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1 Faculty of Organization and Informatics, University of Zagreb, Croatia
2 School of Innovation, Design and Engineering, Mälardalen University, Sweden

A recent development of heterogeneous platforms (i.e.
those containing different types of computational units
such as multicore CPUs, GPUs, and FPGAs) has enabled
significant improvements in performance for real-time
data processing. This potential, however, is still not fully
utilized due to the lack of methods for optimal config-
uration of software; the allocation of different software
components to different computational unit types is cru-
cial for getting the maximal utilization of the platform,
but for more complex systems it is difficult to find ad-hoc
a good enough or the best configuration. With respect
to system and user defined constraints, in this paper we
are applying analytical hierarchical process and a genetic
algorithm to find feasible, locally optimal solution for
allocating software components to computational units.
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1. Introduction

The computer systems today are becoming het-
erogeneous; alongside multicore Central Pro-
cessingUnits (CPU), Graphical ProcessingUnits
(GPU) and Field Programmable Gate Array
(FPGA) are gaining an important role [1]. Such
systems consist of different types of comput-
ing units, where each unit can be dedicated to
a particular type of computation. Using dif-
ferent computational units is already a proved
approach in high performance computer sys-
tems, in which GPUs process highly parallel
computation, and in which cores from multi-
core CPUs perform different tasks in parallel.
This is also becoming of significant importance

in embedded systems where such systems en-
able processing of large amount of data streams
in real time. This great potential for increased
performance is still not fully utilized due to the
lack of software methods for an efficient and op-
timal placement (allocation) of software to the
heterogeneous platform by which an optimal,
or sufficiently good performance is obtained.
Different software allocations result with dif-
ferent performance and it is not obvious which
allocation would enable the best performance.
In addition, best allocation candidate might not
be allowed due to different constraints; this can
be due to limitation of resources of a particular
unit (such as memory or communication capac-
ity, or restricted energy consumption), or due
to some architectural decisions related to spe-
cific requirements (such as a requirement that
two components are not allowed to be allocated
to the same physical computational unit). A
“trial and error” method by repeated allocations
and then measurements is an inefficient proce-
dure, in particular when the software implemen-
tation may depend on which computational unit
type will be executed. For this reason, alloca-
tion method is desired in an early development
phase.

The main goal of this paper is to define a model
for the software allocation optimization on com-
putational units in heterogeneous systems ac-
cording to system constraints and user provided
architectural decisions, i.e. constraints.
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We assume that we are dealing with component-
based systems, so each software component1

can be allocated to a computational unit. We
define a method for finding an optimal alloca-
tion of components in respect to optimal perfor-
mance and different constraints. The method
is assumed to be used in an early phase of the
development lifecycle, in the early architectural
design of the system. The components may
already be implemented, or we can use their
models. In the latter case the components may
not be yet implemented, but are specified with a
set of attributes, estimated or obtained in a cer-
tain way. Current model abstraction level does
not consider dependencies which might arise
from operating system level. Also, at this stage
we are considering cross platform communica-
tion, i.e. that between components allocated on
different computational units. Internal commu-
nication between cores in multicore CPUs is not
so influential on the rest of the system (more on
this can be found in [18]). Similar assumption
applies to GPU. Therefore, we focus only on
components and their interaction, the result of
the method is a proposed system deployment
configuration that is optimal, or nearly optimal,
for the overall system performance.

The rest of the paper is organized as follows. In
the second chapter we define the problem and
its formal description. In the third chapter we
present our solution for the allocation problem
using genetic algorithm. Chapter 4 describes
method for finding optimal solution. Chapter 5
illustrates the model on an Autonomous Un-
derwater Vehicle Case Study. Chapter 6 briefly
discusses the related work, and finally Chapter 7
concludes the paper.

2. Component Allocation Method

We define a model which consists of a Software
System S as a set of components, and a Hard-
ware Platform H as a set of computational units,
as shown in Figure 1.

Every component si ∈ S, i = 0, . . . , n needs to
be allocated to a computational unit hi ∈ H, i =
0, . . . , m. From a mathematical viewpoint, the
problem is reduced to finding a permutation

(with repetition) which provides the best per-
formance considering a set of defined resources
and constraints of a particular system. The num-
ber of all possible solutions, i.e. allocations of
components to computational units is mn. Ob-
viously, the search space increases rapidly with
the number of the components and computa-
tional units, so to find the optimal component
allocation with respect to a particular goal is
(at least) very time-consuming if the process is
performedmanually. For this reasonwe provide
a theoretical model for finding an optimal (or
locally optimal) allocation with respect to a par-
ticular set of system and component properties
for given characteristics of the software system,
components and the hardware platform.
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Figure 1. Software components allocation to
heterogeneous hardware platform.

Our model is defined as follows.

1. A computational unit provides a set of re-
sources for the components being executed
on it, e.g. CPU power, or available memory.
The capacity, i.e. the amount of the resources
of each computational unit must satisfy the
needs of the components executed on that
unit.

2. We enable allocation of the components to
the computational units, and try to find their
optimal distributionwith respect to cost func-
tion. In this case our cost function is the
overall performance of a certain allocation.

The model also takes some assumptions:

1. The system is built of a set of components
which are characterized as atomic computa-
tional and deployable units (i.e. a component
cannot be distributed over several computa-
tional units).

1 In further text, when we refer to a component we mean software component.
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2. Component allocation has the property of
isomorphism (i.e. each component can be
deployed on every computational unit).

3. The system can be exposed by a set of con-
straints, which specifies whether a particular
component is supposed to be (or not to be)
mapped to a particular computational unit.

2.1. Elements of the model – definitions

This section presents a formal specification of
information necessary for making a component
allocation decision.

A component can be allocated on any computa-
tional unit (if not explicitly defined otherwise).
Each component requires a certain amount of
resources that should be provided by the com-
putational unit. This amount depends on the
computational unit on which the component is
deployed. To specify the resources required for
each component on each computational unit, we
define a 3-dimensional matrix called Resource
Consumption Matrix:

Definition 1. For n software components, m
computational units, and l different resources,
T = [tijk](n×m×l) is a Resource Consumption
Matrix where tijk represents the necessary amo-
unt of k-th resource of the i-th software compo-
nent allocated on the j-th computational unit.

With Resource Consumption Matrix we know
the amount (quantity) of resources necessary
for each component on each of the platforms.
In addition, we need to define a new matrix
which will specify a set of resources each com-
putational unit can provide (e.g. total execution
time, static memory, dynamic memory, energy
etc.).
Since there are m computational units, and the
Resource Consumption Matrix defines l resour-
ces, the size of the new matrix, the computa-
tional Unit Resource Matrix, is m × l.

Definition 2. R = [rjk](m×l) is a Computational
Unit Resource Matrix where rjk represents k-th
resource of a j-th computational unit.

With matrices T and R defined, we know how
much of some resource a certain component
needswhile allocated to any computational unit.
Still, the provided information is insufficient to
make a decision about the component allocation
since we also need to consider communication.
It can be realized between components within

the same computational unit, or among different
computational units.

We recognize two different communication as-
pects; software and hardware. From the soft-
ware viewpoint we can talk about the intensity
of communication between components. For
instance, components handling data acquisition
and data processing would have larger commu-
nication intensity than a component which is
responsible for task delegations.

We define a new matrix which contains infor-
mation about the communication channel cost
between computational units. This is due to het-
erogeneous computational units, which can be
connected via different types of communication
channels (e.g. Ethernet, CAN-bus, Wi-Fi, etc.)
[10]. To specify the communication cost, we
define the Platform Communication Cost Ma-
trix:

Definition 3. C = [cij](m×m) is a PlatformCom-
munication Cost Matrix where cij represents a
communication cost between i-th and j-th com-
putational unit. For i = j, cij = 0.

The communication is also limited by a physi-
cal constraint – the bandwidth, which must be
taken into consideration.

Definition 4. B = [bij]m×m is a Bandwidth Ma-
trix where bij represents communication band-
width available between i-th and j-th computa-
tional unit.

Cost of the total communication between the
components does not only depend on the char-
acteristics of the communication channels be-
tween the platforms, but also on the commu-
nication between components defined by com-
ponents behavior; components which commu-
nicate intensively between computational units
with high communication cost will have a larger
impact on overall performance than those com-
municating sporadicallywith less data exchange.
To express this constraint, we define the com-
munication intensity matrix:

Definition 5. K = [kij](n×n) is a Communi-
cation Intensity Matrix where kij represents a
communication intensity between i-th and j-th
software component.

If components i and j are not communicating,
then kij = 0; also notice that K is symmetric
so the direction of the communication is irrele-
vant at this point. Although we are not limiting
the user on how to quantify K in Section 4, we
provide a suggestion.
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By the definitions (1-5) all necessary resources
and constraints are defined. In order to find an
allocation which satisfies the criteria of a partic-
ular system, one should evaluate all allocations
(i.e. all permutations) and find the allocation
which provides desired performance. The set
of all possible allocations (of components to
computational units) is defined as follows:

Definition 6. Function pi : S → H is a Compo-
nentMappingFunctionwhere pi = (p1, . . . , pn)
∈ P defines a particular allocation of compo-
nents fromS to computational units fromH,with
i = 1, . . . , mn.

In order to make different allocations, i.e. so-
lution vectors comparable and to get the opti-
mal allocation with respect to the overall system
performance, we need a mathematical model to
evaluate every solution – a cost function, which
is the subject of the following section.

Elements of vector pi represent one mapping of
a component to the computational units. The
example below shows the case where number
of components is equal to number of computa-
tional units (n = m), and every software com-
ponent is allocated on only one computational
unit. The position in solution vector represents
a component and its value represents the com-
putational unit on witch it is allocated. In real
world, it is more often that there are more com-
ponents than computational units, and therefore
some computational units h will occur on sev-
eral positions across the vector pi.

h1, h2, . . . , hm
↑ ↑ ↑

pi = (s1, s2, . . . , sn)
(1)

2.2. The allocation cost function

Now we will define a mathematical model in the
form of a cost function which evaluates an allo-
cation. Therefore, providing a normalized value
of resource usage costs. In addition, the prede-
fined constraints could exclude some particular
allocations. With the ability to compare alloca-
tions pi, one can find the optimal one. In order
to create a cost function, we must consider: a)
different system resources, b) communication,
which is further explained in the following sub-
sections.

System Resource Constraints

SystemResourceConstraints function, res sums
up normalized values of all resources used by
the components for a particular allocation con-
figuration pi, and it is defined as follows:

res =
l∑

k=1

f k

n∑
i=1

tipik (2)

where
f – element of a trade-off vector F
t – element of a resource consumption matrix T
l – number of different resources for matrix T
n – number of components

Equation 2 consists of two sums. The inner
one calculates total costs of each resource for
all components. There are l different resources
and they are marked with k. The outer one sums
up all l resources. Summing different costs is
possible due to normalization of resources val-
ues (more on this topic in Section 2.3). In addi-
tion, for a particular system, particular proper-
ties may be of a larger importance (for example,
energy consumption can bemore important than
system reliability: A solution to put two com-
ponents on one computational unit can be better
for energy consumption, but for reliability it can
be better to allocate these two components on
different computational units). For this reason
we introduced a trade-off vector F = [f ]l+1
which defines relative importance of each re-
source cost.

Notice that vector is l + 1 long, where l is the
number of resources considered. First l ele-
ments of the vector are marked as f k, and they
are used for giving importance to resources de-
fined with matrix T . (l+1)-th element, marked
as f c, is used for importance of communication
in the following section (Equation 4).

Resource constraints

Equation 2 provides a resource cost for any con-
figuration pi. However, there are configurations
which are not feasible. Such configurations
exceed the resource demand which computing
units can provide. For this reasonwe introduce a
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Resource constraint factor  = 1, which defines
the feasibility of an allocation configuration.

 =

{
0,
∑n

i=1
∑l

k=1

(
tipik
)

<
∑l

j=1 rpij

1,
∑n

i=1
∑1

k=1

(
tipik
)
≥
∑l

j=1 rpij

where
r – element of the computational unit resource
matrix R.

The multiplier  is used to remove unfeasible
configurations; If the required resources exceed
maximum available resources on a particular
computational unit, we set  = 0, effectively
disregarding the current allocation. In all other
cases,  = 1, meaning the available resources
are not exceeded by the required resources in
the current allocation pi.

Now Equation 2 multiplied by the factor  gives
a cost for a feasible allocation configuration.

res =

(
l∑

k=1

f k

n∑
i=1

tipik

)
·  (3)

Communication resources and constraints

In addition to the computational unit resources
that have impact on the performance, we have
resources related to the communication between
the components. The communication costs are
expressed by com:

com =
∑
i≤j

kij · cpipj (4)

where
k – element of a communication intensity ma-
trix K
c – element of a platform communication cost
matrix C
b – element of the bandwidth matrix B
The sum in Equation 4 handles communication
channels between computational units and mul-
tiplies the platform communication cost (de-
fined by matrix C) with the communication in-
tensity (defined by matrix K). Communica-
tion intensity relates to the data exchanged be-
tween different software components, while the
platform communication cost relates to physi-
cal characteristics. This will vary depending on
which computational unit a component is allo-
cated.

Like before, we define a multiplier  that pre-
vents an allocation in which the required com-
munication resources exceed the available band-
width.

 =
{

0,
∑

i≤j

(
kij · cpipj

)
<
∑

i≤j bpij

1,
∑

i≤j

(
kij · cpipj

)
≥
∑

i≤j bpij

where b – element of the bandwidth matrix B.

The final form of the communication resource
cost function is defined as follows:

com =

⎛
⎝f c

∑
i≤j

kij · cpipj

⎞
⎠ ·  (5)

where
f c – the communication trade-off factor (the last
element in vector F).

Final form of the cost function

In order to get the complete model, Equation 3
and Equation 5 need to be joined in a cost func-
tion w = (res + com) ·  ·  :

w =

⎛
⎝ l∑

k=1

f k

n∑
i=1

tipik + f c

∑
i≤j

kij · cpipj

⎞
⎠ · ·

(6)
To find the optimal component allocation, we
need to compare all feasible solutions pi from
P and select the one with the smallestw (greater
than 0).

As already mentioned, the problem is in the
size of |P| = mn which is a very large number.
Small increases in sets S and H cause enlarge-
ment of search space, which is not searchable
in a polynomial time.

2.3. Handling different measurement units

With final form of the evaluation model, one
can compare different allocations using the cost
function. However, there is one more problem
to address and it is related to different mea-
surement units, e.g. execution time is expressed
in milliseconds, memory in megabytes, energy
consumption in watts per hour, etc. To solve
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k1

k2
...

kl+1

k1 k2 . . . kl+1⎛
⎜⎜⎝

1 m1,2 . . . m1,l+1

(m1,2)−1 1 . . . m2,l+1
...

... . . .
...

(m1,l+1)−1 (m2,l+1)−1 . . . 1

⎞
⎟⎟⎠ = Mc

(7)

this problem, we use Analytic Hierarchy Pro-
cess (AHP) [15], a commonly used method for
complex multidimensional choices, alternatives
and tradeoffs.

A great benefit of this method is disregarding
measurement units. It uses trade-off weights
which assess the importance of different deci-
sion criteria. Since it also uses human subjective
judgment, AHP provides a procedure to verify
consistency of the decision model.

For the model we present here, one level of
hierarchy (Figure 2) is sufficient and it consid-
ers the importance of different resources. For
importance of each resource, a trade-off vector
F is used as shown in Equation 6. Its values
should be calculated using AHP. To determine
F, we first need to address the importance of all
different resources, i.e. AHP criteria used in the
allocation model. AHP criteria are given by the
third dimension of matrix T .

W

pi pi pi

Goal

Criteria

Alternatives 
(allocation)

k2k1 kl+l

. . .

. . .

f1 f2

f1+f2+...+fl+1 = 1

fl+1

Figure 2. Hierarchy for defining the criteria.

The first step in AHP is to perform a pairwise
comparison of all AHP criteria and form the
comparison matrix Mc along with hierarchy of
the criteria. This is shown in Figure 2. The
solution vector pi, is an input for each AHP
criterion.

Matrix Mc provides a pairwise comparison of
resources considered by the model. For com-
parison, we are using a standard AHP scale (1

– equal importance, 3 – slightly favoring, 5 –
strong favors, 7 – very strong favoring, 9 – ex-
treme favors). For instance, if resource k1 is
slightlymore important than resource k2, conse-
quently m1,2 = 3, and k2 compared to k1 would
give the reciprocal value, m2,1 = 1/3. For i = j,
m = 1.

The next step, according to AHP, is to calculate
normalized principal Eigenvector and principal
Eigenvalue. The largest Eigenvalue is called
principal Eigenvalue (max). The Eigenvec-
tor that corresponds to principal Eigenvalue is
called Principal Eigenvector (∗). The Princi-
pal Eigenvector should also be normalized so
that sum of all elements equals 1, and its values
are vector F.

The final step, before attributing the Eigenvec-
tor with the created hierarchy is to verify consis-
tency of the model. Since pairwise comparison
matrix is created by a subjective human judg-
ment, AHP deals with this by measuring the
consistency of prioritization. As it may hap-
pen that pairwise comparison is not done in a
consistent way, consistency ratio CR should be
calculated. It is given as CR = CI/RI, where CI
is Consistency index and RI is Random consis-
tency index.

CI is calculated as:

CI =
max − (l + 1)

l

Random consistency index is calculated by gen-
erating comparisonmatrixwith values (1/9, 1/8,
. . . , 8, 9), more on this topic can be found in
[16].

Finally, if CR is less or equal to 10%, the incon-
sistency of pairwise comparison is acceptable.

Since different system properties (matrix T ,
k − th dimension – see Figure 2) are measured
using different units, it is likely that the values
of those properties will have different orders of
magnitude (e.g. tens of milliseconds, thousands
of megabytes or hundredths of milliampers per
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hour). Hence, before the calculation, the input
matrices T , R and C need to be normalized,
so all the values are in range from 0 to 1. 1
represents a maximum available amount of a
resource; it is found in matrix R. Now, the
only factor to decide the importance of a certain
system property is the trade-off vector F.

2.4. Additional constraints – architectural
decisions

To get the optimal solution, we need to find pi
which gives minimum result min(w)∀pi ∈ P
(Equation 6) considering all the given platform
constraints. As opposed to platform constraints,
system architectural decisions can also be con-
sidered as a constraint, which somewhat de-
creases the search space. The solution vector
pi is becoming partially defined p′i ∈ P ′, where
P ′ ⊂ P is the reduced search space with valid
solutions. Architectural decisions are included
in our allocation model as an additional con-
straint.

There are two architectural decisions (addi-
tional constraints) which can be specified:

1. a particular component should be or should
not be allocated on a particular computa-
tional unit

2. a set of components should be or should not
be allocated on the same computational unit

3. Evolving the Solution with
Genetic Algorithm

In order to get an optimal solution, the goal is
to minimize the cost function (w). Since it is
not feasible to search the entire solution space
(due to large number of variables), a heuristic
(e.g. greedy algorithm) or meta-heuristic (e.g.
genetic algorithm, particle swarm optimization,
simulated annealing) is a good choice to find
a semi-optimal solution. We have chosen Ge-
netic Algorithm (GA) which is frequently used
for solving optimization problems by mimick-
ing the process of evolution. The evolution of
the solution is done by crossover between differ-
ent solutions, in our case allocations (genes) and
mutation. Bad allocations are disregarded and

the good ones are reinforced. Since GA needs a
comparison function, and w can be used as one,
GA is a favorable choice. Also, our compar-
isons have shown that it provides very accurate
solutions Figure 3. For the implementation we
used Python and Pyevolve library with the fol-
lowing settings:

Generations 50

Mutation rate 0,05
Crossover rate 0,95
Population size 80
Selection algorithm Roulette wheel

Table 1. GA settings.

With the settings shown in Table 1, GA con-
verges to the solution with average deviation of
3%. The exact solution was calculated by ex-
haustive search (ES), which is a common tech-
nique to systematically enumerate all solutions.
Figure 3 shows the comparison between results
of ES and GA. It is obvious that GA provides
very accurate results. During the test of GA
we also measured the execution time. Figure 4
shows that initially ES was faster, however with
slow growth of inputs search space and time
grew exponentially and GA was more efficient,
as expected2.
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Figure 3. Accuracy comparison between solutions from
GA and EF (logarithmic scale).

2 GA is executed on a server with Intel Xeon E7-4830 CPU and 8GB of RAM.
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Figure 4. Execution time comparison for GA and EF
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The application of Genetic Algorithm does not
guarantee an optimal solution, however it will
provide one which is sufficiently good, given
the time necessary to calculate it. Here, we used
GA simply to gain the solution faster, however
at the cost of accuracy. For the purpose of the
following use case, the accuracy was accept-
able.

1
UI

2
CH

3
MP

8
AC

6 
MC

7
V

9
S2

10
S2

11
SF

5
MM

4
MD

Figure 5. Simplified software architecture.

4. Case study: Underwater Autonomous
Vehicle

The system on which we demonstrate our al-
location model is an autonomous underwater
vehicle (AUV) that is being developed as a part

of RALF3 project [2]. Since 2012 it competes
on annual RoboSub contest (AUVSI Founda-
tion) [3] in San Diego, California. One of
the main challenges is handling and interpret-
ing vision data, i.e. recognition of particular
objects, while simultaneously interacting with
them in real time. Therefore all the compo-
nents should be allocated in a way that will
fully utilize the heterogeneous platform, which
consists of a multicore CPU, GPU, two FPGA
units. Here we present a simplified software
and hardware architecture for which component
allocation should be performed.

Figure 5 shows the software architecture. It
consists of eleven components:

1-UI User interface used for manual control
and displaying data from sensors and
camera.

2-CH Communication handler used to handle
communication between the user inter-
face and the data from sensors.

3-MP Message parser used to translate inter-
nal communication e.g. to convert user
input into the commands for movement.

4-MD Manual drive enables manual control
of the robot and communication with
movement, vision and actuators.

5-MM Mission manager used for autonomous
mode, it contains the behavior model.

6-MC Movement control used for low to high
level software communication handling.

7-V Vision for recognition of basic objects
and shapes.

8-AC Actuator control used for controlling ac-
tuators (bite shift operations, message
parsing).

9-S1 Sensors layer 1 used for collecting the
data from sensors (sonar, orientation).

10-S2 Sensors layer 2 used for collecting the
data from sensors (depth).

11-SF Stream filtering handles video filtering
chain (color normalization, white bal-
ance, color isolation, edge detection, etc.).
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Figure 6 shows hardware architecture with 4
computational units:

1-mCPU multicore CPU

which is intended to handle top level
control of the robot and sequential tasks
with a few branches.

(2-FPGA, 3-FPGA) FPGA

which are intended for raw image pro-
cessing and stream data processing.

(4-GPU)]

which is intended for object recognition
algorithms and tasks which can be par-
allelized.

1
mCPU

2
FPGA I

3
FPGA II

3
GPU

CAN BUS

Figure 6. Simplified hardware architecture.

Finding the right allocation

To find the optimal allocation of components to
the computational units we need the data forma-
trices T , R, K, B and C. Since this is currently
a work in progress, we do not yet have access to
all actual parameters, so for this purpose we will
make an assumption about them, while keeping
the proportions realistic as possible.

In Figure 7, (a) is the component communica-
tion matrixK. The values we use are almost the
same as those in standard AHP scale (the com-
munication can be: 0 – none, 1 – low, 3 – occa-
sional, 5 –moderate, 7 – frequent, 9 – intensive).
One can get the values from the number of calls
and an average data packet size or measuring
data load on the channels between components.
Since T , the resource consumption matrix, is
three-dimensional (components, computational
units, resources), we used three tables to dis-
play three different resources (i.e. the 3rd di-
mension); (b) average execution time (millisec-
onds), (c)memory (megabytes) and (d) average
energy consumption (milliamperes per hour).
Matrix (e) is the platform communication ma-
trix C, (f) is the resource availability matrix

R, and (g) is the bandwidth between compo-
nents, matrix B. Since all computational units
communicate through common CAN-bus, the
bandwidth for communication between them is
the same.

Figure 7. The input matrices.

There are also two additional architectural de-
cisions to consider:

• Vision component (7-V) should be allocated
on GPU.

• Manual drive (4-MD), mission management
(5-MM) andmovement control (6-MC) com-
ponents should be on FPGAII.

Figure 8. Pairwise comparison (average execution time,
memory, energy, communication).

Figure 8 shows the pairwise comparison by
which we determine the importance of differ-
ent resources (AHP criteria, matrix MC). The
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rows and columns of this matrix are: 1) average
execution time importance, 2) memory impor-
tance, 3) energy consumption importance, 4)
communication channel load. The importance
of resources for our case study is the following
(respectively): 1) energy consumption, 2) av-
erage execution time, 3) memory load, 4) com-
munication load (also visible from F).

Calculated trade-off vector is:

F = (0.1557, 0.0856, 0.7095, 0.0491)

with the eigenvalue3 max = 4.2457. Consis-
tency ratio is 8.18% < 10%, hence acceptable.

Figure 9 shows the results from five consecu-
tive GA executions for data defined in Figure 7.
There are small deviations in different solutions.
The ones with lowest cost function results 1-4,
the fifth result however omits the 6-MC → FP-
GAII constraint to demonstrate how this change
reflects on the result.

1 2 3 4 5
1 - UI mCPU mCPU mCPU mCPU mCPU
2 - CH GPU GPU GPU GPU FPGA I
3 - MP GPU FPGA I GPU GPU GPU
4 - MD mCPU mCPU mCPU mCPU mCPU
5 - MM mCPU mCPU mCPU mCPU mCPU
6 - MC mCPU mCPU mCPU mCPU mCPU
7 - V FPGA II FPGA II FPGA II FPGA II GPU
8 - AC FPGA I GPU FPGA I FPGA I GPU
9 - S1 GPU GPU GPU FPGA I GPU
10 - S2 FPGA I GPU GPU FPGA I GPU
11 - SF GPU GPU GPU FPGA I FPGA I

weight 135,3271 135,3271 135,3271 135,3271 142,2967

Figure 9. The results of multiple execution of GA
(score: less is better).

Since the solutions 1-4 are valid, software archi-
tect can choose, according to some own prefer-
ence, one of the solutions. However, he/she is
certain that all of them minimize energy con-
sumption with regard to given resources.

Also notice that user-defined constraints for
components 7-V, 4-MD, 5-MM, and 6-MC are
taken into account on all the solutions. So com-
ponent 7-V is allocated on GPU as requested,
while components 4-MD, 5-MM, 6-MC are al-
located on multicore CPU.

5. Related Work

There are a lot of component-oriented frame-
works for modeling the software architecture
listed in [4], that enable reasoning about extra-
functional properties (e.g. Palladio component
model and performance [5], or ProCom com-
ponent model and worse-case execution time
[6] where software components are allocated on
virtual nodes, and later those virtual nodes to
physical nodes [7], or in some cases managing
deployment, but without optimization [8]). A
trade-off analysis of utilization of different re-
sources in real-time system is discussed in [9].

However, not a lot ofwork addresses component-
oriented frameworks targeted for heterogeneous
platform, and specifically allocating software
components to heterogeneous computational
units. Several works relate to tasks alloca-
tion to different processing units with some re-
source constraints and to searching for an opti-
mal load balancing across the system [10], [11]
or a good average-case performance [12], but
they do not address heterogeneous platforms.
The second group relates to frameworks where
software component allocation is part of the
deployment process. Problems related to het-
erogeneous platforms and challenges in com-
ponents synchronization between the platforms
are described in [13]. In [14], a dynamic real-
location is enabled in combination with perfor-
mance monitoring.

Our method enables efficient placement of soft-
ware components on computational units of a
heterogeneous platform. It considers multi-
ple criteria which are both system-defined and
architect-defined. The result is a semi-optimal
component allocation for a particular system.

6. Discussion and Future Work

In this paper we presented an extension of our
previous model [17] for optimization of compo-
nent allocation on a heterogeneous embedded
platform. We improved the model by address-
ing the following: a) handling different mea-
surement units, b) handling the subjective judg-
ment of the criteria for allocation decision with

3 In the calculation we rounded vector F to four decimal places, and eigenvalue to thirteen. Calculations were done with NumPy
and SciPy libraries.
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AHP consistency index verification, c) includ-
ing the bandwidth constraint for the commu-
nication and d) enabled architect defined con-
straints.

The solution provides a semi-optimal allocation
model which uses a Genetic Algorithm (any
other optimization technique can be applied)
and Analytical Hierarchical Process. The im-
proved model presented in this paper provides
a strong theoretical basis, however it still needs
further refinement due to some initial assump-
tions, e.g. deriving input parameters, which is
our goal for the future work on this topic, and
measuring actual data used for the model.

The resource consumption matrix T can be ac-
quired by measurements, calculation or empir-
ically. For instance, the execution time can be
measured as the time which passes from the mo-
ment when the input signal arrives to the com-
ponent until the output signal exits the compo-
nent (i.e. for non-preemptive scheduling) and
the task is finished with execution (preemptive
scheduling).

Communication intensity K needs further dis-
cussion and research. Its intent is to envelop
frequency of communication between compo-
nents so one can quantify the usage of channels
between them. One way to look at it is the
number of function calls, channel data type i.e.
signal data or streaming data, or the approach
which we used in this paper: approximation
with AHP scale.

One must also consider non-functional con-
straints, e.g. development effort. As shown
in Figure 9, first four allocations provide the
same result, however different allocations. In
real world some components require great de-
velopment efforts to be implemented on certain
platforms. Partially, this issue is addressed with
enabling user preference to the solution. To
further address this issue, we can define a new
“property” which identifies development cost
of each component for particular platform and
also express sequential and parallel processing
needs.

Further, we also plan to provide a graphical tool
with appropriate EMF model which would al-
low automatic component allocation in early ar-
chitecture design phase. Since this is an ongo-
ing research we will also work to improve the

demonstrator (case study) and verify how op-
erating system and other platform specific de-
pendencies influence the architecture of com-
ponents and refine the model accordingly.

7. Acknowledgment

This paper was supported by the Swedish Foun-
dation for Strategic Research (SSF) via the
project RALF3 [2] and Croatian Ministry of
Science, Education and Sport via the project
Information Infrastructure and Interoperability.

References

[1] P. LIGGESMEYER, M. TRAPP, Trends in Embed-
ded Software Engineering. IEEE Software, 26(3)
(2009).

[2] Ralf3 Project Web, http://www.mrtc.mdh.se/
projects/ralf3/, [Accessed: Jan 2013].

[3] AUVSI Fundation Web,
http://www.auvsifoundation.org/
foundation/competitions/robosub/, [Acces-
sed: Jan 2013].

[4] I. CRNKOVIC, S. SENTILLES, A. VULGARAKIS, M.
R. V. CHAUDRON, A Classification Framework for
Software Component Models. IEEE Transactions
on Software Engineering, 37(5) (2011), 593–615.

[5] S. BECKER, H. KOZIOLEK, R. REUSSNER, Model-
based performance prediction with the Palladio
component model. The 6th international workshop
on Software and performance, (2007).

[6] Autosar, http://www.autosar.org/, [Accessed:
Jan 2013].

[7] J. CARLSON, J. FELJAN, J. MÄKI-TURJA, M. SJÖDIN,
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SON, I. CRNKOVIC, A component model for control-
intensive distributed embedded systems. 11th In-
ternational Symposium on Component-Based Soft-
ware Engineering, (2008), 310–317.

[9] J. FREDRIKSSON, K. SANDSTRÖM, M. AKERHOLM,
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