
Task Synthesis for Control Applications on
Multicore Platforms

Aneta Vulgarakis∗, Rizwin Shooja†, Aurélien Monot‡, Jan Carlson† and Moris Behnam†
∗Industrial Software Systems

ABB Corporate Research, Västerås, Sweden
Email: aneta.vulgarakis@se.abb.com

†Mälardalen University
School of Inovation, Design and Engineering

Email: rsa12004@student.mdh.se, jan.carlson@mdh.se, moris.behnam@mdh.se
‡Industrial Software Systems

ABB Corporate Research, Baden–Dättwil
Email: aurelien.monot@ch.abb.com

Abstract—Multicore processors promise to improve the per-
formance of systems, by integrating more and more cores onto a
single chip. Existing software systems, such as control software
from the automation domain, need adjustments to be adapted
on multicores. To exploit the concurrency offered by multicore
processors, appropriate algorithms have to be used to divide
the control application software into tasks, and tailored task
partitioning and scheduling approaches are required to increase
the overall performance. In this paper we present a model-driven
approach for automatic synthesis and deployment of control
applications on multicore processors. The approach is centered
around a system model, which describes the control applications,
the multicore platform, as well as the mapping between the two.
We apply the approach on a number of control applications out
of which we synthesize tasks and present their run-time behavior
in a real-time operating system.

Keywords—task synthesis, control applications, multicore pro-
cessors, model-based deployment, partitioned scheduling.

I. INTRODUCTION

In automation, control systems are designed to regulate
dynamic processes in real-time. They are composed of a set of
controllers connected to sensors and actuators. Until now the
hardware architectures used in executing control systems were
based on single core processor architectures. However, chip
manufacturers are reaching the point when they can no longer
cost-effectively meet the increasing performance requirements
through frequency scaling alone. Hence, the current trend in
many industries is to adopt multicore technology.

The shift towards multicore processors leads to new ways
of developing software. Multicore processors provide a coarser
parallelism for executing tasks that needs to be provided by the
programmers, the compilers, or the operating systems. How-
ever, legacy user applications are typically written in languages
that are unable of expressing task parallelism. Therefore, it
is challenging to identify parts of the applications that are
independent and that could be potentially executed in parallel.

In the automation domain, the development of control
applications typically follows a model-based approach where
the application architecture is constructed from interconnected

function block components according to, e.g., the IEC 61131-
3 [1] or IEC 61499 [2] standard. After their deployment on
the run-time architecture of an automation controller, control
applications typically execute periodically. Unfortunately, as of
today, there is a very limited understanding on how to leverage
multicore technology in executing control applications.

When it comes to real-time multicore scheduling, the par-
titioned multiprocessor scheduling approach can be considered
as an interesting approach to be adapted by the industry since
it introduces low run-time overhead and predictable execution
due to disabling tasks migrations between cores [3]. In addi-
tion, single core scheduling algorithms can be used in each
core which simplifies the scheduling in multicore. However,
the main drawback of this approach is that it suffers from the
problem of allocating (partitioning) tasks to cores, which is
a bin-packing problem [4]. Therefore heuristic algorithms are
usually used to find a near-optimal partition with polynomial
time complexity.

In this paper we present a process for automatic deploy-
ment of control applications on multicore platforms. Achieving
this result requires to go through several steps including finding
an efficient deployment (in terms of performance) of the set of
control applications onto the multicore platform and generating
automatically the corresponding code to be executed by a real-
time operating system.

To address the deployment problem, we chose to use
the approach of assigning single thread (task) of execution
per control application. In addition, we use the partitioned
scheduling approach to schedule control applications, thus
the parallelism offered by multicore processors is exploited
by supporting execution of many control applications in par-
allel. The worst-fit heuristic approach is used to partition
applications on multicore since it balances the load of the
control applications over the different cores, leading to shorter
response times and jitters of the control applications which is
desirable for such applications. To run the control applications
on the real-time operating system, we use code generation to
extract the control logic of the applications and then generate
the corresponding files to set-up the system according to
the deployment solution computed previously. To make our

2014 11th International Conference on Information Technology: New Generations

978-1-4799-3187-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ITNG.2014.61

229

solution general and imposing low run-time overhead, we use
the fixed priority scheduling approach on each core which
is widespread supported by real-time operating systems (e.g.,
VxWorks). So our solution requires neither changing the kernel
of the operating system nor adding an additional layer between
the applications and the operating system to run non-standard
scheduling techniques.

In brief, the contributions of the paper are twofold: (1) an
execution model of control applications on multicore platforms
(section II), and (2) a task synthesis process describing the
mapping of control applications to tasks, as well the task
code generation (section III). In section IV we show the task
synthesis process on a number of control applications realized
as POSIX processes, which run on a real-time Linux for
multicore platforms. Following the case study, we present the
related work in section V, then conclude the paper and present
a line of future work, in section VI.

II. THE SYSTEM MODEL

In this section we explain the system model that we
consider, which consists of a platform model, an application
model and an application execution model. This structure
of the system model follows from the partitioning problem
(i.e., allocating a set of control applications on a multicore
platform), and from the problem of mapping applications or
parts of applications on run-time entities (such as tasks imple-
mented as threads and/or processes). The following subsections
describe in more details the three models, and their relation.

A. The platform model

In this paper, we use a simple platform model, which
assists us in solving the problem of executing a set of control
applications on a multicore hardware. Our platform model is
composed of identical, m unit-capacity cores with a shared
memory. Tasks are assigned to a certain core and they are
only scheduled and executed in that core, i.e., migration of
tasks between cores is not allowed. The scheduling technique
used on each core is the fixed priority preemptive scheduling
policy.

B. The application model

The software system that we are considering consists of a
set of control applications. The model of the control applica-
tions execution is as follows; first a control application reads
feedback and user input values from sensors, then computes
a control action using a feedback control algorithm (such as
proportional-integral-derivative (PID)) and finally sends a con-
trol value to actuator(s). Different applications may read from
the same sensors, however, applications do not share actuators,
i.e., each actuator is dedicated to a certain application.

Since we focus mainly on the execution model of control
applications, we use a simple, yet general, model to design
our applications. Therefore, even other component models
targeting control systems (e.g., ProCom [5], FASA [6]) and
industrial standards (e.g., IEC 61131-3 [1]) can be transformed
easily to this model. In our model, each application is modeled
as a network of small (in terms of code size) function blocks.
The function blocks communicate with each other through
input/output ports based on the pipes-and-filters paradigm. A

signal is used to connect an output port of a function block to
an input port of another function block. Applications contain
sensor function blocks, a special type of function blocks,
for communication with sensors, as well as actuator function
blocks for communication with actuators. For simplicity, we
assume an already flattened application model i.e., our function
block diagrams do not contain composite function blocks.

Each application is characterized by its cycle time, relative
priority and offset. The application cycle time specifies the
sampling frequency of its associated control loop that the
application is designed for. The application priority defines
the importance of the application relative to other applications
that share the same platform. The offset is the time, relative to
the start of the application cycle, when the application will be
activated. Offsets are used to decrease the interference between
applications.

Figure 1 shows an example of a feedback control appli-
cation model. At the beginning of each cycle the applica-
tion reads data from sensors using the three sensor blocks
(Temperature, Pressure and Track). In the end of each cycle the
application triggers a valve to open or close. According to the
new value of the valve, the temperature and/or the pressure in
the control process change. Therefore, in the next execution
cycle, new sensor values are acquired and a new value for the
valve is produced. The control algorithm is implemented by
two instances of a PID control function block [7] that computes
its output based on the difference between a given set point and
some desired value. The output from the second PID function
block (i.e., PidCC2) is sent to the AnalogOutCC function block.
AnalogOutCC sends data to some I/O interface via the Valve
actuator function block.

C. The application execution model

The main goal of the application execution model is to
define a mapping between the application model and the
platform model i.e., define how applications or parts of the
application are mapped to tasks and define the execution model
of the tasks. In this paper we map each application to a single
periodic task (called control task). The execution parameters
of a control task are inherited from its associated application
parameters. For instance, the task period equals to the cycle
time of the control application, task priority equals to the
application priority and task offset equals to the application
offset.

Each sensor/actuator is managed by a special dedicated
task, called I/O task. The cycle times of control applications
are usually between 1ms and 1s, and the I/O tasks run with
cycle times smaller than the cycle times of control applications.
In order to reduce the context switching between control- and
I/O tasks, we decide to execute all I/O tasks on one dedicated
core and control tasks are not allocated on that core. The details
of the task mapping process are explained in the following
Section III.

III. TASK SYNTHESIS

Today in single-core control systems (such as the AC 800M
controller) it is a common practice to assign one thread
of execution per control applications with same cycle time.
However, combining many applications in one thread may

230

���������	
���
����������

��������
��
�������	�

��	
���
����������

�����������
���
����
	����

��	
���
����������

�
����
�����

���������	
���
����������

�����
��
�������	�

��	
���
����������

�
��
��
��
����	�
����

���������	
���
����������

�����
�������

��	
���
����������

�
����

��������
�������

��	
���
����������

�����������
���
����
	����

��	
���
����������

���
���

	��
	��
	��

��
���

�����������

��
 �

�����!"�
����������

��	
���
����������

�������
���

����
���	�

�����
�����	
���
����������

 ��!�
���	�

	�

	�

	�

Fig. 1: Example of a control application: a cascaded control loop.

create high utilization tasks that might be difficult to partition
on multicore systems. Therefore, we decide to allocate a single
thread of execution per control application, and to exploit
multicore systems by supporting execution of many small
control applications in parallel. In the following we explain
our process of mapping applications to control tasks.

A. The task synthesis process

The task synthesis process can be divided into several steps,
as presented in Figure 2. First, the component-based design of
the control applications and the hardware platform model (such
as number of cores, cache size, etc.) of the system where the
control applications will be deployed are delivered by means
of system descriptions in an XML format1. In the application
model we assign static priorities to control applications using
a rate monotonic policy i.e., the shorter the cycle duration,
the higher the application priority. Then, each application is
linearized (i.e., a total order of the function blocks is defined)
and associated with a single control task. The applications are
further sorted by decreasing utilization and partitioned off-line
on the cores using the worst-fit heuristic algorithm, i.e., one
by one allocated to the least loaded core. We then generate a
new XML file that defines the mapping between the control
applications and the execution platform (number of cores and
control tasks). From the generated XML file containing the
mapping between the control applications and the platform we
generate C files for all applications, and a C file for the master
controller, which is responsible for assigning core affinity and
priority to all tasks. In the end we generate a makefile with
application and I/O tasks. In the next section we explain the
realization of the process in more detail.

B. Realization of the task synthesis process

In our task synthesis process we use the Java API JAXB [9]
to retrieve data from an XML file. JAXB allows generation of
a set of Java classes out of an XML schema via a process
called unmarshaling2. Data represented in an XML file is
automatically converted into Java objects.

1Note that a tool, such as 4DIAC-IDE, can be used to model the applications
and the platform in order to generate a system description in an XML
format [8].

2Unmarshalling is the process of retrieving the memory representation of an
object from a data format suitable for storage or transmission, as for example
transforming an XML document into a hierarchy of Java objects.

We linearize the applications in the following way: all the
sensor blocks are ordered to be executed in the beginning
of each cycle, and all the actuator blocks are ordered to
be executed in the end. The rest of the function blocks are
grouped into branches, and the function block(s) in a same
branch are executed in a cascaded fashion. Branches are
formed only by a single function block, or a list of function
blocks which are connected, but where each function block
has a single successor and a single predecessor block. For
example, in Figure 1, the function blocks AnalogInCC1 and
PidCC1 form a branch. The linearization algorithm takes care of
the proper order of the branches in the linearized application.
Therefore, there are several possible ways to obtain a linearized
application.

�����

��������	��

��
����	��������	����
���������������

��	����������������

��
����	���
�
�������	������

��
����	������

����
���������

��
����	���	�����
������

����	�����
����������������������
����������

��	�������	��

��
����	����
����	��������

������������������������

��
����	���	��������������������������
�	�������

��	�����������������

 	�

Fig. 2: The task synthesis process.

The generated C files for all applications include standard
headers (such as stdio.h, stlib.h, etc.) and application specific
headers. The application specific headers contain a list of
global variables and a POSIX semaphore shared by all control
tasks, and header files corresponding to the function blocks
that build the application. The semaphore is treated as if each
core has its own semaphore, and does not affect the processes
executing in other cores. In the body of an application C file
we call the function blocks that build the application. Each
application is realized as a POSIX process [10] in order to
have its own address space.

In the XML files each function block has a fileReference
tag which points to the function block header file. The func-
tionality of the function blocks is provided in the form of
entry functions implemented in C. A POSIX semaphore that
is shared among all control tasks in the same core is used to

231

disable preemption between applications during function block
execution. The reason for disabling preemptions during the
execution of function blocks is that the execution time of func-
tion blocks is relatively short, so avoiding context switching
during the execution of a function block can decrease the run-
time overhead significantly. The semaphore is locked before
the execution of every function block and released after the
block is done with the execution. Within an application we
use shared memory to pass data between function blocks; the
sender block writes its data to a memory block, and the receiver
block reads the data from that memory block.

��������

��	��

�����
��

������	������

������	������

����	�����

����	�����

����	�����

����	�����

����	�����

����	�����

����	�������

����	�����

�������� ��������

������	������

�����

�����

�����

�����

�����

��������

��	��

�����
��

��	��

�����
��

������	�����!

��	��

�����

�"�

��	��

�����

�"�

��	��

�����

�"�

��	��

�����

�"�

��	��

�����

�"�

��	��

�����

�"�

��	��

�����

�"�

��	��

�����

�"���

��	��

�����
��

Fig. 3: Communication between I/O tasks and applications.

The tasks that connect the applications to the outside
world are the I/O tasks or more precisely, the sensors and
actuators. Sensor function blocks from an application read
from shared memory locations to which sensors may write,
and actuator function blocks write into shared memory loca-
tions from which actuators may read. As we mentioned in
Section II, applications are implemented in such a way that
they can share access to sensors, but cannot share actuators
(see Figure 3). The I/O tasks execute asynchronously and
at a higher frequency than the control tasks. We use ded-
icated System V shared memories protected by System V
semaphores for each sensor that can be accessed by both
applications and I/O tasks. Also, another set of System V
shared memories and semaphores are shared between actuators
and the respective applications. The memory footprint of the
System V semaphores are higher than that of the POSIX
semaphores, since while creating a semaphore object System V
creates an array of semaphores while POSIX creates just one.
However, the resources that System V IPC uses are available
system wide [11] which is essential when it comes to inter-
core communication. Since the I/O tasks are allocated on an
exclusive core (i.e., no control applications are executed on
that core), the shared memory that they write into or read
from has to be shared with applications running on other cores.
Hence, we chose System V shared memory over POSIX shared
memory for inter-core communications among processes.

In the master controller file we use a POSIX semaphore
for a synchronized start of all the control tasks once they are
created. Every application body is defined within an infinite

while loop. We use a high resolution timer [12], and the
processes are made periodic according to the system clock
CLOCK MONOTONIC, a non-settable, monotonically increasing
clock that measures time since some unspecified point in the
past that does not change after system start up. The high
resolution timer provides high accuracy even when the cycle
times of the tasks (be they control- or I/O tasks) are smaller
than the period of the Linux jiffy timer that is used by the
Linux scheduler.

IV. CASE STUDY

In this section we present a case study of the task synthesis
process consisting of ten instances of the cascaded control loop
application introduced in Section II. The hardware platform
used in this case study is an Intel Core i7-2620 [13] dual-
core processor with hyper-threading enabled, so that it can
execute four different threads in parallel. The system runs
the 64-bit version of the Ubuntu 12.04 LTS operating system
(kernel version 3.6.11.2) patched with the PREEMPT RT patch
(version 3.6.11.2-rt33) [14], which turns the stock Linux kernel
into a real-time kernel.

We create an XML file containing an application and a
platform model. Since we can run four threads in parallel, we
declare in the platform model that the target platform supports
three cores. We do not include Core0 in the XML description
of the platform model as it is dedicated for I/O tasks. Hence,
Core1, Core2 and Core3 are used for allocating and running the
ten instances of the control loop application. The application
model in the XML file consists of ten instances of the cascaded
control loop application. Each application contains three sensor
blocks, seven function blocks and one actuator function block.
The connections between input and output ports of different
function blocks are defined as signals in the XML file. The
sensor function blocks Temperature, Pressure and Track read data
from shared memory locations to which data are writing the
respective I/O tasks based on values read from the sensors. The
processed data from each cascaded control loop application is
fed into an instance of the actuator function block Valve that
further writes the data into a dedicated memory location that
is not shared among other applications. The data is read from
that memory location by I/O tasks for actuators.

After linearizing the applications, and performing worst-
fit partitioning we generate a new XML file that contains
information about control tasks and their allocation on the
cores of the hardware platform. Figure 4 presents one possible
linearization of the cascaded control loop that we use in our
experiments. Another possible linearization is presented in
Figure 5. Table I shows the allocation of the ten instances of
the cascaded control loop application on the hardware platform
based on the worst-fit heuristic. To demonstrate preemption
between control tasks of different priority we run applications
3, 6, 7 and 8 with cycle time 1000ms, and applications 1, 2,
4, 5, 9 and 10 with cycle time 800ms. The I/O tasks run with
cycle time 10ms.

TABLE I: Allocation of the ten applications on the cores.

Core Allocated applications IDs
1 2, 3, 10
2 4, 6, 8, 9
3 1, 5, 7

232

���������	
���
����������

�����
��
���������	
���
����������

�����
���������	
���
����������

��������
�� �
��
��
��
��	
���
����������

���
��	
���
����������

�����������
��	
���
����������

�����������
��	
���
����������

�
����
��	
���
����������

�
����
��	
���
����������

�������
���
��	
���
����������

 ��!�
�����
�����	
���
����������

Fig. 4: Linearization of the cascaded control loop application used in the experiments.

���������	
���
����������

�����
��
���������	
���
����������

�����
���������	
���
����������

��������
��
��	
���
����������

�����������
��	
���
����������

�
���� �
��
��
��
��	
���
����������

�����������
��	
���
����������

���
��	
���
����������

�
����
��	
���
����������

�������
���
��	
���
����������

 ��!�
�����
�����	
���
����������

Fig. 5: Another possible linearization of the cascaded control loop application.

We further use the previously generated XML file for
creating the C files of every application, which are named after
the applications. In the master controller file, the I/O tasks are
created first and are assigned to Core0 which is unallocated for
applications. Since the I/O tasks have the smallest cycle time
we set their priority to 98, which is the highest recommended
Linux real-time priority for user processes3. A semaphore is
locked before the applications are created and unlocked after
all the applications are created. Control tasks 3, 6, 7 and 8
hold the same priority 1, and control tasks 1, 2, 4, 5, 9 and
10 have priority 2. All control tasks have an offset 0. We use
trace-cmd for recording a trace of the scheduler activities, and
KernelShark [16] for visualizing the recorded trace. Figure 6
depicts an example trace of two cycles of the applications
execution. The different colors in the figure represent the core
on which the processes are running. Observe, for example that
the traces of application 4 (i.e., the process Valve Control4.-
3916), application 6 (i.e., the process Valve Control6.-3922),
application 8 (i.e., the process Valve Control8.-3919) and appli-
cation 9 (i.e., the process Valve Control9.-3913) have the same
color, meaning they are executing on the same core. During
the first depicted cycle application 6 executes until completion.
Then application 8 executes for a while, but gets preempted
from the higher priority application 9. When application 9
finishes executing, application 4 starts and runs to completion.
In the end when there are no more higher priority tasks to
be executed, application 8 locks the semaphore and finishes
executing.

V. RELATED WORK

Code synthesis for multicore platforms has been pro-
posed for modeling languages such as UML/MARTE [17]
and dataflow languages [18], including Simulink [19]. Also,
various domain specific languages and meta-models have been
proposed that capture detailed information needed to synthe-
size efficient multicore code, such as the ESE toolset [20].

In the automation domain, there are few approaches target-
ing multicore, such as the semantic adjustments proposed to
better align IEC 61499 with multicore realization [21]. Canedo
and Al-Faruque present a mechanism to transform IEC 61131-
3 programs into real-time tasks for execution on embedded
multicore processors [22]. The FASA component framework
specifically targets distributed and multicore embedded sys-
tems [6], and includes a constraint programming model to
find suitable allocations. Contrasting these approaches that
address parallel execution at a lower level of granularity, we
consider concurrency at the level of applications, and propose
a synthesis process where linearized application are distributed
over the cores.

3Real time tasks in Linux can be assigned with priorities 1-99 with 99 as the
highest priority (reserved for critical kernel threads), and other non-real time
processes are assigned priorities 100-139 with 139 as the lowest priority [15].

The general problem of allocating tasks to cores has been
addressed using different methods and considering different
optimizations criteria. Methods targeting systems with hard
real-time requirements typically focus on schedulability (ab-
sence of deadline violations in worst-case scenarios) [23], [24],
while approaches targeting soft real-time systems tend to focus
on optimizing the average behavior [25], [26].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a process for automatic
deployment of automation control applications on multicore
platforms. We start the process with a model of the control
applications, and of the multicore hardware platform on which
the applications should run. Out of these two models we
generate an application execution model that defines a mapping
between the applications and execution platform i.e., tasks and
cores. In the application execution model each application is
linearized and mapped to a periodic run-time control task. In
addition, the control tasks are partitioned (i.e., allocated) on
the cores of the system according to the worst-fit heuristic.
The tasks on each core are further scheduled according to the
fixed priority preemptive scheduling algorithm. To demonstrate
the applicability of our process, we have shown in an example
how control applications can be synthesized into tasks and run
on a real-time Linux for multicore platforms.

In control systems, it is desired to decrease the response
times and jitters of control tasks to maintain the performance
of the control loop. However, the interference from other
control tasks that share the core and blocking due to sharing
resources with I/O tasks can not be avoided, which increases
both response times and jitters of control tasks. In our solution,
task preemption is only allowed between function blocks. To
decrease response times of control tasks, in the future, we can
define larger non-preemtable sequence of blocks by analyzing
their execution times as well as the structure of the original
function block diagram before performing the linearization.
Another method to decrease response times is by controlling
tasks offsets to minimize the interference between tasks. In the
future, we could also distribute the I/O tasks on different cores
and try to group the applications that use them in the same
core to improve the performance and decrease the overhead of
inter-core communication.

As a future work, we can tune our implementation by using
APIs targeting specific real-time operating systems. Concern-
ing the hardware platform architecture, instead of symmetric
multicore architecture, we can investigate the performance of
our system in more complex architectures, such as multi-
cluster architectures or heterogeneous cores. Finally, we want
to exercise the scalability of our task synthesis approach.

233

�����������	�
�����
����
�����������������������

�����������	�
�����
����
����������������������

Fig. 6: Recorded trace of two execution cycles of the ten applications.

ACKNOWLEDGMENT

This work was supported by Industrial Software Systems
at ABB Corporate Research, by the Swedish Research Coun-
cil project CONTESSE (2010-4276) and by the Knowledge
Foundation (KKS). We would like to thank Manuel Oriol and
Michael Wahler (ABB Corporate Research, Baden–Dättwil)
for their valuable comments on this paper.

REFERENCES
[1] K.-H. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial

Automation Systems: Concepts and Programming Languages, Require-
ments for Programming Systems, Decision-Making Aids. Springer
Berlin Heidelberg, 2010.

[2] International Electrotechnical Commission, “IEC 61499-1: Function
Blocks-Part 1 Architecture,” Geneve, 2005.

[3] D. Potop-Butucaru, R. De Simone, and Y. Sorel, “From Synchronous
Specifications to Statically-Scheduled Hard Real-Time Implementa-
tions,” in Synthesis of Embedded Software: Frameworks and Method-
ologies for Correctness by Construction, S. K. Shukla and J.-P. Talpin,
Eds. Springer, 2010, p. 34, chapter 8.

[4] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 1973.

[5] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnković,
“A Component Model for Control-Intensive Distributed Embedded
Systems.” Springer, October 2008, pp. 310–317.

[6] M. Oriol, M. Wahler, R. Steiger, S. Stoeter, E. Vardar, H. Koziolek, and
A. Kumar, “FASA: a scalable software framework for distributed control
systems,” in Proceedings of the 3rd International ACM SIGSOFT
Symposium on Architecting Critical Systems (ISARCS’12). ACM, June
2012, pp. 51–60.

[7] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, de-
sign, and technology,” IEEE transaction on control system technology,
vol. 13, no. 4, pp. 559–576.

[8] V. Domova, E. Ferranti, T. de Gooijer, and A. Vulgarakis, “4DIAC
integration into the FASA project: a success story of increased maintain-
ability and modularity,” in 4DIAC Workshop, 18th IEEE International
Conference on Emerging Technologies and Factory Automation, 2013.

[9] “Java Architecture for XML binding,” https://jaxb.java.net/, (Last Ac-
cessed: 2013-10-07).

[10] “The POSIX standard,” http://pubs.opengroup.org/onlinepubs/
9699919799/, (Last Accessed: 2013-10-07).

[11] “Comparison between POSIX and System V semaphores,” http://www.
linuxdevcenter.com/pub/a/linux/2007/05/24/semaphores-in-linux.html?
page=4, (Last Accessed: 2013-10-07).

[12] “High Resolution Timers,” http://elinux.org/High Resolution Timers,
(Last Accessed: 2013-10-07).

[13] “Intel® CoreTM i7-2620M,” http://ark.intel.com/products/52231, (Last
Accessed: 2013-10-23).

[14] “PREEMPT RT patch,” https://rt.wiki.kernel.org/index.php, (Last Ac-
cessed: 2013-10-07).

[15] “Real-time task priorities in Linux,” www.linuxjournal.com/magazine/
real-time-linux-kernel-scheduler, (Last Accessed: 2013-10-23).

[16] “KernelShark,” http://people.redhat.com/srostedt/kernelshark/HTML/,
(Last Accessed: 2013-10-07).

[17] H. Posadas, P. P. nil, A. Nicolás, and E. Villar, “System synthesis
from UML/MARTE models: The PHARAON approach,” in Electronic
System Level Synthesis Conference (ESLsyn), 2013.

[18] J. Piat, S. S. Bhattacharyya, M. Pelcat, and M. Raulet, “Multi-core
code generation from interface based hierarchy,” in Proceedings of the
2009 Conference on Design and Architectures for Signal and Image
Processing (DASIP), 2009.

[19] M. Cha, K. H. Kim, C.-J. Lee, D. Ha, and B. S. Kim, “Deriving
high-performance real-time multicore systems based on simulink ap-
plications,” in IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing, 2011, pp. 267–274.

[20] S. Abdi, G. Schirner, I. Viskic, H. Cho, Y. Hwang, L. Yu, and D. Gajski,
“Hardware-dependent software synthesis for many-core embedded sys-
tems,” in Proceedings of the 2009 Asia and South Pacific Design
Automation Conference. IEEE Press, 2009, pp. 304–310.

[21] V. Vyatkin, V. Dubinin, C. Veber, and L. Ferrarini, “Alternatives for
execution semantics of IEC6149,” in The 5th IEEE Conference on
Industrial Informatics, 2007.

[22] A. Canedo and M. A. Al-Faruque, “Towards parallel execution of
IEC 61131 industrial cyber-physical systems applications,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). Los
Alamitos, CA, USA: IEEE Computer Society, 2012, pp. 554–557.

[23] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–
35:44, Oct. 2011.

[24] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion, “Multisource
software on multicore automotive ECUs - combining runnable sequenc-
ing with task scheduling,” IEEE Transactions on Industrial Electronics,
vol. 59, no. 10, pp. 3934–3942, 2012.

[25] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A hybrid
real-time scheduling approach for large-scale multicore platforms,” in
19th Euromicro Conference on Real-Time Systems. IEEE Computer
Society, 2007, pp. 247–258.

[26] J. Feljan, J. Carlson, and T. Seceleanu, “Towards a model-based
approach for allocating tasks to multicore processors,” in 38th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), September 2012.

234

