of this paper and is not considered here,

however it can be supported by using group locks similar
to [9].

D. General Definitions
In the following a set of definitions are presented which

will be used in the rest of this paper. The definitions that are
designed only for this work has been specified. We provide
Def. 6 to make sure that a migrating task completes its
resource access in case of server budget depletion to prevent
excessive possible blocking delays as well as accelerating the
release of a resource.

Def. 1. (new) The highest priority on a processor Pk is
denoted by ρmax

Pk
and since based on our system model the

server on the core (if any) has the highest priority, it is denoted
as follows: ρmax

Pk
= ρSk

+ 1. (1)
Def. 2. (new) The highest priority within migrating tasks is
denoted by ρmax

T m and is presented as follows:
ρmax
T m = max

∀τi∈T m
ρi. (2)

Def. 3. ([6]) Ceiling-based resource-access protocols assign
a resource ceiling to any local resource R` ∈ RL

Pk
, where

ceilPk
(R`) = max{∀ρi| τi ∈ T nm

Pk
∧R` ∈ RSLi }.

Def. 4. ([2], adjusted) The maximum time for a task running
on a processor Pk that needs to spin to acquire a global
resource Rq , which is held on a remote processor, is referred
to as spin-lock time for resource Rq . The spin-lock time of a
non-migrating task on Pk for Rq is denoted by spinPk,q and
for a migrating task τi ∈ T m is denoted by spini,q .

Def. 5. ([2]) The maximum time for a task τi that needs to spin
to acquire all its global resources is referred to as spin-lock
time of task τi and is denoted by spini.

Def. 6. (new) The total budget of a server is comprised
of two parts: (i) normal execution budget, and (ii) overrun
budget2. We denote the normal execution budget of a server
on processor Pk by Cnrm

Pk
and the overrun budget as Covr

Pk
,

where CPk
= Cnrm

Pk
+ Covr

Pk
.

Based on Definition 6, Covr
Pk

is the maximum spin-lock time
for any resource of any migrating task plus the maximum
worst-case critical section length for any resource of any
migrating task as presented in below.

Covr
Pk

= max
∀i,q:τi∈T m

∧Rq∈RSG
i

(spini,q + Csi,q).
(3)

The budget of a server on a processor Pk, i.e., CPk
, is

calculated based on the remaining slack on the core which
will be explained later in Section VIII.

E. Scheduling and Resource Sharing Rules
In this section we present the scheduling and resource

sharing rules used for the hybrid framework presented in
this paper. For scheduling tasks within this framework a two
level hierarchical intra-core and inter-core scheduling is used.
We use a spin-based resource sharing approach similar to
MSRP [17] where a task spins with the highest priority on
a core when it is waiting for a resource. Similar to MSRP, we
use FIFO-based queues to enqueue the requests of those tasks.

2The overrun budget is used in a similar way as in [18], [15] and [7].



1) Intra-Core Scheduling: We model a server SPk
as a task

on Pk with execution time CPk
and period Ts. By means

of such a view, the intra-core scheduling approach schedules
non-migrating tasks along with the server (if any) dedicated
on each core by using uniprocessor fixed-priority preemptive
scheduling.

2) Inter-Core Scheduling: The inter-core scheduling ap-
proach schedules migrating tasks within the servers using
global scheduling. We use a similar scheduling approach as
in [29]. For the sake of completeness we present the rules of
this scheduling in the following. Rules 1 and 2 are similar
rules as in [29]. Rule 3 is a new rule and is provided due to
resource sharing.

Rule 1. Migrating tasks are scheduled among servers from
a global priority-ordered ready queue using a priority-based
preemptive scheduling. Migrating tasks are added to the queue
after they are released or preempted.

Rule 2. If multiple servers belonging to an application are
available (i.e. the server is not preempted and it has remain-
ing capacity) the highest priority (ready) migrating task is
scheduled in the server with the largest capacity.

Rule 3. After a migrating task releases a resource if the nor-
mal budget of the server has been depleted, the migrating task
is preempted and re-scheduled among the available servers.

3) Resource Sharing Among Non-Migrating Tasks: Since
from a core scheduling point of view, servers behave similar
to tasks, therefore, a spin-based resource sharing approach
identical to MSRP [17] is used for non-migrating tasks on the
core level. Next, for the sake of protocol completeness, we
briefly recapitulate the resource sharing rules of such spin-
based approach that is conformed for our system model.

Rule 4. Local resources are handled by means of a unipro-
cessor synchronization protocol e.g. SRP or PCP.

Rule 5. For each global resource a FIFO-based queue is used
to enqueue the tasks waiting for the related resource.

Rule 6. Whenever a task τi ∈ T nm
Pk

(i.e., a non-migrating
task) requests a global resource which is held by another task
on a different processor, it places its request in the associated
resource queue and performs a busy wait (also called spin).
The task spins with ρmax

Pk
priority level (see Definition 1).

Rule 7. The priority of the task is changed to its normal
(original) priority as soon as it releases the global resource.

Rule 8. When the resource is released, the task at the head
of the resource global queue (if any) resumes and locks the
resource.

4) Resource Sharing Among Migrating Tasks: Similar to
non-migrating tasks, we use a spin-based resource sharing
approach for migrating tasks as well. One important property
of a spin-based approach is that only one pending request
on a global resource can exist at any time on any processor
(Lemma 12 in [2]). Due to the hybrid structure of partitioned
and global scheduling of our system model, adjustments to

spin-based protocol is required to guarantee this property.
In order to preserve such a property, it is desirable that
migrating tasks have a similar behavior as partitioned tasks
when they block on a resource. Therefore, the rules in this
section has been provided to fulfill this property. We will
show later by Lemma 3 in Section V, how this property is
maintained. As mentioned in Section III-C, by definition all
resources requested by migrating tasks are global resources.
Therefore Rule 4 does not apply for migrating tasks, whereas
Rules 5, 7, 8 are applied also for migrating tasks. We extend
Rule 6 to Rules 9, 10 and 11 for migrating tasks.

Rule 9. Whenever a migrating task τi requests a global
resource, the priority of the task is boosted to ρmax

T m (Def. 2)
and if the request is not satisfied, i.e., the resource is held by
another task, it places its request in the associated resource
queue and spins.

Rule 10. A migrating task consumes the normal execution
budget of a server while spinning if the server has normal
execution budget left. Otherwise it will consume from the
overrun budget to spin.

Rule 11. If a migrating task is granted access to a resource
but the normal execution budget of the server is finished, the
task consumes from the overrun budget of the server to execute
its critical section.

5) Server Rules: As mentioned in Section III-B, for
scheduling the migrating tasks we use servers that are similar
to deferrable servers. However, since resource sharing is used
here, we have extended the rules of such servers so that they
can be used under our system model. In this section we
recapitulate the rules of such servers and present new rules
(Rules 15 and 16) that are adjusted according to our resource
sharing rules.

Rule 12. In each server period, ready tasks run in the server
by consuming the available (normal) server budget until the
budget is depleted. If there is no workload, the (normal) server
budget is preserved.

Rule 13. In each server replenishment period the total budget
of the server on a processor Pk is replenished to CPk

.

Rule 14. If there is no pending workload, the server is
suspended.

Rule 15. If until the end of a replenishment period, normal
execution budget is left, both the remaining execution budget
as well as the overrun budget are discarded.

Rule 16. As soon as the task, which is consuming from the
overrun budget, releases its resource the remaining overrun
budget of the server is discarded.

IV. OVERVIEW OF EXISTING APPROACHES

In this section we briefly present a recap of the server-based
scheduling analysis without resource sharing presented in [29]
and spin-based resource sharing in sections IV-A and IV-B,
respectively.



A. Response Time Analysis of Migrating Tasks

The response time analysis for server-based scheduling
assuming that tasks are independent (i.e. without any resource
sharing) has been studied in [29]. According to this analysis,
a job’s scheduling window (i.e. when the job is released until
it finishes which is the response time interval of the job) is
divided into two intervals called head and body. The head of
a job is the interval between the arrival of the job and the first
server replenishment, and the body is the rest of the interval,
as shown in Figure 1 in Section VII. The worst-case response
time of a task τi is specified by the response time of τi’s
critical instant. Following this, the head and body of the critical
instant of τi is called the critical head and the critical body
denoted by HC

i and BC
i (t), respectively. However, finding the

exact critical instant is a challenge in multiprocessor systems,
therefore an upper bound for such an instant is calculated.
Following this, a notion of upper bound on the critical head
and critical body are introduced and identified by ĤC

i and B̂C
i ,

respectively. As a result, the worst-case response time of a task
τi ∈ T m is bounded by the smallest solution of the equation
if there exist one set of servers belonging to one application,
where each server has the highest priority on a core.

t ≤ ĤC
i + B̂C

i (t), (4)

where, ĤC
i and B̂C

i (t) are calculated as follows:

ĤC
i = Ts − Cmin

s , (5)
where, Cmin

s = min∀k:1≤k≤m CPk
is the lowest capacity

among all servers and Ts is the server replenishment period.

B̂C
i (t) = RHL/i(t) +Ri/HL(t), (6)

where RHL/i(t) denotes the time needed to process the
workload of tasks with higher and lower priority than that
of task τi and Ri/HL(t) is the time needed to process τi itself
after the higher and lower priority workload is finished [29].

B. Spin-Based Resource Sharing under Partitioned Scheduling

Under the spin-based resource sharing approach when a task
spins, it spins with a priority higher than any priority level
on the core, therefore, a task becomes non-preemptive while
spinning. This protocol is similar to MSRP [17] and FMLP
for short resources [9], [10]. Below we will briefly recapitulate
the blocking terms that occur under this protocol.

Local blocking due to local resources incurred to a task
τi ∈ T nm

Pk
is upper bounded as follows:
BL
i = max

∀j,l:ρj<ρi∧ τi,τj∈τPk

∧ Rl∈RSL
j ∧ ρi≤ceilPk

(Rl)

{Csj,l}.
(7)

Local blocking due to global resources incurred to a task
τi ∈ T nm

Pk
is upper bounded as follows:

BG
i = max

∀j,q:ρj<ρi∧τi,τj∈T nm
Pk

∧Rq∈RSG
j

{Csj,q + spinPk,q}.
(8)

The total local blocking that is incurred to a task τi is
denoted by Bi and is calculated as follows:

Bi = max{BL
i , B

G
i }. (9)

spinPk,q (see Definition 4) is upper bounded as follows:

spinPk,q =
∑
∀Pr 6=Pk

max
∀τj∈TPr,q

Csj,q. (10)

spini (see Definition 5) is calculated as follows:

spini =
∑

∀q:Rq∈RSG
i

∧τi∈T nm
Pk

nGi,q × spinPk,q. (11)

The critical section length of a task and consequently its
execution time will be increased by spinning. Therefore, the
actual execution time of a task τi is denoted by Ći and is
calculated as follows:

Ći = Ci + spini. (12)

V. BLOCKING TERMS OF NON-MIGRATING TASKS

In this section we present the blocking bounds incurred to
non-migrating tasks. First, we show by means of Lemma 3 that
according to our provided rules, the property of a spin-based
approach such as MSRP, where only one task at any time can
have a pending request for a global resource, is also hold here.
However, when calculating the maximum spin-lock time of a
global resource by a non-migrating task τi, it is realized that
the resource may be in use on a different core by either a
non-migrating or a migrating task. Therefore, (10) cannot be
used anymore and adjustment to the equation is needed which
is presented in Lemma 4. We first present Lemmas 1 and 2
which are essential for the proof of Lemma 3.

Lemma 1. Only one migrating task can use the overrun
budget of a server on a core (see Definition 6).

Proof: It is immediately inferred from Rules 10, 11
and 16.

Lemma 2. A migrating task that issues a request for a
resource does not get preempted on the core on which it has
issued the request, until it releases the resource.

Proof: According to Rule 9, a migrating task that requests
a resource becomes non-preemptive from other migrating
task’s point of view. Note that the server has the highest
priority on the core according to the system model assumption,
thus the server that is running the migrating task inside cannot
get preempted by arrival of any non-migrating task. Therefore,
the only possibility for a migrating task with that has issued a
resource request to be preempted on the core is the depletion
of the server budget. However, based on the construction
of Definition 6 and having in mind Rules 10 and 11, it is
guarantee that the server budget is enough until any migrating
task that has requested a resource remain on the core until
it releases its resource. Moreover, according to Lemma 1 no
migrating task can use the remaining of the overrun budget
that has already been used by another migrating task which
removes the possibility of the depletion of that budget while
a migrating task is consuming it. This finishes the proof.

Lemma 3. In our hybrid system model, only one task on any
core can have a pending request on a global resource at any
time.



Proof: We investigate the lemma for both non-migrating
and migrating tasks, separately. According to Rule 6 when
a non-migrating task on a processor Pk issues a request for
a global resource, it becomes non-preemptive on Pk until it
releases the resource. Therefore, no other non-migrating task
as well as the server on that core can preempt it. Moreover,
when a migrating task issues a resource request, according
to Lemma 2 it cannot be preempted on the core where it
issued the request until it accesses and releases the resource.
As a result, if either a non-migrating task issues a resource
request on a processor, or a migrating task does, it cannot be
preempted on that core until the task releases the resource.
This finishes the proof.

Lemma 4. For a task τi ∈ T nm
Pk

, spinPk,q (see Definition 4)
is upper bounded as follows:

spinPk,q =
∑
∀Pr 6=Pk

max( max
∀τj∈TPr

∧Rq∈RSG
j

Csj,q, max
∀τh∈T m

∧Rq∈RSG
h

Csh,q).

(13)

Proof: According to Rule 6, when a non-migrating task
on a processor Pk issues a request for a global resource Rq
which is hold by another task, it spins non-preemptively on
Pk. Therefore, it can be delayed to access the resource, only
by tasks using the same resource on a different processor.
The maximum waiting time of any non-migrating task for a
resource Rq on a processor Pk is when all tasks that use this
resource have requested it on other cores earlier than the task
on Pk and put their requests ahead of this task in the FIFO
queue. Moreover, according to Lemma 3, only one task can
have a pending request for a global resource at any time on
any processor. This means that, when a non-migrating task
on Pk requests a resource Rq , only one task’s critical section
on Rq from any other core can delay the task on Pk. On
the other hand, the resource might be used by either a non-
migrating task or a migrating task on a different core than Pk.
As a result, under the worst-case scenario, a request on Rq
by a non-migrating task on a processor Pk is delayed by the
longest critical section on Rq from all other processors than
Pk by either a non-migrating task or a migrating task. This
finishes the proof.

Spin-delay time of a non-migrating task τi, i.e., spini (see
Definition 5), is calculated according to (11) by using (13) for
spinPk,q . Similar to spin-based approaches such as MSRP, the
spin-delay time is incorporated in the worst-case execution
time of a non-migrating task as an inflation according to
(12). Since a non-migrating task will only experience local
blocking from the critical section of the lower priority non-
migrating tasks, thus the local blocking due to local and
global resources and the total local blocking incurred to a
task τi ∈ T nm

Pk
are calculated according to (7), (8) and (9),

respectively, where spinPk,q in (8) is calculated according
to (13) and not (10) anymore. Note that the schedulability
of non-migrating tasks takes the indirect blocking effect of
migrating tasks into account. This is reflected in the spin-
delay for a specific resource term as presented in (13) which
is incorporated in the schedulability of a non-migrating task
τi in the: (i) LBG term (8), as part of the blocking term Bi

(9) and, (ii) worst-case execution time of higher priority tasks
as presented in (12), as a part of interference.

VI. BLOCKING TERMS OF MIGRATING TASKS

In this section we provide the blocking bounds of migrating
tasks that is due to resource sharing of both non-migrating
tasks as well as migrating tasks.

A. Blocking by Non-Migrating Tasks

By viewing a server as a task that is scheduled along with
non-migrating tasks on the same core, similar to a normal
(non-migrating) task, the server may also experience blocking
due to non-migrating tasks requesting resources. To calculate
the maximum delay incurred to a server due to non-migrating
tasks sharing resources, we present the following lemmas by
utilizing the blocking terms presented in Section IV.

Lemma 5. No delay can be incurred to a server from non-
migrating tasks due to local resource access.

Proof: This is inferred from the fact that each server has
the highest priority (ρmax

Pk
) on each core and is viewed as a task

that shares no local resources with non-migrating tasks. Thus,
according to Definition 3 no local resource access by non-
migrating tasks can increase the priority of a non-migrating
task higher than the priority of a server on the related core.

Lemma 6. We denote the maximum blocking incurred to any
server SPk

due to non-migrating tasks on Pk accessing global
resources as BG

SPk
which is calculated as follows:

BG
SPk

= max
∀j,q:τj∈T nm

Pk

∧Rq∈RSG
j

{Csj,q + spinPk,q}.
(14)

Proof: It immediately follows from (8) and the fact that
a server is viewed as a task which according to our system
model has the highest priority (ρmax

Pk
) on the core.

Total Server Delay. Followed by Lemmas 5 and 6, the
maximum incurred delay to a server SPk

on a processor Pk
which has the highest priority (ρmax

Pk
) compared to any non-

migrating task on Pk is calculated as follows.
δSPk

= BG
SPk

. (15)

Since migrating tasks are scheduled within servers, they will
also experience the same delay incurred to the server. We show
in Section VII how this blocking delay is incorporated in the
response time of a migrating task.

B. Blocking By Migrating Tasks

A migrating task that is scheduled globally within a set of
servers may experience blocking due to other migrating tasks
requesting resources. A migrating task may experience two
types of blocking incurred by other migrating tasks: (i) spin-
lock time for a resource since another migrating task is holding
it (see Definition 4), and (ii) blocking incurred by migrating
tasks with lower priority when their priority is boosted due
to requesting a resource (Rule 9). To calculate the maximum
incurred blocking to a task due to case (i) and case (ii), we
present Lemmas 7 to 10.



Lemma 7. For a task τi ∈ T m, spini,q (see Definition 4) is
upper bounded as follows:

spini,q = max
∀Pk

∧CPk
6=0

(∑
∀Pr 6=Pk

max( max
∀τj∈TPr

∧Rq∈RSG
j

Csj,q, max
∀τh∈T m

∧τh 6=τi
∧Rq∈RSG

h

Csh,q)
)
.

(16)
Proof: According to Lemma 2, a migrating task τi that

issues a request for a resource, does not get preempted on
the core on which it has issued the request until it accesses
and releases the resource. Therefore, the task’s access to its
resource can be delayed only by tasks using the same resource
on a different processor. Similar to Lemma 4, the maximum
waiting time of τi for a request on Rq that is issued on Pk
is when all requests on cores other than Pk are served in a
FIFO manner earlier than τi’s request. Similarly, according to
Lemma 3, only one task from any other processor can have
a pending request on a global resource at any time. Thus, the
maximum delay to τi for a request on Rq that is issued on
Pk is equal to (13). However, since τi is scheduled globally
within the servers, different jobs of τi may be scheduled in any
server on any processor in the system. Therefore, to account
for maximum access delay to τi for Rq , we find the maximum
of such delay incurred to τi assuming it may issue its request
on any possible processor. This is shown by (16).

Similar to (11), the maximum delay that a migrating task
may experience for all its resource requests, i.e., spini, is
calculated as follows:

spini =
∑

∀q:Rq∈RSG
i

∧τi∈T nm
Pk

nGi,q × spini,q. (17)

Similar to non-migrating tasks, the worst-case execution time
of migrating tasks are also inflated by the spin-delay time
which is calculated according to (12). The reason is that when
a migrating task spins, it consumes the budget of the server,
as a result the spinning time is treated similar to the task’s
execution cost.

Lemma 8. Any job of a migrating task can be blocked at most
once by lower priority migrating tasks for every server period
during its execution.

Proof: A migrating task τi can get blocked by a lower
priority task when the lower priority task is non-preemptive
(see Rule 9). We divide the execution interval of τi into two
sub-intervals: (i) from the time when a job of τi arrives for
the first time until the first replenishment period, and (ii) any
upcoming server period where the execution of the job of τi
is still not finished, until τi finishes its execution. We discuss
the worst-case blocking scenario incurred to τi separately
under each case. In the first case, under a worst-case scenario,
when τi arrives, all tasks with priority lower than τi are non-
preemptive on the cores where servers are active (i.e., the
server has not been preempted on the core and it has normal
budget left). Thus, τi is once blocked under such situation.
However, as soon as any of such lower priority tasks become
preemptive, τi can preempt them and run. Under the second
case, let us assume τi starts executing in a server at time t1.
Now, let us assume at time t2 6= t1 the budget of the server

where τi is executing is depleted. However slightly before τ2
on all other cores where the server is active, a lower priority
migrating task is non-preemptable (similar to case (i)). Thus,
τi will experience again a blocking by lower priority migrating
tasks. The scenario under case (ii) can happen in every server
period that τi’s execution is not finished.

Lemma 9. The maximum amount of blocking incurred to any
job of a migrating task τi per server period is denoted as non-
preemptive blocking of τi in a server period and presented by
NPBsp

i which is upper bounded as follows:

NPBsp
i = max

∀j,q:ρj<ρi,Rq∈RSj

∧Rq∈RSi∧τi,τj∈T m

{Csj,q + spini,q}. (18)

Proof: A task with priority lower than that of τi can
become non-preemptive when either it is spinning or execut-
ing a critical section (see Rule 9). The worst-case blocking
scenario for τi in a server period happens when all tasks
with priority lower than τi are spinning for a resource on the
cores where servers are active (i.e., the server has not been
preempted on the core and it has normal budget left) since
under such scenario, τi will experience both a spin-delay as
well as an access delay of a lower priority migrating task. Such
a scenario is imaginable where one (or several) non-migrating
tasks are holding those migrating tasks’ requested resources
on the remaining cores. Moreover, according to Lemma 8,
any job of a migrating task is blocked at most once in each
server period. Thus, τi will experience at most one such delay
from any lower priority migrating task in a server period. This
finishes the proof.

Lemma 10. Total blocking incurred to a migrating task τi
during its execution due to non-preemptable execution of lower
priority migrating tasks is denoted by NPBtotal

i (t) which is
upper bounded as follows:

NPBtotal
i (t) = NPBsp

i × (
⌈
t
Ts

⌉
+ 1). (19)

Proof: It is immediately inferred from Lemmas 8 and 9
considering that τi experiences NPBsp

i delay once it arrives
and every time its execution is deferred to the next server
period until it is finished.

Later in Section VII we show how NPBtotal
i (t) and δSPk

terms are incorporated in the response time of a migrating
task.

VII. RESPONSE TIME ANALYSIS

The schedulability analysis of non-migrating tasks is eval-
uated based on the classical response time analysis [13].

Previously, in [29], the response time of a task τi, that
is processed by a set of servers which schedule a set of
independent tasks is presented which we also briefly presented
it in Section IV-A (see Appendix C for complete equations). In
this section, since resource sharing is enabled, new parameters
are added to the response time driven in [29]. A migrating
task may experience both the same delay that is incurred to
the server by non-migrating tasks and the delay that is caused
by other migrating tasks scheduled within the servers. In the
following we show how these delays are incorporated in the
response time of a task processed by servers presented in [29].



We showed in Section VI-A that by viewing the server on
a core as a task which has the highest priority, the server may
experience delay from non-migrating tasks on the same core
that access resources (see (15)). This means that a migrating
task executing inside the server will also experience this delay.
However, such delay to τi should be accounted once and only
in the last server period where τi finishes. This is due to the
fact that non-migrating tasks do not consume the server budget
and in the worst case the delay caused by these tasks will only
defer the execution of server. This is illustrated in Figure 1. As
a result, it is enough to add this delay to the total response time
of τi, once. Since a migrating task τi is scheduled globally,
it may be scheduled in any of the servers. As a result, the
maximum such delay which τi may experience, is calculated
by finding the largest delay imposed to any server. This is
presented by the last term in (20).

Besides this delay, a migrating task may also experience an
extra delay due to non-preemptive blocking by migrating tasks
while it is scheduled within the servers (see (19)). Note that, as
mentioned in Section VI-A, the spin-delay of a migrating task
presented by (17), is treated as part of the execution time of
the task, and thus is incorporated in the worst-case execution
time of the task.

As a result, the response time of a migrating task τi denoted
as WRm

i presented in (4) is updated by blocking delays as
below, where, WRm

i is the smallest solution to the following
equation.

t ≤ ĤC
i + B̂C

i (t) +NPBtotal
i (t) + max

∀Pk∧τi∈TAa

δSPk,Aa
.

(20)
Figure 1 illustrates the response time interval of a job of a

task τi. In [29], it has been shown that the worst-case arrival
scenario for a job of a task τi is when τi arrives slightly after
the minimum budget among the servers is depleted. Under our
presented model where tasks share resources, as described in
Lemma 9, a task may experience a non-preemptive blocking
when it arrives. Therefore, the worst-case arrival scenario of τi
is modified as illustrated in Figure 1. Note that, the total non-
preemptive blocking that can be incurred to τi in its response
time interval, i.e., NPBtotal

i (t) in (20), is the collection of
NPBsp

i delays in each server period as presented in (19).

server

Head

server replenishment

job’s arrival

job finishes

𝜏𝑖 execution

Body

delay (𝛿) to server

workload of other migrating tasks

𝐶𝑇𝑠
𝑚𝑖𝑛

𝑎𝑖

𝑊𝑅𝑖
𝑚

𝑁𝑃𝐵𝑖
𝑠𝑝

𝑇𝑠

Fig. 1. migrating task τi’s scheduling window

VIII. SYSTEM SCHEDULABILITY STEPS

To determine the schedulability of the critical and non-
critical applications, the following steps are performed. Firstly,
the partitioning and schedulability of the critical application

is determined. Secondly, it is checked whether or not the
non-critical application can be added to the platform without
jeopardizing the guarantees provided to the critical application.
This check is based on the anticipated access times of the
migrating tasks to shared resources. Thirdly, the total budget
of the server on each core (see Definition 6) is determined
based on the minimum slack among the non-migrating tasks
on the core. To find the budget on a core, a similar algorithm
as in [21] is used, where we incorporate the blocking terms
in the demand-bound function. Fourthly, the normal budget of
each server is validated to be non-zero by using (3). Finally,
the schedulability of the non-critical application is determined.

Although the critical application will inherently experience
interference from the non-critical application, its predictability
is guaranteed through a resource reservation technique for
the core combined with dedicated means to prevent resource
access-time overruns of the non-critical application.

IX. CONCLUSION AND FUTURE WORK

In this paper, we enable inter-application resource sharing in
a hybrid partitioned/global scheduling framework for multipro-
cessors. We extended existing synchronization protocols based
on FIFO-queues and spin-based techniques for such a hybrid
framework. Our resource-sharing approach preserves existing
properties of spin-based protocols, such as bounding the FIFO
queue size to the number of cores. We provided the block-
ing bounds under our presented protocol and incorporated
them in the existing response time analysis provided for this
framework. As future work we plan to improve the resource-
sharing approach for such a hybrid scheduling framework by
tightening the blocking bounds and to provide quantitative
evaluation results.
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APPENDIX A
PROCESSOR SLACK

In this section, we describe how to find the slack on a
processor in order to be assigned to servers as their budget.
In order to find the slack on a processor Pk, the minimum

slack among tasks with priority lower than that of the server
is found and not among the higher priority tasks. This is due
to the fact that server can only cause interference to tasks
with lower priority than itself. However, we still need to make
sure that the server itself is schedulable. For this purpose, we
assume the server as a task (denoted in the algorithm as τs with
Cs = 0 with priority ρs) where its inter arrival time is equal
to the server period (lines 3 to 5 in Algorithm 1). Therefore,
the minimum slack among all lower priority tasks as well as
τs, specifies the slack on Pk (line 15 in Algorithm 1). Slack
of a task is specified according to Algorithm 2. The calculated
slack of the task is then divided by FindSlack(τi)

dTi/Tse+1 to assign the
budget for one server period.

Algorithm 1 Processor Pk Budget Assigning Algorithm
1: Initialize ProcSlack
2: Initialize TaskList ← �
3: Initialize τs:{Cs, Ts}
4: Cs ← 0
5: for all τi ∈ TPk

do
6: if ρi < ρs then
7: τi added to TaskList
8: end if
9: end for

10: τs added to TaskList
11: for all τi ∈ TaskList do
12: slacki = FindSlack(τi)

dTi/Tse+1
13: end for
14: ProcSlack = min

∀τj∈TaskList
slackj

To find the slack of a task τi ∈ TPk
, the difference between

the incurred load to τi and the processor supply is calculated
at a set of check points in time (line 31 in Algorithm 2). The
check points are multiplications of all higher priority tasks’
period considered until the task τi’s period (lines 10 to 19 in
Algorithm 2). The task τi’s slack is the maximum value for
differences between the check points and the incurred load
in that point in time (lines 32 to 34 in Algorithm 2). The
algorithm returns a positive value which is the maximum slack
provided by task τi, otherwise it returns −1, if the task has a
negative slack which means that the task misses its deadline.
Note that the Ći in line 28 and the Bi in line 30 are calculated
according to Section V.

APPENDIX B
NOTATIONS

Here are the notations that have been used in this paper:
Pk: processor k.
τi: task i.
Ci: worst-case execution time of τi.
Ti: minimum inter arrival time of τi.
Di: relative deadline of τi.
ai: arrival time of any job instance of τi.
di: absolute deadline of any job of τi.
ρi: priority of τi.
T nm
Pk

: set of non-migrating tasks (tasks of the critical applica-
tion) assigned to Pk.
SPk,Aa

: server related to application Aa dedicated to core Pk.
CPk

: capacity of SPk
.

ρSk
: priority of SPk

.



Algorithm 2 FindSlack(τi)
1: Initialize checkPoint ← 0
2: Initialize checkPointList ← �
3: Initialize hpTaskList ← �
4: τi ∈ TPk
5: for all τh ∈ TPk

do
6: if ρh > ρi then
7: τh added to hpTaskList
8: end if
9: end for

10: for all τh ∈ hpTaskList do
11: k ← 1
12: checkPoint = k × Th
13: while checkPoint < Di do
14: if checkPoint /∈ checkPointList then
15: checkPoint added to checkPointList
16: end if
17: k + +
18: end while
19: end for
20: Di added to checkPointList
21: load ← 0
22: maxTaskSlack ← 0
23: for all t ∈ checkPointList do
24: hpInterference ← 0
25: slack ← 0
26: for all τh ∈ hpTaskList do
27: hpInterference + =

⌈
t
Th

⌉
× Ćh

28: end for
29: load = Ći + hpInterference+Bi
30: slack = t− load
31: if slack > maxTaskSlack then
32: maxTaskSlack ← slack
33: end if
34: end for
35: if maxTaskSlack < 0 then
36: return −1
37: end if
38: return maxTaskSlack

Ts: server replenishment period.
T m: set of migrating tasks.
Rq: resource q.
RL
Pk

: set of local resources accessed by tasks on Pk.
RSi: set of resources accessed by jobs of τi.
RSLi : set of local resources accessed by jobs of τi.
RSGi : set of global resources accessed by jobs of τi.
Csi,q: worst-case execution time in all τi’s requests on Rq .
nGi : maximum number of τi’s global requests.
nGi,q: maximum number of requests of τi for global resource
Rq .
ni,q: number of τi’s requests on Rq .
WRnm

i : worst-case response time of a non-migrating task τi.
WRm

i : worst-case response time of a migrating task τi.

APPENDIX C
HIGHER AND LOWER PRIORITY WORKLOAD RECAP

RHL/i(t) which is the upper bound of higher and lower
priority workload that is processed before a task τi ∈ TAa

is
calculated for t = WRm

i ) and is as follows:

RHL/i(t) = (d W i
HL(t)∑m

k=1 CPk
e − 1).Ts + tHL

res (t), (21)

where, W i
HL(WRm

i ) is specified according to ( 27) and tHL
res

is calculated as below:

tHL
res =



WHL
res (t)

m
if WHL

res (t) ≤ δ(m)

CP(k+1)
+

WHL
res (t)− δ(k + 1)

k
if δ(k + 1) < WHL

res (t) ≤ δ(k),

∀k: 1 ≤ k ≤ m− 1

WHL
res (t) = W i

HL(t)− (d W i
HL(t)∑m

k=1 CPk
e − 1).

m∑
k=1

CPk
. (22)

∀k : 1 ≤ k ≤ m : δ(k) =

m∑
p=k

CPp
+ CPk

.(k − 1). (23)

Ri/HL which denotes the upper bound of the needed time
to process τi after the higher and lower priority workload is
finished is calculated as follows:

Ri/HL =


Ci if Crmn,i

s ≥ Ci
Ts − tHL

res (t) + CRPi.Ts + Ci−

CRPi(t).min(

m∑
k=1

CPk
, Ts) otherwise

(24)
where,

CRPi(t) = dCi−Crmn(t)∑m
k=1 CPk

e − 1, (25)

Crmn(t) = min(

m∑
k=1

CPk
−WHL

res (t), Ts − tHL
res )(t). (26)

W i
HL(t) = W i

HP(t) +W i
LP(t), (27)

where W i
HP (WRm

i ) and W i
LP (WRm

i ) presents the upper
bounds of the workload of lower and higher priority tasks
in the interval of WRm

i as follows.
Zhu et al. [29] showed that the workload of the tasks with

lower priority than that of task τi also affect by the response
time of τi and is calculated as follows:

W i
LP(t) = min(

∑
j<i

RW i
j (t), CCLi(t)), (28)

where for t = WRm
i CCLi(t) can be bounded from above

as CCLi(WRm
i ) = (m − 1).Ci and RW k

j (t) is calculated
according to ( 30).

The workload of higher priority tasks than that of task τi
(W i

HP(WRm
i )) is calculated for t = WRm

i as follows:

W i
HP(t) =

∑
j>i

RW i
j (t), (29)

where RW i
j (WRm

i ) denotes the upper bound of the requested
workload of a task τj in the interval of WRm

i and is calculated
similar to [8] presented in (30).

∀j 6= i :
RW i

j (t) = Nj(t).Cj +min(Cj , t+Dj − Cj −Nj(t).Tj),
(30)

where Nj(t) =
⌊
t+Dj−Cj

Tj

⌋
.


