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Farid Monsefi1, Milica Rančić1,2, Sergei Silvestrov1, and Slavoljub Aleksić2
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Abstract. High frequency (HF) analysis of the horizontal dipole antenna above
real ground, which is employed in this paper, is based on the electric-field inte-
gral equation method and formulation of the Hallén’s integral equation solved for
the current using the point-matching method. The Sommerfeld’s integrals, which
express the influence of the real ground parameters, are solved approximately. In-
fluence of different parameters of the geometry and ground on current distribution
and input admittance is investigated. Furthermore, the method validation is done
by comparison to the full-wave theory based exact model, and available measured
data.
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1 Introduction

Increase of the radiation power in different frequency bands during the last
decades, has called for a study of harmful effects of the radio frequency energy
on the living organisms and electronic equipment. An accurate determination
of the near field strength in the vicinity of higher-power transmitting antennas
is necessary for assessing any possible radiation hazards. In that sense, it is of
great importance to account for the influence of the finite ground conductivity
on the electromagnetic field structure in the surroundings of these emitters.
The estimation of this influence has been intensively studied by Wait and
Spies[1], Popović[2], Bannister[3], Popović and Djurdjević[4], Popović and
Petrović[5], Rančić and Rančić[7], [8], Rančić and Aleksić[9], [11], Rančić[10],
Arnautovski-Toseva et al.[12], [13], Nicol and Ridd[14], and a number of
approaches has been applied in that sense, ranging from the exact full-wave
based ones (Popović and Djurdjević[4], Arnautovski-Toseva et al.[12], [13]) to
different forms of approximate, less time-consuming ones (Wait and Spies[1],
Popović[2], Bannister[3], Popović and Petrović[5], Rančić and Rančić[7], [8],
Rančić and Aleksić[9], [11], Rančić[10]). Although the approximate methods
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introduce a certain level of calculation error, their simplicity is of interest in
the electromagnetic compatibility (EMC) studies. For that reason, finding
an approximate, but satisfyingly accurate method applicable to wide range
of parameters is often a goal of researches done in this field.

In this paper, the authors perform analysis of a thin horizontal dipole
antenna (HDA) above lossy half-space (LHS) of known electrical parameters.
The approach is based on the electric-field integral equation method, and
formulation of the Hallén’s integral equation (HIE), Balanis[6]. This equa-
tion is then solved for the current, which is assumed in a polynomial form
Popović[2], using the point-matching method (PMM) (Balanis[6]). This way
obtained system of linear equations involves improper Sommerfeld’s integrals,
which express the influence of the real ground, and are here solved approx-
imately using simple, so-called OIA and TIA, approximations (Rančić and
Rančić[7], [8], Rančić and Aleksić[9], [11], Rančić[10]). Both types of ap-
proximations are in an exponential form, and therefore, are similar to those
obtained applying the method of images. It should be kept in mind that
the goal of this approach is to develop approximations that have a simple
form, whose application yields satisfyingly accurate calculations of the Som-
merfeld’s type of integrals, and are widely applicable, i.e. their employment
is not restricted by the values of electrical parameters of the ground, or the
geometry, Rančić and Rančić[7], [8], Rančić and Aleksić[9], [11], Rančić[10].

Thorough analysis is performed in order to observe the influence of dif-
ferent parameters of the geometry, and the ground, on current distribution
and the input impedance/admittance of the HDA. Furthermore, the verifica-
tion of the method is done by comparison to the exact model based on the
full-wave theory (Arnautovski-Toseva et al.[12], [13]), and experimental data
from Nicol and Ridd[14]. Obtained results indicate a possibility of applying
the described methodology to inverse problems involving evaluation of elec-
trical parameters of the ground (or detection of ground type change) based
on measured input antenna impedance/admittance.

2 Theory

Considered HDA is positioned in the air (conductivity σ0 = 0, permittivity
ε0, permeability µ0) at height h above semi-conducting ground that can be
considered a homogeneous and isotropic medium of known electrical param-
eters. Antenna conductors are of equal lenght l1 = l2 = l and cross-section
radius a1 = a2 = a (a � l and a � λ0, λ0 − wavelength in the air). The
HDA is fed by an ideal voltage generator of voltage U and frequency f , and
is oriented along the x-axis.

For such antenna structure, the Hertz’s vector potential has two compo-
nents, i.e. Π00 = Πx00 x̂+ Πzx00 ẑ, which are described, at an the arbitrary
field point M0(x, y, z), by the following expressions:
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Πx00 =
1

4πσ0

∫ l

−l
I(x′)

[
K0(r1k) + Sh00(r2k)

]
dx′, (1)

Πzx00 =
1

4πσ0

∂

∂x

∫ l

−l
I(x′)

∫ ∞
α=0

[
−n−2T̃z10(α) + T̃η10(α)

] K̃00(α, r2k)

u0
dα dx′.

(2)
where I(x′) - current distribution (x′ - axis assigned to the HDA); γ

i
- propa-

gation constant and σi - equivalent complex conductivity of the i-th medium
(i = 0 for the air, and i = 1 for the lossy ground); n = γ

1
/γ

0
=
√
εr1

- complex refractive index (γ
0

= jβ0 in the air); εr1 ≈ εr1 − j60σ1λ0 -
complex relative permittivity; α - continual variable over which the inte-
gration is done; K̃00(α, r2k) - spectral form of the potential kernel, K0(rik) =
e−γ0

rik/rik - standard potential kernel, i = 1, 2; Sh00(r2k) - a type of the Som-
merfeld’s integral; T̃z10(α) and T̃η10(α) - spectral transmission coefficients;

r1k =
√
ρ′2k + (z − h)2, r2k =

√
ρ′2k + (z + h)2, ρ′2k = (x − x′k)2 + (y − y′k)2,

k = 1, 2; u0 =
√
α2 + γ2

0
, x′k and y′k - coordinates of the k-th current source

element.

Boundary condition for the total tangential component of the electric field
vector must be satisfied at any given point on the antenna surface, i.e.:

Ex + Uδ(x) = 0, − l ≤ x ≤ l, y = a, z = h, (3)

where Ex - x-component (tangential one) of the electric field vector E

Ex = Ex̂ =
[
graddiv Π00 − γ20 Π00

]
x̂ =

∂2Πx00

∂x2
+
∂2Πzx00

∂x∂z
− γ2

0
Πx00. (4)

The second term in (4) can be written in the following manner:

∂2Πzx00

∂x∂z
=
∂2Π∗zx00
∂x2

, (5)

where Π∗zx00 denotes the modified z-component of the Hertz’s vector potential

Π∗zx00 =
−1

4πσ0

∫ l

−l
I(x′)

∫ ∞
α=0

[
−n−2T̃z10(α) + T̃η10(α)

]
K̃00(α, r2k) dα dx′ =

=
−1

4πσ0

∫ l

−l
I(x′)

[
(1− n−2)K0(r2k)− n−2Sv00(r2k) + Sh00(r2k)

]
dx′.(6)

where Sv00(r2k) - another type of the Sommerfeld’s integral. Substituting (4)
into (3) and adopting (5), the boundary condition (3) becomes:

γ2
0

Π∗x00 −
∂2Π∗x00
∂x2

= γ2
0

Π∗zx00 + Uδ(x), − l ≤ x ≤ l, y = a, z = h, (7)
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where Π∗x00 denotes the modified x-component of the Hertz’s vector potential

Π∗x00 = Πx00 + Π∗zx00 =

=
1

4πσ0

∫ l

−l
I(x′)

[
K0(r1k) + (n−2 − 1)K0(r2k) + n−2Sv00(r2k)

]
dx′. (8)

Equation (7) presents the second order nonhomogeneus partial differential
equation whose solution can be expressed as:

Π∗x00 = C ′1 cosβ0x+ C ′2 sinβ0x−

− 1

β0

∫ x

s=0

[
γ2
0

Π∗zx00 + Uδ(x)
]
x=s
y=a
z=h

sinβ0(x− s)ds, (9)

i.e.

4πσ0Π∗x00 = C1 cosβ0x+ C2 sinβ0x+

+jγ
0

∫ l

−l
I(x′)

∫ x

s=0

[
(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)

]
x=s
y=a
z=h

sinβ0(x− s)ds dx′, (10)

where C1 = 4πσ0C
′
1, and C2 = 4πσ0(C ′2 − jU/γ

0
) is a constant that will be

obtained from the potential gap condition ϕ00(x = 0+) − ϕ00(x = 0−) = U
at feeding points. The electric scalar potential can be expressed as:

ϕ00 = −divΠ00 = −∂Πx00

∂x
− ∂Πzx00

∂z
= −∂Πx00

∂x
− ∂Π∗zx00

∂x
= −∂Π∗x00

∂x
, (11)

and substituting (10) in (11) we get

ϕ00 = −j30C1 sinβ0x+
U

2
cosβ0x−

−j30
∂

∂x

∫ l

−l
I(x′)

∫ x

s=0

[
(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)

]
x=s
y=a
z=h

sinβ0(x− s)ds dx′. (12)

Knowing (12), the potential gap condition yields C2 = −jU/60. Finally (10)
is:

4πσ0Π∗x00 = C1 cosβ0x− j
U

60
sinβ0x+

+jγ
0

∫ l

−l
I(x′)

∫ x

s=0

[
(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)

]
x=s
y=a
z=h

sinβ0(x− s)ds dx′. (13)

Expression (13) presents the Hallén’s integral equation (HIE) (Balanis[6]),
having the current distribution I(x′) and the integration constant C1 as un-
knowns. With a suitable function chosen to approximate the current distri-
bution, HIE (13) is transformed to a system of linear equations appying the
point-matching method at so-called matching points along the antenna.
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It is of great importance to select an appropriate approximation for the
current distribution since it will affect the calculation accuracy of both the
near- and the far-field characteristics. There is a variety of proposed func-
tions in the literature, but the polynomial current approximation proposed in
Popović[2] was repeatedly proven as a very accurate one when analysing dif-
ferent wire antenna structures, Popović[2], Popović and Djurdjević[4], Popović
and Petrović[5], Rančić and Rančić[7], [8], Rančić[10], Rančić and Aleksić[9],
[11]. The form that will be used in this paper is as follows:

I(x′) =

M∑
m=0

Im

(
x′

l

)m
, (14)

where Im, m = 0, 1, 2, · · · ,M , present unknown complex current coefficients.
Adopting (14), HIE (13) becomes:

M∑
m=0

Im

∫ l

−l

(
x′

l

)m 
K0(r1k)+(n−2−1)K0(r2k)+n

−2Sv
00(r2k)−

−jγ
0

∫ x
s=0

(1−n−2)K0(r2k)−
−n−2Sv

00(r2k)+

+Sh
00(r2k)


x=s
y=a
z=h

sin β0(x−s)ds

 dx′ −

−C1 cosβ0x = −j
U

60
sinβ0x.(15)

Unknown complex current coefficients Im, m = 0, 1, 2, · · · ,M , are deter-
mined from the system of linear equations obtained matching (15) at points:

xi =
i

M
l, i = 0, 1, 2, · · · ,M. (16)

This way, system of (M + 1) linear equations is formed, lacking one ad-
ditional equation to account for the unknown integration constant C1. This
remaining linear equation is obtained applying the condition for the current
at the conductor’s end. Standardly, the vanishing of the current is assumed at
the end of antenna arm (Popović[2], Popović and Djurdjević[4], Popović and
Petrović[5], Rančić and Rančić[7], [8], Rančić and Aleksić[9], [11], Rančić[10]),
which corresponds to I(−l) = I(l) = 0, i.e. based on (14) to

M∑
m=0

Im = 0. (17)

(Note: A more realistic condition for the current at the conductor’s ending,
derived satisfying the continuity equation at the end of an antenna arm, can
also be used.)

This way, the system of equations needed for computing the current dis-
tribution of the observed antenna is formed. Based on that, for the given
generator voltage U , the input admittance is determined from Yin = I0/U ,
where I0 = Im|m=0.



6 F. Monsefi et al.

Remaining problem are two Sommerfeld’s integrals appearing in (15) ex-
pressed by

Sv00(r2k) =

∫ ∞
α=0

R̃z10K̃00(α, r2k)dα, (18)

Sh00(r2k) =

∫ ∞
α=0

R̃η10K̃00(α, r2k)dα, (19)

where the first terms in both integrands represent spectral reflection coeffi-
cients (SRCs):

R̃z10(α) =
n2u0 − u1
n2u0 + u1

, ui =
√
α2 + γ2

i
, i = 0, 1, (20)

R̃η10(α) =
u0 − u1
u0 + u1

, ui =
√
α2 + γ2

i
, i = 0, 1. (21)

In order to solve the type of Sommerfeld’s integral given by (18) the
methodology proposed in Rančić and Rančić[7] will be applied. Let us assume
the SRC (20) in a so-called - TIA (two-image approximation) form:

R̃z10(u0) ∼= Bv +A1ve
−(u0−γ

0
)dv , (22)

where Bv, A1v and dv are unknown complex constants. When (22) is substi-
tuted into (18), the following general TIA approximation is obtained:

Sv00(r2k) ∼= BvK0(r2k) +AvK0(r2kv), (23)

where r2kv =
√
ρ′2k + (z + h+ dv)

2, presents the distance between the sec-
ond image and the observation point M0, and Av = A1v exp (γ

0
dv). Now,

matching expressions (20) and (22) at u0 → ∞ and u0 = γ
0
, and the first

derivative of the same expressions at u0 = γ
0
, the following values for the

unknown complex constants in (22) are obtained:

Bv = R∞, A1v = R0 −R∞, dv = (1 + n−2)/γ
0
, (24)

where: R∞ = R̃z10(u0 →∞) = (n2 − 1)/(n2 + 1) and R0 = (n− 1)/(n+ 1).
Substituting (24) into (23), the following TIA form of (18) is obtained:

Sv00(r2k) ∼= R∞K0(r2k) + (R0 −R∞)eγ0
dvK0(r2kv). (25)

Similarly, we can assume (21) in the following form (Rančić and Rančić[8],
Rančić and Aleksić[9], [11], Rančić[10]):

R̃η10(u0) ∼= Bh +A1he
−(u0−γ

0
)dh , (26)

where Bh, A1h and dh - unknown complex constants. Substituting (26) into
(19), the following general approximation is obtained:

Sh00(r2k) ∼= BhK0(r2k) +AhK0(r2kh), (27)
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where Ah = A1h exp (γ
0
dh), and r2kh =

√
ρ′2k + (z + h+ dh)2.

After matching (21) and (26) at points u0 → ∞ and u0 = γ
0
, and their

first derivatives at u0 = γ
0
, we get values Bh = 0, A1h = −R0, and dh =

2/(γ
0
n), i.e. (27) gets the OIA (one-image approximation) form, Rančić and

Aleksić[9], [11], Rančić[10]:

Sh00(r2k) ∼= −R0e
γ
0
dhK0(r2kh). (28)

3 Numerical results

Described numerical procedure is applied to near-field analysis of the sym-
metrical HDA fed by an ideal voltage generator of voltage U .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

2

4

6

8

10

12

14

16

 

 

R
el

at
iv

e 
er

ro
r 

ca
lc

ul
at

in
g 

cu
rr

en
t m

ag
ni

tu
de

 [%
]

f [MHz]
 0.01  0.1  1
 2       5     10

u'

a = 0.007 m, l = 10 m, 
h = 1m, M = 2

r1 = 10,  = 0.001 S/m

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 

 

R
el

at
iv

e 
er

ro
r 

ca
lc

ul
at

in
g 

cu
rr

en
t p

ha
se

 [%
] a = 0.007 m, l = 10 m, 

h = 1m, M = 2

r1 = 10,  = 0.001 S/m

f [MHz]
 0.01  0.1  1
 2       5     10

u'

Fig. 1. Relative error of the current magnitude (left) and phase (right) along the
HDA arm.
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Fig. 2. Current magnitude (left) and phase (right) along the HDA for different
ground conductivities.

Firstly, results of the relative error of current distribution calculation are
given in Figure 1. The conductor is 2l = 20 m long with the cross-section
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Fig. 3. Current magnitude (left) and phase (right) along the HDA above LHS at
different heights.

radius of a = 0.007 m, and it is placed at h = 1.0 m above lossy ground
with electrical permittivity εr1 = 10. In this case, the variable parameter is
the frequency that takes values from a wide range (10 kHz to 10 MHz). The
relative error is shown separately for the current magnitude and phase along
the HDA arm for the case of the specific conductivity of σ1 = 0.001 S/m.
As a reference set of data, those from Arnautovski-Toseva et al.[12], [13] are
taken.

Current distribution’s magnitude and phase at 1 MHz, can be observed
from Figure 2. The HDA has the same dimensions as previously, and it is
placed at h = 1.0 m above lossy ground with electrical permittivity εr1 =
10. The value of the specific conductivity has been taken as a parameter:
σ1 = 0.001, 0.01, 0.1 S/m. Comparison has been done with the results from
Arnautovski-Toseva et al.[12], [13].
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Further, the influence of the conductor’s position on the current distri-
bution has been analysed. The results are graphically illustrated in Figure 3
together with the ones from Arnautovski-Toseva et al.[12], [13]. Three cases
were observed that correspond to heights h = 0.1, 1.0, 5.0 m. The current has
been calculated at frequency of 1 MHz, and analysis has been done for the fol-
lowing values of the specific ground conductivity: σ1 = 0.001, 0.01, 0.1 S/m.
HDA dimensions are the same as previously.
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Fig. 4. HDA current magnitude (left) and phase (right) at point A for different
ground conductivities.

Next example explores the dependence of the current (its magnitude and
phase) on different ground conductivities calculated at the feeding point
A(l = 0 m), which can be observed from Figure 4. Two cases are con-
sidered: solid line represents the value of σ1 = 0.001 S/m, and the dashed
one corresponds to σ1 = 0.1 S/m. The first row of Figure 4 corresponds to
HDA height of h = 2.5 m, and the second one to h = 5.0 m. The same
influence for height h = 0.5 m is given in Rančić and Aleksić[11].

Similarly, the dependence of the current (its magnitude and phase) at
specific points along the HDA arm in the frequency range from 10 kHz to
10 MHz, is presented in Figure 5. The antenna is 2l = 20 m long with a cross-
section radius of a = 0.01 m, and considered heights are: h = 0.5, 2.5, 5.0 m.
Electrical parameters’ values of the ground are: electrical permittivity εr1 =
10, and specific conductivity σ1 = 0.1 S/m. Current is calculated at points:
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Fig. 5. HDA current magnitude (left) and phase (right) at different points along
the antenna.
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A(l = 0 m), B(l = 2.5 m), C(l = 5.0 m), and D(l = 7.5 m). This example for
σ1 = 0.001 S/m and h = 0.5 m is given in Rančić and Aleksić[11].

Finally, Figure 6 shows comparison between theoretical calculations per-
formed using the methodology described in this paper, and the results of the
admittance measurements for the frequency range of 7− 12 MHz (Nicol and
Ridd[14]). Observed HDA is 15 m long suspended at height of 0.3 m above
the LHS. Two boundary cases of the ground are observed: a perfect dielec-
tric (blue data), and a highly conducting plane (black data). Corresponding
results obtained by the method of images are also shown (open circles). It
can be observed that the better accordance is achieved using the method
described here, which was expected since the observed antenna is very close
to the ground (for the frequency of 10 MHz, height of 0.3 m corresponds
to 0.01λ0), and the accuracy of the method of images decreases when the
antenna is at height less than h/λ0 = 0.025 (Popović and Petrović[5]).

4 Conclusions

Approximate method for the analysis of horizontal dipole antenna has been
applied in this paper for the purpose of the current distribution and input
admittance evaluation for the HDA positioned in the air at arbitrary height
above LHS, which is considered a homogenous medium. The aim of the
paper was to validite the applied method for the cases of interest in the EMC
studies.

The analysis has been performed in a wide frequency range, and for dif-
ferent positions of the antenna, as well as for various values of the LHS’s
conductivity. It has been proven, based on the comparison with the exact
model from Arnautovski-Toseva et al.[12], [13], that the methodology used
here yields very accure results in the observed parameters’ ranges. This in-
dicates a possibilty of applying this method for analysis of different wire
structures in the air above LHS, and more importantly, very close to the
ground where the finite conductivity’s influence is the greatest.
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5. Popović, B. D. and Petrović, V. V., “Horizontal Wire Antenna above Lossy Half-
Space: Simple Accurate Image Solution”, International journal of numerical
modelling: Electronic networks, devices and fields 9, 194-199 (1996).

6. Balanis, C. A., Antenna Theory: Analysis and Design, Chapter 8, 3rd Edition:
J. Wiley Sons, Inc., Hoboken, New Jersey (2005).
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