Towards Feature-Oriented Requirements Validation
for Automotive Systems

Jiale Zhou!, Yue Lu!, Kristina Lundqvistl, Henrik Lonn 2, Daniel Karlsson?, Bo Liwé’lng3
1School of Innovation, Design and Engineering, Mélardalen University, Visteras, Sweden
2 Advanced Technology and Research, Volvo Group, Goteborg, Sweden
3Swedish Radiation Safety Authority (SSM), Stockholm, Sweden
! {zhou jiale, yue.lu, kristina.lundqvist} @mdh.se
2{henrik.lonn, daniel.b.karlsson} @volvo.com
3bo.liwang@ssm.se

Abstract—In the modern automotive industry, feature models
have been widely used as a domain-specific requirements model,
which can capture commonality and variability of a software
product line through a set of features. Product variants can thus
be configured by selecting different sets of features from the
feature model. For feature-oriented requirements validation, the
variability of feature sets often makes the hidden flaws such as
behavioral inconsistencies of features, hardly to avoid. In this
paper, we present an approach to feature-oriented requirements
validation for automotive systems w.r.t. both functional behaviors
and non-functional properties. Our approach first starts with the
behavioral specification of features and the associated require-
ments by following a restricted use case modeling approach, and
then formalizes such specifications by using a formal yet literate
language for analysis. We demonstrate the applicability of our
approach through an industrial application of a Vehicle Locking-
Unlocking system.

Index Terms—feature-oriented requirements modeling; model-
based requirements validation; eTASM; RUCM; software prod-
uct lines; systems functional behaviors and non-functional prop-
erties

I. INTRODUCTION

With the growing maturity and standardization of the au-
tomotive domain, requirements specifications for automotive
systems tend to center around the concept of feature models.
Feature models [1] are proposed to capture the commonality
and variability within a software product line by using features,
between which there are relations and constraints. Further, a
feature [2], [3] is a logical unit of functionality comprehensible
to end-users, which consists of the requirements (i.e., the
feature requirement hereafter) associated with the feature and
the corresponding behavioral specification (i.e., the feature
behaviors hereafter). A product can be configured by selecting
a set of features (i.e., the feature set hereafter) from a feature
model. The validity of a feature set refers to two situations: 1)
one is from the structural perspective, i.e., the selected features
should conform to the constraints defined by the feature model
and, 2) the other is from the functional perspective, i.e., no un-
desirable behaviors exist between two or more (as integrated)
feature behavioral specifications. In order to increase the confi-
dence of the validity of the feature set, several feature-oriented
requirements validation techniques [3], [4], [5], [6], [7], [8]
have been developed. However, it is well recognized that with

978-1-4799-3033-3/14 © 2014 IEEE

428

the increasing size of feature models, the inherent variability
of the feature sets leads to an inevitable issue that the hidden
flaws of features are difficult to avoid [9]. Especially, the
feature interaction problem (referring to the situation that
two or more features exhibit unexpected behaviors) cannot be
detected when the features are used in isolation.

As the unexpected behaviors can result in uncertainties and
even hazards of automotive systems, adequate efforts on de-
tecting the unexpected feature interactions thereby must be ap-
plied in the early stages of the pertaining development process.
In the literature, there are many examples [7], [10], [11] where
the process starts with translating the natural language specifi-
cation (NLS) of a feature into a formal language specification
(FLS) of the feature behaviors, and then the requirements
validation is performed based on the generated formalisms. To
our best knowledge, the main drawbacks of using NLS lie in:
1) ambiguities in the NLS cause imprecise definitions and even
wrong understanding of the feature behaviors and, 2) the direct
translation from the NLS to a FLS tends to be very costly
and, 3) the NLS hinders to a large extent the possibility of
performing automatic feature-oriented requirements validation.

To challenge the feature interaction problem and make up
for the deficiency in the current practice, in this paper we
propose a model-based approach to feature-oriented require-
ments validation. To be specific, our approach firstly specifies
features by using an informal yet restricted natural language
(from scratch) without losing ease of use, and then formalizes
a set of executable models based upon the aforementioned
intermediate specifications to perform the requirements vali-
dation. The approach is comprised of four steps as follows:

« Feature Specification specifies the behaviors and re-
quirements of features by following the restricted use case
modeling (RUCM) approach [12], which adopts a generic
use case template and several restriction rules to reduce
ambiguity and facilitate further analysis.

« Feature Behaviors Formalization formalizes the feature
behaviors in terms of a formal yet literate specification us-
ing the extended Timed Abstract State Machine (eTASM)
language [13], which generates executable models for
analysis.

« Feature Requirements Formalization models the fea-

RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. © 2014 |EEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ture requirements by using the Observers technique [13]
in eTASM for validation purpose.

« Feature Validation performs three kinds of model-based
validation checking to detect the hidden flaws in the se-
lected features, including Logical Consistency Checking,
Coverage Checking, and Model Checking.

We also demonstrate the applicability of our approach
through an illustration application, and the remainder of
this paper is organized as follows: An introduction to the
background knowledge is presented in Section II. Section III
introduces the illustration application i.e., the Vehicle Locking-
Unlocking (VLU) system. Our approach to feature-oriented
requirements validation is described and illustrated by using
the VLU system in Section I'V. Section V discusses the related
work, and finally concluding remarks and future work are
drawn in Section VI.

II. BACKGROUND

In this section, we briefly introduce the RUCM ap-
proach [12] and the formal specification language eTASM [13]
used in our approach for a better understanding.

A. Restricted Use Case Modeling

The restricted use case modeling (RUCM) [12] is a use
case modeling approach that extends the UML [14] use case
diagram by proposing a use case template and 26 restriction
rules for reducing ambiguity and easing automated analysis. In
our work, we specify features by populating the proposed use
case template and following the restriction rules. In order to
meet our needs, we make two slight modifications to the tem-
plate. First, for the purpose of traceability, the use case name
is required to follow the form of FeatureName_UseCaseName
or merely FeatureName. Second, the Basic Description entry
is replaced by Feature Requirement which specifies the re-
quirement that the feature is associated with. Figure 1 shows
the modified template and the brief explanation for each entry.

The feature behaviors are specified via use case flows,
which are composed of one basic flow and one or more
alternative flows. The basic flow specifies the main execution
path in terms of a sequence of steps and a postcondition.
Alternative flows specify execution branches when deviations
occur somewhere in the reference flow that can be the basic
flow or an alternative flow. There are three types of alternative
flows: a specific alternative flow refers to a specific step in
the reference flow; a bounded alternative flow refers to more
than one step in the reference flow; a global alternative flow
refers to all steps in the reference flow. RUCM defines 16
restriction rules to constrain the use of natural language, as
shown in Figure 2. A set of keywords are also defined in
the other 10 rules to specify control structures. For example,
the keyword VALIDATES THAT (as shown in Figure 4) is
used for condition checking. In particular, if the condition
evaluates to be true, the current flow continues, otherwise an
alternative flow will be executed. The detailed description of
all the restriction rules and keywords are provided in [12].

Description

R1

The subject of a sentence in basic and alternative flows
should be the system or an actor

R2

Describe the flow of events sequentially

R3

Actor-to-actor interactions are not allowed

Enforce describing flows of events correctly.
These rules conform to our use case template
(the five interactions).

R4

Describe one action per sentence. (Avoid compound
predicates.)

Otherwise it is hard to decide the sequence of
multiple actions in a sentence.

Use Case Name In the form of FeatureName_UseCaseName or merely FeatureName.

Feature Requirement Specifies the feature requirement.

Precondition What should be true before the use case is executed.

Primary Actor The actor who initiates the use case.

Secondary Actors Other actors the system relies on to accomplish the functionality of the use case

Dependency Include and extend relationships to other use cases.

Generalization Generalization relationships to other use cases.

Basic flow steps Specifies the main successful path in terms of a sequence of steps and a postcondition

Steps (numbered) Flow of events

Postcondition What should be true after the basic flow executes.

Specific Alt. Flow Applies to one specific step of the reference flow

RFS A reference flow step number where flow branches from.

Steps (numbered) Flow of events

Postcondition What should be true after the basic flow executes.

Bounded Alt.Flow Applies to more than one step of the reference flow, but not all of them.

RFS A list of reference flow steps where flow branches from.

Steps (numbered) Flow of events

Postcondition What should be true after the basic flow executes.

Global Alt.Flow Applies to all the steps of the reference flow.

Steps (numbered) ‘ Flow of events

Postcondition

‘ What should be true after the basic flow executes.

Fig. 1. The modified use case template of RUCM.

RS Use present tense only Enforce describing what the system does,

rather than what it will do or what it has done.
R6 Use active voice rather than passive voice Enforce explicitly showing the subject and/or
R7 Clearly describe the interaction between the system object(s) of a sentence.

and actors without omitting its sender and receiver

R8 Use declarative sentences only. “Is the system idle?” is
a non-declarative sentence.

Commonly required for writing UCSs

R9 Use words in a consistent way. Keep one term to describe one thing

R10 Don’t use modal verbs (e.g., might) Modal verbs and adverbs usually indicate
uncertainty; therefore metrics should be used if

possible

R11 Avoid adverbs (e.g., very).

R12 Use simple sentences only. A simple sentence must
contain only one subject and one predicate

Reduce ambiguity and facilitate automated
natural language parsing.

R13 Don’t use negative adverb and adjective (e.g., hardly,
never), but it is allowed to use not or no

R14 Don’t use pronouns (e.g. he, this).

R15 Don’t use participle phrases as adverbial modifier.

R16 Use “the system” to refer to the system under design
consistently.

Keep one term to describe the system;
therefore reduce ambiguity

Fig. 2. The rules of RUCM to constrain the use of natural language.

B. The Extended TASM Language

eTASM [13] is a formal language for the specification of
safety-critical systems, which extends the Timed Abstract State
Machine (TASM) language [15] with the Observer and Event
constructs. eTASM inherits the easy-to-use characteristic from
TASM, which is a literate specification language understand-
able and usable without extensive mathematical training. An
eTASM model consists of three parts — an environment, a set
of machines, and a set of observers. The environment defines
the set and the type of machine variables which machines
can monitor or control, and the set of named resources which
machines can consume. An machine consists of a set of
monitored variables (which can affect the machine execution),
a set of controlled variables (which machines can modify),
and a set of machine rules. The set of rules specify the

429

machine execution logic in the form of “if condition then
action”, where condition is an expression depending on the
monitored variables, and action is a set of updates of the
controlled variables. We can also use the rule “else then
action” which is enabled merely when no other rules are
enabled. A rule can specify the annotation of the time duration
and resource consumption of its execution. The duration of a
rule execution can be the keyword next that essentially states
the fact that time should elapse until one of the other rules
is enabled. The observers will monitor the events triggered
by the execution of machines, and each observer represents
one correctness property of interests that should be satisfied
by the proposed system. In the eTASM language, four types
of events can be triggered: The ChangeValueEvent type is
triggered by a specific eTASM environment variable whenever
its value is updated, the ResourceUsedUpEvent is triggered by
the case whenever the resource of the application is consumed
totally, and the RuleEnableEvent and RuleDisableEvent are
triggered whenever the corresponding eTASM rule is enabled
or disabled, respectively. An observer is made up of an
ObserverEnvironment, a Listener, and an Observation. The
ObserverEnvironment defines a set of observer variables and
an EventsFilter that filters out irrelevant event types to the
observer. The Listener specifies the expected events sequence
following the syntax and semantics of regular expression. The
Observation indicates the monitoring result, i.e., whether the
correctness property monitored by the observer is satisfied.
eTASM describes the basic execution semantics as the
computing steps with time and resource annotations: In one
step, it reads the monitored variables, selects a rule of which
condition is satisfied, consumes the specified resources, and
after waiting for the duration of the execution, it applies
the update set instantaneously. During the execution, eTASM
triggers events whenever possible. The events sequence is
monitored by observers. Once an expected sequence is ob-
served, the corresponding monitoring result will be concluded.
As a specification language, eTASM supports the concepts
of parallelism (which stipulates that eTASM machines are
executed in parallel) and hierarchical composition (which
is achieved by means of auxiliary machines which can be
used in other machines). There are two kinds of auxiliary
machines - function machines that can take machine variables
as parameters and return an execution result, and sub machines
that can encapsulate machine rules for reuse purpose [15].
Communication and interaction between machines can be
achieved by defining corresponding environment variables.

III. ILLUSTRATION APPLICATION

In this section, we describe a simplified Vehicle Locking-
Unlocking (VLU) system, as a running example to illustrate
our approach in this work. The proposed VLU system aims to
replace the mechanical key, as a control access to a vehicle,
and it follows a common pattern in feature-oriented require-
ments specification: The basic functionality is encapsulated
as an individual feature, and additional/optional enhancements
are specified as features that provide the increments in func-

tionality. Specifically, such features are Central Locking (CL),
Auto-lockout (AUL) and Anti-lockout (ANL). Figure 3 shows
the features of the VLU system in the form of technical feature
model tree which is presented in EAST-ADL [16].

Central Locking (a basic feature) locks and unlocks all
the doors of the vehicle upon receipt of a command from the
user key fob.

Auto-lockout (an optional feature) locks all the doors
of the vehicle when a timeout expires after the vehicle has
stopped. It provides a theft protection in case that the driver
forgets locking the doors manually.

Anti-lockout (an optional feature) enables unlocking of
the doors while a key is in ignition after the vehicle has
stopped, of which purpose is to prevent the driver from being
locked out of the vehicle.

In simple applications such as the one above, it is possible
to manually analyze the interactions between features for re-
quirements validation. However, the real-world systems often
have a large number of complex features, making the per-
taining manual analysis extremely time-consuming and error-
prone. The main motivation for our approach is to provide
a semi-automatic technique for feature-oriented requirements
validation for automotive systems, by performing undesirable
feature interaction analysis. In the rest of the paper, we will
use the aforementioned simplified application to illustrate our
approach for features modeling, features specification, and
auto-detection of undesired interactions.

=
Vehicle Locking-
Unlocking

=l = =
Central Locking Auto-lockout Anti-lockout

Fig. 3. The technical feature model tree of the VLU system.

IV. THE APPROACH TO FEATURE-ORIENTED
REQUIREMENTS VALIDATION

In this section, we will introduce our approach that ad-
dresses the issue of formalizing and validating feature-oriented
requirements specifications. In general, our approach is con-
ducted in four steps as follows:

« Step 1: Feature Specification specifies the behaviors and
requirements of features by using the RUCM use cases,
which facilitates the further analysis.

o Step 2: Feature Behaviors Formalization formalizes the
feature behaviors using the eTASM machines, which are
executable analysis models.

o Step 3: Feature Requirements Formalization formal-
izes the feature requirements by using the eTASM Ob-
server technique.

430

TABLE I
THE IDENTIFIED USE CASES AND CORRESPONDING FEATURE

REQUIREMENTS.
Feature Use case name Feature requirements
Central CL_Lock The system shall lock the doors
Locking CL_Unlock The system shall unlock the doors

The system shall automatically
lock the doors after 20 seconds,
when the vehicle has stopped

The system shall anti-lock the
doors if the key is in ignition and
the vehicle has stopped

Auto-lockout Auto-Lockout

Anti-lockout Anti-Lockout

o Step 4: Feature Validation performs three types of
checking by using model-based analysis techniques, to
detect the hidden flaws in feature specifications.

We will go into details about each step by introducing
the adhering sub-steps and show a running example to il-
lustrate our approach. Specifically, Section IV-A introduces
feature specification using the RUCM use cases. Section IV-B
and Section IV-C discuss modeling of the behaviors and
requirements of features respectively. Section IV-D presents
the analysis and results of feature validation of the VLU
system.

A. Feature Specification

The Feature Specification step describes the features of a
system in a restricted natural language, which can facilitate
the further transformation from an informal specification to
the formal one, for the purpose of validation. In this step, each
feature will be specified by following the RUCM approach,
and there are two sub-steps in our work as follows:

o Step 1.1: Use Cases Identification: Since a feature
captures a set of cohesive functionalities in the form of
requirements and corresponding behaviors, it is therefore
necessary to split the functionalities and identify the
possible use cases based on the expert’s understanding
of the feature.

« Step 1.2: Use Cases Specification: Use cases are spec-
ified by filling the RUCM template using a restricted
natural language. In order to facilitate the further analysis,
some predefined restriction rules must be followed.

In the VLU system, there are three selected features i.e., CL,
AUL and ANL (as introduced in Section III). The specification
of features, as an example, is illustrated by applying the
proposed steps to the CL feature. To be specific, since the CL
feature describes two opposite functionalities, two use cases
can be thereby identified in terms of CL_Lock and CL_Unlock,
as shown in Table I. Figure 4 and Figure 5 describe the filled
use case templates of CL_Lock and CL_Unlock, respectively.

B. Feature Behaviors Formalization

This step is to analyze the specified RUCM templates
and formalize the corresponding feature behaviors by using
eTASM models which are executable simulation models for
analysis. The Feature Behaviors Formalization step contains
four sub-steps:

Use Case Name CL_Lock

The system shall lock the doors of the vehicle

Feature Requirement

None
Key fob

Precondition

Primary Actor ‘ Secondary Actors | Doors, Lights

Dependency None ‘ Generalization ‘ None

Basic flow steps 1) Key fob sends a "lock” command to the system. 2) The system
VALIDATES THAT the doors are close. 3) The system locks the door. 4)
The system flashes lights to indicate the completion of locking.

Postcondition: Doors are locked. Lights is off. The system is idle.

Specific Alt. Flow
(RFS Basic flow 2)

Bounded Alt.Flow

1) The system does nothing. Postcondition: Doors remain open.
Lights are off.

None | Global Alt.Flow ‘ None

Fig. 4. The CL_Lock use case of the CL feature.

CL_UnLock

The system shall unlock the doors of the vehicle

Use Case Name

Feature Requirement

Precondition None
Primary Actor Key fob ‘ Secondary Actors | Doors, Lights
Dependency None ‘ Generalization | None

1) Key fob sends an “unlock” command to the system. 2) The
system unlocks the door. 3) The system flashes lights to
indicate the completion of unlocking. Postcondition: Doors is
close but unlocked. Lights is off. The system is idle

Basic flow steps

Specific Alt. Flow None

Bounded Alt.Flow

None Global Alt.Flow None

Fig. 5. The CL_Unlock use case of the CL feature.

o Step 2.1: System Constituents Identification extracts
the relevant system constituents referred in the RUCM
use cases and specifies them in eTASM machines.

o Step 2.2: Constituents Interaction Identification identi-
fies the interactions between different system constituents
referred in the RUCM use cases and specifies them in
eTASM environment variables.

o Step 2.3: Machine Rules Specification analyzes the
possible states of identified machines and specifies feature
behaviors by using a set of eTASM machine rules.

o Step 2.4: Property Annotation adds non-functional
property annotations to the relevant eTASM machines.

1) System Constituents Identification: The identification of
the system constituents from the use cases is of importance in
the process to formalize the behaviors of the proposed system
and model the scenarios for model-based validation. In order
to do so, we recommend the following two tasks:

o External Constituents Identification: Use case actors are
considered as external constituents which interact with
the proposed system. The external constituents will be
modeled to simulate the execution scenarios.

o Internal Constituents Identification: Each use case is
considered to be an internal constituent, making up the
proposed system. The internal constituents will be mod-
eled to simulate the proposed system.

In this step, a list of eTASM machines w.r.t. the identified
constituents is defined for the VLU system, as shown in
Table II.

2) Constituents Interaction Identification: Two types of
interaction between the sending constituent (i.e., sender) and
receiving constituent (i.e., receiver) are considered in our

431

TABLE 11
THE ETASM MACHINES IDENTIFIED FOR THE VLU SYSTEM.

Machine [Quantity] Category [Brief Description
KEY_FOB 1 External model the key fob’s behavior
LIGHT 1 External model the light’s behavior
DOORS 1 External model the behavior of doors
IGNITION 1 External model the behavior of ignition
VEHICLESPEEDSENSOR 1 External model the behavior of vehicle speed sensor
CL_LOCK 1 Internal lock doors
CL_UNLOCK 1 Internal unlock doors
AUTO_LOCKOUT 1 Internal lock doors when timeout expires
ANTI_LOCKOUT 1 Internal anti-lock doors if key is in ignition

approach:

o Data Transmission Interaction (DTI) represents that data
(such as the state information and various sensor values)
are transferred from the sender to the receiver, which are
modeled as eTASM environment variables. The variables
are named as sender_datatype which denotes the trans-
ferred data. Line 2 in Figure 7 shows an example.

o Data Modification Interaction (DMI) represents that the
data of the receiver is directly changed by the sender,
which are modeled via directly modifying the value of
the receiver’s environment variable. The variables are
named in the form of receiver_datatype, which denotes
the modified data. One example can be found in Lines 9
and 10 in Figure 7.

Since RUCM requires the interaction between a system
and an actor to be clearly described without omitting some
information about its sender and receiver, it is therefore easy
to identify interactions between constituents from the use case
models. Figure 6 shows the identified interactions in our VLU
system, which are twelve interactions. Further, the solid lines
represent DTIs, and the dashed lines represent DMIs.

CL_Lock

9

Key fob

o

Vehicle Speed Sensor

CL_Unlock

n

Doors

B w

Light

Auto-Lockout

Anti-Lockout

b Ignition
Fig. 6. The identified interactions between constituents in the VLU system.

3) Machine Rules Specification: The restricted use case
flow sentences (e.g., in basic and/or alternative flows) can to a
large extent facilitate the transformation from use case models
to analysis models [17]. Based on the sentences specified in
use case flows, we recommend the following sub-steps to
specify the eTASM machine rules:

o Identification of possible states of the corresponding
constituent: The possible states of a constituent can be
identified via analyzing the adjectives and verbs in the use
case flows. A user-defined type is used to represent the

possible states, and a state variable is defined to denote
the current state of the constituent.

o Identification of the transition conditions of states: The
conditions of a certain machine rule are given, according
to the pertaining values of the state variables and the
transition conditions.

o Identification of the actions when the system enters a
specific state: The actions of machine rules are specified,
based on the behaviors of a constituent and the next
possible state.

In our VLU application, there are five external constituents
and four internal constituents under consideration, as shown
in Table II. The KEY_FOB machine simulates the behaviors
of a user’s key fob. This machine has two possible states lock
and unlock, in which the lock/unlock state denotes that the
lock/unlock command is sent to the proposed VLU system.
The LIGHT machine simulates the behaviors of the vehicle
light, which has two states i.e., the flashed state and the off
state. The flashed state denotes that the light flashes for several
times. The DOORS machine simulates the behaviors of the
vehicle doors, which has three possible states open, close and
locked. The IGNITION machine simulates the behaviors of
the vehicle ignition, which has two possible states haskey and
nokey. The VEHICLESPEEDSENSOR machine simulates the
behaviors of the vehicle speed sensor, which has two possible
states still and running.

The CL_LOCK machine, as shown in Figure 7, models
the CL_Lock use case. The machine has two possible states
in terms of idle and lockdoor. The Rule ReceiveCommand
represents that the system receives the lock command from the
key fob. The Rule Locking represents that the system locks the
doors. The Rule Idle keeps the machine alive and represents
the system is idle. The CL_UNLOCK machine has similar
rules, which will not be introduced for simplicity.

The AUTO_LOCKOUT machine, as shown in Figure 8§,
models the behaviors of the Auto-Lockout use case. The Rule
Timeout represents that when the vehicle stops and the doors
are close, the feature will be activated upon the timeout expires
(i.e., 20s in our case). The Rule Autolock represents that the
system is to automatically lock the doors. The Rule Timer
represents the timer measuring time intervals. Rule Idle keeps
the machine alive and represents that the timer will be reset
either when the doors are open or when the vehicle starts
running.

432

R1:ReceiveCommand {
if cllock_state = idle and keyfob_cmd = lock then
cllock_state := lockdoor;
keyfob_cmd := NONE;
}
R2:Locking{
t:=locking_time;
if cllock_state = lockdoor then

® 9 s W N e

9 door_state := locked;
10 light_state := flashed;
11 cllock_state := idle;
12}

13 R3:Idle{

14 t := next;

15 else then

16 skip;

17}

Fig. 7. The eTASM main machine models the CL_Lock use case.

R1:Timeout {

if aul_state = idle and door_state = close and
vehicle_state = still and timer = 20 then
aul_state := timeout;
timer := 0;

}
R2:Autolock({
t:=locking_time;

® 9 G W N e

9 if aul_state = timeout then
10 door_state := locked;

11 light_state:= flashed;

12 aul_state := idle;

13}
14 R3:Timer({

15 t = 1;

16 if aul_state = idle and door_state = close and
17 vehicle_state = still and timer < 20 then
18 timer := timer + 1;

19 }
20 R4:TimerReset {

21 t := next;
22 else then
23 timer := 0;

24 }

Fig. 8. The eTASM main machine models the Auto-Lockout use case.

The ANTI_LOCKOUT machine, as shown in Figure 9,
models the behaviors specified in the Anti-Lockout use case.
The Rule HasKey represents that when the vehicle stops, the
feature will be activated if the key is in ignition. The Rule
Antilock represents that the system is to unlock the doors after
activated. The Rule Idle keeps the machine alive and represents
that the system is idle.

4) Property Annotation: Validation of non-functional re-
quirements in this stage relies on the estimates of the pertain-
ing non-functional properties of the proposed system. This step
can be carried out in the following ways:

o The properties are determined based upon the non-
functional requirements specified in the use cases.

o The properties are determined by using the experience
or analysis of existing systems (in which estimates can
be obtained by using existing well-known analysis meth-
ods, e.g., Worst-Case Execution Time (WCET) analy-
sis [18], [19] for time duration of rules).

We annotate the aforementioned eTASM models with time
durations, as shown in Figures 7, 8, and 9. The annotation

R1:HasKey({
if anl_state = idle and ignition_state = haskey and
vehicle_state = still then
anl_state := antilock;

}
R2:Antilock{
t:=unlocking_time;

W P UG W N e

if anl_state = antilock then
door_state := close;
10 anl_state := idle;

1}
12 R3:Idle{

13 t := next;
14 else then
15 skip;

Fig. 9. The eTASM main machine models the Anti-Lockout use case.

terms locking_time and unlocking_time are either a specific
value or a range of values.

C. Feature Requirements Formalization

Our approach proceeds with the formalization of feature
requirements by using the eTASM Observer technique, which
consists of four sub-steps as follows:

« Step 3.1: Listener Specification specifies the possible
events sequence which represents the proposed system’s
observable functional behaviors and/or non-functional
properties required by the feature requirements, and the
corresponding actions taken on observer variables when
the sequence is caught by a Listener.

« Step 3.2: Observation Specification formalizes a predi-
cate depending on the observer variables. If the predicate
of the Observation holds, i.e., evaluates to be true, it
implies that the property satisfaction of the feature is
achieved, as it can be observed in the proposed system.

o Step 3.3: Events Filtering identifies the interesting
events and filters out the irrelevant events by specifying
EventsFilter.

o Step 3.4: Traceability Creation links a specific Ob-
server to the textual requirements. The link is used for
requirements traceability from the formalization to natu-
ral language requirements in order to perform coverage
checking.

In the VLU system, there are four feature requirements, i.e.,
CL_Lock, CL_Unlock, Auto_Lockout and Anti_Lockout. The
specification of an observer is illustrated by applying the
proposed steps to the ANL feature requirement. To be specific,
the ANL feature requirement states " The system shall anti-lock
the doors if the key is in ignition and the vehicle has stopped",
and the interesting events sequence consists of three parts. The
first part "ANTI_LOCKOUT—Haskey—RuleEnableEvent"
denotes that the event is triggered when the Rule HasKey
of the ANTI_LOCKOUT machine is enabled, modeling
the behavior that the key is in ignition. The second
part "["(AUTO_LOCKOUT— Autolock—RuleEnableEvent |
CL_LOCK—Locking—RuleEnableEvent)]*" represents an
arbitrary number of events that are not triggered by the
enabling of either the Rule Autolock of the AUTO_LOCKOUT

433

machine or the Rule Locking of the CL_LOCK machine. Both
of these two rules model the behavior that the doors are locked.
The last part "ANTI_LOCKOUT->Idle->RuleEnableEvent"
represents the event that is triggered when the Rule Idle of
the ANTI_LOCKOUT machine is enabled, which models the
situation in which the key is removed. If the events sequence
is detected, the Observation "ov == true" evaluates to be
true, which indicates the situation in which after the key is in
ignition, the doors are not locked before the key is removed,
i.e., the ANL feature requirement is satisfied in the eTASM
model.

1 ObserverVariables: {

2 Boolean ov := false;
3}

4 EventsFilter: {
5

6

7

8

filter out: ChangeValueEvent, ResourceUsedUpEvent,

RuleDisableEvent;
}
Listener: {
9 listening ANTI_LOCKOUT—Haskey—RuleEnableEvent
10 [* (AUTO_LOCKOUT—Autolock—RuleEnableEvent |
11 CL_LOCK—Locking—RuleEnableEvent)]
12 ANTI_LOCKOUT—Idle—RuleEnableEvent then

13 ov := true;
14 }

15 Observation:{
16 ov == true;
17}

Fig. 10. The observer for the ANL feature requirement.

D. Feature Validation

Validation of the formalized requirements aims at increasing
the confidence of the validity of selected features. In this
work, we assume that there is a semantic equivalence relation
between the RUCM use cases and eTASM models. This is
built upon the fact that the eTASM models are derived, by
following the proposed modeling steps as well as our thorough
understanding of the VLU system. The validation goal is
achieved by following several analysis steps, based on the use
of the derived eTASM models which may help to pinpoint
flaws that are not trivial to detect. Such validation steps in our
approach are:

o Step 4.1: Logical Consistency Checking. The term
of logical consistency can be intuitively explained as
"free of contradictions in the specifications". In our
work, the logical consistency checking is performed on
the executable eTASM models, by using our developed
tool TASM TOOLSET. Furthermore, there are two kinds
of inconsistency flaws to discover. One kind of flaws
is that two rules in the same machine are enabled si-
multaneously, which is usually caused by the fact that
there exist unpredictable behaviors in the specification
of the corresponding feature. The other is that different
values are assigned to the same variable simultaneously
by different machines, which is usually caused by the fact
that there exist hidden undesirable feature interactions in
the specifications of the corresponding features.

« Step 4.2: Coverage Checking. The coverage checking
corresponds to checking whether the feature requirements
can be observed in the integrated feature specifications,
which is an important activity of requirements complete-
ness checking. To perform the coverage checking, all the
feature requirements are translated into observers which
monitor the execution of the features specifications, i.e.,
the derived eTASM models. If an Observation cannot
hold, it indicates that although the features specifications
satisfy their individual requirements in isolation, there
are behavioral inconsistencies in the integrated feature
specification.

o Step 4.3: Model Checking. The eTASM machines can
be easily translated into timed automata through the
transformation rules defined in [15]. The transformation
enables the use of the UPPAAL model checker to verify
the various properties of the eTASM model. This type of
checking aims at verifying whether the eTASM model
is free of deadlock and whether an expected property
specified in a feature requirement is satisfied by the
eTASM model. It is necessary to stress that the essential
difference between Model Checking and Coverage Check-
ing is whether a property is exhaustively checked against
a model or not. Although a sound property checking is
desired, in some cases Model Checking will encounter
state explosion problem, which limits its usefulness in
practice.

We follow the aforementioned validation steps to check the
validity of the selected features of the VLU system. First,
we use the TASM TOOLSET to perform Logical Consistency
Checking on the formalized eTASM model. Two inconsis-
tencies are detected, one of which is that the Rule Autolock
of the AUTO_LOCKOUT machine and the Rule Antilock of
the ANTI_LOCKOUT machine update the door_state vari-
able simultaneously with different values. An analysis of
the inconsistency reveals: When the key is in ignition, the
ANL feature will keep the doors unlocked. Meanwhile, if the
autolock timeout expires, the AUL feature will try to lock the
door. Since no rules are explicitly specified in the selected
features to handle this situation, undesirable behaviors will
occur. The other inconsistency is detected in a similar situation
where the Rule Locking of the CL_LOCK machine and the
Rule Antilock of the ANTI_LOCKOUT machine update the
door_state variable simultaneously with different values. In
this work, we correct such inconsistencies by assigning a
higher priority (as an extra condition of the corresponding
rule) to the Rule Antilock, which guarantees that it will be
executed at first when both of two rules are enabled at the
same time. Note that there are some other methods that can
be used to remove the discovered inconsistencies, which are
however out of the scope of this paper.

After the removal of the inconsistencies, we proceed to
Coverage Checking. The TASM TOOLSET is applied, and the
result has shown that the observations of all eTASM observers
are met. Therefore, the integrated features specifications sat-

434

isfies the feature requirements, from the Coverage Checking
perspective.

On the note about Model Checking, we first translate the
e¢TASM model into timed automata, and then check the
deadlock property as well as the feature requirements via
UPPAAL. The corresponding results are: 1) Deadlock free is
satisfied and, 2) the CL_Lock feature requirement is satisfied
and, 3) the CL_Unlock feature requirement is satisfied and,
4) the AUL feature requirement is satisfied and, 5) the ANL
feature requirement is satisfied. As a result, the satisfaction of
deadlock-free and feature requirements has been achieved.

In summary, our approach has found two behavioral incon-
sistencies in the integrated features specifications. Although
the VLU system is not complex, it is enough, as an illustrative
example, to show how to perform feature-oriented require-
ments validation by following our proposed approach.

V. RELATED WORK

Kimbler et al. [20] introduce a user-oriented approach
to feature interaction analysis. It aims first at creating use
case models to describe different possible ways of using
the system services, and then building service usage models
which simulate the dynamic relations between services. This
work is quite similar with our idea, however its focus is in
the telecommunication domain. Moreover, we use the RUCM
approach to facilitate the transformation from use case models
to subsequent formalisms. Eriksson et al. [21] propose a
software product line use case modeling approach i.e., PLUSS
to modeling SPL. The difference between their work and ours
is the purpose of using use cases. PLUSS aims to utilize use
cases to capture variants of SPL, while our approach utilizes
use cases to specify behavioral specifications of features. The
white paper of EAST-ADL [16] mentions that use cases can
be used to specify features but no more details were given. In
this work, we have provided a set of steps to specify features
and perform requirements validation.

Amyot et al. [10] propose an approach to detecting feature
interactions of telecommunication systems, by using Use Case
Maps (UCMs) for designing features, and LOTOS for the
formal specification of features. Sampath et al. [22] present
a formal specification and analysis method for automotive
features in the early stages of software development process.
This method starts with an empty specification, and then
incrementally adds clauses to the specification until all the
feature requirements are satisfied. Arora et al. [7] propose a
method and algorithms for identifying and resolving feature
interactions in the early stages of the software development
life-cycle. The work uses State Machines to model the be-
havior of independent features, context diagrams to integrate
independent features, and Live Sequence Charts to capture the
interactions of features.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel approach to feature-
oriented requirements validation by using the RUCM approach
and the eTASM language. Our approach 1) specifies the

behaviors and requirements of features in the RUCM use cases
and, 2) transforms such RUCM use cases to the formal yet
literate eTASM models and, 3) performs the requirements val-
idation by using the TASM TOOLSET and the model checker
UPPAAL. Our illustration application using a Vehicle Locking-
Unlocking (VLU) system has shown that our approach can
achieve the goal of feature-oriented requirements validation
via Logical Consistency Checking, Coverage Checking, and
Model Checking.

As inspired by Scandurra et al. [17] showing the promise of
rule-based transformation from RUCM use cases to analysis
models, we will in the future combine the proposed modeling
approach with such rule/pattern-based algorithms, to achieve a
fully automatic transformation between the RUCM use cases
and eTASM models. We are also interested in integrating our
approach and related tools for the development of correct-
by-construction systems (e.g., developed by EAST-ADL lan-
guage) in a seamless and cost efficient way. Another part of
future work also includes a wider industrial validation of our
approach, as well as the improvement of our current TASM
TOOLSET.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Tech. Rep.,
Nov 1990.

[2] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach. New York, NY, USA: Addison-
Wesley Professional, May 29, 2000.

[3] A. Classen, P. Heymans, and P.-Y. Schobbens, “What’s in a fea-
ture: A requirements engineering perspective,” in Proceedings of
FASE’08/ETAPS’08, 2008, pp. 16-30.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated reasoning on
feature models,” in Proceedings of CAISE’05. Springer-Verlag, 2005,
pp. 491-503.

[5] X. Peng, W. Zhao, Y. Xue, and Y. Wu, “Ontology-based feature
modeling and application-oriented tailoring,” in Proceedings of ICSR’06,
2006, pp. 87-100.

[6] M. Mendonca, A. Wkasowski, and K. Czarnecki, “Sat-based analysis of
feature models is easy,” in Proceedings of SPLC’09, 2009, pp. 231-240.

[7]1 S. Arora, P. Sampath, and S. Ramesh, “Resolving uncertainty in auto-
motive feature interactions,” in Proceedings of RE’12, Sep 2012, pp.
21-30.

[8] A. FE Layouni, K. J. Turner, and L. Logrippo, “Conflict detection in
call control using firstorder logic model checking,” in Proceedings of
ICFI’07, 2007.

[9]1 S. Apel and C. Kstner, “An overview of feature-oriented software

development,” 2009.

D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes,

B. Stepien, and T. Ware, “Feature description and feature interaction

analysis with use case maps and lotos,” in Proceedings of FIW’00, 2000,

pp. 274-289.

M. Poppleton, “Towards feature-oriented specification and development

with event-b,” in Proceedings of REFSQ’07, 2007, pp. 367-381.

T. Yue, L. C. Briand, and Y. Labiche, “A use case modeling approach to

facilitate the transition towards analysis models: Concepts and empirical

evaluation,” in Proceedings of MODELS’09, 2009, pp. 484—498.

J. Zhou, Y. Lu, and K. Lundqvist, “A tasm-based requirements validation

approach for safety-critical embedded systems,” in Proceedings of Ada-

Europe’14, June 2014,

O. M. Group, “OMG Unified Modeling Language (OMG UML), Infras-

tructure, V2.1.2,” Tech. Rep., Nov. 2007.

M. Ouimet, “A formal framework for specification-based embedded real-

time system engineering,” Ph.D. dissertation, Department of Aeronautics

and Astronautics, MIT, 2008.

(10]

(11]

[12]

[13]

[14]

[15]

435

[16]

[17]

[18]

H. Blom, H. Lonn, F. Hagl, Y. Papadopoulos, M.-O. Reiser, C.-J.
Sjostedt, D.-J. Chen, and R. T. Kolagari, “EAST-ADL - An Architecture
Description Language for Automotive Software-Intensive Systems,” The
EAST-ADL 2 Consortium, Tech. Rep., 2012.

P. Scandurra, A. Arnoldi, T. Yue, and M. Dolci, “Functional require-
ments validation by transforming use case models into abstract state
machines,” in Proceedings of SAC’12. NY, USA: ACM, 2012, pp.
1063-1068.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
1. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom, “The worst-case
execution-time problem—overview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,

[19]

(20]

(21]

[22]

436

no. 3, pp. 1-53, April 2008.

Y. Lu, “Pragmatic Approaches for Timing Analysis of Real-Time
Embedded Systems,” Ph.D. dissertation, Méilardalen University, June
2012.

K. Kimbler and D. S. birk, “Use case driven analysis of feature
interactions,” in Feature Interactions in Telecommunications Systems,
10S, 1994, pp. 167-177.

M. Eriksson, J. Borstler, and K. Borg, “The pluss approach: Domain
modeling with features, use cases and use case realizations,” in Pro-
ceedings of SPLC’05, 2005, pp. 33-44.

P. Sampath, S. Arora, and S. Ramesh, “Evolving specifications formally,”
in Proceedings of RE’11, Aug 2011, pp. 5-14.

