| W 4
|| RTC MALARDALENS HOGSKOLA
Report

Debugging Parallel Systems:
A State of the Art Report

Joel Huselius
Joel. huseliusimdh. se

September 2002

MRTC Report no. 63

MRTC

- www.mrtc.mdh.se
MALARDALEN REAL-TIME
RESEARCH CENTRE ISSN 1404-3041 ISEN MDH-MRTC=x=-SE

Debugging Parallel Systems:
A State of the Art Report

Joel Huselius (joel.huselius@mdh.se)
Department of Computer Engineering
Malardalens University, Vasteras, Sweden

September 23, 2002

Abstract

In this State of the art Report (SotA), we will give an introduction to work
presented in the area of debugging large software systems with modern hardware
architectures. We will discuss techniques used for single- multi- and distributed
systems. In addition we will provide pointers to work by large players in the
field, and major conferences of importance.

We will discuss the debugging of parallel systems, these include systems
that have complex software or hardware architectures. We will explain why
distributed and multiprocessor systems as well as multitasking and/or real-time
systems must be handled differently than less complex systems normally are
during debugging. As we describe a general method for debugging parallel
systems, we will also see that even other hardware and software architectures
and devices will inflict upon the debugging process.

Contents

1 Introduction
1.1 Outline e
2 Terminology
2.1 Tasks, Processes, and Threads
2.2 Faults, Errors, and Failures
2.3 Fault Hypothesiso
2.4 Nondeterministic Programs
2.5 Parallel Systems L
2.5.1 Hardware
2.5.2 Software
2.6 Debugging Parallel Systems
2.6.1 Cyclic Debugging oL
2.6.2 Monitoring and Execution Reproduction
3 Errors in Parallel Systems
3.1 Errors of Synchronization 0L
3.1.1 Interleaving Errors
3.1.2 Deadlock
3.1.3 Livelock
3.2 Race Conditions L
3.3 Real-Time Errors
3.3.1 Violations to the Order of Precedence
3.3.2 Timing Errors oo oo
4 Monitoring Execution Traces
4.1 The Probe Effect and the Observability Problem
4.1.1 The Probe Effect
4.1.2 The Observability Problem
4.1.3 The Probe-ability Problem
4.1.4 Conclusion
4.2 Measuring Consumed Computation Resources
4.2.1 Consistent Temporal View
4.3 Global State. e
4.3.1 Checkpointing
4.3.2 Control- and Data Flow
4.4 Scope of Monitoring Lo
4.4.1 Logging e
4.5 Discussing Monitoring Approaches
4.5.1 Hardware Monitoring L.

12
13
13
13
14
15
18
18
19

4.5.2 Software Monitoring Lo
4.5.3 Hybrid Monitoringo
454 Discussion Lo e

5 Reproducing the Execution of a Computer System
5.1 The Stampede Effect and the Bystander Effect
5.1.1 The Stampede Effect oL
5.1.2 The Bystander Effect
5.1.3 Conclusion
5.2 The Irreproducibility Effect and the Completeness Problem
5.2.1 TIrreproducibility Effecto o000
5.2.2 The Completeness Problem
5.3 Regression Testing Lo
5.4 Uses of Monitoring Output
54.1 Browsing e
542 Replay e
5.4.3 Simulation
5.5 Visualizing the Debugging Process

6 Future Work

6.1 Deterministic Replay o o L.
6.2 Debugging Component Based Systems
6.3 Design Patterns for Design of Probe-able Systems

6.3.1 Sketched Examples of Design Patterns

6.4 Comparing Tools for Debugging

6.5 Efficient Memory Usage in Storing Monitoring Entries
6.6 Conferences and Research Groups of Interest

7 Summary

Bibliography

ii

47
47
48
49
49
49
50
51

53

54

List of Figures

3.1
3.2
3.3
3.4

5.1

Example of a Deadlock o Lo 14
Example of a Message Race 16
Data Races [34, Figure 3.1;p24]; (1.) Actual Execution. (2.) Feasible

Execution. (3.) Feasible Execution. (4.) Infeasible Execution. 16
A Precedence Graph 18
This is Not an Example of the Bystander Effect 40

iii

Chapter 1

Introduction

To debug a sequential software can be considered as fairly straightforward. All
necessary tools are available, and it is only a matter of time until all bugs are
removed. It is potentially possible to consider exhaustive testing of the system,
that is to test every possible combination of inputs, to ensure that the system
is correct.

However, if we consider parallel systems, the multitude of potential execution
orderings increase dramatically from one per combination of input parameters
in the sequential case, to millions or even more in the parallel case. It is then
not feasible to perform exhaustive testing even if it would be possible, and the
fact is that it is not always possible. Some inputs to the system may not be
controllable, or even visible, resulting in that we can only hope that chance will
help us test a sufficient amount of executions if we perform a reasonable number
of tests. If we assume traditional techniques used for sequential systems, we
can see that they are insufficient for the task of debugging and ensuring the
correctness of the system. Even if we find a bug, it is not always given that we
can derive the cause of the bug. Information about the cause is required in order
to repair the system successfully.

One of the intentions of this report is to investigate the issues that makes
debugging parallel systems so hard. We will describe the generally accepted
method for debugging parallel systems trough the use of monitoring and
execution reproduction, and describe the topics which are important to cover in
an implementation of that method. In the context of monitoring, we discuss
issues such as the probe effect which can change the behavior of a system.
The observability problem which must be solved when monitoring distributed
systems. And the probe-ability problem which states that the system must be
open enough to allow monitoring.

Another intention of the report is to survey the possible errors that may occur in
these systems. These include synchronization errors, race conditions, and timing
related problems that primarily occur in real-time systems.

Furthermore, the report presents a survey of the state of art (work carried out

in the academia) and state of practice (work carried out in the industry) in the
field of debugging parallel systems. The focus here will be on state of the art as
the industry (understandably enough) is reluctant to make detailed information
about their products publicly available.

Finally, by using the rest of the report as background, we point out areas for
our future research.

1.1 Outline

The outline of this report is as follows: Chapter 2 provide explanations and
definitions for some fundamental terminology relevant to the rest of the report.
Chapter 3 describe the categories of potential errors which may occur in parallel
systems.

Thereafter, the two chapters that follow discuss the two basic activities in the
generally accepted basic model for debugging parallel systems. Chapter 4 discuss
how monitoring can be performed, which problems that are encountered, and
discuss different approaches and tools found in the literature. Chapter 5 discuss
issues which must be respected when constructing a replay-mechanism, and some
different approaches found in the literature are also discussed.

Chapter 6 provides some ideas which are intended for our future work, the issues
discussed have arisen during the work on this report. Finally, we provide a short
summary of the report in Chapter 7.

Chapter 2

Terminology

In this section we will describe some fundamental issues regarding the problems
that we investigate, and the type of systems that we assume.

In their article “Debugging Concurrent Programs” published in 1989 [30],
McDowell and Helmbold refers to debugging as the process of locating, analyzing,
and correcting suspected faults, the same definition is also found in an article
by Tsai et al. [62, s5;p127]. Faults are referred to as the cause of violations to
the system specification [30]. Schiitz has similar opinions in his survey [48]. In
this report we will survey the area of debugging parallel systems.

2.1 Tasks, Processes, and Threads

There are many names for the threads of control in a computer system, in this
report we shall use the name “task”, which is often used in the context of real-
time systems. In other contexts, including some of our sources, the threads of
control are called processes. In many cases, these are more or less the same, but
real-time tasks normally have less complex code but more complex constraints.
Examples of these constraints are deadlines, release-times, jitter, etc.

A real-time task may have a release-time which specifies the earliest point in time
when the task is allowed to execute. The deadline of a task is the latest time
at which the task is allowed to terminate. Should a task fail to complete before
its specified deadline, is contribution to the computation cannot be considered
usable. The severity of such a failure may be grave (for hard real-time systems),
but there are systems (soft real-time systems) which are designed to allow some
amount of misses.

Many real-time systems are of a periodic nature, for example sample-actuating
loops, where a task is to be performed with a certain frequency. Note that two
tasks in the same system may very well have different frequencies, and they also
may be phase-shifted to each other.

Precedence orders are relations that constitute dependencies between events.
For example, one must put on socks before shoes when dressing.

Because of these complex constraints it is a non-trivial task to perform the
scheduling of such systems. Thus, scheduling of real-time systems has been an
important research topic for more then two decades, and continue to be so.

Jitter between task instances is a consequence of the cooperative use of resources
between tasks. For example, as the processing power must be shared, and
different tasks may have different periodicities, scheduling of tasks will differ
between task instances.

2.2 Faults, Errors, and Failures

Above, we used a definition to the term faults present in the literature, we will
however comply to a slightly different definition recalled and refined by Thane
[56, $3.2.1.1;p23]:

A failure is the non-performance or inability of the system or
component to perform its intended function for a specified time
under specified environmental conditions [25, $9.1;p172]. That
is, an input, X, to the component, O, yields an output, O(X),
non-compliant with the specification.

An error is a design flaw, or a deviation from a desired or intended
state [25, $9.1;p172]. That is, if we view the program as a state
machine, an error (bug) is an unwanted state. We can also view
an error as a corrupted data state, caused by the execution of
an error (bug) but also due to e.g., physical electromagnetic
radiation.

A fault is the adjunged (hypothesized) cause for an error [21].
Generally a failure is a fault. but not vice versa, since a fault
does not necessarily lead to a failure.

Or, in other words: A failure of an entity (system, component, function, etc.)
is an observed violation to the specification of the entity. A failure is a fault
in the output, or product, of the entity. An error is an unintended state in the
entity. A fault is the cause of an error, it is the reason for its presence. If the
propagation of the fault is not prevented, the fault will lead to an error.

Therefore, a failure of a programming team to write error-free software will lead
to latent faults in the source code. Execution of these faults may lead to errors
in the system state, which will in turn lead to failures if they are not prevented
from contaminating the output of the system.

Also, if a component receives an invalid input (as a consequence of a failure
in the supplier of the input), and fails to detect that the input is invalid, that
is a fault. If the fault changes the systems state, that is an error. The error

leads to a failure of the component operation if its presence is visible outside the
component.

There are two ways of avoiding faults in a system [41, s1;pl]; fault avoidance
i.e. to avoid the occurrence of faults in the system, and fault tolerance i.e. to
provide correct output in spite of the occurrence of faults.

2.3 Fault Hypothesis

In order to find faults, some assumptions must be made to which faults that can
occur in the system. We will later in this report review the different types of
faults that may potentially arise in parallel systems, but we will in this section
make a small example. Thane recalls in his Ph.D. thesis [56, s3.2.1.3;p27] that
a system has a given failure semantic if the probability of that the system will
experience types of failures (or failure modes) not covered by the failure semantic
is sufficiently low. Further, Thane defines that a given fault hypothesis is the
assumption that a system will comply to a certain failure semantic.

Byzantine faults [20] describe when faulty components continue to interact with
their environment. The can then issue incorrect answers to questions, but do so
in a fashion that does not alarm the receiver of the answer. The scenario may
also have a “two-face” quality to it; a node that is experiencing a Byzantine fault
may issue different answers to different instances of queries. Say that a faulty
node answers a query about the todays special at the local restaurant, the correct
answer would perhaps be “pancakes”, but the faulty node may answer “fish”. It
is not possible for the requesting node to detect the incorrectness of the answer
without checking the menu him self (or querying multiple nodes) as the answer
lies with in the scope of the potentially valid answers. If we assume that we
may experience Byzantine faults, we can never assume that a provided input
is correct, and must therefore take extreme measures if we want to construct
a system which will behave correctly. It is therefore important to, for a given
system, define a fault hypothesis that is not overly pessimistic in order to keep
the time required for development within acceptable boundaries.

2.4 Nondeterministic Programs

Kranzlmiiller provides a definition of a nondeterministic program in his Ph.D.
thesis [18, s4.2.4;p89] as follows:

“A program is nondeterministic, if - for a given input - there may be
situations where an arbitrary programming statement is succeeded by
one of two or more follow-up states. This freedom of choice may be
determined by pure chance or unawareness of the complete state of
the execution environment.”

Meaning that if one set of inputs may cause a task to, from one run to the next,
behave differently, then the system is nondeterministic. Note that, according
to this definition, a program is nondeterministic also if the irregularity of
its products is completely depending on factors that are unknown but not
necessarily unpredictable. Thus, a deterministic system can appear to be
nondeterministic just because we lack the knowledge to understand it.

The opposite of a nondeterministic program or system, must clearly be a
deterministic program. In the book “Communication and Concurrency” by
Milner [32, s11.1;p233], the issue of determinism has been formally defined.

2.5 Parallel Systems

In our definition of parallel systems we incorporate both systems that are
complex in their hardware architecture, and/or in their software architecture.
Also, parallel systems may be either truly parallel, or concurrent (semi-parallel),
concurrent systems being when a resource (for example a CPU) is more or less
transparently shared in time between two or more tasks.

2.5.1 Hardware

Complex hardware can be heterogeneous or homogeneous, i.e. the nodes
of the system are not necessarily uniform with respect to their hardware
architecture. Many things, such as instruction sets, computation capabilities,
and external resources may differ. The nodes can furthermore be distributed
and/or multiprocessor systems with modern processor architectures and external
devices such as hard disks. As different nodes in a distributed system have
individually differing temporal propagations, timing is an interesting factor that
complicates the process of getting a consistent ordering of the system events;
the ordering of events is compromised as no global time-base exists. Advances
in Very Large Scale Integration (VLSI) technology allows the construction of
System-on-Chip (SoC) hardware. SoC-technology allows designers to place
entire systems in one silicon chip, as this (among other things) allow reduced
contact with off-chip components, that normally are slower, which increase
performance. However, the reduction of off-chip information flows limits our
visibility of the system - many of the hardware transactions between on-chip
components may be invisible and uncontrollable [16].

In order to create a greater understanding for our term “complex hardware”, we
will in the next two sections describe issues of the SPARC processor architecture
to exemplify the impact of co-processors and pipelines to the trap handling.
We will focus on exceptions and interrupts, these can be triggered by external
devices, intentionally by use of software code, or unintentionally by incorrect use
of software code.

Floating-Point Instructions

In this section we give a short introduction to the handling of floating-point
instructions in the SPARC architecture, the reason for the introduction shall
become evident.

There are three different lengths of floating-point representation in the SPARC
architecture, 32x32-bit single-precision, 32x64-bit double-precision, and 16x128-
bit quad-precision registers. Some of these registers overlap, meaning that they
cannot all be used simultaneously.

Unlike many other instructions, floating-point instructions are asynchronous.
Simultaneously with the dispatching of an instruction, when the Program
Counter (PC) of the Central Processing Unit (CPU) advances, the instruction
is also executed, the results are visible and usable for subsequent instructions.
Such is not the case when using floating-point instructions, these are queued for
execution in the Floating-Point Unit (FPU), and a new instruction is fetched.
Thus, the instruction may not even have begun its execution when a new
is issued. If the floating-point instruction is followed by a couple of normal
instructions, there may be quite a lot of instructions “in the pipe” at the time
when the floating-point instruction is executed. If the instruction generates
an exception, this will affect the rest of the instructions that have been issued
after that the floating-point instruction was issued. This must be accounted for
in the handling of the exception. Similar problems may also arise in the case
of pipelined execution, should an instruction generate an exception late in the
pipeline.

Trapping in the SPARC Architecture

According to Weaver and Germand [64], a trap is the action taken by the
processor when it changes the instruction flow in response to the presence of
an exception, interrupt, or Tcc instruction.

In this section, we describe interesting issues in the trapping functionality of the
SPARC architecture. There are quite a lot of possible traps that may occur, in a
file that has a path similar to /usr/include/v9/sys/machtrap.h we can find a
list of the different traps possible. This list is machine specific. Note that some
interrupts have allocated a larger space than others, this enables all of the trap
routine to be situated in the trap table entry. Other interrupts must branch to
free memory if they require more than five instructions, this may imply swapping
and cache operations which will slowdown the execution of the trap handler.

Because of the nature of the invocation of traps, SPARC differentiates between
four different categories of traps [64]; Precise, Deferred, Disrupting, and Reset
traps. A type of trap belongs to one of these four categories.

Precise Traps Precise traps are results of the execution of a special instruction
whose objective it is to raise the trap. This may be used in order to gain
access to privileged instructions, in systems-calls or similar.

There are three conditions that must be true in the case of precise traps.

As the trap occurs, many registers including the PC and nPC register are
saved, and execution is commenced at an address that have previously
been defined for the type of trap that occurred. The nPC register points
to the instruction that is to be executed directly after the completion of
the instruction indicated by PC. In the case of precise traps, that saved
PC register must point to the instruction that induced the trap into the
system, and the saved nPC register must point to the instruction that is
(was) to be executed immediately after that.

Furthermore, all instructions issued before the instruction that was the
source of the occurred interrupt must have completed their execution.

Finally, the third condition is that all instructions that where intended
to directly precede the instruction that was the source of the occurred
interrupt must remain un-executed.

Deferred Traps Similar to the precise traps, the deferred traps are also
induced by the execution of instructions, that is, they do not originate from
external events. They may, however, originate from mismatch between the
external environment and the assumptions made by software (e.g. bus-
error). The difference between the two categories is that deferred traps
allows the program state to be changed between the dispatching and the
execution of the instruction (see Section 2.5.1 for an example).

If a deferred trap and a precise trap occurs simultaneously, with the
exception of floating-point exceptions that may be deferred past precise
traps, the deferred trap may not be deferred past the precise trap. The
reason for that floating-point exceptions are a special case may be that
they concern different parts of the CPU compared to those that may infer
precise traps, and therefore one may assume a more relaxed policy in these
cases. Also, the deferred trap must occur before any subsequent instruction
attempts to use any modified register or resource that the trap inducing
instruction used.

Disrupting Traps A disrupting trap originates from the assertion of an
hardware interrupt, either triggered by external stimulus, or software
execution.

In the case of software originated disrupting traps, these may be deferred.
The difference between deferred traps, and deferred software originated
disrupting traps is that the cause of the latter may lead to irrecoverable
errors.

Reset Traps Reset Traps differ from disrupting traps in that execution of the
running program is not resumed.

Discussion

As we have seen an example of, modern computer architectures are not trivial.
Therefore will the tasks that are executing on machines that implement such

architectures be harder to debug. In order to fully understand the execution of
a task, every aspect of its execution must be considered.

It can be debated whether it is really feasible to acknowledge every detail of the
architecture in order to find bugs in a system. Such may not be the case, but it
is very important to keep in mind that every abstraction, every divergence from
the real target, will make the debugging tool more blunt.

2.5.2 Software

Complex software could be multitasking applications with substantial inter-
communication, note that (similarly with the hardware aspect above) nodes in a
distributed system can also be heterogeneous with respect to their operating
systems and task-sets. In systems that do not use strong synchronization
between tasks, interactions are difficult to understand and predict off-line,
and recreation of a certain execution order is not necessarily feasible as no
information is available off-line that can determine that two executions are
equivalent and it is therefore not possible to determine if the recreation of an
execution has succeeded. Furthermore, the systems can also be composed by
several components that may be off-the-shelf (also known as COTS). As the use
of COTS limits the developers detailed understanding of the software functional-
ity and do not allow modification to source code, debugging these systems can
be quite cumbersome.

Complex systems may also have additional real-time constraints that must
be fulfilled. The system may have as objective to monitor or control an
external process and must therefore comply to rules inherent in the context
of that external process. These constraints are typically modeled as deadlines,
periodicities etc. of individual tasks, or sets of tasks, in the system.

Also visualizing executions in these types of systems is quite difficult. As
the complexity of the system grows, more information is required in order
to understand what is happening. Reducing that information to a minimum,
displaying it in an easy to use, and easy-to-understand manner, is an important
task.

Debugging these types of systems described above is still very much handicraft,
and there are not many tools available that assist programmers in these tasks.
Our long-term objectives is to remedy that.

In this report we explain general problems in debugging software, and also
explain which other problems arise when software and hardware architectures
are more complex. We also survey the previous work in the field of software
debugging, both from the academia and the industry, with the focus on parallel
systems.

2.6 Debugging Parallel Systems

In this section we will first describe how sequential programs are normally
debugged, and give an introduction to why making use of this approach without
modifications is unfeasible in real-time systems and many parallel systems.
Thereafter we provide a brief outline to the basic idea of a how to facilitate
the use of the normal debugging technique also in parallel systems which may
even have real-time constraints.

2.6.1 Cyclic Debugging

The normal way of debugging software systems is to repeatedly use for example
a debugger that has facilities like stepping, break pointing, and monitoring
of individual variables. Also other methods, like printing program traces to
a screen or file, are common. A program can be run repeatedly, in order
for the programmer to narrow down his/hers search for the suspected error.
This process is normally referred to as Cyclic(al) Debugging [30, 22], and
is an efficient approach for single-node systems that has only one thread of
execution. Under certain circumstances, also concurrent tasks may be efficiently
debugged this way. Assumptions made are that experiments are interactive as
well as repeatable, and that the programmer can monitor all relevant program
information during program execution. If one or more of these assumptions are
not meet, the approach will not have as good possibility of success as otherwise,
but may be more or less applicable anyway.

The cyclic debugging strategy introduces an overhead to the system during
the debugging activity. In systems where one or more tasks have temporal
restrictions on their execution that will result in abnormal behavior if violated,
this strategy has limited applicability. Also systems that have race conditions
for system resources between system entities will behave in a way that differs
from the normal execution. Examples of where such race conditions may occur
are operating system scheduling and unsynchronized communication.

There is also another problem with cyclic debugging applied to distributed
systems, which is that all nodes must have a coordinated behavior during the
debugging phase [30]. As the program execution encounters a breakpoint, it is
supposed to stop its execution, but this would be impossible to communicate
to the other nodes of the system without any latencies. Therefore, nodes that
would normally not be able to complete a certain workload at a certain time
relative to another node, will be able to do so because the other node is stopped
for an arbitrarily long time. Thus, breakpoints in distributed systems can cause
the system to behave in a way that it would not, had the breakpoint not been
present.

10

2.6.2 Monitoring and Execution Reproduction

As hinted in the above section, in order to debug real-time- and parallel systems,
we must uncouple the propagation of time from the propagation of the system
that we wish to debug. The literature suggests that this can be accomplished
by first monitor, or eavesdrop on, one execution of the system that is to be
debugged to such a level of detail that we can then reproduce that particular
execution over and over again in some form of model of the system. What has
been accomplished by that process is that the particular instance of the system
can be debugged by means of cyclic debugging. By iterating the process, we can
find and debug as many bugs as there is time for.

The process of monitoring systems will be discussed in detail in section 4, where
we discuss different approaches and provide some information on related work.
We will in the remainder of this report refer to that execution that is subject to
monitoring as the reference execution. In section 5 we survey different methods
for, by using monitoring output, reproducing an instance of a system.

We will, later in this report, provide a more thorough survey of the possible
techniques to perform monitoring and execution reproduction.

11

Chapter 3

Errors in Parallel Systems

Sequential programs can have all the normal programming errors like unintended
handling of pointers and mixing of variables, and also various syntax errors.
These errors can be found during compile time, or by cyclic debugging or similar.

Clarke and McDermid provides a classification of different software errors [5]:

Control errors are those that force the task through another path than
intended.

Value errors may be the assignment of incorrect values to the correct variable.
Addressing errors assign values to incorrect variables.

Termination errors are in some way related to control errors, but could
concern failure to terminate a loop.

Input errors could be unintended input values from sensors, or erroneous
parameterization.

But also other errors are possible, memory leakage for instance may have many
causes: One is a control error which leads to failure to execute the free()
function when intended, which may lead to loss of memory. Another is the
absence of code, the call to the free() function may be absent in the code.

In addition to those errors that occur in sequential programs, the nature of
parallel, distributed, and/or multitasking systems give rise to classes of errors
that are not visible in sequential systems. Kranzlmiiller summarizes in [18,
$4.2.3;p87] that deadlocks and livelocks are common classes of errors in these
systems. In addition, also problems related to race conditions in the system
are possible [34, 38]. Thane [56] also states that interleaving related errors, and
precedence violations are possible. Finally, in real-time systems, also timing
errors are possible. We will in this section explain the above mentioned errors.

The motivation for this chapter is to provide a well motivated understanding for

12

the inherent complexity of parallel systems. A fully fledged debugging system
must respect at least every issue discussed in this chapter.

3.1 Errors of Synchronization

In this section, we will discuss three different types of errors, first interleaving
errors, then deadlocks, and finally livelocks. Both livelocks [51, $5.2;p211] and
deadlocks [6] can be considered as very well known phenomenon’s, but we provide
a short description here.

3.1.1 Interleaving Errors

In order to experience livelocks or deadlocks, the system must use some form of
synchronization primitives. The use of such primitives is often well motivated
and the use fills a well needed function, if they are not used to a sufficient degree
the system may experience interleaving errors.

In semi-parallel systems, as tasks compete for execution resources, small slots of
execution time are distributed to those that require it. This distribution is done
in a fashion that does not allow, and should not allow, the individual tasks to
know how its program propagation will be with respect to other tasks. Therefore,
the use of shared resources must be protected by synchronization primitives, so
that mutual exclusion is guaranteed. If this is not performed correctly, a task
that uses a shared resource may be, unknowingly, interrupted by another task
that also makes use of the resource.

Such misuse of resources may lead to many other errors of which two are data-
inconsistency and erroneous pointer referencing.

3.1.2 Deadlock

As we have seen, synchronization primitives are required in parallel systems.
However, the well known system deadlock may be the result of incautious
resource management if there are several shared resources to go about.

Imagine the following chain of events (see Figure 3.1): A task T4 tries to lock
the semaphore of shared resource S;. T4 is then interrupted by task Tp which
locks the semaphore associated with resource Sy followed by an attempt to lock
the semaphore of resource S;. Tp will then stall, as that semaphore belongs to
T'a, thus allowing T4 to continue its execution. Task T4 will then try to lock the
semaphore of resources Sy, but will be blocked because task T already owns
that semaphore.

Since neither T4 nor T can continue there execution beyond this point, this
would result in a deadlock between T4 and T'g.

It was stated by Coffman et al. in the 1971 article “System Deadlocks” [6], that

13

task Ta{ task Tp{
.s;e.m_lock(Sl);

Co
Zte,
Dy S

T e

;Gle;n_lock(Sg);
sem_lock(S1);

t
. e® |~

.s.e;n_lock:(Sg);

Figure 3.1: Example of a Deadlock

four conditions must be satisfied in order for a system to experience a deadlock:

Mutual exclusion: Tasks claims exclusive control of the (shared) resources
they require.

Hold and wait: Tasks hold resources already allocated to them while waiting
for additional resources.

No preemption: Resources cannot be forcibly removed from the tasks holding
them until the resources are used to completion.

Circular wait: A circular chain of tasks exists, such that each task holds one
or more resources that are being requested by the next task in the chain.

The circular wait condition implies that there are probably more then one process
in the system, and probably more then one shared resource. The only deadlock
scenario possible with fewer entities is when one process tries to acquire a
resource which it already owns, and that case can be avoided by the implementa-
tion of the synchronization primitives.

3.1.3 Livelock

Under livelock, in difference to deadlocks, a system is locked in an unintended
loop of instructions that do not allow further computations on the intended task.
Tasks that suffer from livelock still performs operations, but the operations have
no other than administrative value and no real work is being performed. Note
that the loop mentioned earlier does not have to be infinite, it may suffice with
a finite number of iterations in order to severely degrade the performance of the
system, or (in the case of real-time systems) even cause the system to fail (see
also Section 3.3.2).

14

One example of livelock is given in the functionality of Ethernet (IEEE Std 802.3
[12]). Ethernet uses a Carrier Sense Multiple Access protocol with Collision
Detection (CSMA/CD), it is in is behavior in case of collisions that we find
a potential livelock situation. A collision can occur because the Carrier Sense
part of the protocol cannot sense if two stations commence their transmissions
at approximately the same time. As a collision occurs, all packets that where
being transmitted at the time of the collision are destroyed, thus they will have
to be re-sent. However, there is no mechanism in Ethernet that prevents that
all or some nodes will be involved in a collision also the next time a package is
sent, and the next and so forth. However improbable, this rock-paper-scissors’
procedure give rise to a livelock, would it ever occur, and it must not go on for
ever in order to present a serious bottleneck in the system. The probability of a
livelock in these systems increase with the number of transmitting nodes in the
system, and their rate on network packet production.

3.2 Race Conditions

The popular description of a race condition is as follows: when two or more
system entities? potentially may be competing for resources at some time during
execution, a race condition exists. These conditions may cause the system to
behave very differently from time to time, depending on which entity that wins
the race. This is of course very true, but also another type of race condition
may occur.

An example of a race can be found in network communication, see Figure 3.2.
Assuming that we have three nodes that are interconnected by some packet
switched network which also serves several additional users that do not actively
interact in this example, but still utilize the network resource. As two nodes of
the three nodes, Prod; and Prods, produces one message each at approximately
the same time, it is not possible off-line to determine which message that will be
received first by the consumer Cons;. Therefore, no assumption regarding the
message ordering can be made in the consumer node in this case. The situation
is normally referred to as a message race.

Netzer and Miller describes race conditions in [38], see also Netzer [34], where
they search for race conditions in prefizes [34, $3.3.1;p21] of a particular
execution. A prefix P’ to an execution P has the same input as P, and the
initial part of the ordered sequence of events in P’ does not diverge from that
of P in other aspect than that it may be a shorter sequence. After that initial
sequence, the event histories may differ.

Prefixes are ordered into different sets, see Figure 3.3 which is reproduced
from Netzer [34, Figure 3.1;p24], arrows are used to represent shared-data
dependencies in the figure. We see that from the original execution seen in part
(1.) in Figure 3.3, which exhibits the actual race (see below), we can also find

1The author, who is of Swedish origin, notes that this classic child’s play is called “Sten
Sax Pase” in Swedish.
2Entities can be such as tasks, threads, or processes.

15

Prod, Cons, Prods

-

Figure 3.2: Example of a Message Race

Ay
S — Az
S — B
B i— S
i— S
Ch Co
Iif(s = 1) if (S = 1)
Z —0 Z — 0
(1.2
Bs (3)4) B
i — S i — S
A 4
s - SORE
Cs z‘i}/
i?ii”s~{

Figure 3.3: Data Races [34, Figure 3.1;p24]; (1.) Actual Execution. (2.) Feasible
Execution. (3.) Feasible Execution. (4.) Infeasible Execution.

other execution orderings that are prefixes of the original execution. Part (2.) in
Figure 3.3 shows an example of a feasible execution with the same event history
as the actual execution, the execution is also a prefix of (1.). Also part (3.) is a
feasible prefix of the original execution, but has an event history that diverges
from the original execution. But part (4.) of the figure shows an unfeasible
prefix, since the execution violates (implicit) dependencies in the system.

The authors identify two different classes of races: general, and data races.
Where a general race is a situation where entities compete for resources (causing
potentially unintended nondeterminism) in such a form that the ordering
between two events is not guaranteed, there would then be a race between the
two events. Note however, that many applications, or at least some parts of
some applications, require the intentional use of general races. A data race is
a violation to the atomicity of an operation on a shared resource, and is never

16

intended.

Using the notion of prefixes, each race in a prefix of the original execution may
then be actual, apparent, feasible. Races are classified according to the set-
classification of the prefix, and their being general or data races.

Thus, a feasible data race is a data race that could really have happened to one
of the feasible prefixes of the execution (in Figure 3.3 (1.)® or (2.)). Actual
data races exists if and only if there exists at least one data race in the original
execution (in Figure 3.3 (1.)), and it is not, in difference to feasible data races
an NP-hard task to locate them. An apparent data race is a race that seems to
be feasible, but implicit synchronization in the system prevents the occurrence
of the race (in Figure 3.3 (4.)).

In equivalence, a apparent and feasible races can also be general. But there is
not an equivalent to the apparent race in the general case as general races are
experienced between program executions, and not within one execution.

Race conditions occur extremely frequently in for example shared memory
systems, where they potentially occur at each unsynchronized access to shared
variables by two or more different tasks. Considering that one must know the
outcome of each race in order to recreate the system execution, the log of such
races will grow quickly. Based on this observation, Ronsse et al. developed
a method called RECPLAY [42, 45] which uses the ROLT method described
in Section 4.5.2. RECPLAY can detect unwanted race conditions during the
reproduction of the system execution, and may neglect to record vast amounts
of information about potential races on-line. Confusingly, they use a differing
terminology than that of Netzer and Miller which was described above.

Ronsse et al. differ between Synchronization Races which are intentional, and
Data Races which are unintentional. This implies that some of the general races
that Netzer and Miller defined, namely the unintended general races, are data
races according to Ronsse et al.. In synchronization races, tasks race to gain
access to shared resources, where as data races occur when synchronization is
insufficient. It is data races that should be located and removed. By reproducing
the execution several times, an identified data race is pinpointed, and sufficient
information is gathered to explicitly identify its source. Of the three execution
reproductions made, the first pass senses the presence of a data race. Thereafter,
a second pass identifies the data address where the data race occurred. Finally
a third pass can identify the issued instructions that cause the data race by
operating on the memory address.

Focusing on data races, the RECPLAY fails to direct other sources of errors in
parallel systems, the method does not direct how to facilitate the replay of a
system when the initial state is lost or there are gaps in the monitoring history.
It is therefore not feasible to use the method in systems where memory resources
are small relative to the required up-time of the system.

3In the case of part (1.) in Figure 3.3, note that an execution can have the same sequence
of events - without being equivalent to the original execution in all other aspects.

17

3.3 Real-Time Errors

In this section we shall review problems that normally arise only in real-time
systems.

3.3.1 Violations to the Order of Precedence

Precedence orders are relations that constitute dependencies between events.
These can also exist in non-real-time contexts, but as they are a natural
ingredient in practically all real-time systems, they are reviewed in this section.

The orders are typically on the form “Event A must occur before event B”, where
events often are task executions. These precedence orders can be quite complex
and consist of many different events, they are often referred to as precedence
graphs. Note that one system may have many independent precedence graphs.

o0

Figure 3.4: A Precedence Graph

As an example of a precedence graph we turn to the manipulation of external
devices. Device D is a part of a real-time system which also contains the tasks
A, B, and C. The device is controlled by task A, which receive orders from task
B which makes decisions based on information about the device state sampled
by task C. After that the device has received a command from C via A it will
take until time ¢4 before the command is completed.

Because of the inertia in the system, it is important that the control decisions
from B are not issued too frequently. A registered deviation from the expected
result cannot be certified until ¢4 time units after that the last control command
was issued to the device by A.

Thus, there exist a precedence order between the actions taken by the tasks in
the system. No control command may be issued before a valid sensor reading has
been acquired from C. Thereafter, samples are invalid until the sensor readings
have propagated to B, B has taken appropriate action in the form of a command,
A has transferred that command, and D has reacted to it. The precedence graph
for the system is displayed in Figure 3.4.

18

3.3.2 Timing Errors

In the context of real-time systems, it is not only required that the functional
aspect of the program is correct, but also that the timing of the system follows
certain rules defined by the system specification. A real-time system has certain
timing constraints, which can be more or less complex. Timing errors may be
caused by other errors, described above, for example a livelock or a deadlock can
force a system to violate its temporal requirements. But there are also other,
more intricate causes that will be described in this section.

Tsai et al. provides a classification of causes of timing errors in [62, $9.1.1;p192]:

Computation Causes If a greedy task requires more resources than has been
granted, other tasks may find them selves with to little resources to
compete their task. This problem can easily arise, should the measured
Worst Case Execution Time (WCET) be lower than the real WCET. Best
results are achieved by estimating a WCET which is as tight as possible,
but never too optimistic. As the name implies, measured WCET is
determined by measurement, a process which may have poor coverage, this
is a very likely cause of errors. An estimated WCET can also be calculated,
a method that is compromised by the use of multitasking programming,
caches, pipelines, and/or superscalars. Also errors in sequential programs
may cause this type of error, see for example control errors at the beginning
of Section 3.

Scheduling Causes Related to the above cause, errors in the scheduling of
the system may also cause the system to validate its timing. This problem
could arise if the schedulability analysis has not considered all possible
parameters. If it is estimated, say, that an interrupt will occur at most
once each 50 milliseconds. If there, in reality, is 45 milliseconds between
each instance of the interrupt, the system may prove to be un-schedulable.
Note that the WCET of the interrupt, and all other parts of the system,
may still be correct. Also other scheduling related sources of errors exists,
such as the occurrence of jitter in combination with end-to-end deadline
constraints.

Synchronization Causes The occurrence of synchronization problems have
been covered in previous sections (see for example deadlocks and livelocks
in Section 3.1), and they too may of course cause a real-time system to
violate its temporal restrictions.

Thus, timing errors arise as a consequence of previous errors, some of which are
only considered as errors in real-time systems.

19

Chapter 4

Monitoring Execution
Traces

Monitoring, according to McDowell and Helmbold [30], is the process of
gathering information about a program’s execution. By monitoring the
execution of a program we can analyze that execution off-line in some form of
model of the platform that was used, an issue which will be covered in Section
5 - the current chapter will deal with the problem of performing monitoring.
Normally, monitoring is performed either by additional software that is added
to the system at some level, by tailored hardware, or by a hybrid approach.
Each approach has its advantages and drawbacks.

Because monitoring provides us with detailed information about a systems
execution, detailed enough to recreate the execution, we can apply cyclic
debugging to a monitored system. By recording significant events, whose
occurrences cannot be definitely determined offline, we may alleviate all the
problems of cyclical debugging that where presented in Section 2.6.1.

4.1 The Probe Effect and the
Observability Problem

There are similarities between the probe effect and the observability (or observer)
problem. In this section we explain the two, and point out differences and
similarities. We shall also discuss a problem that previously has shared name
with the observability problem, as it has no other relation to it, we shall rename
it in order to avoid confusion.

20

4.1.1 The Probe Effect

The probe effect [9], which is another name for Heisenbergs uncertainty principle*
when applied to software engineering [24, 30, 50], can become visible when code
is added or removed to a system, or the system is modified in some other way
that will imply increased execution times. Modifying the system in any way
may alter the timing in the system. Extra code will require computing- and
other resources, the removal of code will free resources that can be used by
tasks that would have been blocked, and modifications to data may change the
program flow. Differences in the temporal behavior may in turn result in that the
modifications have a different result on the system performance than expected.

It is quite convenient to use real-time systems when exemplifying the probe
effect. Imagine a system of two tasks that compete for execution resources,
where some synchronization problem exists between the two tasks. Say that the
two tasks control an external process, but that one of the tasks occasionally issues
control commands too soon after that the previous task has issued a command,
thus preventing the previous command from effecting the external process as
intended.

In order to debug the system, we would like to probe into the internals of the
tasks so that we could determine the cause of the problem. However, if we
perform this probe by inserting some auxiliary code (code that does not aid the
progress of the system) that will monitor the system, that code will effect the
system. If we are unlucky, it will do so in a way that the time between the two
control commands is lengthened, thus causing the bug to disappear during some
executions which may very well be just that subset which we examine. If we
then remove the probes, the bug may reappear. Also the opposite is possible,
by adding probes to a system, we may cause errors to appear that where not
previously present. Also a combination of the two is possible, by adding probes
to the system, we may remove one error, only to invoke another.

The last example is perhaps the most intriguing, we may then find ourselves
identifying the wrong bug, and correcting that one instead of the real one. This
problem should be detected by a regression testing procedure (see Section 5.3).

Debugging is not the only situation in which the probe effect may effect the
system, it is also possible that modifications to old systems, or bugfixes, cause
the same problems. One may view it as that the removal of code is equivalent
with removing a probe from the system, and that adding functionality can cause
the same problems as adding a probe to the system. A general rule is that if the
source code is modified, probe effect related problems may arise.

There are however two exceptions to this rule.

Schiitz notes in “Fundamental Issues in Testing Distributed Real-Time Systems”
[48] that it is possible to remove code if the only consequence of the removal is
that the idle task of the system will receive more execution time. However, this
is rather hard to ensure unless the system is time-triggered. Schiitz states that,

I They have also been called Heisenbugs [45].

21

in a time-triggered system, provided that the scheduled execution slot of the
task that is to be removed is not adjacent to the slot of any other task (except
the idle task), the task is in a temporal firewall, and may be removed without
consequence to the remaining system. This is provided of course that the task
does not perform any work that is used by other entities in the system.

The second exception has been noted by Thane in his PhD dissertation [56,
$4.3.3;p42]. Thane stated that code can be removed if the only consequence of the
removal is that the idle task of the operating system receives a larger percentage
of the total system execution time. In order to satisfy this requirement, the
task from where the code is removed must have the lowest of priorities among
the (other than the idle task), and it must be established that the task never
blocks the execution of other tasks remaining in the system. Thus, the task from
where the probes is removed cannot control mutual exclusion or communication
primitives, such as semaphores or other, shared with tasks remaining in the
system. The use of schemes such as direct inheritance or similar for deadlock
avoidance will limit the use of such primitives even further.

4.1.2 The Observability Problem

The observer problem, described by Fidge in “Fundamentals of Distributed
System Observation” published 1996 [8], describes the problem of obtaining a
truthful view of the events in an observed system. For example, as a distributed
system is being observed, if the observer cannot be tightly coupled with the
system it is observing, problems related to the observers apprehension of the
ordering of events on different nodes may occur. Depending on variations in
the propagation time of observer notifications, the ordering of events may be
confused.

According to Fidge, we may divide the observer problem into at least four
sub-problems [8]: (1.) multiple observers may see different event orderings,
(2.) observers may see incorrect orderings of events, (3.) different executions
may yield different event orderings, and (4.) events may have arbitrary event
orderings. All are more or less results of the absence of an exact global time-
base, and/or the fact that network propagation times are not constant. Because
of the lack of a exact global time, we cannot rely on any time-stamp taken at
the node where the event occurred, if the observer is situated on another node.

1. In a system where many observers are used, different observers may see
different event orderings, because they propagation of the event notification
requires different time to different destinations.

2. As the propagation through a network may differ between two network
packages, a package that is sent after another may arrive earlier. Thus, if
two events occur on different nodes at different times, the notification of
the last event may arrive at the observer before the first notification has
arrived, thus erroneously implying that the last event occurred before the
first.

22

3. Because the clock rate of each node will diverge slightly from the ideal
clock and the other clocks in the system, and the rate of that deviation
partly depends on environmental aspects, even different invocations of a
distributed system will differ.

4. Some of the events in the system are unrelated, and may therefore be
allowed to occur in arbitrary orderings. The problem with this is that an
observer must know and recognize that, as different tests are run, it is
allowed to have differing orderings between some of the events.

Item number (4.) in the list above is related to Polednas PhD dissertation
“Replica Determinism in Fault-Tolerant Real-Time Systems” from 1994 [41].
Poledna direct the problem of replica determinism when using redundancy as
a mean to increase the fault-tolerance of a real-time system. In other words,
he directs the problem of ensuring that two components that are supposed to
perform the same task have the same behavior when they are operating correctly.
This is related as (4.) describe that we must be able to correlate executions that
are temporally differentiated, and Poledna does the same for spatially differenti-
ated executions.

4.1.3 The Probe-ability Problem

It should be noted that Schiitz also discuss a subject which he calls observabil-
ity [48], but which has a slightly different definition which is closer related
to the probe effect described above. Schiitz states that a system must be
observable, meaning that it must be possible to extract sufficient information
from the system. Another, equally suitable, term is “probe-able”. What is
“sufficient” is determined by the present fault hypothesis. In the remainder
of this report, mentioning observability implies Fidges observability described
in Section 4.1.2, and the problem described by Schiitz shall be referred to the
probe-ability problem.

4.1.4 Conclusion

Thus we may conclude that the probe effect causes changes to the program
execution, whereas the observability problem affects our perceived view of the
program execution, and the probe-ability problem directs the problem of being
able to observe. The first and second of these are however related in that it may
be difficult to differentiate between problems resulting from probe effects and
problems resulting from the observability problem.

23

4.2 Measuring Consumed
Computation Resources

If the logging of system events is to be used in debugging purposes, it is important
to relate events to software execution. It must be possible to state how mush
execution resources a task has consumed between two entries in the log. There
are at least two ways of doing this, one is to use a hardware platform which
supports instruction counting, cycle counting or similar, the other is to use a
software implementation.

An example of a hardware solution is implemented in the Intel x86 architecture.
A processor cycle counter is accessible through the use of the assembler
instruction RDTSC. Note however that this implementation is not reliable in
architectures such as Pentium II, Pentium Pro, and onwards. The reason
therefore is that more advanced models in the x86 family use out-or-order
execution which can lead to pessimistic or optimistic measurements.

In their article “Debugging Parallel Programs with Instant Replay” published
in 1989 [31], Mellor-Crummey and LeBlanc present a method that can
instrument assembler-code with counters, thus enabling the counting of executed
instructions, the method is called Software Instruction Counter (SIC). The
authors note that the code of a program consists of short sequences of sequential
code, called basic blocks, and conditional, or unconditional, connections between
some of the basic blocks (by branches, jumps, or function calls). These one-
way connections can either connect a basic block with a later (with higher
address-value than the present), a forward branch, or with a prior block, a
backward branch. To uniquely mark each instruction instance that is executed,
the authors state that a combination of the program counter value and the
number of backward branches is sufficient. They can therefore construct a low-
cost software-based instruction counter which only resource requirements except
a small computation overhead is a reserved data-register which is used solely for
performance reasons.

4.2.1 Consistent Temporal View

An issue arising when trying to relate several executions on different nodes is the
lack of a synchronized global clock [30]. As events occur on concurrent nodes,
some system architectures cannot produce a correct order between them. Tightly
coupled parallel systems, and multitasking single-node systems, are able to do
s0, because all system entities depend on the same real-time clock [62, s3.1;p51].
But, because of the observability problem (See Section 4.1.2) distributed systems
can only make weak assumptions about the ordering of events provided that they
do not use an algorithm for global clock synchronization [17].

Ordering of events can be either partial, or total [62, s2.1;p30]. Where partial
order describes the local sequence of events (in our context locally is on a specific
node), and total order describes the global order of events. Thus, unsynchronized
systems cannot determine the exact total order of events, but they may be able

24

to find an estimation of the global order by using a method for clock synchroniza-
tion, or logic clocks [19]. For any reasonable failure semantics, a total order of
events must be described if a distributed system is to be debugged. If such
an order cannot be established, the overall understanding of the complex inter-
node-relations is lost, wherefore the system can only be debugged node per node.

In the classic paper “Time, Clocks, and the Ordering of Events in a Distributed
System” by Lamport in 1978 [19], the author describes a now classic method
for implementing a logic time-base in systems that lack a global time-base. The
method, normally referred to as Lamport clocks, is based upon the counting of
events, its purpose is to derive a total order on all events in the system (where
the definition of an event is application specific). Each node and each shared
object that implements the method has its current opinion of the time stored.
As a significant event occurs, it is given the time-stamp equal to the largest of
the current local clock value of the node and the shared object, plus a value
which normally is one (1). After which the local clock value of both the node
and of the shared object are set to the same value as the time-stamp.

Another classic paper that directs the problem of synchronization in distributed
environments is “Clock Synchronization in Distributed Real-Time Systems”
which was written in 1987 by Kopetz and Ochsenreiter [17]. The paper presents
an algorithm for global clock synchronization.

4.3 Global State

One big problem that one has to face when implementing a strategy that uses
monitoring of a system is that the initial state of the system must be known in
order to understand the context of the events recorded by the monitor. In some
real-time systems, this can easily be done by using the Least Common Multiple
(LCM) of the periods of the tasks that reside on a specific node. That LCM
would describe the periodicity of the system, and in some systems, these LCM’s
can be said to be individually unrelated.

For example in a simple control application, it may be possible to view one
sampling-actuating loop iteration without knowledge of outputs and flows in
all prior iterations. Note that many systems are not this simple; it is common
that there exist some relation between iterations wherefore the scheme cannot
be used without adaptation. Such an adaptation may be checkpointing of some
global variables at the end of the execution of an iteration.

In other systems, which are not periodic in the execution characteristic,
obtaining a known state may imply that the entire system must be incorporated
into a giant consistent checkpoint.

In the prior case, assuming a checkpoint has to be made, the size of the
checkpoint is expected to be smaller then the latter. We build this assumption
on the thesis that there exist a relation between the size of the checkpoint and
the implicit knowledge of the system activities.

25

However, assuming that checkpoints are used, only making one checkpoint in
the beginning of the simulation is not sufficient. Because very long monitoring
sessions require very much memory resources in order to keep the logs, and
those resources are finite, it is required that old log entries be evicted as the
memory is exhausted [53]. The eviction is made in favor for newer entries, that
have a larger relevance for the current propagation of the execution. In other
words, a circular queue ADT (abstract data type) could be used for logging
the messages. Thus, we cannot assume that we will always be able to start
simulating the system from the beginning. In fact, we may not even desire to do
s0; as it may take a very long session to produce a fault that we wish to examine,
and simulation is much more demanding than native execution [10, s4.4.4;p58],
it may be profitable to be able to start the simulation in the middle of a trace.
Netzer et al. has directed this problem in their Incremental Replay approach
(see Section 4.5.2).

Note however, that there may be better solutions than a simple circular queue.
Messages could be assumed to have a timespan in which they are important for
the system execution. At the end of that timespan, they can be evicted without
consequence for the replay. It is not necessarily so, that the lengths of that
timespan is the same for all types of entries, wherefore other structures could be
preferable (see Section 6.5).

4.3.1 Checkpointing

The reason for making checkpoints of a system is to be able to start over
with the execution at some later point [37, 65]. There are to our knowledge
three main applications for this ability: The first case applies to systems that
can sense an error in their execution, and as a response to this can decide
to roll-back and try again. The second case applies to systems that have
some source of non-determinism in them; in order to apply cyclic debugging
strategies to these systems, a monitor - replay approach can be used. The
third, and final, application is to allow deterministic testing of non-deterministic
systems. Sources of non-determinism may be race conditions due to some level
of parallelism, or other. We can differentiate between applications that need to
recreate a system state in that the first performs on-line, where as the second
and third are applied off-line. Also, on-line recreations must not necessarily
receive the same inputs as the execution that was recreated, whereas the sole
purpose of the second and third application is to recreate the system with as
much adherence to the original execution as possible.

Zambonelli and Netzer [65] state that the use of checkpointing is always required
when recreating a system state. We argue that this is at least dependent on the
task model used. Considering for example a terminating task model similar to
that implemented in the Asterix real-time operating system presented by Thane
et al. in the article “The Asterix Real-Time Kernel” published in 2001 [58]. As
a task conforming to that model is always terminated at the end of each instance
(the alternative is usually to issue a relative sleep-command), there is no need
to save its state. Only the input parameters to the next instance are required,

26

but so are the input states to new tasks in a non-terminating task model.

Recovery Line

For which ever reason, restarting the execution of a system is only feasible if
certain requirements on the point from where the system is started are fulfilled.
Chow and Johnson formulates in [4, s13.1;p510] the requirements for starting
points used in replay or recovery of distributed systems:

“The restarting state of any processor should not casually follow the
restarting state of another processor.”

The quote captures, in one sentence, the requirement that the starting point
must be a fully consistent state in the execution of the system. All messages,
and other events, that are in transit (i.e. sent but not received) must be known,
and there must be no messages that are received but not sent if they cannot be
deterministically recreated. The latter of the two, messages that are received
but not sent, are normally referred to as orphan messages.

Another, equally beautiful phrasing of this condition was formulated by Wang
and Fuchs in “Optimal Message Log Reclamation for Uncoordinated Checkpoint-
ing” [63]:

“... we define a consistent global checkpoint as a set of N checkpoints,
one from each process, no two of which are related through the
happened-before relation.”

The happened-before relation mentioned in the quote was defined by Lamport
in 1978 [19].

The states, or set of distributed states, that fulfill the constraints that are placed
on a feasible starting point for replay or recovery is normally referred to as a
recovery line [4, s13.1;p510].

Approaches to Distributed Checkpointing

The nature of distributed systems makes it hard to ensure that a recovery line
can be identified in the logs of checkpoints, mechanisms must be applied that
can alleviate the problem. According to Wang and Fuchs, there are mainly three
different strategies to distributed checkpointing [63]: Uncoordinated checkpoint-
ing, coordinated checkpointing, and log-based techniques. Chow and Johnson
divide the log based techniques into thee sub-categories: Synchronous logging,
asynchronous logging, and adaptive logging.

Uncoordinated Checkpointing As there is no coordination between nodes
concerning the timing of checkpoint acquisition, there are no guarantees for
the existence of a valid recovery line. When trying to obtain a recovery line

27

by selecting a set of checkpoints, one from each system entity (processor,
process, or other), there is a (substantial) risk that a pair of checkpoints
in the set are inconsistent. There are two different scenarios; One scenario
is that the checkpoint at the receiving entity represent a state when a
particular message cannot not yet have been received, but the checkpoint at
the sending entity represent a state when the message must have been sent
- i.e. the message is in transit. The other scenario is that the checkpoint at
the receiving entity represents the state when a message must have been
received, but the checkpoint at the sending entity represent a state where
the message cannot have been sent - the message is referred to as an orphan
message.

As such a set of checkpoints validate the requirements for a recovery line,
other checkpoints must be chosen, there are however no guarantees for that
the next set of checkpoints are consistent, and so forth. This undesired
effect is referred to as the domino effect or cascading rollbacks.

Coordinated Checkpointing The main contribution of coordinated
checkpointing is that there each acquired checkpoint is a member of
at least one recovery line, thus alleviating the problem of cascading
rollbacks.

Synchronous Logging Logging messages that are sent in the system is also
a form of checkpointing. In synchronous logging, each message is logged
before it is delivered. This can be said to be the easy way out, there are
other more troublesome logging policies.

Asynchronous Logging In difference from synchronous logging, asynchronous
logging allows the activities of logging messages and delivering them to
execute in parallel or out of order. Problems will arise due to this more
relaxed policy, but the advantage lies in lower latencies in package delivery.

One problem with asynchronous logging is of course that all messages
are not always in the log after a system halt or crash. If the system
stops, or experience a severe failure in the logging mechanism, as a
log-message is in transit, the log does not reflect the complete system
execution. Threatening to prevent system replay, this situation can be
detected using dependency tracking [54], that is to track the dependencies
between checkpoints on different entities.

Adaptive Logging It is not always required to log every single message in
order to recreate a system state. Adaptive logging mechanisms can identify
which messages can be ignored.

As we can see in this description, some approaches optimistically hope that
a recovery line can be found in the available data collected, and some others
pessimistically ensure during run-time that such a line will be found. The
advantages of the latter class of approaches is that it is ensured that a replay
is possible, but the drawback is in run-time performance. For the first class,
optimistic approaches, the opposite is true.

28

4.3.2 Control- and Data Flow

Platter is to our knowledge the first to differentiate between system entities when
discussing monitoring of computer systems. In the article “Real-Time Execution
Monitoring” [40] from 1984, he defined a process state to consist of two parts:
the data- and the control substrate. The data substrate represents the data
structures currently under control of the process, while the control substrate
represents the current point of execution.

Thane [56, s4.2;p37] classifies monitoring subjects into three categories: Data
flow, Control flow, and Resources. Where the data flow concerns the flow of
data between different architectural components on some level. The control flow
is an abstraction of the path taken through a system - this could for example be
described by the ordering and timing of events and interrupts, the results and
timing of task switches, and other issues that can describe the execution flow.
The last category, resources, describes the uses of shared physical resources. We
can log CPU utilization, memory use and other issues.

The control flow of the system consists the sequences of instructions executed
by the processors(s), and relevant? timing information regarding that execution.
The data flow of the system is represented both by the relevant® alterations of
system data during time, and timing information regarding these alterations.
In order to successfully replay the monitored system, both the control- and the
data-flow must be covered during monitoring.

4.4 Scope of Monitoring

The scope of a monitoring activity must be well-defined, if the scope alters, this
will give rise to a probe effect. This effect may or may not be visible, but to
this day the only general* way to guarantee that the effect of altered monitoring
scope is negligible is by using exhaustive testing.

Implied by the scope of the monitoring activities, and the prior knowledge of
the system, is the level to which the system execution is known, and therefore
also which types of errors that can be located, analyzed, and corrected. If
the monitoring is exhaustive all thinkable errors can be debugged, but every
abstraction opens the door for errors to escape the debugging process unnoticed.
Thus, we must have a fault hypothesis (see Section 2.3) before we can define the
monitoring activities in the system.

2What timing information that is “relevant” here is defined by system interactions. Timing
is only relevant if two subsystems affecting each other, through communication or other
interference.

3What data operations that are “relevant” is defined by what cannot be reconstructed by
deterministic re-execution of the software.

4Remember the temporal firewall presented by Schiitz [48] which allows guarantees in a
very special case.

29

4.4.1 Logging

The product of a monitoring activity can be logged to a consistent data storage,
thus creating a log of an execution. The contents of the log at a given time,
together with a knowledge of the system and a system model, can allow us to
replay the monitored execution of the system.

An important factor that will influence the design of a system is the amount of
memory resources required to keep the log.

We have previously (in Section 2.2) defined the terms fault, error, and failure.
In order to debug a system we must be able to follow the propagation of an error
to a failure. The time from the execution of the error until it has propagated
to a failure is the incubation time of a failure. The incubation time of a system,
together with other factors, implies how long the log of the monitoring activities
must be. Of course, the length of the log is important in finding our the memory
resources required for the log. As the fault hypothesis defines which failures that
may occur, it is an important factor when finding the incubation times of the
system.

A factor which was consistently ignored in the above argumentation is the system
knowledge required. This is a very important factor when defining the fault
hypothesis, the incubation time, the length of the log, and the memory resources
required to keep the log. It is therefore a pity that it differs so much between
systems.

4.5 Discussing Monitoring Approaches

In this section, we will discuss and compare three different basic approaches to
monitoring, software, hardware, and hybrid monitoring.

It is also possible to classify monitoring approaches based on how they effect the
system during use, Schiitz [48] states three classes based on how they handle
the probe effect: by ignoring the effect, by minimizing the impact on the system
during debugging, or by avoiding the probe effect. Classification into these three
classes require inspection of particular implementations.

4.5.1 Hardware Monitoring

Hardware monitoring mechanisms are tailored devices, they need to be adopted
to the target system, which suggests that this is a rather expensive approach.
On the other hand, they do not have to intrude at all on the device functionality
[62, $2.3;p37].

Basic approaches to hardware monitoring include bus snooping, to spy or
listen to the messages sent over the system bus. The quantities of messages,
and their relative size, result in that large quantities of data must be stored.
Another problem with hardware monitors is that they must look at very low

30

level information [62, s2.3.2;p37], the data that is visible has low information
content relative to the program execution. That is to say that a single bus
message can not say much about the execution of a program, whereas (for
example) the name of the current state can say a lot about the traversing of
a state-machine. It is then up to off-line methods to interpret the collected
information that is output from the monitoring process, correlate them to the
system software and hardware, and translate the result into a format that is
understandable to humans [16]. Needless to say, the amount of information may
be quite extensive, but this problem is more or less inherent in the monitoring
methodology. Also, implementations, and to some extent even solutions, are
platform specific. Furthermore, advances in hardware technology makes it more
and more interesting to integrate solutions to a single chip, so called System-
on-Chip (SoC) solutions [62, s5;pl103]. SoC solutions limit the insight to the
internals of the system, and it is therefore more difficult to construct hardware
monitors for these systems provided that they are not incorporated on the chip
[16]. A solution could be to move also the monitoring into the chip, but this is
approach is of course only available to the designers of the device. Thus, SoC
technology is obstructing the use of off-the-shelf components where monitoring
is required. We shall, in Section 4.5.3, survey a proposed methodology for SoC
monitoring.

Boundary Scan IEEE Standard 1149.1 defines test logic [13]. The standard is
a result from work by the Joint Test Action Group (JTAG)® The Boundary
Scan method can be used to test Integrated Circuits (IC’s), interconnections
between different assembled IC’s, and to observe and modify the operation of an
IC. Provided that the processors of the system implements Boundary Scan, it is
feasible to force reproduction of a execution through the use of that interface.
The reproduction method could provide the data and instruction flow through
the Boundary Scan interface, and force execution of the correct instructions with
the correct data. On the positive side, this allows us to have a reproduction
facility on the real hardware, without modifications to that hardware. However,
the Boundary Scan interface, through which all data and all instructions is to
be feed, is a serial interface. Also, as the pins of the circuit, which Boundary
Scan can control, are connected via Boundary Scan as a large shift register,
causing the propagation of the signals to be very slow. Thereby inferring
large temporal penalties on the reproduction of the execution. In the case of
monitoring, it seems that the same problem provides a limit for the granularity
of the monitoring process, the serial interface constitutes a severe bottleneck.

In their article “Emerging On-Chip Debugging Techniques for Real-Time
Embedded Systems” published in 2000 [29], MacNamee and Heffernan discuss
the issue of On-Chip Debugging (OnCD) with a state of the practice point
of view. OnCD has the capability of addressing the problem of monitoring
complex processor architectures, especially those with on-chip caches, as it uses
monitoring hardware that reside inside the components. However, solutions
available today lack real-time capabilities in for example memory monitoring
(an example is the Motorola ColdFire). The lack of real-time monitoring of

5The group has a homepage at www.jtag.com.

31

memory resources can be explained by the fact that real-time monitoring requires
the monitor to be prioritized over the application, thus leading to intrusive
monitoring.

Logic Analysers are often used to monitor the behavior of hardware components.
There are many devices available on the market, they have the capability to hook
on to, and monitor, buses that transport data or instructions between physical
modules of a system. On the positive side, logic analyzers are not intrusive
on the target functionality, not event in the temporal domain. However, traces
available are very low-level, and not all required information may be available.
Systems that have very integrated designs, perhaps with on-chip caches, or even
multiple processors on one chip, do not pass all required information on buses
that are physically available for the logic analyzer [16]. But the fact still remains
that logic analyzers are used in many commercial projects, and even though they
cannot solve all problems, or even provide good solutions to all of the problems
that they can solve, they among the better solutions commercially available for
debugging real-time systems today.

Several of Motorola’s (www.mot-sps.com) MicroController Units (MCU’s)
support the Background Debug Mode (BDM) [11] interface, this interface
is utilized in their EValuation Board (EVB) products that facilitate remote
debugging of the MCU’s. The BDM interface allows an user to control a remote
target MCU and access both memory and I/O devices via a serial interface.
BDM uses a small amount of on-chip support logic, some additional microcode
in the CPU module, and a dedicated serial port.

The BDM interface is constructed of different instructions which can be issued
in order to examine the state of the device. Instructions may be either
hardware instructions, in which case they are not necessarily very intrusive on
the functionality of the device, or they may be firmware instructions, which are
intrusive. Hardware instructions allow reading or writing to all memory locations
of the device, these operations are initially given the lowest priority, i.e. they are
only executed if no other instructions are pending, but a fairness policy is used if
the instructions are not issued within a predefined time. Firmware instructions
must be issued in a special firmware-mode, and then the debugger can read and
write registers on the device.

Motorola also provides a On-Chip Emulation (OnCE) interface with some
models, the interface combines features of BDM and JTAG debugging.

Domain Technologies Inc. (www.domaintec.com) provides a tool called BoxView
that is based on the Boundary Scan and OnCE technologies. Several BoxView
devices can be connected via a BoxServer so that multiple targets can be
controlled synchronously. If OnCE is used as a method of debugging, systems
of up to two nodes can be debugged. In JTAG mode that number is 255.
Note that this approach does not use a reproduction approach to debugging,
and therefore is not suitable for real-time systems. Agilent Technologies
(www.agilent.com) provides a large range of logic analyzers and processor specific
high-level language debuggers, but they do not use the reproduction approach
either. They do however, allow non-intrusive data and control flow monitoring

32

with the possibility to correlate spatially differing observations to the temporal
domain.

The Nexus 5001 standard (www.ieee-isto.org/Nexus5001) [29, 52] describes a
hardware solution that supports debugging and tracing of embedded systems, it
also supports debugging of superscalar and pipelined architectures. We will in
this section provide information on selected parts of the standard.

There are four different classes of compliance in the Nexus 5001 standard (1 -
4 where 4 is the strongest), class 2 must have a Boundary Scan interface, and
class 2 - 4 must have a standard specific connection called AUX (however, they
may also optionally implement a Boundary Scan interface).

The AUX interface is a parallel medium with 1 - 16 pins, the bandwidth
requirement of the implementation may dictate the width of the AUX interface.
It is a packet based medium, which result in that packet-arrival-times cannot
be determined at the time of transmission. Therefore, assumptions may not be
made of the relative order of, for example, a change of ownership and a taken
branch.

There are three different tracing mechanisms available in the standard:

Ownership trace Implementations of class 2, 3, and 4, must support
ownership traces which can monitor process ownership while the processor
runs in real-time. This provides a macroscopic view (of task orderings
etc.), can be used to monitor ownerships of shared resources such as code
pages in a virtual memory system etc.

Program trace Class 2, 3, and 4 type devices must provide a facility that
allows monitoring of program flow while the processor runs in real-time.
A completely hardware controlled operation, the information is flushed
via the AUX. At the occurrences of branches and exception (also known
as program flow discontinuities), trace information is passed to the system
observer via the AUX medium.

Program trace messages can be of two types, either direct branch messages,
or indirect branches which can also concern the occurrence of an exception.
The difference between the two is that direct branch messages are self-
contained, and indirect messages are related to the previous message that
was sent. Using long sequences of indirect messages in long traces can
result in that the loss of information (as a consequence of space exhaustion)
reduces the ability to reconstruct the execution. To alleviate this problem,
certain events can be set to trigger the use of direct messages, something
which is also triggered periodically at the minimum rate of every 256
program trace message.

Data trace To monitor memory operations while the processor runs in real-
time, class 3 and 4 implementations must provide the possibility of tracing
writes, and may optionally trace also read instructions.

The standard also specifies that devices of class 3 and 4 must allow read and

33

write access by the debugger to any memory location during run-time as well as
when the execution is halted. It is up to the implementer to determine through
which interface this facility is accessible.

4.5.2 Software Monitoring

Similarly to the cyclic debugging approach described above, software
implemented monitoring is also vulnerable to the probe effect. That probe effect
may, however, be avoided by allowing traces to remain inside the release version
of the program [60] [62, s3.1;p51].

Remaining probes will of course cause performance degradation, but one may
argue that they shall remain also because this allows us to introduce a form of
black-box to the software, similar to that of airplanes. The black-box may then
be used if a released program experience a failure during execution. However,
Kranzlmiiller [18, s4.2.1;p84], pointed out that the monitoring activities need
to be defined quite early in the design process, and that the managing of the
monitoring data may present a problem.

Software monitoring can either be performed at system, or process (task) level
[62, 83.5;p68]. Monitoring at system level enables the monitor to see operating
system specifics in the system. It is possible to view many of the data structures
that effect system performance, such as Translate Look-aside Buffer (TLB)
entries that describe the mappings between virtual and physical memory, also
task control blocks, semaphore queues, and many other data structures are
visible. Issues related to the control flow of the system that are visible on system
level include interrupt occurrences, task switches and paths through code within
system-calls. Monitoring at the task level will not allow monitoring of these, but
other possibilities are open, such as events related to the specific task that is
monitored. Concerning the data flow, we can observe local and global variables,
and of the control flow, we can record the executions flow through a program.

Thane [56, $4.3.3;p41] describes four architectural solutions for software
monitoring: kernel probes, software-probes, probe-tasks, and probe-nodes. Where
kernel probes can monitor operating system events such as task-switches and
interference due to interrupt occurrences. Software-probes are additions to the
monitored task, they are auxiliary outputs from that task. Probe-tasks have
as their only functional objective to monitor other tasks, either by cooperation
from software-probes, or by snooping shared resources. Finally, probe-nodes are
dedicated nodes that either snoop the communication medium used by other
tasks, or receive input from either software-probes or probe-tasks.

Stewart and Gentleman [53] recommend the use of data structure audits, a
construct which is also described by Leveson in [25, $16.4.1;p419] where it
is also referred to as independent monitoring. An auditor could for example
check whether a data structure is self-consistent, or simply logging its changes.
Auditing can be performed by a probe-task, also known as a spy task, and can
be a more or less complex operation.

Instant Replay was presented in 1987 by LeBlanc and Mellor-Crummey [23]. The

34

method aims at facilitating replay for tightly coupled systems, but it is claimed
to be extendible also to loosely coupled systems. They make no assumption
about the availability of synchronized clocks, or globally-consistent logical time.
By providing the same inputs to the system, and logging the relative order of
accesses to shared objects, the repeatibility of the system is ensured. However,
as Instant Replay performs best if it can be assumed that there are available
high-level communication primitives that can be assumed to be correct. In other
cases, each individual memory reference must be logged, thus leading to large
logs. As the method monitors the accesses to the shared objects on a very
coarse-grained level, they cannot detect data races inside these access sequences
[35].

Logging algorithms in message passing systems must choose one of two main
approaches, they can either log messages that are sent, or include all nodes
that are transmitting messages in the reproduction of the system execution.
Zambonelli and Netzer et al. discuss the situation in “Critical-Path-Based
Message Logging for Incremental Replay of Message-Passing Programs” and
“An Efficient Logging Algorithm for Incremental Replay of Message-Passing
Applications” [37, 65]. The authors state that logging all messages is resource
demanding during the reference execution, but recreating all messages during
the reproduction can be very demanding during that process. This is therefore
a trade-off situation. They discuss whether it would be possible to make a
compromise: If all nodes record sufficient information about their execution,
save all external messages, to facilitate reproduction it is theoretically possible
to recreate all messages that occur in the system by reproducing the execution of
all nodes. Now, if it is judged that it would require large computations in order
to recreate a particular message the message is logged, otherwise it is not, and
must be recreated during the reproduction. The incremental replay approach
also allows a replay session to start at a point which is not the starting point
of the system. A feature which is very useful when the reference execution was
long. Later, also Thane and Hansson [60] has provided this feature (see Section
5.4.3).

Netzer presented a method based on the Instant Replay method in two
articles published in 1993, “Optimal Tracing and Replay for Debugging Shared-
Memory Parallel Programs” and “Trace Size vs Parallelism in Trace-and-Replay
Debugging of Shared-Memory Programs” [35, 36]. The objective of Netzers
work was to improve the possibility of detecting races, and still minimize the
logging of system events. The author argues that, as the computing capacity
increase with respect to storage access time, it is favorable to trade log size to
computation complexity. Viewing the interactions on shared objects as a graph,
where accesses are nodes, and the flow is represented as edges, we can see that
some of the edges are implied by the program flow. By transitive reduction of
the graph, omitting all edges that are implied by program flow, Netzer is able to
reduce the information required to describe the execution of the system. Ronsse
et al. surveyed the approach in the article “Execution Replay and Debugging”
[44], where they presented the following relevant disadvantages of the method:
The use of vector clocks [1] limits the possibilities for dynamic task creation as
the size of the clocks varies with the number of processes in the system. The

35

overhead due to clock comparisons can be expected to be big.

Levrouw et al. presented the Reconstruction Of Lamport Timestamps (ROLT)
method in “A New Trace and Replay System for Shared Memory Programs
based on Lamport Clocks” published in 1994 [26], an improvement of Netzers
method described above. Instead of using vector clocks, as Netzer, the authors
use Lamport clocks (see Section 4.2.1). The gain of using Lamport clocks lies
in ease of maintenance, but it also opens a possibility to optimize the Netzer
algorithm. Looking at the Lamport algorithm, there are two possible actions at
the receipt of an event: Either the clock value of the local task is incremented
by one, or it is replaced with the value of the shared object incremented by one.
The former is a deterministic action, where as the latter in nondeterministic. It
is sufficient to store a log entry only in the nondeterministic case. The penalty
inferred by the use of this optimization is that a log entry must consist of both
the clock value before the occurrence of the event, and the clock value after the
event. During replay, the omitted logs can then be deterministically recreated.
Ronsse and Zwaenepoel presents an implementation of the ROLT method on
a Treadmarks [14] platform in [46]. The Treadmarks is a distributed shared-
memory system.

DEEP by Veridan Systems (www.psrv.com) is a tool for debugging of Message
Passing Interface (MPI)® programs. The debugger uses a monitor/replay
approach, and allows the setting of breakpoints, instruction stepping and
inspection of data-structures. The process of instrumentation, which is
performed by a tool prior to compilation, can be parameterized to use different
degrees of monitoring. Aspects that can be modified are different levels of loop
profiling, external function profiling, I/O call profiling, and message passing
profiling. During debugging, a lot of information can be gathered describing
the balances of CPU usages, message send and message receive balances for
individual nodes etc.

4.5.3 Hybrid Monitoring

According to Tsai et al. [62, s5.1;p104] hybrid monitoring come in two flavors,
memory-mapped, and coprocessor monitoring. Memory-mapped monitoring uses
a snooping device that listens to the bus, and reacts to operations on certain
addresses. These addresses may either be snooping device registers that are
memory-mapped into the address space of the task, or just a dedicated RAM
area. Each event that should be monitored is forced to make a memory operation
on the address that is associated with that event, which will allow the monitor to
detect its occurrence. Coprocessor monitoring uses a device that is a coprocessor
to the processor that executes the application that is to be monitored, events
are forced to issue coprocessor instructions to the coprocessor as the events that
are to be monitored will occur. The coprocessor monitoring approach requires,
of course, that the architecture targeted allows the use of coprocessors.

The CodeTEST Trace Analysis tool from Applied Microsystems (www.amc.com)

6See www-unix.mcs.anl.gov/mpi/ for information about the MPI standard.

36

provides hardware assisted software based tracing of program execution. An
extra stage is inserted into the compile stage where unique tags are added to the
program code according to some parameters (thereby leaving the original code
unchanged). A database is also created to relate the unique markers to specific
lines of code.

Depending on where in the development stage the system is, different solutions
are then used to collect information from the execution. Early in the design
process a collection task that forwards the information to a remote host is run
together with the normal task set; later in the process, tags are modified to only
perform a memory read to a dedicated area, a hardware probe that can snoop
the bus is then used to collect the information and send it to the remote host.
Even though it is not intended to do so, at least the latter kind of probes may
may be left in the system in order to avoid probe effect related problems.

The collected traces can be collected and viewed at three different abstraction
levels: The high-level view shows task events and function entries/exits, thereby
showing the context flow of the system. The control-flow view shows the
execution path through the system. The source-level view displays each executed
line of source code.

In “A Hardware and Software Monitor for High-Level System-on-Chip
Verification” [49], El Shobaki and Lindh presents a method for monitoring
SoC systems with a built in hardware component named MAMon
(Multipurpose/Multiprocessor Application Monitor). The MAMon component
is integrated with the design, and allows both hardware and hybrid monitoring.
By using a hybrid approach, MAMon enables system level monitoring (see
Section 4.5.2), while non-intrusive hardware monitoring can be used for The
MAMon component can be used both with software based and hardware based
[27] real-time operating systems. In the case where the operating system is
hardware based, task information can be extracted non-intrusively from the
kernel.

4.5.4 Discussion

A fourth type of monitoring would be above the level of software, to view the
system as a closed box, and only monitor the effects that are visible to users
of the system. Imagine a real-time control system, responsible for maintaining
a level a certain level of the water in a cistern. To monitor the system from a
level above the software could then be to monitor the water level, in order to
evaluate the implementation of the control algorithm.

Noting that there are different levels of monitoring, and that each level have
different advantages and drawbacks, we can state that monitoring at different
levels is not strictly comparable. It is therefore likely that several levels of
monitoring should be used, in order to obtain an overall picture of the system.
But the choice of monitoring level is of course also dependent upon the bug-
location hypothesis, and fault hypothesis.

If we for example assume a fault hypothesis that allows the potential presence

37

of errors in the operating system, we must monitor the system on a low enough
level, only probing individual tasks would not be sufficient. If we would like to
recreate the execution of a nondeterministic program where all inputs are not
available (see Section 2.4), or if parts of the log has been forfeited (see Section
4.3), we must make detailed recordings of the paths and data of the particular
task. In such cases, we must be able to add probes into the application code.

38

Chapter 5

Reproducing the Execution
of a Computer System

We have now provided a more detailed view of how a parallel system could be
monitored, in this section we will probe the issue of execution reproduction in
greater detail.

5.1 The Stampede Effect and
the Bystander Effect

There are similarities not only between deadlock and livelock, or between the
probe effect, the observability problem, and the probe-ability problem, but
also between the stampede and bystander effects. Snelling and Hoffmann
describes the two in their article “A Comparative Study of Libraries for Parallel
Processing” published in 1988 [50]:

5.1.1 The Stampede Effect

As one task is forced to halt, by failure of execution or other reason, also all
other tasks must be halted. If not, the other tasks may be able to corrupt data
shared with the halted task. In the case of a failure, this will make it very hard
to, by some form of postmortem analysis, find out exactly what happened.

We provide an example: Say that a task arrives too soon to a specific point in
its execution. Because the task is early, assumptions about the state of shared
resources that where made offline are not valid, and the state of the resource
may have a state that designers assumed it couldn’t have. As the task uses the
resource it eventually crashes, but the second task which is still alive, replaces the
erroneous data with correct values before the whole system terminates. It is then

39

impossible to, by viewing the memory state of the crashed system, determine
what went wrong.

5.1.2 The Bystander Effect

The bystander effect also describes cases where tasks affect the state of others,
but here the affected task terminates because other tasks are executing and
violating some convention. Imagine that a failure occurs in a task, it will then
seem probable that the cause of the problem resides inside that task. But either
errors in the handling of virtual memory, or by infection through shared resources
may cause a bystander to be affected by an error in a task that remains unaffected
from its fault.

We provide an example which, strictly speaking, is not an example of the
bystander effect, although it is confusingly similar to it. The example consists
of two parallel Tasks T4 and Tz, see Figure 5.1 for the source of these: Say task
T4 is supposed to receive an order for an action from task Tz, but T sends
an invalid value. This will cause T4 to perform an unintended action, during
which it may cause a failure, but Tz can proceed unaffected. However, in this
case T4 is not innocent, a task is responsible for monitoring its own inputs (see
the input errors of Clarke and McDermid at the top of Section 3). If however,
the fault hypothesis for the system did not include the potential occurrence of
input errors, this could be seen as a bystander error.

void f_1(void){printf("1");}

void f_2(void) {printf("2");}

typedef void (*func_ptr) (void);

func_ptr fpl[2]={f_1,f 2};

void A(void) ;

void B(void){
send_to_proc(4,2);

}

void A(void){
int i;
i=recv_fr_proc(B);
fplil O;

}

Figure 5.1: This is Not an Example of the Bystander Effect

A more “pure” example of the bystander error would be if the data used by task
T4 was modified without the tasks knowledge, if the task is not aware that it
is receiving an external input, it cannot be held responsible for its inability to
detect errors in that data.

40

5.1.3 Conclusion

When constructing a model for reproduction of an execution, care must be taken
in order to guarantee that the stampede- and bystander effects are not allowed
to show.

Both effects may show if the system is allowed to continue execution past a
failure of a task without reporting this to the user. If the reproduction was
not a success in terms of sensing an occurred failure, two problems may follow:
Another, bystander task may then become infected. The traces of the failure
may be erased by the execution of a stampeding “innocent” task.

This can become a reality if the reproduction mechanism has no clear sense of
the system specification, but is also a potential problem during the monitoring
activity, failure to log a change to a monitored entity may produce the same
problems.

5.2 The Irreproducibility Effect and
the Completeness Problem

The irreproducibility effect and the completeness problem are similar to each
other in that both of them only emerge in nondeterministic! parallel programs
[50] [18, s4.2.3;p87].

5.2.1 Irreproducibility Effect

The reproducibility problem, also known as the irreproducibility effect [18, 50],
describes the fact that a certain behavior in a nondeterministic system cannot
be repeated on command. Thus, it may be quite problematic to verify that a
certain bug has been removed (see also Section 5.3 on regression testing), and
also to distinguish between different bugs [18, s4.2.6;p94].

The irreproducibility effect is also referred to as the non-repeatibility effect [18,
$4.2.6;p93].

Starting from a similar definition of deterministic systems as Kranzlmiiller (see
Section 2.4), and a definition for Partial Determinism, Thane [56, $3.2.2;p29]
classifies systems with respect to their reproducibility:

A partially deterministic system has a certain behavior that can be defined by
a known set of inputs or conditions, of which only a subset can be observed.
A system is Reproducible provided that it is a deterministic system, and that
all inputs that have impact on system performance are controllable. A system
is said to be Partially Reproducible if it is deterministic, and a subset of the
parameters that impact system performance are controllable.

ISometimes also referred to as nondeterminacy or indeterminacy.

41

Note that, since it could never be determined that the reproduced execution is
identical to the original execution, a reproduction of a partially deterministic
system cannot be validated. To alleviate this problem it is imperative that the
nondeterministic elements of the system are monitored, an issue which we discuss
in Chapter 4.

5.2.2 The Completeness Problem

In order to ensure that a system complies to its specification it is required that
the testing procedure is performed under realistic conditions. Properties that
must be tested are both that the system reacts as intended on different input
data, and (in the case of real-time systems) that the temporal behavior of the
system satisfies the requirements. As different invocations of a nondeterminis-
tic program, per definition, can behave differently even though all controllable
inputs are identical in all invocations, it is very difficult to determine the coverage
of testing procedures. It is difficult to ensure completeness in the testing.

Testing the complete set of possible combinations of known input data and all
execution orderings is normally referred to as exhaustive testing. Even in a very
small system the number of test cases is very large, and it increases drastically as
the system grows. Therefore, exhaustive testing is normally not an option as it
would require too long time? to perform. The alternative is to only test a subset
of the input combinations, which leads to that only a certain level of confidence
may be ascribed to the systems capability to fulfill its specification. The level
of confidence relates directly to how well the system was tested. It is true that
small parts of the system, that are considered as especially important, could
be selected for exhaustive testing. This would of course increase the confidence
in the system, but is directly comparable to testing only a small subset of the
possible input combinations.

Also, the completeness problem implies that even if the system would be tested
with all possible combinations of inputs, bugs may still remain because different
execution orderings in the system also affects the output and temporal behavior
of the system. If the number of possible executions orderings are unknown, it
may be difficult to determine the level of confidence that can be ascribed to the
system. Thane et al. discuss this problem in [57, 59, 61] where they propose
a method for testing real-time systems. The method describes how all possible
orderings in a system can be identified, how all sequences of interleaving due to
interrupts, blocking by semaphores, or scheduling decisions can be listed. They
can then group a particular execution with an execution ordering. By running
a sufficient number of tests and relating each test to its ordering, it is then
possible to increase the confidence in the orderings that become subjected to
testing. However, that simplified approach would either cause some of the less
probable execution orderings to be insufficiently tested, or excessive testing due
to the improbability or probability of experiencing those orderings. Therefore,

2Consider a program that subtracts one 32-bit integer from another, it would require (232)2
test cases. If one test case can be run each nano-second, that would result in (264-1079)/(60 %
60 x 24), or approximately 200’000 days of testing.

42

reproducibility in the testing is ensured by enforcing execution orderings during
testing. By performing a sufficient amount of tests of a sufficient number of
orderings, the confidence in the system can then be calculated based on the
confidence in each ordering. In their articles, Thane et al. states that the
number of execution orderings, and therefore also the testability of the system,
is directly proportional to the number of preemption points and the jitter present
in the system. Note that the confidence in a system according to Thane et al.
can be a 2-dimensional property, a confidence in each execution ordering, and a
confidence in covered execution orderings.

5.3 Regression Testing

As a bug is identified, and an attempt to remove it has been made, two things
must be confirmed: (A.) The fix must not have introduced further bugs in the
system. (B.) The bug must have been effectively removed. In deterministic
systems, the process to confirm this is normally called Regression Testing [3],
and it is performed by simply rerunning all previously performed tests after
which the remaining tests can be performed.

However, in the case of nondeterministic systems, simply rerunning the previous
test suite without errors does not prove any of the statements described in the
above paragraph [3].

Carver and Tai propose [3] that this problem may be rectified by forcing
deterministic executions according to given synchronization sequences. However,
Thane and Hansson states [60] that a given execution trace of a program is only
valid for an altered version of that program if the alteration does not affect the
execution, which implies that the regression testing procedure cannot make use
of pre-bugfix recorded logs.

Neri et al. elaborates further on the problem in “Debugging Distributed
Applications with Replay Capabilities” published in 1997 [33], they point out
several practical problems with reusing of monitoring logs. If an executable
is modified, either by re-compilation or re-linking (note that it is not required
that the code is changed, different options to linkers etcetera may accomplish
the same problem), address references may be changed. Therefore, in order
to alleviate this problem, they propose that check-sums of binaries should be
calculated, and that these should be added to the log, in order to detect the
problem. Also the use a virtual memory and caching schemes requires some
thought, as physical addresses may change between executions, causing differing
behavior in the caches if initial memory states are not identical. This could
result in that two executions, that in all other aspects are identical, may have
differing logs.

Thus, we conclude that the area of regression testing of parallel systems needs
further research.

43

5.4 Uses of Monitoring Output

McDowell and Helmbold [30] stated four different uses of execution logs,
Browsing, Replay, and Simulation. Which method that can be used depends
on how much information that is logged from the reference execution.

5.4.1 Browsing

By viewing the recorded history in a very simplified model of the target platform.
When browsing event histories, it may even be possible to use the same model
for different architectures. The programmer can observe the ordering of events
in the system, and draw conclusions from that. The perhaps most significant
advantage of this approach is that it allows a large level of abstraction from the
sometimes too detailed view normally provided in traditional debuggers [30].

The MAMon monitoring component for SoC systems presented by Shobaki and
Lindh [49] is one example of an approach that uses browsing of event histories
to display monitoring output.

5.4.2 Replay

A new, replay, execution is performed on the target environment, but the replay
execution is forced to correspond to the original reference execution. The
programmer is therefore allowed to stop the system, even to stop only some
of the system entities, because the replay mechanism will not allow the replay
to violate constraints derived from the reference execution.

Kilgore and Chase presents a method in “Re-execution of Distributed Programs
to Detect Bugs Hidden by Racing Messages”, published in 1997, [15] which is
targeted at message passing systems that are piece-wise deterministic. They
define a piece-wise deterministic system to be a system whose only element of
nondeterminism is the ordering of message deliveries.®> In other words, given
two instances of the same program executions, provided that all messages are
delivered in the same order to both instances, the two will be identical. The
Kilgore and Chase approach identifies possible data races in a program execution,
and can then, according to some rules, reorder the sent messages with the
intention to provoke a failure.

Russinovich and Cogswell present a method that facilitates deterministic
replay on nondeterministic shared-memory uni-processor systems in “Replay for
Concurrent Non-Deterministic Shared-Memory Applications” (1996) [47]. The
approach is called repeatable scheduling algorithm, and it ensures determinis-
tic replay by forcing the system to make the same scheduling decisions during
replay as during the reference execution. In order to do so, it requires the use
of Software Instruction Counters. If the initial state of the reference and the

3However, it seems reasonable that also the timing of the message deliverances can have
impact on system performance, especially in real-time systems, but also in other systems.

44

replay executions are identical, this will guarantee that the two executions are
identical. Note that this method is not sufficient in systems with more than
one processor, or in systems that take input from external processes. Both these
limitations gravely reduces the applicability of the approach, but it can of course
be used in conjunction with other methods.

Lumpp et al. stresses the fact there are other issues than errors in parallel
systems that may profit from the parallel debugging methodologies. Because
dynamic methods that facilitate replay in these systems will also provide
detailed knowledge on low-level system functionality, they can also be used for
performance debugging [28]. They present a debugger for distributed shared
memory systems. Suérez et al. [55] also presents work in the area of performance
debugging, they are targeted at distributed embedded real-time systems.

Boothe presents a method for bidirectional stepping through sequential code
in “Efficient Algorithms for Bidirectional Debugging” [2]. By monitoring using
Software Instruction Counters (see Section 4.2), and also counting the function
entering and exit (there may be several different exit points from a function)
points, executions logs are created. The logs will contain sufficient information to
facilitate execution reproduction, and and also to identify individual instructions.
Breakpoints are specified as counter configurations. As individual instructions
can be identified in an orderly fashion, the debugger can also also perform
backwards stepping. If the counters are set to indicate the previous instruction,
and the program is re-executed, this will create the illusion that the program is
being stepped backwards.

5.4.3 Simulation

By using a simulator of the target system, and forcing it to behave in a way that
will produce an replay execution that is identical to the reference execution, the
programmer can make repeated executions of the system.

This requires either that the model used, the simulator, models the real target
system sufficiently accurate for the application, or that it can be forced to execute
the system according to the traces recorded previously during the reference
execution. As the simulator will execute the same code as that which was
run during the reference execution (see Section 5.3), we can state that the
above stated requirement “sufficiently accurate” would be satisfied when the
log produced during the simulation does not deviate from the reference log.

In “Using Deterministic Replay for Debugging of Distributed Real-Time
Systems” [60] Thane and Hansson describes the, to our knowledge first, method
for deterministic replay of distributed real-time systems. The method is based
on an operating system that provides monitoring primitives for task level
monitoring, and that also monitors its internal event sequences. They use a
software monitoring approach, and avoid the probe effect by leaving probes in
the system. For the ordering of events, they assume that the system provides a
synchronized global time-base.

45

5.5 Visualizing the Debugging Process

As stated by Kranzlmiiller [18, s4.2.1;p84] it is very important that the
programmer can understand the context of the debugging process, what is being
debugged at a certain time. However, in large systems, especially in cases where
the compiler has used optimization techniques, this may be rather difficult.

The systems that we target in our work are rather complex, meaning that a lot
of information about their current state is required in order to fully understand
what is happening. This is of course a relative measure. In order to put a bit
more perspective on the issue we can add that all information needed to solve
the task of efficiently debugging the system should be readily displayed on a
normal computer screen. In addition it must be so in such a fashion that a
programmer can understand and use the information displayed without feeling
that he or she is compromised by the interface.

This is a potentially large problem in this type of systems, we must find new
means of refining, distilling, and displaying, information to the programmer.

McDowell and Helmbold [30] presented four means of presenting this
information. Also Pancake and Utter have done some work in the area [39].

46

Chapter 6

Future Work

After that a more comprehensive historical investigation has been completed,
when we have surveyed actual solution proposals to the sketched methods
presented here, we will commence work on one or more of the topics presented
in this section.

6.1 Deterministic Replay

We will in our future work concentrate on the simulated deterministic replay
approach, using software monitoring, it seems that there are some issues that
require investigation.

External devices in simulated replay is an issue that has not been investigated;
how can we debug a system that uses a hard disk, possibly even a swapping
algorithm? This points at a problem that is inherent in the simulation approach,
namely that a simulated machine does not always behave in the same way that a
real system would. Reasons to this are varying. In some cases, simplifications of
the model are judged not to give great impact on performance. In other cases, it
is not possible to build a model that behaves exactly as the original component.

An issue that is constantly present in deterministic replay, but is aggravated
when we target more complex parallel systems, is that of the amount of data
produced by a monitoring mechanism. As the amount of data that is needed per
time unit grows, this may also affect the system performance, thereby reducing
the use of the method. A checkpointing system could reduce the amount of data
needed to perform the replay of the system, but would consume resources from
the system during run-time. How to perform these checkpointing operations
so that their impact on performance is minimized, and keep consistency in
the monitoring traces is an important issue in the context. Another approach
is to accept that some of the collected data will be lost, and adopt to that
fact. Browsing (see Section 5.4.1) as method of replay would perhaps not suffer
as much from this approach as replay and simulation (see Sections 5.4.2 and

47

5.4.3). To which extent we could perform these, under these restrictions, more
complicated methods of replay, is an interesting topic.

Furthermore, there are other inherent issues of the simulated replay approach
that could be improved. The simulation of parallel architectures enforces a large
slowdown, simulating software takes in the order of hundred, or even thousand,
times as long as native execution [10, s4.4.4;p58]. In other cases, this is an
overhead that one must learn to live with, but in the case of simulated replay,
we have additional information about the execution that may help us to reduce
that overhead.

In Section 4.3 we motivated the need of a well defined starting point when using
simulated replay. If we are to make effective use of the deterministic simulated
replay methodology on parallel architectures, we must determine how we may
find such a starting point when the simulation has proceeded long enough to have
overwritten part of the gathered log. In Section 4.5.4, we imply that we may view
such systems as nondeterministic or partially deterministic (see Section 5.2.1).
The loss of some of the information that defines the execution may satisfy the
rules for nondeterministic systems (see Section 2.4) if there is not a sufficiently
large amount of task level (see Section 4.5.2) traces, in which case it may satisfy
the criteria for a partially deterministic system. Whether they are reproducible,
or partially reproducible (see Section 2.4) remains to be seen.

6.2 Debugging Component Based Systems

In Section 4.5.4, we saw that some systems require that monitoring is performed
also on task level, that control and data flow inside individual tasks must, in
some cases, be monitored. This requires that the source code of those tasks
is available and possible to modify, such is not always the case in Component
Based Software Engineering (CBSE). However, we in such systems we may insert
probes into the code that uses the component(s), and if we have control over the
operating system, we can monitor the system on that level.

An interesting question is to what extent such systems may be observed and
replayed; is it possible to find all bugs inside the code that is available for
change, and is it possible to identify faulty components?

If the bug resides inside a component, it is desirable to be able to describe the
situation that produced a failure to the vendors of the component. In order to do
so we should record all interaction sequences between the user of the component
and the component, but has the same problem with long executions as described
in Section 4.3.

It is, of course, possible to build components that have built-in monitoring
facilities. But this requires either very extensive monitoring, by the user
adjustable monitoring (which is difficult due to the probe effect), or very detailed
comprehension of how the component is used in a special case. As one of the
major gains of CBSE is increased reuse, and users want to use the components
in slightly differing contexts, it may be difficult not to do over enthusiastic

48

monitoring if the level of monitoring granularity is static.

6.3 Design Patterns for Design of
Probe-able Systems

As we have pointed out in this report, an inherent problem with monitoring
computer systems is the costs. These costs can be measured both in a temporal
and in a spatial dimension, and it is an implementation specific choice in which
dimension to optimize the behavior of the monitoring mechanism.

We believe it possible to find some general rules that, should they be
acknowledged in the system design, can reduce the monitoring-enforced penalty
in one of these dimensions.

6.3.1 Sketched Examples of Design Patterns

For example, these rules could restrict the spatial scattering of data that is to
be monitored. In a system, the meaning of a task instance should be defined
to facilitate Incremental Replay (see Section 4.5.2 and [37, 65] on Incremental
Replay). Between each such task instance, at least all data which cannot be
reproduced must be monitored and stored. If all this data is stored in a easy to
reach structure, this would certainly ease the monitoring effort.

Other rules could restrict the use (and re-use) of temporary variables, so that
they could be excluded from the subset of monitored variables. We note that
a variable that potentially has scope between two iterations of a task must be
monitored in order to allow the independent recreation of a particular instance.
If a temporary variable is allowed a greater scope then necessary, or if the same
variable is re-used in independent operations, this can lead to an increased need
of monitoring that really could be optimized.

Yet other rules could assist in reducing the jitter in the system. The presence
and span of jitter in a system increases non-determinism, and therefore also the
potential for race conditions. Should the amount of jitter be reduced, this would
reduce the number of entries in the control-flow monitoring without requiring
individual entries to be larger. The reasons for jitter in a system are many,
ranging from accumulating effects due to inter-task dependencies, to varying
execution times due to non-determinism in selections. Ways to reduce jitter in a
system should therefore also be many, some could aim to reduce the amount of
selections in the system, others to shorten the chains of inter-task dependencies.

6.4 Comparing Tools for Debugging

As we have seen in this report, there exist a couple of different tools that can
be used when debugging. We have also seen that there are some costs involved

49

when using these tools. What we have not seen is a comparison between the
tools, we have not which tool is the most efficient in some relevant aspect.

The reason for this insufficiency is that the existing implementations have been
made on different, incomparable, platforms. Thus, a strict comparison is not
feasible, other means of comparison must be made. In their article “A Taxonomy
of Distributed Debuggers Based on Execution Replay” [7], Dionne et al. present
a taxonomy which can be used to classify debuggers with respect to nine (9)
criterion’s. This, together with a fault hypothesis, can be used to choose a tool
suitable for a given project.

However, the presented taxonomy does not cover any real-time aspects. There
are also other insufficiencies, one of these being the way the probe effect is
handled; Schiitz [48] states three classes based on how they handle the probe
effect: by ignoring the effect, by minimizing the impact on the system during
debugging, or by avoiding the probe effect. Other insufficiencies are in the range
of solution alternatives in surveyed topics: Integration of probes to the system
is said to be possible by automatic- (complete or partial) or manual insertion,
where manual insertion is tailor made for a particular system, and automatic is
performed with a tool. As we have seen in this report, also other methods are
possible (see Section 4.5.2 and the kernel probes suggested by Thane which are
integrated manually but also reusable).

Furthermore, the range of tools which have been mapped with the taxonomy is
small. In future work, we plan to remedy this and also to extend the taxonomy.

6.5 Efficient Memory Usage in
Storing Monitoring Entries

Stewart and Gentleman [53] mentioned the applicability of circular queues as an
infrastructure when storing monitoring entries. It seems that the potential for
keeping redundant information in such a scheme is larger then needed. This was
also implied by Ronsse and De Bosschere [43], they stated that entries should
be evicted as soon as they are without use.

When using a circular queue structure, garbage collection is trivial; entries can
be stored in chronological order on the medium, and as space is exhausted the
oldest entry is replaced with the newest entry. Thus, the on-line performance
of the garbage collection algorithm ensures that no large penalty is imposed on
the system.

However, there are other performance related drawbacks to this simplistic
scheme. These issues do not concern the on-line performance of the algorithm,
but the off-line usefulness-ratio of the stored information. That is to say how
many of the stored entries that can be used in a replay. In the circular queue
solution, no respect is paid to the relative context of the information which is
expunged and the information which is allowed to remain. The usefulness of the
information handled is ignored. Thus, we cannot assume that the final product

50

is optimal with respect to the off-line usefulness of stored data.

Furthermore, out of a complexity perspective for the programmer, it is desirable
to allow replay of only a subset of the system. As only a subset of the system
is replayed, only that subset must be monitored - thereby requiring less of the
limited memory resources. But, as mentioned in Section 4.1.1, probes should
not be removed from, or added to, the system because it invalidates previous
verification efforts. But, if the functionality of the garbage collection algorithm
could be altered without introducing a probe effect, memory resources could be
saved.

We intend to develop a new infrastructure for storing of monitoring activities.
The intention of that work should be to reduce the amount of unusable
information which accumulated in the monitoring-log.

6.6 Conferences and Research
Groups of Interest

Forums in which future results in the field of debugging of parallel systems may
be published include several groups. Some results have been published in real-
time forums, others have been published in the distributed and parallel systems
community. But there are also channels primarily dedicated to distribute results
in the domain of testing and debugging of computer systems.

Examples of conferences are IEEE Parallel and Distributed Systems, TEEE
Symposium on Reliable Distributed Systems, ACM International Symposium
on Software Testing and Analysis.

Among the research groups and their projects that are currently active in the
field, we mention the following:

TUM at the Fakultéit fiir Informatik of the Technische Universitdt Miinchen,
there is a group that does work in programming development environment
and tools. Their homepage is located at wwwbode.cs.tum.edu/Par/tools/-
index.html.

Johannes Kepler Universitat in Linz, Austria, has a group at the
Department for Graphics and Parallel Processing. The group has a project
that deals with the debugging of distributed memory machines, a project
homepage is available at www.gup.uni-linz.ac.at/research/debugging/-
index.php

The Australian National University in collaboration with Fujitsu
Laboratories Ltd. has a rather extensive research program called
CAP which has published some work in the area of debugging parallel
computers. The homepage of the program is available at cap.anu.edu.au/.

PARIS in the Department of Electronics and Information Systems at
Universiteit Gent, Belgium, has a group lead by Koen De Bosschere

51

that have active research in the field of debugging parallel programs.
The PARIS group has a homepage at www.elis.rug.ac.be/ELISgroups/-
paris/index.html, and they describe a project called RecPlay at
sunmp.elis.rug.ac.be/recplay/

52

Chapter 7

Summary

We have in this report surveyed the different problems that exists in debugging
of parallel applications, and different effects that influence parallel program
execution. A successful approach to debugging must direct all of these, or
suffer from limited applicability. We have described why the classic cyclic
debugging approach cannot be used as-is on parallel systems, and we have given
an introduction to replay which can facilitate the use of cyclic debugging in these
systems. As there are several approaches to perform the monitoring required by
the replay, we have also briefly described the main approaches to do this.

Of the different papers that were read during this work, the following are perhaps
more important than others:

Schiitz [48] provides a very comprehensive survey of the research area of testing
distributed real-time systems up until 1994.

We note that McDowell and Helmbold provided a comprehensive summary of
the area of parallel debugging in their now classic paper on parallel debugging
[30]. They explain many of the general problems that are encountered when
trying to debug parallel programs, and also provide some views on the different
solutions available. This paper gives a very good introduction to the field.

The probe effect was first named by Gait in “A Probe Effect in Concurrent
Programs” published in 1986 [9]. However, LeDoux and Parker have previously
mentioned the phenomenon in “Saving Traces for Ada Debugging” [24], but
referred to it as Heisenbergs Uncertainty principle.

Among recent dissertations in the field, we mention Henrik Thane [56] (2000),
and Dieter Kranzlmuller [18] (2000).

1As the first draft of Gaits paper was received by the review committee in late 1984, we
can not say for sure which of the two groups that actually thought of the problem first. It
may even be someone completely different who deserves the credit.

53

Bibliography

[1]

2]

Anish Arora et al. Resettable Vector Clocks. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 269 —
278, July 2000.

Bob Boothe. Efficient Algorithms for Bidirectional Debugging. In Proceedings
of the ACM SIGPLAN ’00 Conference on Programming Language Design and
Implementation, volume 35(5) of SIGPLAN Notices, pages 299 — 310. ACM, May
2000.

Richard Carver and Kuo-Chung Tai. Replay and Testing for Concurrent
Programs. IEEE Software, 8(2):66 — 74, March 1991.

Randy Chow and Theodore Johnson. Distrubuted Operating Systems &
Algorithms. Addisson Wesley Longman Inc., 1997.

Stephen Clarke and John McDermid. Software Fault Trees and Weakest
Preconditions: A Comparison and Analysis. Software Engineering Journal,
8(4):225 — 236, July 1993.

Edward Coffman et al. System Deadlocks. Computing Surveys, 3(2):67 — 78, June
1971.

Carl Dionne et al. A Taxonomy of Distributed Debuggers Based on Execution
Replay. In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 203 — 214, August 1996.

Colin Fidge. Fundamentals of Distributed System Observation. IEEE Software,
13(6):77 — 83, November 1996.

Jason Gait. A Probe Effect in Concurrent Programs. Software-Practise and
Ezperience, 16(3):225 — 233, March 1986.

Stephen Herrod. Using Complete Machine Simulation to Understand Computer
System Behavior. PhD thesis, Stanford University, USA, February 1998.

Scott Howard. A Backgroud Debugging Mode Driver Package for
Modular Microcontrollers. Technical Report Motorola Semiconduc-
tor Application Note AN1230/D, Motorola Inc., 1996. http://e-

www.motorola.com/brdata/PDFDB/docs/AN1230.pdf.

IEEE. [IEEE Standards for Local Area Networks: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications. 1985. IEEE Std. 802.3-1985.

IEEE. IEEFE Standard Test Access Port and Boundary-Scan Architecture. 2001.
IEEE Std. 1149.1-2001.

54

(14]

(15]

(16]

29]

(30]

(31]

Pete Keleher et al. TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. In Proceedings of the Winter 94 Usenix
Conference, pages 115 — 131, January 1994.

Richard Kilgore and Craig Chase. Re-execution of Distributed Programs to Detect
Bugs Hidden by Racing Messages. In Proceedings of the 30th Hawaii International
Conference on System Sciences, volume 1, pages 423 — 432, Januari 1997.

Harry Koehnemann and Timothy Lindquist. Towards Target-Level Testing and
Debugging Tools for Embedded Software. In Conference Proceedings on TRI-Ada,
pages 288 — 298. ACM, September 1993.

Hermann Kopetz and Wilhelm Ochsenreiter. Clock Synchronization in Distributed
Real-Time Systems. Transactions on Computers, 36(8):933 — 940, August 1987.

Dieter Kranzlmiiller. FEvent Graph Analysis for Debugging Massively Parallel
Programs. PhD thesis, Johannes Kepler University of Linz, Austria, September
2000.

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558 — 565, 1978.

Leslie Lamport et al. The Byzantine Generals Problem. ACM Transactions on
Programming Languages and Systems, 4(3):382 — 401, July 1982.

Jean-Claude Laprie. Dependability: Basic Concepts and Associated Terminology,
volume 5 of Dependable Computing and Fault-Tolerant Systems. Springer Verlag,
1992.

Thomas LeBlanc. Parallel Program Debugging. In Proceedings of the 13th Annual
Computer Software and Applications Conference COMPSAC’89, pages 65 — 66,
September 1989.

Thomas LeBlanc and John Mellor-Crummey. Debugging Parallel Programs with
Instant Replay. Transactions on Computers, 36(4):471 — 482, April 1987.

Carol LeDoux and Stott Parker. Saving Traces for Ada Debugging. In Proceedings
of the Ada International Conference on Ada in Use, pages 97 — 108. ACM, May
1985.

Nancy Leveson. Safeware - System, Safety and Computers. Addison Wesley, 1995.

Luk Levrouw et al. A New Trace and Replay System for Shared Memory Programs
based on Lamport Clocks. In Proceedings of the Second Euromicro Workshop on
Parallel and Distributed Processing, pages 471 — 478, Januari 1994.

Lennart Lindh et al. Hardware Accelerator for Single and Multiprocessor Real-
Time Operating Systems. In the Seventh Swedish Workshop on Computer Systems
Architecture, June 1998.

James Lumpp et al. Xunify - a Performance Debugger for a Distributed
Shared Memory System. In Proceedings of the Thirty-First Howaii International
Conference on System Sciences, volume 7, pages 587 — 596. IEEE, Januari 1998.

Ciaran MacNamee and Donal Heffernan. Emerging On-Chip Debugging
Techniques for Real-Time Embedded Systems. Computing & Control Engineering
Journal, 11(6):295 — 303, December 2000.

Charles McDowell and David Helmbold. Debugging Concurrent Programs. ACM
Computing Surveys, 21(4):593 — 622, December 1989.

John Mellor-Crummey and Thomas LeBlanc. A Software Instruction Counter.
In Proceedings of the Third International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 78 — 86. ACM, April 1989.

55

32]

(33]

(36]

37]

(38]

39]

(40]
41]

(42]

(43]

(44]

(45]

Robin Milner. Communication and Concurrency. Prentice Hall International
Series in Computer Science. Prentice Hall, 1989.

Daniel Neri et al. Debugging Distributed Applications with Replay Capabilities.
In Proceedings of the 1997 conference on TRI-Ada, pages 189 — 195, November
1997.

Robert Netzer. Race Condition Detection for Debugging Shared-Memory
Programs. PhD thesis, University of Wisconsin, USA, August 1991.

Robert Netzer. Optimal Tracing and Replay for Debugging Shared-Memory
Parallel Programs. In Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, volume 28(12) of SIGPLAN Notices, pages 1 — 11. ACM,
December 1993.

Robert Netzer. Trace Size vs Parallelism in Trace-and-Replay Debugging of
Shared-Memory Programs. Technical Report CS-93-27, Department of Computer
Science at Brown University, June 1993.

Robert Netzer et al. Critical-Path-Based Message Logging for Incremental Replay
of Message-Passing Programs. In Proceedings of the 14th International Conference
on Distributed Computing Systems, pages 404 — 413. IEEE, June 1994.

Robert Netzer and Barton Miller. What are Race Conditions? - Some Issues and
Formalizations. ACM Letters on Programming Languages and Systems, 1(1):74 —
88, March 1992.

Cherri Pancake and Sue Utter. Models for Visualization in Parallel Debuggers. In
Proceedings of the 1989 Conference on Supercomputing, pages 627 — 636. ACM,
November 1989.

Bernhard Plattner. Real-Time Execution Monitoring. [IEEE Transactions on
Software Engineering, SE-10(6):756 — 764, November 1984.

Stefan Poledna. Replica Determinism in Fault-Tolerant Real-Time Systems. PhD
thesis, Technishe Universitdt Wien, Austria, April 1994.

Michiel Ronsse and Koen De Bosschere. RecPlay: A Fully Integrated Practical
Record/Replay System. Transactions on Computer Systems, 17(2):133 — 152, May
1999.

Michiel Ronsse and Koen De Bosschere. Non-Intrusive On-the-Fly Data Race
Detection Using Execution Replay. In Fourth International Workshop on
Automated Debugging, pages 148 — 163, August 2000.

Michiel Ronsse et al. Execution Replay and Debugging. In Proceedings of the
Fourth International Workshop on Automated Debugging, pages 5 — 18, August
2000.

Michiel Ronsse et al. Cyclic Debugging Using Execution Replay. In International
Conference on Computational Science, volume 2074 of LNCS, pages 851 — 860,
May 2001.

Michiel Ronsse and Willy Zwaenepoel. FExecution Replay for TreadMarks.
In Proceedings of the Fifth Euromicro Workshop on Parallel and Distributed
Processing, pages 343 — 350, January 1997.

Mark Russinovich and Bryce Cogswell. Replay for Concurrent Non-Deterministic
Shared-Memory Applications. In Proceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and Implementation, volume 31(5)
of SIGPLAN Notices, pages 258 — 266, May 1996.

Werner Schiitz. Fundamental Issues in Testing Distributed Real-Time Systems.
Real-Time Systems, 7(2):129 — 157, September 1994.

56

(49]

[50]
[51]
[52]

53]

(61]
(62]

(63]

(64]

(65]

Mohammed El Shobaki and Lennart Lindh. A Hardware and Software Monitor for
High-Level System-on-Chip Verification. In Proceedings of the IEEE International
Symposium on Quality Electronic Design, pages 56 — 61, March 2001.

David Snelling and Geerd-R. Hoffmann. A Comparative Study of Libraries for
Parallel Processing. Parallel Computing, 8(1-3):255 — 266, 1988.

William Stallings. Operating Systems: Internals and Design Principles. Prentice-
Hall Inc., 2001.

IEEE Industry Standards and Technology Orginization. The Nexus 5001 Forum
Standard for a Global Embedded Debug Interface. 1999. IEEE-ISTO 5001 1999.

Darlene Stewart and Morven Gentleman. Non-Stop Monitoring and Debugging
on Shared-Memory Multiprocessors. In Proceedings of the 2nd International
Workshop on Software Engineering for Parallel and Distributed Systems, pages
263 — 269. IEEE Computer Society, May 1997.

Robert Strom and Shaula Yemini. Optimistic Recovery in Distributed Systems.
ACM Transactions on Computer Systems, 3(3):204 — 226, August 1985.

Francisco Sudrez et al. Performance Debugging of Parallel and Distributed
Embedded Systems. In Proceedings of the International Symposium on Software
Engineering for Parallel and Distributed Systems, pages 135 — 149. IEEE, 2000.

Henrik Thane. Monitoring, Testing and Debugging of Distributed Real-Time
Systems. PhD thesis, Kungliga Tekniska Hogskolan, Sweden, May 2000.

Henrik Thane et al. Integration Testing of Fixed Priority Scheduled Real-Time
Systems. In IEEE/IEE Real-Time Embedded Systems Workshop, December 2001.

Henrik Thane et al. The Asterix Real-Time Kernel. In Proceedings of the 13th
Euromicro International Conference On Real-Time Systems, June 2001.

Henrik Thane and Hans Hansson. Towards Systematic Testing of Distributed
Real-Time Systems. In Proceedings of the 20th Real-Time System Symposium,
pages 360 — 369. IEEE, December 1999.

Henrik Thane and Hans Hansson. Using Deterministic Replay for Debugging of
Distributed Real-Time Systems. In the 12th Euromicro Conference on Real-Time
Systems, pages 265 — 272. IEEE Computer Society, June 2000.

Henrik Thane and Hans Hansson. Testing Distributed Real-Time Systems.
Journal of Microprocessors and Microsystems, 24:463 — 478, February 2001.

Jeffrey Tsai et al. Distributed Real-Time Systems: Monitoring Visualization and
Debugging and Analysis. Wiley-Interscience, 1996.

Yi-Min Wang and Kent Fuchs. Optimal Message Log Reclamation for
Uncoordinated Checkpointing. In Proceedings of IEEE Workshop on Fault-
Tolerant Parallel and Distributed Systems, pages 24 — 29. IEEE, June 1995.

David L. Weaver and Tom Germand, editors. The SPARC Architecture Manual.
PTR Prentice-Hall, 1994.

Franco Zambonelli and Robert Netzer. An Efficient Logging Algorithm for
Incremental Replay of Message-Passing Applications. In Proceedings of the 13th
International and 10th Symposium on Parallel and Distributed Processing, pages
392 — 398. IEEE, April 1999.

57

