
The real cost of task pre-emptions — measuring real-time-related cache
performance with a HW/SW hybrid technique

MRTC Technical report 02/58

Filip Sebek
Department of Computer Science and Engineering

Mälardalen University, Västerås, Sweden

fsk@mdh.se

7th August 2002

Abstract

Cache structures and other modern hardware is to-
day so complex, that simulation on instruction level
is very complicated and time-consuming. Real mea-
surement is much faster, but on the other hand less
observable and in most cases impossible to make non-
intrusive.

To predict shedulability for a system that incorpo-
rates an unpredictable device, such as the cache, re-
quires known safe values of task execution time, task-
switch time, pre-emption delay etcetera to statically
predict their schedulability. This paper proposes a
hybrid HW/SW method to measure cache perfor-
mance with minimum intrusion. It also presents
some experiences on a real system with experimen-
tal results of setting up scenarios and measure cache
performance on a high performance microprocessor
system based on MPC750 CPUs.

The experimental results show that the cache re-
lated pre-emption delay for instructions can be as
much as 69% of the pre-emption cost for a MPC750
system.

1 Introduction

1.1 Real-time and cache memories

Cache memories are used in today’s computer systems
to boost up performance by bridging the gap between
response time of primary memory and CPU. Since the
small cache is too small to hold all data and instructions,
blocks are swapped in and out depending of what sec-
tion of code in the program is handled at the moment.

The swapping results in a variable memory access time,
which makes the computation of the worst case execu-
tion time (WCET) very tricky. The execution time de-
pends of the cache contents and the cache contents de-
pends on the execution path that depends on, among
other properties, the execution time.

System developers are today in a great need of real
values to implement new software based products on
high-performance processors. These values must be safe
but also simple and fast to get. A correctly performed
real measurement on a real system might give them what
they need — especially when the offered method is easy
to understand.

1.2 Monitor and measurement methods

Several methods are feasible to measure or monitor
cache performance in computer systems. The major is-
sue is to make the measurement non-intrusive so the
measured environment is unaffected. A second issue
is to set up correct and representative scenarios to be
measured. If for instance the worst case execution time
(WCET) is to be measured, one must set up an execution
path that leads to the WCET.

Execution time and other performance issues can ei-
ther be statically analyzed [1, 2, 3, 4] or simulated[5, 6],
or measured directly on the target system[4, 7].

The advantage of static methods is that they are safe if
the system model and analysis method are correct and
compatible with each other. The hard part is to add
complex structures into the model like pipelining, cache
memories, DMA and other hardware that affects the ex-
ecution time. To model a real processor is very difficult

1

to accomplish[8, 9] and to simulate execution on a mod-
eled complex system may take over 1000 times longer
than the actual execution.

Real measurement is on the other hand much faster
to perform, but requires special hardware to tap infor-
mation from the system. Changing hardware parameters
like cache size or bus bandwidth is often practically not
possible. The major advantage is that a complex hard-
ware is correctly “modeled” as is.

Monitoring methods can be categorized as

• Trace driven simulation. By feeding extracted ex-
ecution traces to a simulator it is possible to monitor
internal states and measure execution time. It is also
common that architecture parameters (cache size,
band width etc) can be altered to give a better flexi-
bility in the analysis. One problem araises when the
execution path (=the trace) can alter depending of
execution time, and since execution time depends
for instance on cache contents one can come to the
conclusion that the simulation must model the sys-
tem from where the traces were derived.

• Hardware monitoring. By attaching for instance
a logic analyzer on the bus or taping information
from the processor’s JTAG pins one could trace
where the execution occurs. One problem is that
JTAG has a limitation in bandwidth so for in-
stance a processor must run at half speed. Another
problem is that only addresses on the address bus
doesn’t say much about what really is going on in
the processor since the information is at a very low
level and internal signals to registers and caches are
hidden.

• Software monitoring. A program or pieces of code
writes internal states or time values to memory, disc
or screen. The information can be at a very high
abstraction level, but the cost is a high utilization of
CPU, memory, cache alteration, bus bandwidth etc.
All these resources must be allocated and remain
in the program after the measurement to eliminate
probe effects.

• Hybrid HW/SW monitoring. With minimal code
and hardware monitoring it is possible to get infor-
mation at a high level with small resource utiliza-
tion.

To measure with the SW or SW/HW monitoring meth-
ods, probes are inserted in the code. The methods pro-
posed in this paper use three kinds of probes: Kernel

probes that are incorporated in the OS-code of task-
switches, system functions, interrupt routines etc. Inline
probes are placed directly in the application code and
probe tasks that log the system state.

1.3 Cache properties to measure

In a real-time perspective some properties are more in-
teresting and useable to measure than others.

• Task-switch time. It is very common in schedula-
bility analysis to just take the WCET for the tasks
as parameters and assume that the context-switch
time is zero. In the real world a time will elapse
during the context switch since the OS has to ex-
ecute some code to make the context-switch pos-
sible. The knowledge of this time is important in
systems with a high frequency of context-switches.

• Pre-emption delay including cache related ef-
fects. The cache will be filled with instructions
and data that belong to the executing task. Misses
that occur at this point are called intrinsic. When
a new task starts to execute, the cache will swap
out the previous task with the current locality —
these kinds of misses are called extrinsic[10]. One
special kind of extrinsic miss occurs during pre-
emption when a high prioritized task can interrupt
low prioritized to gain faster response time. The
pre-emption will swap out the cache contents of
the executing task and cause a cache refill-penalty
for the low prioritized task when it resumes its
execution. The cost to pre-empt another task is
C ′ = C + 2δ + γ, where C ′ is the new WCET, C
stands for the unmodified WCET, δ is the execution
time for the operating system to make a context-
switch (two are needed for a pre-emption) and γ
symbolizes the maximum cache related cost by a
pre-emption[11]. This cache related pre-emption
delay (CRPD) or cache refill penalty that can be
considered as an indirect cost is illustrated in fig-
ure 1 and 8.

The CRPD can be eliminated or reduced by par-
titioning the cache so each task has a private
part of it, but to the price of decreased over-all
performance[12, 13, 14].

• Continuously measuring cache performance. By
continously monitoring the cache-miss ratio, max-
imum and average miss-ratio during a time-slice
can be determined. If the time-slice is smaller than

2

T1 T2

without pre-emption

T1

T2 preempts T1

T2

T1 cont.

Cache refill penalty = CRPD

T1

with pre-emption

Figure 1: Cache related pre-emption delay. A pre-emptied task can be drained by cached data and suffer a refill penalty.
Please observe that the penalty must not come right after resuming the pre-emption — it may come later or in pieces
depending of the program’s design.

the operating system’s time granularity, the average
miss-ratio can be used to calculate WCET and if
used in soft real-time systems the maximum miss-
ratio can be used. The method is however only ap-
plicable for hard real-time systems when the worst-
case execution time scenario is executed.

This paper is organized as follows: The next section
describes the target system where all measurements were
performed. Section 3 presents the workbenches in detail
and experimental results, and the paper ends in Section
4 with conclusions.

2 The system

The complex target system “SARA”[15] has been used
for experimental results and testing the measuring
method. This section will describe features and spe-
cial hardware components in the system. Please observe
that all the features in the hardware is not necessary for
the generalized measuring method — it just makes the
method easier to perform.

SARA — Scaleable Architecture for Real-Time
Applications — is a research project with a Mo-
torola CPX2000 Compact PCI backplane bus with at
most eight Motorola Power PC750-processor (MPC750)
boards [15]. See figure 2 but also figure 4 for a complete
system overview. The processor boards are equipped
with a MPC750 running at 367MHz and is connected
to a 66MHz bus as well as the the 64MB DRAM main
memory.

L2 Cache
1024kB

CPU MPC750
L1 D+I cache

32+32kB

66MHz

Memory
64MB

PCI-bridge
”Raven”

33MHz Local PCI-Bus

RT-Unit
with MaMon

PCI-bridge
DEC21154

Backplane CPCI-Bus

Figure 2: CPU-card. The RT-Unit is only on master
cards.

2.1 MPC750

The microprocessor MPC750 is equipped with a split-
ted instruction and data cache at the first level, and a
unified cache memory at the second level. The first
level caches are 32kB each and organized in 8-way set-
association with a pseudo LRU replacement policy. Each
cache block can hold eight 32-bit words. The second
level cache is in the target system 1024kB, 2-way set-
associative and the block size is in this case 128 byte
that is divided into sub-blocks. The caches are non-

3

blocking and can be locked by users during execution.
Four areas in the memory that is to be cached are defined
in Block Address Translation (BAT) registers. All four
areas can set its own WIMG-properties, that is Write-
through/Write-back policy, caching Inhibited, enforced
Memory coherency and Guarded bits.

The MPC750 is equipped with an on-chip perfor-
mance monitor that can monitor 48 different kind of
events, but there are only 4 performance monitor coun-
ters (PMCs) available. Only 5 of the 48 events can be
associated with any PMC and the rest are associated to a
dedicated PMC. [16, 17]

2.2 Real-Time Unit

A special master card is equipped with a Real Time Unit
(RTU)[18] that controls the execution of the tasks on
all processor cards. The RTU is a high performance
and performance predictable hardware implementation
of an operating system kernel that handles scheduling
and other real-time operating system services. The other
processor cards are used as slaves to increase application
performance. All communication between tasks (inter
and intra-processor) is performed through a virtual bus
which simplifies application development[19].

2.3 MAMon — an application monitor

A special device called Multipurpose Application Moni-
tor (MAMon) [20, 21], can tap for instance the RTU non-
intrusively on information regarding context-switching,
inter process communication, task synchronization etc.
There is also a possibility to write to special regis-
ters called software probes directly from the application.
Writing to a software probe is much faster than reading a
register since the processor just writes to the PCI-bridge
through the 66MHz 60x-bus. The bridge will then even-
tually write to the RTU when the 33MHz local bus is
clear.

All the collected data is sent through a parallell port to
an external host for post analysis.

Today MAMon and the RTU co-exists in the same
FPGA, and besides increased performance this is a very
practical and cost effective way to eliminate problems
with PCB-layout and other hardware manufacturing is-
sues.

To integrate MAMon into another system than SARA
that doesn’t use a hardware implemented OS can easily

be performed by just adding a card with MAMon hard-
ware, which is accessed by memory mapped addressing.
In this case only software probes can be used.

3 Experimental setup and results

All experiments were performed at instructions only
with synthetic workloads on the SARA system. Each
of the three measurement cases are presented in their
subsection. The first case describes how to measure
cache miss-ratio continuously with minimal intrusion.
The second case describes how to measure context-
switch/pre-emption time and the third case sets up a sce-
nario to maximize cache effects so the cache related pre-
emption delay (CRPD) can be measured and included
into the pre-emption time. The subsections also presents
the measured results and concludes with a discussion.

3.1 Synthetic workloads

No good standard benchmark suits are available today
to measure cache memory effects in real-time systems.
Non-real-time benchmarks such as SPEC or Dhrys-
tone are just single programs without (interfering) tasks.
Rhealstone[22] on the other hand just tests real-time op-
erating system issues such as task-switches, deadlock
handling and task communication. The test applications
are too small to test cache memory issues and were not
meant to do so either.

The tests were therefore performed on synthetically
generated task sets where the amount of tasks and the
data and instruction size of all the tasks were generated.
Priorities, miss-ratio, cache locking and cycle time can
also be set. The generated code is very simple since it’s
only purpose is to swap out cache contents. The basic
structure of a task is one simple big loop that contains
a large sequence of “r1=r1+0” without jumps and ends
with a delay to let lower prioritized tasks to run.

Using synthetic task sets has successfully been used
in for instance Busquets-Mataix et al’s work[23]. More
about the synthetic workload and its’ different properties
will be presented in the three cases.

3.2 Continuous measurement

3.2.1 Implement the probe as a task

Implementation A small, simple, cyclic probe task —
”MonPoll” — polls the MPC750’s performance monitor
registers and passes the values to MAMon where they

4

get time stamped. Figure 4 illustrates the complete sys-
tem with hardware and software. This small task (written
in C) is as simple as in Figure 3.

The task should have the highest priority to be able to
measure during all tasks’ execution.

Performance requirement The OS1 granularity to
start tasks is 2 milliseconds, which means that the high-
est sample rate is 500Hz. The task requires 671 assem-
bly instructions to execute which includes two context-
switches in the operating system (major part) and the
small code itself.

Best case is when no cache misses are present. The
execution time for the MonPoll task is then 43.1 µs ,
which means that it consumes about 2% of the execution
time. It also means that if a task is interrupted by the
MonPoll task and no cache misses will occur, the execu-
tion time of the running task will be extended with 43.1
µs .

Worst case Worst case will occur if the MonPoll
task is not in the cache and will pre-empt a loop for
which content maps the same cache lines as the MonPoll
task. This will generate a small burst of initial misses for
the MonPoll task plus some new misses when the pre-
empted task resumes its execution to replace the Mon-
Poll task in the cache (=CRPD).

Specifically this means an extension of the execution
time by 21.9 µs to 65 µs . 99 cache lines have been
swapped out and the refill time for those is also 21.9 µs if
all cache blocks were useful in the pre-emptied task. The
performance cost will therefore be more than doubled
from 43.1 to 86.9 µs , or if the sampling is performed at
maximum rate 0.0869

2 ≈ 4% of CPU resources.

Analysis and Discussion A solution to reduce the
performance cost of the measurement method is to keep
the MonPoll task in the cache, which can be achieved
by (software) partitioning. The cost is high because it
allocates a task with all the inherited costs of context
switches etc. Only a few registers will be used and there-
fore it is very expensive to store all those only to make a
simple poll. The granularity of the observation by only
being able to poll each second millisecond might be very
poor in many situations. The MPC750 will execute al-
most one million instructions during this period.

1“OS” and “RTU” will in this case referred as the same thing.

3.2.2 Implement the probe as an interrupt routine

Instead of putting the small piece of code into a task, the
same code can be called as an exception routine. There
are several pros and cons to do so:

• Saving registers before running own code must be
performed by “user” instead of the operating sys-
tem

• It is performed by the processor itself, no operating
system support is needed which also means faster
execution and less intrusion

• Finer granularity is possible since the interrupts are
independent of the operating system’s time base

Exception on timer value The MPC-family is
equipped with a 32-bit decrement-register (DR) that is
decreased by a step each fourth external bus-cycle which
in this specific case is 66,7/4 MHz = 16.7 MHz or
T=60ns. When DR is equal to zero an exception oc-
curs and the program counter is set to 0x0900. If this
feature is unused this address must contain rfi (return
from interrupt) to proceed with the execution. DR can
be set to any arbitrary number by user code and by this
be used as an external clock. The CPU runs at 233MHz
which means that a resolution of 14 clock cycles or at
maximum 28 instructions is possible to achieve.

MAMon is able to handle about 3500 cache events
per second. Sending performance monitor data at this
pace is a severe limitation; during this period 150 000
instructions may have been executed. A workaround is
to write to MAMon only when an amount of changes
(for instance cache misses) has reached a limit. Since
MAMon can store short bursts of data in a FIFO queue,
a practical sample rate of up to 1MHz is possible but then
the load at the system will be 12%2

Exception on PMC threshold value The MPC750
has a special exception routine for the performance mon-
itor. When a PMC reaches the threshold value an ex-
ception call to 0x0f00 is performed. In this case the
workaround in the previous timer value solution can be
avoided with a performance increase and less intrusion
as a result.

2The 12% load is best case when no cache misses occur. This
value shouldn’t be compared with the MonPoll 4% utlization since
that only runs at 500 Hz.

5

void monitor_poller(void){

RTU_IO rtu_io;

while(1) {
asm(" mfspr 0, 938 ": "=r" (MAMON_SWPROBE_2));
asm(" mfspr 0, 941 ": "=r" (MAMON_SWPROBE_3));
rtu_io.delay(2);

}
}

Figure 3: A small task that polls performance monitor counters and writes the reults to MAMon

3.3 Workbench

The generation of code with a fixed miss-ratio has been
accomplished in two ways. Either spatial locality is ex-
ploited by only executing a fix fraction of the instruc-
tions in a cache line or a fraction of reuseable code is
used to exploit temporal locality. A third possibility is to
combine both these methods.

• If the first instruction in all cache lines is an un-
conditional jump to the start of the next cache line
only the first word in each block will be accessed
and by this never exploit spatial locality. If the
code mass is much larger than the cache memory
the reuse of code will not take place and decrease
miss-ratio. By this we have generated a code with
100% cache misses. To generate code with 50%
misses the jump is moved from the first to the sec-
ond word in the cache block, and to generate code
with 33% the jump is moved to the third word and
so on. 66% misses can be generated by altering the
jump from the first and second word in the cache
block in the complete program.

• Code within a loop that fits into the cache will gain
a lower miss-ratio each iteration since it reuses the
cache lines (temporal locaility). If the code is a
bit larger than the cache size some code will be
swapped out and the amount of useable cache lines
in the cache will decrease. With code that has 100%
spatial misses the cache miss-ratio is formulated in
Figure 5.

Example: A 38kB task with 100% spatial misses will
in a 32kB 2-way set-associative cache memory obtain an
average miss-ratio of 38−32

32 · 2 = 37.5%
A more correct description of “task size” is “the task’s

cache-non-interfering active or useful cache lines” but in

this synthetic generated workload it is the same.

3.3.1 Results

To prove that the measurement methods work (both
probe task and interrupt driven kernel probes) a task set
with tasks with different average cache miss-ratios was
set up, executed and measured. The theoretical values
were compared with the measured and the difference
was less than 1% with the interrupt-driven measurement
method. The fluctuation depends for instance on DRAM
refreshment and odd bus-cycle access.

Figure 6 illustrates four tasks with different miss-
ratios executing. The tasks’ miss-ratio was controlled
by the individual task size.

3.3.2 Discussion and conclusion

This kind of monitoring is maybe more of performance
than of hard real-time interest. The monitoring has too
low resolution to give any information about for instance
CRPD. It can however be used for soft real-time systems
to get a view of the average miss ratio of the tasks to be
used for static WCET-calculation.

A periodic interrupt routine with inline probes has
shown much better performance than a probe task. The
granularity can increase from 500 Hz to 1 MHz in
short3 bursts. CPU utilization with a probe task run-
ning at 500Hz drops from 4% to an immeasurable level
if the same measurement is performed with the inter-
rupt routine implementation running at the same fre-
quency. When measured at 1 MHz with the interrupt

3“Short” in this case are 256 events since that is the size of the
internal FIFO-queue in MAMon. Availbale hardware sets the limit
of the queue size.

6

Slave #1

MPC750

PerfMon

Appl.tasks

MonPoll

Slave #2

MPC750

PerfMon

Appl.tasks

MonPoll

Master

MPC750

PerfMon

M
on

Po
ll

M
A

M
onRTU

Database

Appl.tasks

Appl.tasks

Backplane Compact PCI Bus

Figure 4: SARA system. Dashed boxes are software implementations.

miss ratio =

0%, task size ≤ cache size ∧ time → ∞;
task size−cache size

cache size · set associativity , cache size < task size < cache size + cache size
set associativity ;

100%, task size ≥ cache size + cache size
set associativity ;

Figure 5: The cache miss-ratio depends in the generated code on task size, cache size and set-associativity. Each cache
block begins with an unconditional jump to the next cache block to prevent utilization of spatial locality.

driven method the CPU used 12% of its computation re-
sources to the measuring activity.

3.4 Measuring context-switch time

A pre-emption consists of two context-switches:

1. Interrupting the executing task.

(a) OS decides to make a context switch

(b) registers of the pre-emptied task are saved

(c) registers of the pre-empting task are loaded

2. Resuming to the interrupted task.

(a) the high prioritized task yields to low priori-
tized tasks

(b) OS decides what lower task should run

(c) registers of the high prioritized task are saved

(d) registers of the lower prioritized task are
loaded

Since the RTU on the target system does very much of
the OS work during the interrupt and more software code
is to be executed during the resuming, it is expected that
the resuming in this case should take longer time.

3.4.1 Workbench and results

This type of measuring is quite straightforward since
four kernel probes into the OS can perform it. The
probes are placed at the first and last lines of the two
context-switch routines. The best case scenario is when
the routines are in the cache and the worst case is when
all the code has to be loaded from main memory and

7

Switch to task

T1

T2

T3

T4

0

5

10

15

20

25

1080 1100 1120 1140 1160

 M

is
s

ra
tio

 (
%

)

 Time (ms)

’tasksw’
’missratio’

Figure 6: Continous miss-ratio measurement with an interrupt driven kernel probe. T2 starts to execute (miss ratio:
3.27%) and yields to the idle task T1 (0%). Then T3 (4.25%) executes and yields for T4 (6.20%). At the end of this
sample T2 pre-empts T3. Observe the inital miss-ratio peaks at the context-switches.

swaps out some cache lines that would have been useful
for the task (=CRPD).

Best case scenario is created with an empty task “pre-
empting” the idle task. The worst case scenario is mea-
sured on a task set with two tasks that both are larger
than the cache memory so the OS-code will be swapped
out for sure. The results are presented in Table1

3.4.2 Discussion and conclusion

Even if the context-switch time relies on many param-
eters such as CPU, system platform, operating system,
and in this case it is more true than for others since parts
of the OS kernel is implemented in hardware, the pro-
posed measurement method is still useable for almost
any computer system. The measured time can directly
be used in scheduling algorithms and analysis.

3.5 Measuring CRPD

3.5.1 Workbench

The CRPD grows linearly with the pre-emptied task’s
size4 and reaches its’ maximum value when the task size
is equal to the cache size assuming that the pre-empting
task has replaced the suspended task completely.

One should notify that the CRPD will decrease after
its maximum point since the number of useful blocks
will decrease with the task’s size. If the active context
of the program is twice as large as the cache size it will
never reuse any cache lines. In this case there will be no
CRPD what so ever.

On set-associative caches with LRU or FIFO replace-
ment algorithm the CRPD also will depend on the set-
associativity; a fully associative cache memory will with
a task that is one word larger than the cache always re-
place the cache line that is about to be accessed and by
this never have useful cachelines in the cache — poor
performance but no CRPD. The relationship between
CRPD, task size and set-associativity is illustrated in
Figure 7 and the reasoning is similar to generation of

4As mentioned before; a more correct description of “task size”
in this context is “the task’s cache-non-interfering active or useful
cache lines”.

8

Sitaution Number of Interrupt Resume Pre-emption cost
cache misses (µs) (µs) (incl. CRPD) (µs)

Best case 0 18.5 24.6 43.1+0.0=43.1
Worst case 44+55 28.4 36.6 65.0+21.9=86.9
No cache - 52.5 66.1 118.6

Table 1: The table shows the time it takes to perform a context-switch. The cache related costs are inherited only from
the context-switch code.

CRPD
(time)

"Task size"
(cache size)

×

2.0

O

1.5

∆•

1.00.5

× — direct mapped
O — 2-way set-associative
∆ — 4-way set-associative

• — fully associative

Figure 7: The theoretical maximum CRPD of a task is depending of the tasks’ size and the cache memory’s set-
associativity.

a task with fix miss-ratio (section 3.3).
Figure 8 illustrates the scenario where the high prior-

itized task T2 pre-empts T1 and by this get CRPD=((f-
e)+(d-c))-(b-a).

To measure the maximum CRPD that is possible to
suffer in a system, the previous scenario can however
be simplified by pre-empting a task (T1) by another task
(T2) for which both sizes are exactly equal to the cache
memory. (T1) is an endless loop that writes to a times-
tamped software probe each iteration to make it pos-
sible to calculate the execution time. If there are no
other interfering components (other interrupts, instruc-
tion pipeline refill etc.) the CRPD is at hand. Interfer-
ing components can be detected by measuring the CRPD
with different sizes of (T1) since it in the absence of
other pre-emption delay components should grow lin-
early with a start in the origo, and reach the top at the
cache memory size.

3.5.2 Results

Several task sets as in scenario in Figure 9 with differ-
ent sizes of T1 and the result is shown in Figure 10.
The maximum CRPD was measured to 195.5µs and the
sloping line after 100% task size intersects the x-axis
at 113.6% which is less than 1% overestimation from
the theoretical 112.5% (see Figure 7). The measure-
ment was also performed on a 233MHz MPC750 and
since the main memory and busses are the same as on
the 367MHz-system the CRPD was the same — a fact
that verifies the method’s correctness.

When the 1024kB second level cache was enabled the
CRPD was decreased to 31.8 µs . This is however not
the maximum CRPD of the system since the L2 was only
partly used. In this case the L2 could host all tasks and
OS-code and no accesses to main memory was neces-
sary.

9

T1

T2

OS

a b c d e f

Figure 8: During the scenario T2 pre-empts T1 and interferes in the cache partly or completely. The CRPD effect will
be maximized if all cachelines are useable for T1 and swapped out by T2. CRPD=((f-e)+(d-c))-(b-a)

T1 * * * *

T2

OS

a b c d e

Figure 9: A scenario to get the maxmimum CRPD in a system: T2 pre-empts T1 and interferes in the cache partly or
completely. T1 is running in an endless loop and timestamps each iteration (marked as ’*’) in the figure. CRPD=((e-
d)+(c-b))-(b-a)

3.5.3 Discussion and conclusion

The CRPD is at most 195.5µs on the considered SARA-
system. The executing OS-code to pre-empt a task was
measured to 86,9 µs 5, which means that the total pre-
emption delay is 282.4µs . In relative terms the major
part of the context-switch cost, or 195.5

282.4 = 69%, is cache-
related.

It is quite interesting that the CRPD is almost the same
compared to Mogul and Borg’s measurements a decade
ago[5], which were 10-400 µs . During this time the
processors have become magnitudes times faster and this
means that the CRPD has grown in relative terms.

The method to get the CRPD is practicable to get a
safe value that is directly useable in a scheduling algo-
rithm. Even if the value is overestimated, the method
will never fail or have any limitations that are very com-
mon in static methods.

5See worst case scenario in Section 3.2.1

4 Conclusions

Real-time systems are often implemented as scheduled
tasks with timing constraints that must be satisfied for
correct function. Even if very much research has been
done in schedulability analysis, it is common to do as-
sumptions to simplify the analysis — for instance that
the cost of task pre-emption can be approximated to zero.
In reality pre-emption cost, since execution of code takes
time, and the indirect refill penalties with cache memo-
ries in the system can cost much more. Since the pace of
instruction execution accelerates much faster than main
memory access time, the penalty has increased and will
increase even more in relative terms.

This paper presents a hybrid HW/SW technique that
makes it possible to measure and timestamp cache events
with minimal intrusion. The method has been imple-
mented on a high-end multiprocessor system with Mo-
torola Power PC750 CPUs controlled by a centralized
real-time unit (RTU) with operating system features im-
plemented in hardware. A hardware implemented mon-
itor co-resides with the RTU on the same chip which
makes it possible to tap information non-intrusively.

10

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160

C
R

P
D

 (
m

ic
ro

 s
ec

on
ds

)

"Task size" (cache size in %)

’vplot.dat’

Figure 10: Measuring the instruction CRPD on a CPX2000 system with a MPC750 processor that is equipped with a
32kB 8-way set associative L1 instruction cache.

We have proposed how to continuously measure cache
miss-ratio with a probe task and interrupt driven kernel
probe. The interrupt driven kernel probe outcompetes
the task probe in less CPU utilization and finer time gran-
ularity.

Methods has in this paper been proposed how to set
up workbenches and measure the pre-emption delay in-
cluding cache-related for instructions. Experimental re-
sults showed that a pre-emption could vary from 43 to
282 µs if the cache related pre-emption delay (CRPD)
is counted in. The CRPD itself will in this case stand
for 69% of the time of the pre-emption execution and its
indirect cause.

References

[1] C. Healy, R. Arnold, F. Mueller, D. Whalley, and
M. Harmon. Bounding pipeline and instruction
cache performance. IEEE Transactions on Com-
puters, 48(1):53–70, January 1999.

[2] Hiroyuki Tomiyama and Nikil Dutt. Program path
analysis to bound cache-related preemption delay
in preemptive real-time systems. In Proceedings of
8th International Workshop on Hardware/Software
Codesign (CODES2000), pages pp. 67–71, May
2000.

[3] Christian Ferdinand, Florian Martin, Reinhard Wil-
helm, and Martin Alt. Cache behavior prediction
by abstract interpretation. Science of Computer
Programming, 35(2–3):163–189, November 1999.

[4] Chang-Gun Lee, Joosun Hahn, Sang Lyul Min,
Rhan Ha, Seongsoo Hong, Chang Yun Park, Min-
suk Lee, and Chong Sang Kim. Enhanced analysis
of cache-related preemption delay in fixed-priority
preemptive scheduling. In Proceedings of the 18th
Real-Time System Symposium, pages 187–198, San
Francisco, USA, December 3–5, 1997. IEEE Com-
puter Society Press.

[5] Jeffrey C. Mogul and Anita Borg. The effect of
context switches on cache performance. In Pro-
ceedings of the 4th International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 75–84, Santa Clara,
CA, USA, April 1991.

[6] Robert T. Short and Henry M. Levy. A Simulation
Study of Two-Level Caches. 1988.

[7] Stefan M. Petters and Georg Färber. Making worst
case execution time analysis for hard real-time
tasks on state of the art processors feasible. In Pro-
ceedings of the 6th Real-Time Computing Systems
and Applications RTCSA, Hong-Kong, December
13–15, 1999. IEEE Computer Society.

11

[8] Pavel Atanassov, Raimund Kirner, and Peter
Puschner. Using real hardware to create an accu-
rate timing model for execution-time analysis. In
Proceedings of IEEE Workshop on Real-Time Em-
bedded Systems (RTES’01), London, December 3,
2001.

[9] Jakob Engblom. On hardware and hardware mod-
els for embedded real-time systems. In Proceed-
ings of IEEE Workshop on Real-Time Embedded
Systems (RTES’01), London, December 3, 2001.

[10] Anant Agarwal, Mark Horowitz, and John Hen-
nessy. An analytical cache model. ACM Theory
of Computing Systems, 7(2):184–215, May 1989.

[11] Swagato Basumalik and Kelvin D. Nilsen. Cache
issues in real-time systems. In Proceedings of
the ACM SIGPLAN Workshop on Language, Com-
piler, and Tool Support for Real-Time Systems,
June 1994.

[12] David B. Kirk. SMART (strategic memory al-
location for real-time) cache design. In IEEE
Computer Society Press, editor, Proceedings of the
Real-Time Systems Symposium - 1989, pages 229–
239, Santa Monica, California, USA, December
1989. IEEE Computer Society Press.

[13] Andrew Wolfe. Software-based cache partitioning
for real time applications. In Proceedings of the
Third International workshop on Responsive Com-
puter Systems, September 1993.

[14] Frank Mueller. Compiler support for software-
based cache partitioning. In ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Real-
Time Systems, La Jolla, CA, USA, June 1995.

[15] Lennart Lindh, Tommy Klevin, and Johan Furunäs.
Scaleable architecture for real-time applications –
SARA. In Proceedings of SNART 1999, Linköping,
Sweden, 1999.

[16] Motorola Corp. MPC750 RISC Microprocessor
Users Manual, August 1997.

[17] Motorola Corp. Errata to MPC750 RISC Micro-
processor Users Manual, July 1999.

[18] Johan Furunäs, Johan Stärner, Lennart Lindh, and
Joakim Adomat. RTU94 – real time unit 1994
– reference manual. Technical report, Dept.

of computer engineering, Mälardalen University,
Västerås, Sweden, January 1995.

[19] Peter Nygren and Lennart Lindh. Virtual commu-
nication bus with hardware and software tasks in
real-time system. In Proceedings for the work in
progress and industrial experience sessions at 12th
Euromicro conferance on Real-time systems, June
2000.

[20] Mohammed El Shobaki. Non-intrusive hard-
ware/software monitoring for single- and multi-
processor real-time systems. Technical report,
Mälardalen Real-Time Research Centre, Västerås,
Sweden, April 2001.

[21] Mohammed El Shobaki. On-chip monitoring of
single- and multiprocessor hardware real-time op-
erating systems. In Proceedings of the 8th Inter-
national Conference on Real-Time Computing Sys-
tems and Applications (RTCSA), March 2002.

[22] Rabindra P. Kar. Implementing the rhealstone real-
time benchmark. Dr. Dobb’s Journal, pages 46–55
and 100–104, April 1990.

[23] J. V. Busquets-Mataix, A. Wellings, J. J. Serrano,
R. Ors, and P. Gil. Adding instruction cache effect
to schedulability analysis of preemptive real-time
systems. In IEEE Real-Time Technology and Ap-
plications Symposium (RTAS ’96), pages 204–213,
Washington - Brussels - Tokyo, June 1996. IEEE
Computer Society Press.

12

	Introduction
	Real-time and cache memories
	Monitor and measurement methods
	Cache properties to measure

	The system
	MPC750
	Real-Time Unit
	MAMon --- an application monitor

	Experimental setup and results
	Synthetic workloads
	Continuous measurement
	Implement the probe as a task
	Implement the probe as an interrupt routine

	Workbench
	Results
	Discussion and conclusion

	Measuring context-switch time
	Workbench and results
	Discussion and conclusion

	Measuring CRPD
	Workbench
	Results
	Discussion and conclusion

	Conclusions

