
Determining the Worst Case Instruction Cache Miss-Ratio

Filip Sebek and Jan Gustafsson
Dept. of Computer Engineering, Mälardalen University

Västerås, Sweden
{fsk,jgn}@mdh.se

Abstract

A high cache miss-ratio of a program will lead to longer ex-
ecution time and a higher power consumption. By knowing
the cache miss-ratio, performance can be estimated in advance
and can be used as input for compilers and system developers.
This paper presents a method to bound the worst case instruc-
tion cache miss-ratio of a program. The method is static, needs
no manual annotations in the code and is safe in the meaning
that no under-estimation is possible.

1 Motivation

The cache miss-ratio is an important property of a program.
The worst case cache miss-ratio (WCCMR) is useful for in-
stance in the following areas:

• Power-aware systems. The energy consumption grows
with higher cache miss-ratio since cache misses leading
to more bus and main memory activity [1].

• Multiprocessor systems on a shared bus. A high cache
miss-ratio will congest the bus with a performance loss in
the average case.

• Real-time systems. Cache memories are in many cases
avoided in real-time systems due to their highly complex
behavior. Even if most applications have less than 10%
miss-ratio in the instruction cache, there is still a chance
that an application can miss more during a certain section
of a program. If these bursts of misses occur during a
critical phase of the execution, the program might miss
its deadline with possibly a malfunction as a result.

One should observe that the execution path with the highest
miss-ratio must not be equal to the one with the longest execu-
tion path in time or number of instructions executed. A simple
example is a polling task that in the average case only makes
conditional jumps over a very complicated algorithm that is
executed only once a fortnight.

2 Related and adjacent work

Much research has been performed to calculate the worst case
execution time (WCET) that is an important property of a task
or process in a real-time system where the timing constraints
must not be exceeded to have a correct function. Adding
caches to a real-time system is a non-trivial task since the ex-
ecution time will become variable depending if the executing
instruction or accessed data is in the cache or not. Some meth-
ods have nevertheless successfully been able to make system
with caches analyzable [2, 3, 4, 5, 6, 7], but they all aim at
WCET-analysis. To the best of our knowledge no one has tried
to bound WCCMR, even if many of the WCET-analysis algo-
rithms with some modifications would be able to perform such
analysis.

The major difference between the adjacent work and our
proposition is the simplicity of our approach.

3 The concept and approach

When the CPU fetches a new instruction or data, and it is not
in the cache memory, a miss occurs and reload from the main
memory must be performed. To reduce the penalty, not only
the missing instruction is fetched but a complete line1 of in-
structions is transferred since the main memory can burst con-
secutive memory locations to the cache. This line might be 2,
4, 8 or 16 words large. The spatial locality is exploited which
refers to the fact that nearby memory locations are more likely
to be accessed than more distant locations.

If, for instance, the line size is 4 words and the program is
one sequence of consecutive instructions without branches (”a
single basic block”), a miss will occur every 4:th instruction.
This situation leads to a miss-ratio of 1

4 = 25% and if the line
size is 8 words, the miss-ratio will be 1

8 = 12.5%
If only a part of the instructions in the line will be executed

and a jump to another cache line occurs, this line will have a
higher miss-ratio. If, for instance, the second instruction in a
8-word-line is a branch, this particular cache line will have a

1A cache line is sometimes also called block, but since the term might be
mixed up with for instance basic block, this paper will use the term ”line”.

1

miss-ratio of 1
2 = 50%. The worst case scenario is when the

first instruction of a cache line is a jump; in this case the miss-
ratio is 100%. To suffer from 100% cache misses of a complete
program means that it only performs jumps to uncached lines
and such program will never be implemented since it cannot
do anything useful. The myth of the always cache missing
program in a real-time system should hereby be unveiled[8].

The bottom line of this argumentation is that many jumps
and early jumps in a cache line leads to a higher miss-ratio.
By analyzing the jumps in a code, the cache miss-ratio can be
estimated.

3.1 Limitations

The proposed method will not exploit temporal locality and
will therefore assume that all new cache line accesses are
misses and will only take advantage of the spatial locality. The
estimation of the miss-ratio will never be lower than 1

linesize .
Set-associativity, non-blocking caches, data caches and

prefetching are not handled. The analyzed code must al-
ways terminate so endless loops are not permitted. A non-
terminating process (common in real-time systems) can how-
ever be analyzed by removing the “big loop”.

4 The algorithm

This section presents the algorithm to calculate the worst case
cache miss ratio in detail.

4.1 Overview

1. Construct a Control Flow Graph (CFG) of the program at
machine code level.

2. Identify all conditional and unconditional branches and
determine their position in the cache line.

3. Identify all jump target addresses and determine their po-
sition in the cache line.

4. Calculate all instructions’ “local miss-ratio”.

5. Determine the maximum and minimum number of itera-
tions in loops (performed at intermediate code level).

6. Construct a binary tree of possible execution paths that
might lead to a worst case cache miss-ratio.

7. Traverse the tree and find the execution path with the
highest cache miss-ratio.

4.2 A Control Flow Graph

A control flow graph (CFG) [9] describes the possible execu-
tion paths through a program. The nodes in a CFG represent
basic blocks2, and the edges represent the flow of control.

4.3 The “local miss-ratio”

Each instruction is associated to a miss-ratio that is equal to the
inversion of the distance between the incoming and the outgo-
ing arrow relatively to the instruction. We will in this paper call
this miss-ratio of each instruction for the “local miss-ratio”.
See the examples in Figure 1. The (a) figure illustrates a cache
line without any branches and target addresses. The (b) exam-
ple with a conditional jump in the second word of the cache
line assess the first two words as 1

2 since worst case is the use
of only two out of four words in that cache line. If no jump is
performed all instructions should have the local miss-ratio 1

4 ,
but since both scenarios are possible, only the worst case miss-
ratio is assigned to a word. In (c) the third word is a target
address and since there is a possibility that only two words are
being used in this cache line, the two last words are assigned
1
2 as local miss-ratio.

A way to bound the WCCMR tighter is to distinguish short
forward and backward jumps within a cache line. If for in-
stance Figure 1(f) would be such a case the miss-ratios would
be { 1

3 , 1
3 , 1

4 , 1
3} and for a short backward loop, as in 1(d), all

words in the line would be assessed 1
4 .

4.4 Loops

If the loop has a higher miss-ratio than the rest of the program
it is important to know how large this part of the execution
is relative to the rest of the program. By using the maximum
possible number of iterations in the loop will render a safe es-
timation if the miss-ratio in the loop is higher than in the rest
of the program. If the miss-ratio in the loop is lower than in the
rest of the program, the minimum possible number of iterations
must be used. It is non-trivial to determine which of those that
should be used until the complete program is analyzed, and
that is why to the best of our knowledge no major pruning or
substitution method is possible.

It is therefore necessary to know the number of iterations for
the loops in the analyzed program. To determine the number
of iterations is trivial for a for-loop with a simple counter,
assuming the the counter is not changed in the loop body. For
loops with more general termination conditions, the number of
iterations is not that obvious.

A common method to handle such cases is to add manual an-
notations to the code (see for example[10]). There are however

2A basic block is a linear sequence of instructions without halt or possibil-
ity of branching except at the end

2

↓

1/4
1/4
1/4
1/4
↓

(a)

↓

1/2
1/2
1/4
1/4

→

↓

(b)

↓

1/4
1/4
1/2
1/2

←

↓

(c)

↓

1/4
1/3
1/3
1/3

←

→
↓

(d)

↓

1/4
1/4
1/2
1/1

←
←

↓

(e)

↓

1/2
1/2
1/4
1/1

→

←
↓

(f)

Figure 1: Some examples of “local cache miss-ratio” on 4-word cache lines. Conditional and unconditional jumps are symbolized
as (→) and jump targets as (←).

automated methods that can determine the maximum num-
ber of iterations without manual annotations (see for example
[11, 12]). Such methods could be used prior to our analysis.

4.5 The possible-execution-paths tree

All basic blocks in the CFG associate to a tuple
〈mr ,weight ,min,max 〉 where mr is miss-ratio, weight
the number of instructions in the basic block, min the min-
imum number of execution times and max, the maximum
number of execution times of the basic block. Non-iterating
sequences of code will have min and max assigned to ’1’.

A binary tree of possible execution scenarios is generated.
An if-statement generates two possible branches and loops
generate also two branches: the minimum-iteration-path and
the maximum-iteration-path.

Some optimizations can be performed to reduce the size of
the tree.

• A loop with a fixed number of iterations can be simpli-
fied to a basic block following the previous basic block.
Such a loop (for instance a for-statement) is identified
when the minimum number of iterations of a basic block
is equal to the maximum.

• If two paths have identical tuple-descriptions, those can
be reduced to one path and the branch in the tree can be
omitted.

• If it can be proved that the rest of the program (at a cer-
tain stage) will not be able to reach a higher WCCMR
than another path, the search in that branch can be aborted
and the execution path may be omitted in the tree. Such
a proof is possible to make if the number of executable
instructions are so few that the already calculated part of
the program will outweigh the rest even if the remaining
program will have a miss-ratio of 100%. This information
can be available through a generation of an execution path
tree that is built reversal from the end and built upon the
number of instructions executed in each basic block. This
“weight tree” must not be complete, but the closer it is

reaching the start of the program the more optimizations
can be performed at the possible-execution-path-tree. The
“weight tree” can easily be optimized since only the heav-
iest node of all duplicated nodes are necessary — all other
nodes and paths to light weight nodes can be omitted.

These optimizations can be performed directly after the loop
analysis, before the tree generation, to simplify the tree gener-
ation process.

4.6 The overall miss-ratio

The last step is to compute the WCCMR in all possible execu-
tion paths to find its’ maximum value. Every node is only once
traversed but observe that the complete path must be traversed
to calculate a correct value of WCCMR.

4.7 Algorithm performance

The performance consuming parts of the algorithm are focused
on two parts. The first is the construction of the CFG and as-
sign all assembly instructions with a local miss-ratio, which
can be performed with the efficiency of O(n) where n is the
number of assembly instructions in the program.

The second part is the traversing of the CFG to build and an-
alyze the tree, which is built with combinations of basic blocks
in all execution paths. Since each node in the CFG can occur
multiple times in the tree, there is a possibility of an exponen-
tial growth of the tree O(2n), which seems to be the algorithms
bottleneck. Even a small program but with a complex struc-
ture of loops and branches can take very long time to analyze.
The situation is however not as bad as it might first appear
since only a fraction of all execution paths are analyzed; In
loops only the minimum and maximum number of iterations
are considered, not the complete interval, and several branch
situations can be omitted by optimization.

5 Example

The code in Figure 2 is transformed to the CFG in Figure 3.

3

A straight-line edge in the figure represents a basic block
and a curved edge represents a conditional or unconditional
jump in the code. The do-while loop is analyzed to iterate
anything between 4-15 times and the while loop will iterate
1 or 2 times.

...

...
if(a>b) {

...

...
do{

...
}while(c>d);

}
else {

...

...
while(e<3){ .

...
}

}
...

Figure 2: A code written in C that will be analyzed as an illus-
tration of the method.

In this example we have chosen the cache line to be 8 words
as in for instance in Motorola PowerPC 750. A CFG is con-
structed and from this each instruction is assigned a local cache
miss-ratio (Figure 3). The program is analyzed to determine
each loop’s maximum and minimum number of iterations.

The binary tree in Figure 4 describes all possible execu-
tion paths to terminate the program. The if-else-statement
leads to two branches (true/false) and the loops will also gen-
erate two branches each (maximum and minimum number of
iterations). Each edge in the tree symbolizes a basic block and
it’s associated cache miss-ratio weight.

Table 1 shows the calculated cache miss-ratio for the differ-
ent execution paths. The execution time calculation should just
give a hint about what is going on; we let each miss gives ten
“time units” penalty.

As shown in Table 1, execution path (e) will yield the high-
est cache miss-ratio. One can notify that path (c) has a shorter
execution time than (f), but a higher miss-ratio, and the conclu-
sion from this is that only a combination of many instructions
and a high miss-ratio will render a long execution time. An
other view is that the worst case execution time path must not
be the same as the worst case cache miss-ratio path. Observe
that the path (e) doesn’t contain the basic blocks with the worst
miss-ratio, and the reason is that those blocks weighted little
because of the complete programs execution behavior.

- 1/7
- 1/7
- 1/7
- 1/7
- 1/7
- 1/7
bgt 1/7
- 1/8

- 1/8
- 1/8
- 1/8
- 1/8
- 1/8
- 1/8
- 1/8
- 1/8

- 1/7
- 1/7
- 1/7
- 1/4
- 1/4
- 1/4
blt 1/4
ba 1/5

- 1/8
- 1/8
- 1/8
- 1/8
- 1/8
- 1/8
- 1/8
- 1/8

- 1/4
- 1/3
- 1/3
bgt 1/3
- 1/7
- 1/7
- 1/7
- 1/7

ba 1/1
- 1/7
- 1/7
- 1/7
- 1/7
- 1/7
- 1/7
- 1/7

〈14%, 7, 1, 1〉

〈13%, 12, 1, 1〉

〈25%, 4, 4, 15〉
〈20%, 1, 1, 1〉

〈14%, 8, 1, 1〉

〈33%, 3, 2, 3〉

〈31%, 6, 1, 2〉

〈14%, 7, 1, 1〉

C1

C2

C3

C4
C5
C6

C7

C8

C9
C10

C11

Figure 3: The core of the proposed method. The column to
the very left is the assembly language of the C-code in Fig-
ure 2. The next column describes each assembly instructions
“local miss-ratio” that is derived from the control flow graph
(CFG) in the middle. The last column to the right describes
each basic block’s miss-ratio and its’ potential share weight of
the complete program.

6 Future work

A reduction method of the tree to keep it manageable and re-
duce the analysis time will be developed. It might however
not be possible without approximations with a looser bound of
WCCMR as a result.

The method will also be developed to handle temporal local-
ity. This can be achieved by including a static cache simulator
as for instance in [3]. With this extension a tighter bound of

4

c1

c2

c7 c3

c8x c8n c4x c4n

c9x c9n c9x c9n c5 c5

c11 c11 c11 c11 c11 c11

(a) (b) (c) (d) (e) (f)

Figure 4: The binary search tree to find the WCCMR. The node labels corresponds to the node labels in Figure 3. The suffix ’n’ and
’x’ in some nodes indicates the path of the minimum and maximum number of iterations in a loop.

Path Miss-ratio
Number of Execution
Instructions Time

(a) (14 · 7 + 14 · 8 + 33 · 3 · 3 + 31 · 6 · 2 + 14 · 7)/43 = 20.6% 43 132
(b) (14 · 7 + 14 · 8 + 33 · 3 · 3 + 31 · 6 · 1 + 14 · 7)/37 = 18.9% 37 107
(c) (14 · 7 + 14 · 8 + 33 · 3 · 2 + 31 · 6 · 2 + 14 · 7)/40 = 19.7% 40 119
(d) (14 · 7 + 14 · 8 + 33 · 3 · 2 + 31 · 6 · 1 + 14 · 7)/34 = 17.6% 34 94
(e) (14 · 7 + 13 · 12 + 25 · 4 · 15 + 20 · 1 + 14 · 7)/87 = 21.5% 87 275
(f) (14 · 7 + 13 · 12 + 25 · 4 · 4 + 20 · 1 + 14 · 7)/43 = 18.0% 43 121

Table 1: Calculated WCCMR for each of the execution paths of the binary tree in Figure 4.

5

the WCCMR can be accomplished, but to the price of a more
performance intensive analysis.

7 Conclusion

The cache miss-ratio is an important property of a program that
controls performance, execution time and power consumption
among many other properties.

This paper proposes a simple analysis technique to find a
worst case cache miss-ratio execution path in a program. The
cache miss-ratio can for instance directly be used to estimate
the highest possible power consumption of a program, but also
be used as an input for a compiler optimizition. The method is
based on the fact that spatial locality is exploited when sev-
eral instructions in a cache line are executed consecutively.
The more instructions that executes without a jump, the lower
cache miss-ratio. All instructions can hereby be assigned a
”local miss-ratio” that can be used to compute over-all cache
miss-ratio for different execution paths. To cope with the prob-
lem that parts of the program may be more used than others in
for instance loops, a method based on abstract interpretation
computes the minimum and maximum number of iterations.
The method needs no manual annotations and can be fully au-
tomated.

This paper also demonstrates with an example that the worst
case execution time path must not be the same as the worst case
cache miss-ratio path.

The major drawback of the proposed method at this stage is
the exponential growth of the search tree that demands high
performance to solve complex program structures in a rea-
sonable time. The method as presented is suitable for pro-
grams that is partitioned into many, small tasks3. Indirect pre-
emption effects must not be concerned since temporal locality
is not included in the method and will by this not suffer from
cache-related pre-emption delay and hereby still yield safe val-
ues.

References

[1] Paolo D’Alberto, Alexandru Nicolau, Alexander Veiden-
baum, and Rajesh Gupta. Static analysis of parameter-
ized loop nests for energy efficient use of data caches.
In Proceedings of Workshop on Compilers and Operat-
ing Systems for Low Power (COLP), Barcelona, Spain,
September 2001.

[2] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe.
Efficient microarchitecture modeling and path analysis
for real-time software. In Proceedings of the 16th

3also refferd as tasks in real-time systems

Real Time System Symposium, pages 298–307, Decem-
ber 1995.

[3] Robert D. Arnold, Frank Mueller, David B. Whalley, and
Marion G. Harmon. Bounding worst-case instruction
cache performance. In Proceedings of the IEEE Real-
Time Systems Symposium 1994, pages 172–181, Decem-
ber 1994.

[4] Sung-Soo Lim, Sang Lyul Min, Minsuk Lee, Chang Park,
Heonshik Shin, and Chong Sang Kim. An accurate
instruction cache analysis technique for real-time sys-
tems. In Proceedings of the Workshop on Architectures
for Real-time Applications, April 1994.

[5] Thomas Lundqvist and Per Stenström. An integrated path
and timing analysis method based on cycle-level sym-
bolic execution. Journal of Real-Time Systems, pages
183–207, November 1999. Special Issue on Timing Val-
idation.

[6] Greger Ottosson and Mikael Sjödin. Worst-case exe-
cution time analysis for modern hardware architectures.
In ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Real-Time Systems (LCT-RTS’97), 1997.

[7] Friedhelm Stappert and Peter Altenbernd. Complete
worst-case execution time analysis of straight-line hard
real-time programs. Technical Report 27/97, C-Lab,
Paderborn, Germany, December 9th 1997.

[8] Filip Sebek. When does a disabled instruction cache out-
perform an enabled? In Submitted to USENIX/WIESS
2002, Boston, Massachusetts, USA, December 8th 2002.

[9] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers–Principles, Techniques, and Tools. Addison
- Wesley, 1986.

[10] P. Puschner and C. Koza. Calculating the maximum exe-
cution time of real-time programs. The Journal of Real-
Time Systems, 1(2):159–176, September 1989.

[11] Andreas Ermedahl and Jan Gustafsson. Deriving Anno-
tations for Tight Calculation of Execution Time. In EU-
ROPAR97, pages 1298–1307, August 1997.

[12] Jan Gustafsson. Analyzing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation. Doc-
torial thesis, Uppsala University and Mälardalen Univer-
sity, Västerås, Sweden, May 2000.

6

	Motivation
	Related and adjacent work
	The concept and approach
	Limitations

	The algorithm
	Overview
	A Control Flow Graph
	The ``local miss-ratio''
	Loops
	The possible-execution-paths tree
	The overall miss-ratio
	Algorithm performance

	Example
	Future work
	Conclusion

