
Timing Analysis of Parallel Software Using
Abstract Execution

Andreas Gustavsson, Jan Gustafsson, and Björn Lisper

Mälardalen University, Väster̊as, Sweden
{andreas.sg.gustavsson,jan.gustafsson,bjorn.lisper}@mdh.se

Abstract. A major trend in computer architecture is multi-core pro-
cessors. To fully exploit this type of parallel processor chip, programs
running on it will have to be parallel as well. This means that even hard
real-time embedded systems will be parallel. Therefore, it is of utmost
importance that methods to analyze the timing properties of parallel
real-time systems are developed.
This paper presents an algorithm that is founded on abstract interpre-
tation and derives safe approximations of the execution times of parallel
programs. The algorithm is formulated and proven correct for a simple
parallel language with parallel threads, shared memory and synchroniza-
tion via locks.

Keywords: WCET, Parallelism, Multi-core, Abstract interpretation,
Abstract execution

1 Introduction

A real-time system is a system for which the timing behavior is of great impor-
tance. Hard real-time systems are such that failure to produce the computational
result within certain timing bounds could have catastrophic consequences. One
example of a hard real-time system is the airbag system in automotive vehicles,
another is the control system in airplanes.

A major trend in computer hardware design is multi-core processors. The
processor cores on such a chip typically share some resources, such as some level
of on-chip cache memory, which introduces dependencies and conflicts between
the cores. Processor chips of this kind are already (and will, in the future, be
even more extensively) incorporated in real-time systems.

To fully utilize the multi-core architecture, algorithms will have to be par-
allelized over multiple tasks (e.g. threads). This means that the tasks will have
to share resources and communicate and synchronize with each other. There
already exist software libraries for explicitly parallelizing sequential code auto-
matically. One example of such a library available for C/C++ and Fortran code
running on shared-memory machines is OpenMP [1]. The conclusion is that par-
allel software running on parallel hardware is already available today and will
probably be the standard way of computing in the future, also for real-time sys-
tems. Thus, it is of crucial importance that methods to derive safe estimations

on the lower and upper bounds of the execution times (also referred to as the
Best-Case and Worst-Case Execution Times – BCET and WCET– respectively:
see [2]) of parallel systems are derived.

This paper presents a novel method that derives safe estimations on the
timing bounds for parallel software. The method mainly targets hard real-time
systems but can be applied to any computer system that can be modeled using
the presented method. More specifically, the main contributions of this paper
are the following.

1. A formally defined parallel programming language (PPL) with shared mem-
ory, locks, and a timing model.

2. An algorithm that derives safe approximations of the BCET and WCET of
PPL programs.

The rest of the paper is organized as follows. Section 2 describes the ideas
behind abstract execution for sequential programs. Section 3 presents some re-
search related to the method presented in this paper. Section 4 presents PPL, a
parallel programming language. Section 5 abstractly interprets the semantics of
PPL. Section 6 presents an algorithm that abstractly executes PPL programs to
find safe approximations of their timing behaviors. Section 7 uses the presented
algorithm to derive safe bounds on the BCET and WCET for an example PPL
program given a simple timing model. Section 8 concludes the paper and presents
directions for future research.

2 Abstract Execution for Sequential Programs

Abstract execution (AE) [3, 4] was originally designed as a method to derive
program flow constraints on imperative sequential programs, like bounds on
the number of iterations in loops and infeasible program path constraints. This
information can be used by a subsequent WCET analysis [2] to compute a safe
WCET bound. AE is based on abstract interpretation, and is basically a very
context sensitive value analysis which can be seen as a form of symbolic execution
[3]. The program is hence executed in the abstract domain; i.e. abstract versions
of the program operators are executed and the program variables have abstract
values (which thus correspond to sets of concrete values).

The main difference between AE and a traditional value analysis is that in the
former, an abstract state is not calculated for each program point. Instead, the
abstract state is propagated on transitions in a way similar to the concrete state
for concrete executions of the program. Note that since values are abstracted, a
state can propagate to several new states on a single transition (e.g. when both
branches of a conditional statement could be taken given the abstract values
of the program variables in the current abstract state). Therefore, a worklist
algorithm that collects all possible transitions is needed to safely approximate
all concrete executions. There is a risk that AE does not terminate (e.g. due to
an infinite loop in the analyzed program): however, if it terminates then all final
states of the concrete executions have been safely approximated [3]. Furthermore,

nontermination can be completely dealt with by setting a timeout, e.g. as an
upper limit on the number of abstract transitions.

If timing bounds on the statements of the program are known, then AE is
easily extended to calculate BCET and WCET bounds by treating time as a
regular program variable that is updated on each state transition – as with all
other variables, its set of possible final values is then safely approximated when
the algorithm terminates [5].

The approach used in this paper is to calculate safe BCET and WCET esti-
mations by abstract execution of the analyzed program. The timing bounds are
derived based on a safe timing model of the underlying architecture.

3 Related Work

WCET-related research started with the introduction of timing-schemas by Shaw
in 1989 [6]. Shaw presents rules to collapse the CFG (Control Flow Graph) of a
program until a final single value represents the WCET. An excellent overview
of the field of WCET research was presented by Wilhelm et al. in 2008 [2]. The
field of WCET analysis for parallel software is quite new, so there is no solid
foundation of previous research.

Model-checking has been shown adequate for timing analysis of small parts
of single-core systems [7, 8]. There are also attempts to analyze parallel systems
using model-checking [9–11]. However, complexity matters is a common big issue
for these attempts.

This paper uses a more approximate approach (abstract execution). If an-
alyzing a program consisting of only one thread, the method presented in this
paper becomes comparable to the methods presented by Gustafsson et al. [4] and
Ermedahl et al. [5]. An early version of the analysis presented here [12] could
analyze a subset of PPL (without locks); the version here can analyze any PPL
program.

There are several other approaches toward WCET analysis of parallel and
concurrent programs that are not defined based on abstract execution. Mitter-
mayr and Blieberger [13] use a graph based approach and Kronecker algebra to
calculate an estimation on the WCET of a concurrent program. Potop-Butucaru
and Puaut [14] target static timing analysis of parallel processors where “chan-
nels” are used to communicate between, and synchronize, the parallel tasks. The
goal of this approach is to enable the use of the traditional abstract interpretation
techniques for sequential software when analyzing parallel systems. Ozaktas et
al. [15] focus on analyzing synchronization delays experienced by tasks executing
on time-predictable shared-memory multi-core architectures.

The work presented in these publications targets parallel systems with quite
specific restrictions, whereas our analysis targets general parallel systems. We
focus on analyzing parallel systems on code level, where the underlying archi-
tecture could be sequential or parallel, bare metal or an operating system. The
only assumption is that the temporal behavior of the underlying architecture,
and thus of the threads in the analyzed program, can be safely approximated.

4 PPL: A Parallel Programming Language

In this section, a rudimentary, parallel programming language, PPL, whose se-
mantics includes timing behavior, will be presented. The purpose of PPL is to
put focus on communication through shared memory and synchronization on
shared resources.

The parallel entities of execution will be referred to as threads. PPL provides
both thread-private and globally shared memory, referred to as registers, r ∈
Reg, and variables, x ∈ Var, respectively. Arithmetical operations etc. within
a thread can be performed using the values of the thread’s registers. PPL also
provides shared resources, referred to as locks, lck ∈ Lck, that can be acquired
in a mutually exclusive manner by the threads. The operations (statements)
provided by the instruction set may have variable execution times. (C.f. multi-
core CPUs, which have both local and global memory, a shared memory bus
and atomic, i.e. mutually exclusive, operations.) Note that Reg, Var and Lck are
finite sets of identifiers that are specific to each defined PPL program.

The syntax of PPL, which is a set of operations using the discussed architec-
tural features, is defined in Fig. 1. Π denotes a program, which simply is a (con-
stant and finite) set of threads, i.e. Π = Thrd, where each thread, T ∈ Thrd, is a
pair of a unique identifier, d ∈ ZZ, and a statement, s ∈ Stm. This makes every
thread unique and distinguishable from other threads, even if several threads
consist of the same statement. The axiom-statements (all statements except
the sequentially composed statement, s1;s2) of each thread are assumed to be
uniquely labeled with consecutive labels, l ∈ ZZ. a ∈ Aexp and b ∈ Bexp denote
an arithmetic and a boolean expression, respectively, and n ∈ ZZ is an integer
value.

Π ::= {T1, . . . ,Tm}
T ::= (d, s)

s ::= [halt]l
∣∣ [skip]l

∣∣ [r := a]l
∣∣ [if b goto l′]l

∣∣ [store r to x]l
∣∣

[load r from x]l
∣∣ [unlock lck]l

∣∣ [lock lck]l
∣∣ s1;s2

a ::= n
∣∣ r ∣∣ a1 + a2 ∣∣ a1 - a2 ∣∣ a1 * a2 ∣∣ a1 / a2

b ::= true
∣∣ false ∣∣ !b ∣∣ b1 && b2 ∣∣ a1 == a2

∣∣ a1 <= a2

Fig. 1. Syntax of the parallel programming language, PPL

The semantic state of a program is described by a configuration, c, defined as
〈[T, pcT, rT, t

a
T]

T∈Thrd
,x, l〉. The notation [T, pcT, rT, t

a
T]

T∈{T1,...,Tm}
expands

to 〈T1, pcT1
, rT1

, t a
T1
, . . . ,Tm, pcTm

, rTm
, t a

Tm
〉. This notation is needed since the

number of threads in a program is not known before the program is defined.

pcT is a program counter, pointing to the current statement in T. Note
that the tuple 〈pcT1

, . . . , pcTm
〉, assuming that Thrd = {T1, . . . ,Tm}, defines a

unique program point. rT is a mapping from T’s registers to their values. t a
T is

the accumulated execution time of T. x is a mapping from variables and threads
to a set of timestamped values. l is a mapping from locks to their states. The
state for a lock is a tuple containing information on (in the following order)
whether the lock is acquired or not, which thread owns it, a deadline for when
the lock must be acquired by the owning thread, the previous owner, and when
it was last released. (If the reader finds the variable and lock domains peculiar,
the need for their definitions will become clear in Sects. 5 and 6.) The BCET
and WCET for a set of configurations are given in Definition 1.

Definition 1. Given a set of configurations, C, the BCET and WCET for that
set are defined as:{

BCET ::= min({max({t a
T | T ∈ Thrd}) | 〈[T, pcT, rT, t

a
T]

T∈Thrd
,x, l〉 ∈ C})

WCET ::= max({max({t a
T | T ∈ Thrd}) | 〈[T, pcT, rT, t

a
T]

T∈Thrd
,x, l〉 ∈ C})

The semantics of transitions between configurations is described by −−→prg as
defined in Fig. 2. exp1 ? exp2 : exp3 is exp2 if exp1 , and exp3 otherwise. λp ∈
P.exp(p) is a function from p (an element of P) to exp(p). stm gives the current
statement of the issuing thread. time gives a relative execution time for the
current statement of the calling thread (the definition of this function is out of
this paper’s scope, but it is assumed to be non-negative). Given some lock state
mapping and some lock, own gives the owner of the lock (which is ⊥thrd iff the
lock is free; note however that Thrd is not a complete lattice), pown gives the
previous owner of the lock, rel gives the time at which the lock was last released.
Note that similar functions can be defined to mask out the current state – taken
or free – and the lock owner assignment deadline [16].
−→
ax (whose formal definition is omitted due to space limitations; see [16])

describes the semantics of a single statement within a thread when considered in
isolation from other threads: halt stops the execution of the issuing thread (i.e.
none of the input states are changed), halt must be the last statement of each
thread in the program, but could also occur anywhere “within” a thread; skip
performs a no-operation (i.e. it only increments the thread’s program counter);
a register is assigned a value using := (the semantics of evaluating arithmetic
and boolean expressions are defined in the standard fashion [16, 17] and will not
be further discussed); conditional branching to an arbitrary axiom-statement
is performed using if (thus, if is used when e.g. implementing loops); store
makes the thread’s set of timestamped values for the given variable consist only
of a tuple consisting of the value of the given register and the value of ta′T (i.e.
t); load takes one of the stored timestamped values for the given variable (after
any store, there is only one such value for the given variable since only one
of the values stored to a variable by a set of threads is saved; c.f. Fig. 2) and
puts the value into the given register; unlock releases the given lock (i.e. sets
the lock’s state to free, its owner to ⊥thrd , its previous owner to the issuing

Thrdexe 6= ∅ ∧ ∀T ∈ Thrdexe : 〈T, pcT, rT,x, l′′, ta′T 〉−→ax 〈pc′T, r′T,x′
T, l

′
T〉

c = 〈[T, pcT, rT, t a
T]T∈Thrd,x, l〉−−→prg

c′ = 〈[T, (T ∈ Thrdexe ? pc′T : pcT), (T ∈ Thrdexe ? r
′
T : rT), ta′T]T∈Thrd,x

′, l′〉
where

t = min({t a
T + time(c,T) | T ∈ Thrd ∧ stm(T, pcT) 6= [halt]pcT})

Thrdexe = {T ∈ Thrd | t = t a
T + time(c,T) ∧ stm(T, pcT) 6= [halt]pcT}

ta′T =

{
t a
T + time(c,T) if T ∈ Thrdexe

t a
T otherwise

x
′ x =

x x if Thrdx = ∅
λT ∈ Thrd.(T = T′ ? (x′

T′ x) T′ : ∅) otherwise

where T′ is one of the threads in Thrdx =

{T ∈ Thrdexe | ∃r ∈ RegT : stm(T, pcT) = [store r to x]pcT}

l
′′ lck =

(free,T′, t ,

pown(l lck),

rel(l lck))

for some T′ ∈ {T ∈ Thrdexe |
stm(T, pcT) = [lock lck]pcT},

if {T ∈ Thrdexe | stm(T, pcT) =
[lock lck]pcT} 6= ∅ ∧ own(l lck) = ⊥thrd

l lck otherwise

l
′ lck =

{
l
′
own(l′′ lck) lck if own(l′′ lck) ∈ Thrdexe

l lck otherwise

Fig. 2. c−−→prg c′, the semantics of concrete transitions

thread, and its release time to t) if the issuing thread is the owner of the lock,
otherwise unlock is a no-operation; lock is used to acquire the given lock in a
mutually exclusive manner. Note that l

′′ is used to choose which thread in a set
of competing threads is successful in acquiring the lock and that the unsuccessful
threads wait in a spin-lock fashion until the lock is released – which means that
configurations can deadlock.

It should be apparent that the threads included in a transition between two
configurations (i.e. the threads included in Thrdexe) are such that they execute
their respective current statement at the earliest point in time at which any such
event occurs (i.e. at t). When a thread issuing lock is assigned the given lock,
it sets the lock’s state to taken. As can be seen, the lock assignment deadline is
always t ; i.e. the time at which a lock-statement is issued on the free lock and
a lock owner assignment occurs (which means that the deadline will always be
met by the assigned lock owner since the owner is guaranteed to be one of the
threads in Thrdexe that issue a lock-statement on the given lock – which also
means that the state of the lock is taken iff the owner of it is not ⊥thrd). The
complete semantics of PPL is formally defined and more extensively discussed
in [16].

5 Abstractly Interpreting PPL

In the following, time will be assumed to be abstractly interpreted as an interval
(c.f. [17]). For simplicity, values are also abstractly interpreted using the interval
domain. However, several other domains for values could be used instead.

The abstract semantic state of a program is described by an abstract con-
figuration, c̃ = 〈[T, pcT, r̃T, t̃

a
T]

T∈Thrdc̃
, x̃, l̃〉. Like for the concrete configuration,

pcT is a program counter, pointing to the current statement in T. r̃T is a map-
ping (i.e. a function) from T’s registers to their abstract values (i.e. intervals).
t̃ a
T is the accumulated execution time of T (i.e. an interval). x̃ is a mapping from

variables and threads to a set of timestamped values (i.e. pairs of intervals),
where each such value might represent the actual value stored to the variable
at the interval in time represented by c̃. l̃ is a mapping from locks to tuples
containing information on (in the following order) whether the lock is acquired
or not, which thread owns it, a deadline for when the lock must be acquired by
the owning thread, the previous owner, and when it was last released. It should
thus be apparent that an abstract configuration corresponds to a set of concrete
configurations. Thus, these domains safely over-approximate the corresponding
concrete domains (Lemma 1).

Lemma 1. An abstract configuration safely approximates a set of concrete con-
figurations.

Proof (sketch). This proof is conducted by first showing that there are Galois
Connections [17] between the concrete and abstract domains for register, variable
and lock mappings. Note that since the interval domain is used to approximate

values and times, there exist Galois Connections between the concrete and ab-
stract domains for values and time [17]. Finally, it is shown that there is a Galois
Connection between the configuration domains [16]. ut

From Definition 1, it is easy to see that for the interval domain, the BCET
and WCET must be as given by Definition 2. αt and γt are the abstraction
and concretization functions between the concrete time and abstract time (i.e.
interval) domains [17].

Definition 2. Given a set of abstract configurations, C̃, the concrete BCET
and WCET for that set are defined as:

BCET ::= min({max({min(γt(t̃ a
T)) | T ∈ Thrd}) |

〈[T, pcT, r̃T, t̃
a
T]

T∈Thrd
, x̃, l̃〉 ∈ C̃})

WCET ::= max({max({max(γt(t̃
a
T)) | T ∈ Thrd}) |
〈[T, pcT, r̃T, t̃

a
T]

T∈Thrd
, x̃, l̃〉 ∈ C̃})

The semantics of transitions between abstract configurations is described by
−̃−→
prg as defined in Fig. 3. Note that: absTime, although its definition is out of
scope for this paper, is assumed to be a safe approximation of time (Assumption
1); dlLock gives a safe approximation of the concrete point in time when the
given lock must be acquired by some thread [16]; accTime, considering some
thread, T, gives a safe approximation of ta′T as defined in Fig. 2 [16]; ˜own, ˜pown
and ˜rel are the abstract counterparts of the masking functions own, pown
and rel, respectively. (The definitions of the above functions are omitted due
to space limitations; see [16].) i1 +̃t i2 is the sum of the two intervals i1 and i2
[16]. −̃→ax is further discussed below.

Assumption 1. It is assumed that absTime is a “non-negative” function in
the interval domain that safely approximates time for any thread in any config-
uration, given a specific value of the thread’s program counter, at a specific point
(interval) in time.

Like in the concrete semantics, which threads that execute their respective
current statement on a given abstract transition is determined based on when
in time this would happen. However, since time is approximated using intervals,
it might not be possible to determine the exact order in which certain events
occur in the abstract case:

1. The sets of threads that will execute their current statements on a transition
(i.e. Thrdexe) might differ between the concrete and abstract cases even
if the given concrete configuration is safely approximated by the abstract
one. Because of this, different program points might be “visited” in the
concrete and abstract cases, and thus, the concrete collecting semantics (i.e.
all configurations that are reachable from a set of initial configurations [18,
3]) cannot be safely over-approximated using −̃−→prg .

Thrdexe 6= ∅ ∧ ∀T ∈ Thrdexe : 〈T, pcT, r̃T, x̃, l̃′′, t̃ a′
T 〉 −̃→ax 〈pc′T, r̃′T, x̃′

T, l̃
′
T〉

c̃ = 〈[T, pcT, r̃T, t̃ a
T]T∈Thrdc̃

, x̃, l̃〉 −̃−→prg
c̃′ = 〈[T, (T ∈ Thrdexe ? pc′T : pcT), (T ∈ Thrdexe ? r̃

′
T : r̃T), t̃ a′

T]T∈Thrdc̃
, x̃′, l̃′〉

where

t̃ r
T = absTime(c̃,T)

t̃all = αt({min({min(γt(t̃
a
T +̃t t̃

r
T)) | B}),min({max(γt(t̃

a
T +̃t t̃

r
T)) | B})})

where B ⇐⇒ T ∈ Thrdc̃ ∧ stm(T, pcT) 6= [halt]pcT ∧ ∀lck ∈ Lck :

(stm(T, pcT) = [lock lck]pcT ⇒ ˜own(̃l lck) ∈ {⊥thrd ,T})
Thrdall

exe = {T ∈ Thrdc̃ | t̃all ũt (t̃ a
T +̃t t̃

r
T) 6= ⊥̃t ∧ stm(T, pcT) 6= [halt]pcT}

l̃
′′ lck =

(free,T′,
dlLock(c̃, lck),

˜pown(̃l lck),
˜rel(̃l lck))

for some T′ ∈ {T ∈ Thrdc̃ |
∃l ∈ ZZ : stm(T, l) = [lock lck]l},

if ∃T ∈ Thrdall
exe : ˜own(̃l lck) = ⊥thrd ∧
stm(T, pcT) = [lock lck]pcT

l̃ lck otherwise

Thrdhold = {T ∈ Thrdc̃ | ∃lck ∈ Lck : (stm(T, pcT) = [lock lck]pcT ∧
˜own(̃l′′ lck) 6= T) ∨ stm(T, pcT) = [halt]pcT}

t̃ = αt({min({min(γt(t̃
a
T +̃t t̃

r
T)) | T ∈ Thrdc̃ \ Thrdhold}),

min({max(γt(t̃
a
T +̃t t̃

r
T)) | T ∈ Thrdc̃ \ Thrdhold})})

Thrdexe = {T ∈ Thrdc̃ \ Thrdhold | t̃ ũt (t̃ a
T +̃t t̃

r
T) 6= ⊥̃t}

l̃
′ lck =

{
l̃
′
˜own(̃l′′ lck)

lck if ˜own(̃l′′ lck) ∈ Thrdexe

l̃
′′ lck otherwise

x̃
′ =

{
trim(x̃′′, t̃) if Thrdc̃ = Thrd

x̃
′′ otherwise

where (x̃′′ x) T =

{
(x̃′

T x) T if T ∈ Thrdexe

(x̃ x) T otherwise

t̃ a′
T = accTime(〈[T′, pcT′ , r̃T′ , t̃ a

T′]T′∈Thrdc̃
, x̃, l̃′′〉,Thrdexe ,T)

Fig. 3. c̃ −̃−→prg c̃′, semantics of abstract transitions

2. The execution of load-statements cannot be safely approximated using the
semantic transition rules if the load is not the sole statement executed in the
transition and the value of a global variable (i.e. a variable that might be read
by at least one thread and that might be written by at least one other thread)
is to be loaded. The reason for this is that other threads might execute
store-statements, writing to the loaded variable, in succeeding transitions
that could semantically occur before the load-statement in the concrete case.

3. A similar reasoning to that for load-statements holds for lock-statements; a
non-acquired lock cannot simply be assigned to one of the threads in Thrdexe

that are trying to acquire it, because in the concrete case, some other thread
might be the first to acquire the lock.

4. Since threads are spinning on locks that are owned by some other thread in
the concrete case, but are frozen (see below) in the abstract case, the timing
behavior of deadlocked transitions cannot be safely approximated.

−̃→
ax (whose formal definition is omitted due to space limitations; see [16]) de-

scribes the abstract semantics of a single statement within a thread when consid-
ered in isolation from other threads. There is no difference between the concrete
and abstract behavior of the halt-, skip-, :=- and unlock-statements; how-
ever, the abstract semantics of evaluating arithmetic (and boolean) expressions
is safely induced from the concrete semantics [16, 17]. The abstract semantics
of the if-statement is equivalent to the concrete semantics, with the exception
that the register mapping for the issuing thread is restricted to exclude cases for
which the given boolean expression cannot possibly hold [3, 16]. store now adds
a tuple consisting of the value of the given register (i.e. an interval) and the value
of t̃ a′

T (i.e. an interval) to the issuing thread’s (i.e. T’s) set of timestamped values
for the given variable. load now loads the given register of the issuing thread
(i.e. T) with the least upper bound of all values that could be the actual value
of the given variable at t̃ a′

T . Note that trim removes timestamped values from
the given variable mapping that will never affect a load-statement for the given
variable in any thread at the given point (i.e. interval) in time or in the future
[16]. lock still acquires the given lock only if the issuing thread is the owner of
the lock (in l̃

′′). A difference between the concrete and abstract semantics for
lock is that whenever some thread issues a lock-statement on a free lock in the
abstract case, any thread that might want to acquire the lock somewhere in the
program could be assigned the ownership of the lock; note that this means that
a lock can be owned by some thread without actually being acquired by that
thread (i.e. the state of the lock is free even if the owner is not ⊥thrd). Another
difference is that in the abstract case, the issuing thread will be frozen (not at
all considered in transitions) if the given lock is owned by some other thread.
The issuing thread remains frozen until the lock becomes free again.

If a lock-issuing thread has not already acquired the given lock, then it must
be that t̃ a′

T has not passed the deadline for the lock owner assignment and that
the release time of the lock is not in the future for lock to successfully acquire
the lock. If t̃ a′

T has passed the deadline for the lock owner assignment, then the
lock owner assignment, and thus the configuration, has no concrete counterpart

since it must be that some other thread has already acquired the given lock [16].
If the lock’s release time is in the future, then t̃ a′

T will be increased to safely
approximate the concrete spin-waiting [16].

The abstract transitions described by −̃−→prg safely approximate the correspond-
ing concrete transitions, for each thread individually, if they do not include the
loading of a global variable in some thread and all threads wanting to acquire
some lock are eventually able to do so (Lemma 2); i.e. if the hazards in the
problems described by 2 and 4 above do not occur. The problems described by
1–4 above will be further discussed in the next section.

Lemma 2. For each possible chain of transitions (as described by −−→prg) given
some concrete configuration, there is an abstract chain of transitions (as de-
scribed by −̃−→prg) that safely approximates the concrete chain, for each thread con-
sidered individually, given that the initial abstract configuration safely approxi-
mates the initial concrete configuration, the thread is eventually able to acquire
any lock it wants to, and either |Thrdexe | 6> 1 or there is no thread in Thrdexe

that loads the value of a global variable for each transition on the chain.

Proof (sketch). First note that the timing behavior of each thread can be con-
sidered in isolation from any other thread (follows from Assumption 1) and that
−̃→
ax safely approximates −→ax (which partly follows from Lemma 1) [16].

Since either |Thrdexe | 6> 1 or there is no thread in Thrdexe that loads the value
of a global variable for each transition on the chain, it must be that the loading
of global variables’ values are never under-approximated since there cannot be
any store-statements in any thread that can be issued in future transitions and
that could semantically affect the loaded value [16].

And, since any thread that might want to acquire a lock somewhere in the
program can become the owner of that lock when some thread issues a lock-
statement on the given lock, and since all threads that want to acquire a lock
will eventually be able to do so, it must be that there exist safe approximations
of all concrete scenarios including synchronization on locks [16].

Thus, since −̃→ax safely approximates −→ax and the timing behavior of each
thread can be considered in isolation from any other thread, it must be that the
lemma holds. ut

6 Analyzing PPL Programs Using Abstract Execution

The abstract execution function, absExe, defined in Algorithm 1, is a worklist
algorithm that encapsulates −̃−→prg and explicitly handles the problems discussed
in the previous section. A configuration is said to be in the final state if all
threads are issuing the halt-statement. A configuration is said to be deadlocked
if it cannot possibly reach the final state according to the semantic transition
rules. A configuration is said to be timed-out if the final state cannot possibly
be reached before a given point in time (i.e. t̃to) according to the semantic
transition rules. A configuration is said to have valid concrete counterparts if
it represents at least one concrete configuration that can semantically occur.

Two cases for which a configuration lacks concrete counterparts are when a
deadlock involves a non-acquired lock and when the owner of a non-acquired
lock misses to acquire it before the expiration of the owner assignment deadline.
Such configurations are discontinued. Note that a configuration representing a
lock owner assignment where the owner of some lock has not yet acquired the
lock, and the owner’s accumulated execution time has not passed the owner
assignment deadline, reaches a configuration with valid concrete counterparts if
the owner issues a lock-statement on (i.e. acquires) the lock before the expiration
of the deadline. A formal definition of absExe is found in [16].

Algorithm 1 Abstract Execution

1: function absExe(C̃, t̃to)
2: C̃w ← C̃ ; C̃f ← ∅ ; C̃d ← ∅ ; C̃t ← ∅
3: while C̃w 6= ∅ do
4: extract a configuration, c̃, from C̃w

5: C̃w ← C̃w \ {c̃}
6: if c̃ is in the final state then
7: C̃f ← C̃f ∪ {c̃}
8: else if c̃ is in a deadlocked state then
9: C̃d ← C̃d ∪ {c̃}

10: else if c̃ is timed-out given t̃to then
11: C̃t ← C̃t ∪ {c̃}
12: else if c̃ has, or could reach a c̃′ with, valid concrete counterparts then
13: if a transition from c̃ includes more than one thread and some thread

would load the value of a global variable then

14: for each thread, T, that loads global data in the transition from c̃
15: let c̃T be like c̃, but with T and all its local states removed
16: let t̃Tto be such that, after this time, the data can be safely loaded
17: let (C̃f

T, C̃
d
T , C̃

t
T) be absExe({c̃T}, t̃Tto)

18: let T’s loaded value be the least upper bound of the values that would
be loaded for all configurations in C̃f

T ∪ C̃
d
T ∪ C̃ t

T ∪ {c̃}
19: end for
20: let c̃′ be like c̃, but with the loading of global data safely approximated
21: C̃w ← C̃w ∪ {c̃′}
22: else
23: C̃w ← C̃w ∪ {c̃′ | c̃ −̃−→prg c̃′}
24: end if
25: end if
26: end while
27: return (C̃f , C̃d, C̃t)
28: end function

The overall strategy of the algorithm is depicted in Fig. 4 (αconf and γconf
are the abstraction and concretization functions for configurations, respectively
[16]); i.e. given some safely approximated (by c̃0) concrete configuration, c0, there
is an abstract transition sequence (which is safe for each thread individually) for

each possible concrete transition sequence starting from c0, and if the concrete
sequence reaches a final state configuration (cq), then so will the correspond-
ing abstract sequence and the concrete final state configuration will be safely
approximated (considering all threads) by the abstract final state configuration
(c̃w). Note that c1, c2, . . . , cq−1 might not be safely approximated to their en-
tirety by any of the abstract configurations c̃1, c̃2, . . . , c̃w−1 because of problem
1, defined on page 8. Although, it should be noted that for each thread individ-
ually, there are abstract configurations among these that safely approximate all
the concrete states of that thread on the given concrete transition sequence.

c0 −−→prg c1 −−→prg c2 −−→prg . . . −−→
prg

cq

αconf γconf αconf γconf

c̃0 −̃−→prg c̃1 −̃−→prg c̃2 −̃−→prg . . . −̃−→
prg c̃w

Fig. 4. Relation between concrete and abstract transitions

For each thread that issues a load-statement on some global variable while
not being the sole thread in Thrdexe , absExe removes that thread from the
configuration and calls itself recursively (with an adapted timeout value) to
derive all the possible values that could be loaded by the thread. Note that this is
possible since the state for variables is a mapping from variables and threads to a
set of timestamped values. This strategy addresses problem 2. Problem 3 is partly
addressed in the definition of −̃−→prg (c.f. Fig. 3), as discussed in the previous section.
absExe fully addresses the problem by collecting all the possible transitions (i.e.
resulting configurations) and adding them to the worklist. Problem 4 is addressed
by identifying deadlocked configurations and aborting their transitions.

absExe(C̃, t̃to) hence safely approximates the timing behavior of all threads
in any configuration in the input set, C̃, up until t̃to (Theorem 1). It should be
noted that if a transition sequence is aborted before a final state configuration
is reached (e.g. because a deadlocked or timed-out configuration is identified),
then an infinite WCET must be assumed for that transition sequence.

Theorem 1. For each final state configuration in the concrete collecting seman-
tics, given some initial set of configurations, C, absExe(C̃, t̃to) derives either
a safe approximation of that configuration or aborts the transition sequence at
some point due to reaching a timed-out configuration with respect to t̃to when-
ever it terminates, given that ∀c ∈ C : ∃c̃ ∈ C̃ : c ∈ γconf (c̃). Likewise, for all
configurations in the concrete collecting semantics that are deadlocked, absExe
derives either a deadlocked or timed-out configuration, whenever it terminates.

Proof (sketch). First note that

1. there are Galois Connections between all concrete and abstract domains,
including the domains for configurations (Lemma 1),

2. all concrete transitions described by −−→prg are safely approximated by −̃−→prg ,
provided that whenever a thread issues a load-statement on a global vari-
able, that thread is the sole thread in Thrdexe (Lemma 2),

3. all possible transitions for a given configuration, as described by −̃−→prg are
collected and added to the worklist (note that this safely approximates all
concrete orders in which threads can be assigned the ownerships of locks –
this solves the problem discussed in 3 in the previous section),

4. if a thread issues a load-statement on a global variable and that thread is
not the sole thread in Thrdexe , then it is easy to see that the for each-
loop (i.e. the recursive use of absExe) derives a safe approximation of the
value as seen by that thread when issuing the load-statement (follows from
Assumption 1 and Lemma 2) – this solves the problem discussed in 2 in the
previous section,

5. the recursive calling of absExe eventually stops since the set of threads in
any PPL program is finite,

6. if any of the added configurations lacks (and cannot reach a configuration
that has) valid concrete counterparts, it is trivially safe to discontinue it,

7. deadlocked transition sequences are aborted, but remembered – this solves
the problem discussed in 4 in the previous section, and

8. timed-out transition sequences are aborted, but remembered.

It is thus easy to see that the combined use of −̃−→prg and the explicit handling of
each thread loading the value of a global variable when that thread is not alone in
Thrdexe means that all concrete transition sequences are safely approximated for
each thread individually – this solves the problem discussed in 1 in the previous
section.

But then it must be that for each final state configuration in the concrete
collecting semantics, absExe (whenever it terminates) derives either an over-
approximating final state configuration, or a timed-out configuration. Likewise, it
must be that for each deadlocked configuration in the concrete collecting seman-
tics, absExe (whenever it terminates) derives either a deadlocked configuration
or a timed-out configuration. ut

All the details and the complete soundness proof of the presented algorithm
are given in [16]. Note that Theorem 1 does not state that Algorithm 1 terminates
for all possible inputs. This is because it might not terminate for some inputs –
this problem is inherent in abstract execution.

Since abstract execution is not based on fixed point calculation of the col-
lecting semantics in the traditional sense, widening and narrowing [17] cannot
be used to alleviate this issue. Instead, timeouts on execution times and/or the
number of transitions can be set in different ways to guarantee termination of
the analysis for all cases. This is further discussed in Sect. 8.

It should also be noted that, although this paper focuses on timing analysis,
the defined algorithm could also be used for deadlock analyses and termination
analyses [16]. If the returned sets are such that C̃d = ∅ and C̃t = ∅, then the
analyzed program is free of deadlocks and always terminates for all initial states
given by the configurations in C̃. Safe timing bounds for the program are then

easily extracted from the configurations in C̃f . On the other hand, if C̃d 6= ∅,
then the program might deadlock for the given initial states, and if C̃t 6= ∅,
then it might be that the program does not terminate also due to other reasons,
such as an infinite loop in some thread. However, deadlock and/or termination
analysis is not the main focus of the presented approach and many other more
specialized techniques targeting these areas exist.

7 Example Analysis

To clarify and explain Algorithm 1, this section instantiates it for an example
PPL program containing a parallel loop. The example shows how communication
through shared memory and synchronization on locks are handled.

The purpose of the program in Fig. 5 is to increment the value of the vari-
able x with

∑4
i=1(2i + 3). The task of calculating the sum is equally divided

onto two threads, T1 and T2. By definition, Thrd = {T1,T2}, RegT1
= {p, r},

RegT2
= {p, r}, Var = {x} and Lck = {l}. Note that p (and r) represents local

memory within each thread; i.e. the register-name p (and r) can refer to two
different memory locations – what location it refers to depends on which thread
is considered. It is easy to see that x is a global variable when Thrdc̃ = {T1,T2}
and that there are no global variables when Thrdc̃ = {T1} or Thrdc̃ = {T2}.

T1 = (1, [p := p + 1]1;[r := r + 2 * p + 3]2;[if p < 2 goto 1]3;[lock l]4;

[load p from x]5;[p := p + r]6;[store p to x]7;[unlock l]8;[halt]9)

T2 = (2, [p := p + 1]1;[r := r + 2 * p + 3]2;[if p < 4 goto 1]3;[lock l]4;

[load p from x]5;[p := p + r]6;[store p to x]7;[unlock l]8;[halt]9)

Fig. 5. Example: Program

For the sake of simplicity, the timing model (i.e. absTime) as described in
Table 1 gives that each statement within a thread has constant timing bounds;
a ‘−’ indicates that the entry is not applicable.

Table 1. Example: Timing model

pcT (T ∈ Thrd) : 1 2 3 4 5 6 7 8 9

absTime(c̃,T1) : [2, 2] [1, 1] [1, 2] [1, 2] [2, 3] [1, 1] [2, 3] [2, 3] −
absTime(c̃,T2) : [2, 2] [1, 1] [4, 5] [5, 6] [2, 5] [2, 2] [2, 4] [2, 3] −

Assume that c̃0 = 〈[T, pcT, r̃T, t̃
a
T]

T∈Thrd
, x̃, l̃〉 is as described in Table 2.

Note that p and r for T1, and r for T2, are initialized to [0, 0], and that p

for T2 is initialized to [2, 2]. Table 2 also collects all the configurations derived
by absExe({c̃0}, [−∞,∞]). A ‘−’ indicates that the entry is not included in
the configuration. Due to space limitations, the details on how t̃ a

T1
and t̃ a

T2
are

calculated on each transition cannot be fully presented; please refer to [16] in
case of unclarities. If a thread, T ∈ Thrd, is not included in Thrdexe (as defined
in Fig. 3), then t̃ a

T in c̃i is equal to t̃ a
T in c̃i−1, where i > 0. If T is included

in Thrdexe , then t̃ a
T in c̃i is equal to t̃ a

T +̃t absTime(c̃i−1,T) in c̃i−1, unless
T has been frozen and must have its accumulated execution time adapted to
approximate the concrete spin-waiting.

Figure 6 shows the relation between the derived configurations. In the figure,
final configurations are circled, timed-out configurations are circled and marked
‘t’, and discontinued (invalid) configurations are crossed out. c̃1

7 is discontinued
since the timing constraints given by t̃ a

T2
+̃t absTime(c̃1

7 ,T2) = [10, 11] +̃t

[4, 5] = [14, 16] and the lock owner assignment deadline, [−∞, 12], give that
T2 cannot acquire l before T1. c̃1

12 is discontinued since T1 cannot acquire l

after reaching a halt-statement. Due to space limitations, the algorithm for
calculating the deadline for the lock owner assignments made in the transitions
from c̃6 and c̃11 cannot be presented; please refer to [16] in case of unclarities.
Given c̃2

7 , a store to x in T2 could affect the value loaded by T1; however, the
value loaded by T1 cannot be affected after t̃ a

T1
+̃t absTime(c̃2

7 ,T1) = [9, 12] +̃t

[2, 3] = [11, 15], which is hence the timeout value for the recursive instance of
absExe.

It is apparent that absExe({c̃0}, [−∞,∞]) = ({c̃16}, ∅, ∅); i.e. c̃16 is a final-
state configuration and there are no deadlocked or timed-out configurations. It
is thus easy to see that the program always terminates and that the estimated
timing bounds are (Definition 2):

BCET = min({max({min(γt(t̃ a
T)) | T ∈ Thrd}) |
〈[T, pcT, r̃T, t̃

a
T]T∈Thrd, x̃, l̃〉 ∈ {c̃16}}) = 27

WCET = max({max({max(γt(t̃
a
T)) | T ∈ Thrd}) |

〈[T, pcT, r̃T, t̃
a
T]

T∈Thrd
, x̃, l̃〉 ∈ {c̃16}}) = 42

absExe({c̃0}, [−∞,∞])

c̃0 c̃1 c̃2 c̃3 c̃4 c̃5 c̃6

c̃1
7

c̃2
7

absExe({c̃2
71}, [11, 15]) c̃2

71 c̃2
72
t

c̃8

c̃9c̃10c̃11

c̃1
12

c̃2
12c̃13c̃14c̃15c̃16

Fig. 6. Example: Configuration relations

Table 2. Example: Derived configurations

c̃ pcT1
pcT2

r̃T1 p r̃T1 r r̃T2 p r̃T2 r t̃ a
T1

t̃ a
T2

(x̃ x) T1 (x̃ x) T2 l̃ l

c̃0 1 1 [0, 0] [0, 0] [2, 2] [0, 0] [0, 0] [0, 0] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,⊥thrd , ⊥̃t,⊥thrd , ⊥̃t)

c̃1 2 2 [1, 1] [0, 0] [3, 3] [0, 0] [2, 2] [2, 2] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,⊥thrd , ⊥̃t,⊥thrd , ⊥̃t)

c̃2 3 3 [1, 1] [5, 5] [3, 3] [9, 9] [3, 3] [3, 3] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,⊥thrd , ⊥̃t,⊥thrd , ⊥̃t)

c̃3 1 3 [1, 1] [5, 5] [3, 3] [9, 9] [4, 5] [3, 3] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,⊥thrd , ⊥̃t,⊥thrd , ⊥̃t)

c̃4 2 1 [2, 2] [5, 5] [3, 3] [9, 9] [6, 7] [7, 8] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,⊥thrd , ⊥̃t,⊥thrd , ⊥̃t)

c̃5 3 1 [2, 2] [12, 12] [3, 3] [9, 9] [7, 8] [7, 8] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,⊥thrd , ⊥̃t,⊥thrd , ⊥̃t)

c̃6 4 2 [2, 2] [12, 12] [4, 4] [9, 9] [8, 10] [9, 10] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,⊥thrd , ⊥̃t,⊥thrd , ⊥̃t)

c̃17 4 3 [2, 2] [12, 12] [4, 4] [20, 20] [8, 10] [10, 11] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (free,T2, [−∞, 12],⊥thrd , ⊥̃t)

c̃27 5 3 [2, 2] [12, 12] [4, 4] [20, 20] [9, 12] [10, 11] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (taken,T1, [−∞, 12],⊥thrd , ⊥̃t)

c̃271 − 3 − − [4, 4] [20, 20] − [10, 11] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (taken,T1, [−∞, 12],⊥thrd , ⊥̃t)

c̃272 − 4 − − [4, 4] [20, 20] − [14, 16] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (taken,T1, [−∞, 12],⊥thrd , ⊥̃t)

c̃8 6 3 [0, 0] [12, 12] [4, 4] [20, 20] [11, 15] [10, 11] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (taken,T1, [−∞, 12],⊥thrd , ⊥̃t)

c̃9 7 4 [12, 12] [12, 12] [4, 4] [20, 20] [12, 16] [14, 16] {([0, 0], [0, 0])} {([0, 0], [0, 0])} (taken,T1, [−∞, 12],⊥thrd , ⊥̃t)

c̃10 8 4 [12, 12] [12, 12] [4, 4] [20, 20] [14, 19] [14, 16] {([0, 0], [0, 0]),
([12, 12], [14, 19])}

{([0, 0], [0, 0])} (taken,T1, [−∞, 12],⊥thrd , ⊥̃t)

c̃11 9 4 [12, 12] [12, 12] [4, 4] [20, 20] [16, 22] [14, 16] {([0, 0], [0, 0]),
([12, 12], [14, 19])}

{([0, 0], [0, 0])} (free,⊥thrd , [−∞, 12],T1, [16, 22])

c̃112 9 4 [12, 12] [12, 12] [4, 4] [20, 20] [16, 22] [14, 16] {([0, 0], [0, 0]),
([12, 12], [14, 19])}

{([0, 0], [0, 0])} (free,T1, [−∞, 28],T1, [16, 22])

c̃212 9 5 [12, 12] [12, 12] [4, 4] [20, 20] [16, 22] [19, 28] {([0, 0], [0, 0]),
([12, 12], [14, 19])}

{([0, 0], [0, 0])} (taken,T2, [−∞, 28],T1, [16, 22])

c̃13 9 6 [12, 12] [12, 12] [12, 12] [20, 20] [16, 22] [21, 33] {([12, 12], [14, 19])} {(⊥̃val , ⊥̃t)} (taken,T2, [−∞, 28],T1, [16, 22])

c̃14 9 7 [12, 12] [12, 12] [32, 32] [20, 20] [16, 22] [23, 35] {([12, 12], [14, 19])} {(⊥̃val , ⊥̃t)} (taken,T2, [−∞, 28],T1, [16, 22])
c̃15 9 8 [12, 12] [12, 12] [32, 32] [20, 20] [16, 22] [25, 39] {([12, 12], [14, 19])} {([32, 32], [25, 39])} (taken,T2, [−∞, 28],T1, [16, 22])
c̃16 9 9 [12, 12] [12, 12] [32, 32] [20, 20] [16, 22] [27, 42] {([12, 12], [14, 19])} {([32, 32], [25, 39])} (free,⊥thrd , [−∞, 28],T2, [27, 42])

8 Conclusions & Future Work

This paper has presented a parallel programming language, PPL, with shared
memory and synchronization primitives acting on locks, and an algorithm that
derives safe approximations of the BCET and WCET of PPL programs, given
some sets of initial states and a timing model of the underlying architecture.
The algorithm is based on abstract execution, which itself is based on abstract
interpretation of the PPL semantics, which helps proving the soundness of the
algorithm due to the existence of a Galois Connection between final concrete
and abstract configurations.

The recursive definition of the algorithm means that several auxiliary states
might have to be searched when some thread loads global data to make sure that
the loaded value is a safe approximation of the corresponding concrete value(s).
However, since this only happens for a limited amount of steps (until no thread
can affect the loaded value anymore), it is expected that this will not have a
huge impact on the complexity of the algorithm.

The over-approximate lock owner assignment could cause a lot of auxiliary
configurations to be added to the worklist. However, this is necessary to cover all
the concrete possibilities for in which orders the locks are taken by the threads.
The discontinuation of cases that are guaranteed to never occur concretely both
lowers the complexity and increases the precision of the algorithm, and also
avoids it to deadlock (which otherwise could happen even though the analyzed
program might be deadlock free [16]).

Future work includes implementing and evaluating the algorithm. This in-
cludes deriving a timing model for some more or less realistic architecture. The
precision of the timing model is expected to have a great impact on the complex-
ity of the analysis presented in this paper. Therefore, efforts will also be made
to decrease the overall complexity of the algorithm. How large parallel programs
that will be analyzable by the presented approach remains an open question until
the implementation and evaluation have been performed. However, it is already
obvious that well-written parallel programs (i.e. programs in which communica-
tion through shared memory and synchronization on locks is minimized while
thread-local computations are maximized; c.f. the example presented in Sect. 7)
will be less complex to analyze.

Future work also includes extending PPL with more statements and opera-
tions so that a real programming language can be modeled. One example is to
include different addressing modes so that for example arrays can be introduced
and operated on. Another example could be to introduce other synchronization
primitives, e.g. barriers.

As previously mentioned, the risk of nontermination is inherent in abstract
execution since the technique is basically a symbolic execution of the analyzed
program. Detecting deadlocks partly solves this issue. Solving the issue com-
pletely can be done by setting a finite upper limit on the number of abstract
transitions. If the limit is reached, the analysis could simply terminate and result
in an infinite upper bound on the execution time. Other timeouts could also be
set, e.g. as upper limits on the calculated execution times of the threads in the

analyzed program or as an upper limit on the run (i.e. execution) time of the
analysis itself. Note that terminating the analysis before all possible transition
sequences have been fully evaluated (i.e. before a final configuration has been
reached) must result in an infinite estimation of the upper limit on the execution
time (i.e. on the WCET).

The path-explosion problem is still an open issue. In the sequential case of
abstract execution, this is solved by merging states [19]. However, this technique
is not expected to be very successful for the analysis presented in this paper since
all the concrete parts of the system state (i.e. the threads’ program counters, the
lock states and owners, etc.) would have to be equal for the states to be merged.
Defining a more approximate abstract lock state could resolve this issue. How
to make this abstraction will be a challenge for not losing too much precision in
the analysis.

Acknowledgment

The research presented in this paper was supported by the Swedish Foundation
for Strategic Research (SSF) via the project RALF31.

References

1. OpenMP: OpenMP Application Program Interface, Version 3.0 (May 2008)
http://www.openmp.org/mp-documents/spec30.pdf.

2. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution time prob-
lem — overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS) 7(3) (2008) 1–53

3. Gustafsson, J.: Analyzing Execution-Time of Object-Oriented Programs Using
Abstract Interpretation. PhD thesis, Dept. of Information Technology, Uppsala
University, Sweden (May 2000)

4. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of
loop bounds and infeasible paths for WCET analysis using abstract execution.
In: Proc. 27th IEEE Real-Time Systems Symposium (RTSS’06), Rio de Janeiro,
Brazil, IEEE Computer Society (December 2006) 57–66

5. Ermedahl, A., Gustafsson, J., Lisper, B.: Deriving WCET bounds by abstract
execution. In Healy, C., ed.: Proc. 11th International Workshop on Worst-Case
Execution Time Analysis (WCET’2011), Porto, Portugal (July 2011)

6. Shaw, A.C.: Reasoning about time in higher-order software. In: IEEE Transactions
on Software Engineering. Volume 15. (1989) 737–750

7. Huber, B., Schoeberl, M.: Comparison of implicit path enumeration and model
checking based WCET analysis. In: Proc. 9th International Workshop on Worst-
Case Execution Time Analysis (WCET’2009). (2009)

1 http://www.es.mdh.se/projects/295-RALF3 Software for Embedded High

Performance Architectures

8. Metzner, A.: Why model checking can improve WCET analysis. In: Lecture Notes
in Computer Science. Volume 3114/2004., Springer Berlin / Heidelberg (July 2004)

9. Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards WCET analysis
of multicore architectures using UPPAAL. In Lisper, B., ed.: Proc. 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET’2010), Brussels,
Belgium, OCG (July 2010) 103–113

10. Lv, M., Guan, N., Yi, W., Deng, Q., Yu, G.: Efficient instruction cache analysis
with model checking. In: Proc. 16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’10), Work-in-Progress Session. (2010) 33–36

11. Wu, L., Zhang, W.: Bounding worst-case execution time for multicore processors
through model checking. In: Proc. 16th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’10), Work-in-Progress Session. (April
2010) 17–20

12. Gustavsson, A., Gustafsson, J., Lisper, B.: Toward static timing analysis of parallel
software. In Vardanega, T., ed.: Proc. 12th International Workshop on Worst-
Case Execution Time Analysis (WCET’2012). Volume 23 of OpenAccess Series in
Informatics (OASIcs). (July 2012) 38–47

13. Mittermayr, R., Blieberger, J.: Timing analysis of concurrent programs. In:
Proc. 12th International Workshop on Worst-Case Execution Time Analysis
(WCET’2012). (2012) 59–68

14. Potop-Butucaru, D., Puaut, I.: Integrated Worst-Case Execution Time Estimation
of Multicore Applications. In: Proc. 13th International Workshop on Worst-Case
Execution Time Analysis (WCET’2013), Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2013)

15. Ozaktas, H., Rochange, C., Sainrat, P.: Automatic WCET Analysis of Real-Time
Parallel Applications. In: Proc. 13th International Workshop on Worst-Case Ex-
ecution Time Analysis (WCET’2013), Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik (2013)

16. Gustavsson, A.: Static Timing Analysis of Parallel Software Using Abstract
Execution. Licentiate thesis, Mälardalen University (2014) URL: http://www.es.
mdh.se/publications/3025-Static Timing Analysis of Parallel Software

Using Abstract Execution.
17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edition.

Springer (2005) ISBN 3-540-65410-0.
18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proc. 4th

ACM Symposium on Principles of Programming Languages, Los Angeles (January
1977) 238–252

19. Gustafsson, J., Ermedahl, A.: Merging techniques for faster derivation of WCET
flow information using abstract execution. In Kirner, R., ed.: Proc. 8th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET’2008), Prague,
Czech Republic (July 2008)

