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Abstract

Delay variations (jitter) in computations and communi-
cations cause degradation of performance in e.g. control
applications. There are many sources of jitter, including
variations in execution time and bus contention.

This paper presents methods to reduce the variation
of frame (message) transmission time caused by the bit-
stuffing mechanism in the Controller Area Network (CAN).
By introducing some restrictions, such as a small reduction
of available frame priorities, we are able to reduce the num-
ber of stuff-bits in the worst case. We also combine this
with some of our previous work that reduces the number of
stuff-bits in the data part of the frame. We show the actual
penalty introduced by forbidding priorities, and we show
the overall improvement by using these techniques together
in a small case study.

1. Introduction

During the last decade real-time researchers have ex-
tended schedulability analysis to a mature technique which
for non-trivial systems can be used to determine whether a
set of tasks executing on a single CPU or in a distributed
system will meet their deadlines or not [1][3][16][21]. The
essence of this analysis is to investigate if deadlines are met
in a worst case scenario. Whether this worst case actually
will occur during execution, or if it is likely to occur, is not
normally considered.

In contrast with schedulability analysis, reliability mod-
elling involves study of fault models, characterisation of
distribution functions of faults and development of meth-
ods and tools for composing these distributions and models
in estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability
analysis and stochastic reliability analysis is a natural sim-
plification of the total analysis. This is because the deter-
ministic schedulability analysis unfortunately is quite pes-

simistic, since it only considers the worst case, i.e., it does
not distinguish the case when the deadline is only missed in
the (possibly very rare) worst case from the case when the
deadline is always missed.

There are many other sources of pessimism in the anal-
ysis, including considering worst-case execution times and
worst-case phasings of executions, as well as the usage of
pessimistic fault models.

In our previous work [14], we have proposed a model for
calculating worst-case latencies of Controller Area Network
(CAN) [15] frames under error assumptions. This model is
pessimistic, in the sense that there are systems that the anal-
ysis determines unschedulable, even though deadlines will
only be missed in extremely rare situations with patholog-
ical combinations of errors. In [10][11] we have reduced
the level of pessimism by introducing a better fault model,
and in [9] we also consider variable phasings between mes-
sage queuings, in order to make the model more realistic.
In [13] we reduced the pessimism introduced by the worst-
case analysis of CAN message response-times, by using bit-
stuffing distributions instead of the traditional worst-case
frame sizes.

In this paper we provide a method that will minimise
the variations of frame lengths caused by bit-stuffing. The
number of stuff-bits in a CAN frame can vary between 0 and
29, depending on the CAN format (standard or extended),
the frame length (the number of data bytes in the frame)
and the frame bit pattern. This variation of frame length
is problematic for e.g. control applications based on event-
triggered architectures. Problems and degradation of per-
formance caused by jitter in control applications have been
shown in [5][12][17].

Hence, it is desirable to minimize this variation of frame
lengths, as shown in [8]. To do this, we make use of our
previous work [13] where we presented a method to reduce
the number of stuff-bits in the data part of the CAN frame.
We will here extend this work by also considering the con-
trol part of the CAN frame. We show how bit-stuffing can
be eliminated in the header part of the CAN frame and we
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Figure 1. CAN frame layout (standard format data frame).

show how to combine this with our previous work, in or-
der to have a method that minimizes the variations in frame
length for the whole CAN frame.

There has been work done to reduce jitter caused by vari-
ations in queuing times for CAN frames [2][6][7] using
genetic algorithms. This is done by giving periodic mes-
sages initial phasings, found by using genetic algorithms.
These phasings can be set both offline and online, although
the technique requires a relatively high computational over-
head. Our method, on the other hand, focuses on the jitter
caused by variations of frame lengths. Our approach is done
mostly offline, and the online part requires very little CPU-
time.

Outline: Section 2 specifically discusses the scheduling
of frame sets in Controller Area Networks under a general
fault model, and describes the theory behind bit-stuffing. In
Section 3 we show how we can eliminate the occurrence of
stuff-bits in the header part of the CAN frame and in Sec-
tion 4 we present our independent bit-stuffing model along
with a method for data transformation which significantly
reduces the number of stuff-bits in the data part of the CAN
frame. In Section 5 we combine the techniques described
in Section 3 and Section 4, and in Section 6 we show the
result of using our methods and models in a case-study. Fi-
nally Section 7 presents our conclusions and outlines future
work.

2. Traditional schedulability analysis of CAN
frames

The Controller Area Network (CAN) [15] is a broadcast
bus designed to operate at speeds of up to 1 Mbps. CAN is
extensively used in automotive systems, as well as in other
applications. CAN transmits data in frames containing be-
tween 0 and 8 bytes of data and 47 control bits, as shown in
Figure 1. (There is also an extended format, which contains
20 more control bits. The main difference is that the ex-
tended format has 29 identifier bits instead of 11 bits. Please
consult [4] for more details.)

Among the control bits there is an 11-bit identifier as-
sociated with each frame (plus another 18 when using the
extended format). The identifier is required to be unique, in

the sense that two simultaneously active frames originating
from different sources must have distinct identifiers. The
identifier serves two purposes: (1) assigning a priority to
the frame, and (2) enabling receivers to filter frames. For a
more detailed explanation of the different fields in the CAN
frame, please consult [15] or [4].

CAN is a collision-detect broadcast bus, which uses de-
terministic collision resolution to control access to the bus.
The basis for the access mechanism is the electrical charac-
teristics of a CAN bus: if multiple stations are transmitting
concurrently and one station transmits a ‘0’ then all stations
monitoring the bus will see a ‘0’. Conversely, only if all
stations transmita ‘1’ will all processors monitoring the bus
see a ‘1’. During arbitration, competing stations are simul-
taneously putting their identifiers, one bit at the time, on the
bus. By monitoring the resulting bus value, a station detects
if there is a competing higher priority frame and stops trans-
mission if this is the case. Because identifiers are required to
be unique within the system, a station transmitting the last
bit of the identifier without detecting a higher priority frame
must be transmitting the highest priority queued frame, and
hence can start transmitting the body of the frame.

2.1. Classical CAN bus analysis

Tindell et al. [18][19][20] present analysis to calculate
the worst-case latencies of CAN frames. This analysis is
based on the standard fixed priority response time analysis
for CPU scheduling [1].

Calculating the response times requires a bounded worst
case queuing pattern of frames. The standard way of ex-
pressing this is to assume a set of traffic streams, each gen-
erating frames with a fixed priority. The worst-case be-
haviour of each stream, in terms of network load, is to send
as many frames as they are allowed, i.e., to periodically
queue frames. In analogue with CPU scheduling, we ob-
tain a model with a set S of streams (corresponding to CPU
tasks). Each S; € S is atriple < P;,T;,C; >, where P;
is the priority (defined by the frame identifier), 7 is the pe-
riod and C; the worst-case transmission time of frames sent
on stream S;. The worst-case latency R; of a CAN frame
sent on stream S; is, if we assume the minimum variation



in queuing time relative 7T; to be 0, defined by

Ri=Ji+4¢+0C; 1)

where J; is the queuing jitter of the frame, i.e., the maxi-
mum Vvariation in queuing time relative 77, inherited from
the sender task which queues the frame, and ¢; represents
the effective queuing time, given by:

D+ Jj o+ To
@t =B+ Y [%] Cj + E(q; + Cy)
J€hp(3) /
(2)

where the term B; is the worst-case blocking time of frames
sent on S;, hp(i) is the set of streams with priority higher
than S;, 7y (the bit-time) caters for the difference in arbi-
tration start times at the different nodes due to propagation
delays and protocol tolerances, and E(g; + C;) is an er-
ror term denoting the time required for error signalling and
recovery. The reason for the blocking factor is that trans-
missions are non-preemptive, i.e., after a bus arbitration has
started the frame with the highest priority among compet-
ing frames will be transmitted until completion, even if a
frame with higher priority gets queued before the transmis-
sion is completed. However, in case of errors a frame can
be interrupted/preempted during transmission, requiring a
complete retransmission of the entire frame. The extra cost
for this is catered for in the error term E above.

Note that (2) is a recurrence relation, where the approx-
imation to the value of ¢™*" is found in terms of the nth
approximation, with the first approximation set to zero. A
solution is reached when ¢ = ¢7.

k3

2.2. Effects of bit-stuffing, worst case

In CAN, six consecutive bits of the same polarity
(111111 or 000000) are used for error and protocol control
signalling. To avoid these special bit patterns in transmit-
ted frames, a bit of opposite polarity is inserted after five
consecutive bits of the same polarity. By reversing the pro-
cedure, these bits are then removed at the receiver side. This
technique, which is called bit-stuffing, implies that the ac-
tual number of transmitted bits may be larger than the size
of the original frame, corresponding to an additional trans-
mission delay which needs to be considered in the analysis.

According to the CAN standard [15], the total number of
bits in a CAN frame before bit-stuffing is:

8s+g+13 3)

where s is the number of bytes of payload data (s = [0, 8])
and g + 13 is the number of bits in the control part of the
CAN frame. The frame layout is defined such that only g of
these g + 13 bits are subject to bit-stuffing (see Figure 1).
In the standard format ¢ = 34 and in the extended format

g = 54. Therefore the total number of bits after bit-stuffing
can be no more than:

(4)

8s— 1
85+ g+ 13+ {wJ
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Intuitively the above formula captures the number of
stuff-bits in the worst case scenario, shown in Figure 2.

before stuffing —> 111110000111100001111....

stuffed bits \l/ \l/ \l/ \l/ \l/
after stufing —> 11111000001111100000111110....

Figure 2. The worst-case scenario when stuff-
ing bits.

Let 73;; be the worst-case time taken to transmit a bit on
the bus — the so-called bit time (including the inter-frame
space). The worst-case time taken to transmit a given frame
1 is therefore:

8s; — 1
C; = <83i+g+13+ {“%J) i (5)

3. Careful priority usage

In this section we will investigate how it is possible to
avoid/minimize stuff-bits in the header part of the CAN
frame. For simplicity we will focus on the standard for-
mat, but the same reasoning holds for the extended format.
The obtained data for the extended format is shown in the
end of this section.
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Figure 3. CAN frame header, the first 6 fields
of the CAN frame (standard format).

The priority of the standard format CAN frame, which
is also the arbitration field, consists of 11 bits (as can be
seen in Figure 3), which are subject to bit-stuffing before
the frame is actually transmitted.



Number of | Number of bytes of data in the CAN message frame
stuff-bits 0 1 2-3|4-7 8

0 0 0 745 1131

1 1332 | 1436 | 1490 | 1005 765

2 634 | 560 | 520 279 145

3 81 51 19 7

4 1 1 0 0

Table 1. Amount of remaining priorities for various data lengths and their corresponding number of

stuff-bits (standard format).

Number of | Number of bytes of data in the CAN message frame

stuff-bits 0 1 2—-3 4-17 8
0 0 0 0 15.09 22.91
1 26.98 | 29.98 | 30.18 | 35.60 38.67
2 40.09 | 40.74 | 41.03 | 31.49 26.59
3 24.01 | 22.65 | 21.94 | 13.93 9.62
4 7.49 6.44 5.93 3.39 1.97
5 1.31 1.00 0.86 0.46 0.23
6 0.13 | <0.01 | 0.06 0.03 0.01
7 0.01 | <0.01 | <0.01]| <0.01 < 0.01
8 <0.01 ] <0.01|<0.01]|<0.01 < 0.01
9 < 0.01 0 0 0 0

Table 2. Amount of remaining priorities for various data lengths and their corresponding number
of stuff-bits (extended format). Due to large numbers, only percentages are shown (percentages of

211+18)_

By carefully selecting priorities we can avoid the effect
of stuff-bits in the frame header, i.e., by excluding the iden-
tifiers that lead to bit-stuffing we can a priori make sure that
there will be no stuff-bits in any of the fields shown in Fig-
ure 3. The drawback of this is that we have forbidden the
usage of some selected priorities, which obviously comes
at a cost, since originally we could use all 11 bits to repre-
sent the priority and identity of the CAN frame, which gave
us 2! (2048) different priorities, and after the removal of
selected priorities, it turns out that we have either of the fol-
lowing two scenarios: (1) we can eliminate the number of
stuff-bits in the CAN header, or (2) we can minimize the
number of stuff-bits in the CAN header to 1.

The actual numbers of stuff-bits, by forbidding priori-
ties, are described in Table 1. Worth noticing is that the
number of stuff-bits depends on the number of data bytes
in the frame. This since the DLC field, see Figure 3, con-
sists of 4 bits describing the number of bytes of data in the
frame. Thus, this bit pattern will affect the number of stuff-
bits generated in the frame header (all frame fields before
the data part of the CAN frame, as shown in Figure 3).

What we can see in Table 1 is that we have 3 different
groups of scenarios:

1. Thefirstgroup is when we have 0-3 bytes of data. Here
it is impossible to eliminate the occurrence of stuff-
bits in the CAN header, but we can make sure that we
will only have at most one stuff-bit. However, by for-
bidding priorities, the number of priorities that we can
use decrease to 1332 (0 bytes of data), 1436 (1 byte of
data) or 1490 (for 2-3 bytes of data).

2. The second scenario is when we have 4-7 bytes of data.
Here we can eliminate the number of stuff-bits in the
CAN header by forbidding priorities, leaving 745 us-
able priorities. One can argue that forbidding prior-
ities would be the same as to use redundant bits as
“virtual stuff-bits” (since the number of usable prior-
ities require less bits for representation compared to
the number of bits that are allocated for describing the
priority; some bits are left “unused”). Although there
is some truth in this reasoning, the CAN header has
a fixed number of bits. Hence, even if we are using
fewer priorities, the number of bits in the CAN header
stays the same.

3. The third and final scenario is when we have 8 bytes
of data. Also here we can eliminate the stuff-bits by



original frame | 1111100001101010 |
XOR operation
bit mask | 1010101010101010 |

encoded frame | 0101001011000000 |

| 1111100001101010 | original frame

[1010101010101010 | bit-mask
XOR operation
| 0101001011000000 | encoded frame
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transmitted frame

Figure 4. Encoding/decoding process for the proposed method.

forbidding priorities. The number of usable priorities
is then 1131.

Conclusions of what is presented in Table 1 is that we can
eliminate the occurrences of stuff-bits in the CAN header
(when the message contains 4-8 bytes of data) by forbidding
priorities, and the cost for this is a reduction of the num-
ber of available priorities. Therefore we believe that this
method can be used, depending on the application’s need of
priorities, to eliminate the effect of bit-stuffing in the header
part of the CAN message frame.

Corresponding values for the extended format are shown
in Table 2.

4. Independent bit-stuffing model and a

method for data transformation

In our previous paper [13] we propose a method to re-
duce the effect of bit-stuffing in the data part of the CAN
frame. The motivation is to investigate the level of pes-
simism of traditional schedulability analysis for the Con-
troller Area Network (CAN).

The method, show in Figure 4, reduces the actual num-
ber of stuff-bits in the CAN data frame by transforming the
message using an XOR operation on the data together with
a bit-mask. By doing this, we showed with a case-study that
the actual number of stuff-bits was significantly reduced, as
can be seen in Figure 5. Here we can see (Real traffic) the
number of stuff-bits in an industrial application (samples
taken from one of our automotive partners). In relation to
this, we also see the number of stuff-bits in artificial data
generated by assuming independent and equal probability
of a’1” and ’0’ in each bit position (50/50), and the number
of stuff-bits in the same industrial data, but after using the
method described above (Real traffic using XOR).

5. Combination of techniques

The methods described in Section 3 and Section 4 can
be combined in order to significantly reduce the variation
of CAN message frame lengths, i.e., reducing the jitter. We
will in this section additionally integrate the last field in the
CAN frame, the CRC field, in the jitter reduction.

With the first method, we reduced the worst-case number
of stuff-bits in the frame header to 0 or 1 (depending on the
number of data bytes in the CAN frame) from 4, which is
the theoretical value that we have to use in a safe worst-case
analysis.

Combining this with the second method we further re-
duce the number of stuff-bits. As can be seen in Figure 5
we have reduced the number of stuff-bits in an 8 byte data
part of a frame to 3 from 13 (analytically 15).

Finally, the last part of the CAN frame to investigate is
the CRC field at the end of the frame, shown in Figure 1. We
believe, since CRC-generation essentially coincides with
pseudo random binary sequence generation, that the 50/50
model described in [13] and in Section 4 is suitable for de-
scribing these bits, i.e., we assume that the CRC essentially
is a sequence of bits with equal and independent probabil-
ity for bit value 0 and 1, respectively. The model assumes
independence among bits and equal probability for having
bit-value 0 or 1. What we do then is that we use our model
for both the data part and the CRC field of the CAN frame.
According to the model, the number of stuff-bits and their
corresponding probabilities for the data and the CRC part
of the frame are described in Table 3.

By using our model we can see, when for example us-
ing 8 bytes of data, that the number of stuff-bits is reduced
from, analytically 24 to 11 when the acceptable probabil-
ity of exceeding the maximum frame size is in the order of
1079, since "y, ;<10 P < 1075 where P; = probabil-
ity of having exactly i stuff-bits. Therefore, we have sig-
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Figure 5. Probability density functions, PDF:s, showing the number of stuff-bits in a 64 bit frame. We
show here our independent 50/50 model, the real CAN traffic and the manipulated real CAN traffic.

Nof bytes of data 0 1 2 3 4 5 6 7 8
Nof bits 0 8 16 24 32 40 48 56 64
Total (CRC+data) 15 23 31 39 47 55 63 71 79

0 6.76E-01 | 4.85E-01 | 3.61E-01 | 2.69E-01 | 2.00E-01 | 1.49E-01 | 1.11E-01 | 8.25E-02 | 6.14E-02
1 2.29E-01 | 3.88E-01 | 4.07E-01 | 391E-01 | 3.57E-01 | 3.15E-01 | 2.71E-01 | 2.29E-01 | 1.90E-01
2 323E-02 | 1.12E-01 | 1.84E-01 | 241E-01 | 2.78E-01 | 2.96E-01 | 2.99E-01 | 2.90E-01 | 2.73E-01
3 6.10E-04 | 1.41E-02 | 423E-02 | 8.10E-02 | 1.24E-01 | 1.64E-01 | 1.98E-01 | 2.23E-01 | 2.40E-01
4 6.93E-04 | 5.18E-03 | 1.62E-02 | 3.46E-02 | 5.90E-02 | 8.73E-02 | 1.17E-01 | 1.45E-01
5 3.20E-04 | 1.96E-03 | 6.31E-03 | 1.45E-02 | 2.70E-02 | 4.37E-02 | 6.35E-02
6 8.27E-06 | 1.38E-04 | 7.54E-04 | 2.48E-03 | 6.04E-03 | 1.21E-02 | 2.09E-02
7 494E-08 | 5.11E-06 | 5.76E-05 | 2.94E-04 | 9.82E-04 | 2.50E-03 | 5.29E-03
8 8.01E-08 | 2.65E-06 | 2.38E-05 | 1.16E-04 | 3.91E-04 | 1.03E-03
9 2.27E-10 | 6.54E-08 | 1.27E-06 | 9.80E-06 | 4.60E-05 | 1.57E-04
10 6.76E-10 | 4.11E-08 | 5.77E-07 | 4.02E-06 | 1.84E-05
11 146E-12 | 7.16E-10 | 2.26E-08 | 2.56E-07 | 1.65E-06
12 5.17E-12 | 543E-10 | 1.15E-08 | 1.12E-07
13 7.44E-15 | 7.00E-12 | 3.45E-10 | 5.56E-09
14 3.68E-14 | 6.36E-12 | 1.96E-10
15 3.66E-17 | 6.25E-14 | 4.64E-12
16 2.46E-16 | 6.75E-14
17 1.76E-19 | 5.19E-16
18 1.57E-18
19 8.30E-22

Table 3. Number of stuff-bits, with corresponding probability of occurrence (zEy equals z x 10Y).

nificantly reduced the maximum number of stuff-bits and our model. When using our method to decrease the number
thus, the interval between maximum and minimum number of stuff-bits in a real system the actual number of stuff-bits
of stuff-bits is smaller, i.e., we have reduced the considered can be even smaller, as shown in Figure 5.

jitter.

We must also remember that these values are based on



Nof bits Head Data CRC Entireframe | Entirew prio. | DataXOR | New CRC | EntireXOR | Entirew XOR+prio
0 0 0 0.36618 0 0 0.78605 0.87834 0 0.69409
1 0 0 0.41301 0 0 0.14786 0.11973 0 0.21820
2 0.59550 0 0.22081 0 0 0.01449 0.00193 0.51457 0.02668
3 0.38962 | 0.00020 0 0 0 0.05160 0 0.23032 0.06047
4 0.00469 | 0.00341 0 0 0.00225 0 0 0.17338 0.00056
5 0.01019 | 0.01505 0 0 0.00678 0 0 0.01942 0
6 0 0.01613 0 0.00225 0.02291 0 0 0.06211 0
7 0 0.04057 0 0.00325 0.01677 0 0 0.00020 0
8 0 0.22984 0 0.00863 0.09020 0 0 0 0
9 0 0.22972 0 0.03419 0.11608 0 0 0 0

10 0 0.18682 0 0.02387 0.30644 0 0 0 0
11 0 0.00389 0 0.18076 0.16419 0 0 0 0
12 0 0.21551 0 0.22410 0.11556 0 0 0 0
13 0 0.05886 0 0.07700 0.07696 0 0 0 0
14 0 0 0 0.26021 0.05622 0 0 0 0
15 0 0 0 0.07824 0.02564 0 0 0 0
16 0 0 0 0.05132 0 0 0 0 0
17 0 0 0 0.05618 0 0 0 0 0

Table 4. Number of stuff-bits in the samples, with corresponding probability of occurrence.
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Figure 6. Probability density functions, PDF:s, showing the number of stuff-bits in a CAN frame

(extended format). We show here real traffic along with the same traffic but manipulated with XOR.

6. Case-study

In order to validate our method and model, we make use
of samples taken from one of our industrial partners. Firstly,
we investigate the actual number of stuff-bits in some 25
000 CAN frames (extended format). This result is then

compared with the same CAN frames, both with and with-
out the usage of the methods described in this paper.

The number of stuff-bits in the CAN frame, both with
the XOR manipulation as described in Section 4, and with-
out manipulation, are shown in Figure 6. What we can read
from the figure is that the actual worst-case number of stuff-
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Figure 7. Probability density functions, PDF:s, showing the number of stuff-bits in a CAN frame
(extended format). We show here real traffic manipulated with XOR and careful priority selecting.
Our independent model is also shown with respect to the careful priority select.

bits has dropped from 17 to 7, this as a result of remov-
ing patterns of consecutive bits in the data part of the CAN
frame. We used the same bit-pattern for the mask, as shown
in Figure 4. Note that we have not used the method for se-
lecting priorities yet.

In order to further reduce the number of stuff-bits in the
CAN frame we also make use of the method based on for-
bidding some priorities, as described in Section 3 The re-
sult of this is shown in Figure 7 along with the indepen-
dent model described in Section 4 (also shown as the right
most column of Table 3). Note here that with the knowl-
edge of elimination of stuff-bits in the CAN header, we use
the 50/50 model only for the data part and the CRC part of
the CAN frame. The result of carefully selecting priorities
gives us even less stuff-bits. We have now reduced the ac-
tual worst-case number of stuff-bits from 17 to 4, as can be
seen in Figure 7.

The results from all experiments within the case-study
are shown in Table 4. Here we can see the number of stuff-
bits in the header, data and CRC part of the original frame
as well as the number of stuff-bits in the whole CAN frame.
Furthermore, the number of stuff-bits in the data and CRC

part of the frame after the XOR method are shown. Finally,
the number of stuff-bits in the whole CAN frame, after ap-
plying both the XOR method and the priority selection, is
shown.

This case-study shows that we can, by using the methods
described in this paper, substantially reduce the worst-case
number of stuff-bits in a message; in our case from 17 to
4. This should be compared to the analytical value of 29,
which is the theoretical value that we must use in a worst-
case analysis. Also worth noticing is that the variation of
frame length has decreased a lot, i.e., the jitter is substan-
tially reduced.

7. Conclusions

In dimensioning safety critical systems, a central activ-
ity is to validate that sufficient resources are allocated to
provide required behavioural, timing, and reliability guar-
antees. Reducing utilisation is essential, since it may allow
the use of cheaper solutions in applications. Since the vali-
dation of a system or a product typically is based on a model
of a system, it is important to reduce the modelled utilisa-



tion, i.e., the utilisation given by the model. This can be
achieved either by more accurate modelling, or by reducing
the actual utilisation of the system. Focusing on bit-stuffing
in CAN, we have in this paper presented a method that both
increases the accuracy of the modeling, and reduces the ac-
tual bus utilisation. What we achieve by doing this is an
improvement in terms of reducing jitter. By lowering the
maximum number of stuff-bits that can occur in a frame,
we have significantly reduced the jitter caused by the vary-
ing number of stuff-bits in a CAN frame.

We achieved increased accuracy in the modelling by tak-
ing bit-stuffing distributions into consideration. This al-
lowed us to reduce the frame size used when performing
timing analysis of the CAN bus. This may have dramatic
effects on the calculated response time, e.g., a system that
with traditional worst-case analysis is deemed unschedula-
ble may be shown to with a very high probability meet its
deadlines.

We have also carefully selected a number of valid pri-
orities, among all possible priorities, in order to eliminate
the number of stuff-bits in the frame header. The combi-
nation of these two methods gives us a method to decrease
the number of stuff-bits in the whole CAN frame. The true
effects of our methods have been shown in a case-study.

From a strict hard real-time perspective, our contribution
is that we illustrate the level of inherent pessimism in such
analysis. From a more pragmatic industrial perspective, our
results indicate the feasibility of sufficiently safe analysis
methods, which at the penalty of just a slight and control-
lable optimism has a potential to substantially reduce the
system resource requirements, compared to the resource re-
quirements suggested by the hard real-time analysis.

In our future work we plan to investigate this further, by
examining if it is possible to completely eliminate the oc-
currence of stuff-bits in the data part of the frame. Further-
more, it would be interesting to see the result by combining
this method with the work done in [2][6][7] in order to re-
duce the jitter caused by the blocking of other messages.

We also want to set up a real system to test the methods
with respect to latency.

Our ultimate goal is to combine all of this into a complete
engineering method for making well founded trade offs be-
tween levels of timing guarantees and reliability.
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