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Abstract. Analysis of Electroencephalograms (EEG) recordings is becoming an 
important research area. However, if the signal is contaminated with noises or 
artifacts then it could mislead the diagnosis result. Therefore, it is important to 
remove artifacts from the EEG signal. This paper presents a classification ap-
proach to detect ocular artifact in the EEG signal. The proposed approach com-
bines several methods i.e., case-based reasoning (CBR), Hierarchical clustering 
and Independent component analysis. The results show that the proposed sys-
tem can classify EEG signal and ocular artifacts 95% accurately.  
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1 Introduction 

The Electroencephalogram (EEG) is a biological signal that measures the brain ac-
tivity and is a diagnosis method of the central nervous system.  Various research areas 
where EEG signal is widely used are, but not limited to, sleep study, epilepsy, neuro-
science, and cognitive science. Like other biological signals EEG is also non-
stationary and non-linear in characteristics. Klonowski (2009) [1] defined it as ‘3N’: 
nonstationary, nonlinear, and noisy. One of the crucial aspects of using EEG in medi-
cal applications is to deal with noises and artifacts presented in the signal. In addition, 
these artifacts can cause significant miscalculation of measurements that reduces the 
clinical usefulness of EEG signal. In last decade, a large amount of studies have been 
carried out on ocular artifacts removal from EEG signal.  

Several methods and algorithms have been proposed in different studies to identify 
and remove ocular artifacts from EEG signal. The traditional ocular artifact correction 
methods are linear filters and regression-based methods. In linear filter approach cer-
tain frequency bands that belong to ocular artifact (OA) range are removed from the 
EEG signal. One of the problems of this technique is that it can also cause significant 
loss of neural activity in EEG data because of spectral overlaps between neurological 
and OA signals [4]. On the other hand, regression-based method computes propaga-
tion factors or transmission coefficients to determine correlation between one or more 



electrooculogram (EOG) channels and each EEG channel. In time or frequency do-
main it subtracts EOG portions that are contributing in EEG signal. The problem with 
regression analysis is that it not only reduces ocular artifacts but it may also remove 
interesting cerebral activity. It also requires EOG reference channel for artifact re-
moval and requires a calibration trail to determine the transfer coefficients between 
EOG and EEG channels. Independent component analysis (ICA) that belongs to blind 
source separation algorithms has been proved as an effective method to identify and 
correct ocular artifacts from EEG signals. However, most of the techniques based on 
ICA require visual inspection to identify OA. In the articles [23-26][31] ICA and 
clustering algorithms have been used to classify ocular artifacts in EEG signals. In the 
article [26] a hybrid algorithm using iterative ICA and fuzzy clustering has been pro-
posed for artifacts rejection in EEG signals. In [23] different eye movement activities 
are classified from EEG signals using ICA and k-nearest neighbor classification.  

This paper presents a combination of Case-based reasoning (CBR) [27][28] and 
Hierarchical clustering approach to classify OAs from EEG signals. Here, in the EEG 
signals, ICA has been applied to separate mixing signals from EEG and then features 
are extracted from each independent component. In this paper, 19 channels EEG sig-
nals are time-synchronized with respect to three ocular activity tasks. After that, each 
EEG recording is segmented considering the six trials that have been conducted for 
each subject during the data collection. Hence, after ICA on each segmented EEG 
signals 3192 independent components are obtained from the EEG signals. Then, these 
independent components are categorized using Hierarchical-clustering. Here, the data 
were collected in a controlled environment and these categories by Hierarchical-
clustering are then labeled as either EEG component or OAs component by visual 
inspection. Finally, CBR is applied to classify the components into EEG signal or 
ocular artifacts i.e., eye blink, eye movement or saccades.  

The rest of the paper is organized as follows: Section 2 presents related work on 
OAs in EEG signals and its identification. Section 3, describes the proposed approach. 
Section 4, discusses the experimental work. Finally, Section 5 ends with summary and 
discussion. 

2 Background  

EEG is the electric potential from the exposed surface of scalp and measured by the 
current flows when synaptic excitation of dendrites of many pyramidal neurons in the 
cerebral cortex. EEG signal is recorded from the scalp surface by electrodes and char-
acterized by amplitude and frequency. The amplitude of the EEG signal is between 
10-100 µV [5][6]. Based on source, EEG artifacts can be divided into two categories 
a) Non-physiological and b) Physiological artifacts. 

Physiological (or internal) artifacts in EEG signal are the main concern of this pa-
per. The common causes of physiological artifacts are eye and head movements [7-9]. 
Positive cornea and negative retina of human eye generates electrical dipole and EOG 
signal is produced because of the change of the dipole by eye movement and blinks 
[5][10]. Ocular artifacts (OAs) are often dominant over other physiological artifacts 



i.e. head movement, muscle artifacts and most of the research articles are about deal-
ing with ocular artifacts. EOG waveform depends on the factors, for example, the 
direction of the eye movements. Eye blink artifacts are low frequency (<4 Hz) in na-
ture and significant in amplitude. It can be located on front electrodes (FP1, FP2); 
which has symmetrical activity and low propagation. On the other hand, eye move-
ment artifacts are represented by low frequency (<4 Hz) but with higher propagation 
[10][11]. Eye movements may occur in any direction and can be considered as com-
binations of rotations over two angles (a vertical angle and a horizontal angle). The 
vertical component can be estimated by using electrodes located above and below the 
eyes, and the horizontal component can be estimated by using electrodes located out-
side the outer canthus of each eye [5]. Different frequency ranges of EEG signal have 
been reported as neural information in several studies. Neural information can be 
obtained below 100 Hz from the EEG signal and in many applications information 
lies below 30 Hz [12]. In [7] the range of EEG signal is 0 to 64 Hz and they mention 
that ocular artifacts occur within 0 and 16 Hz. A fraction of EOG contaminates the 
EEG signal and stronger peaks are introduced in the EEG signal because of the ocular 
artifacts [7][11][13][14]. 

3 Classification approach for Ocular artifact identification 

In order to identify ocular artifact i.e. eye movement, eye blink and saccades the pro-
posed approach applies Hierarchical clustering and Case-Based Reasoning (CBR) 
methods [29][30]. Here, the Hierarchical clustering method is used to build the initial 
case-library and CBR is used for ocular artifact classification [32]. An overview of 
the proposed system to identify ocular artifact in EEG signal is presented in Fig. 1.  

  
Fig. 1. Steps of the approach in order to classify ocular artifacts 

Here, EEG signals are recorded at 2048 Hz. following the international 10-20 
electrode placement system, where 19 channels locations are used and those are: Fp1, 
Fp2, F7, F3, Fz, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1 and O2. A controlled 
data collection scenario was used during the data collection and subjects were asked 
to perform three different ocular activity tasks, i.e. smooth pursuit eye movement, eye 
blink and saccades. For eye movement a cross symbol was moving on a computer 
screen, for eye blink the cross symbol was flashing on the screen, for saccades the 
cross symbol was jumping around the screen and subject was asked to follow the 
cross symbol. A time constrain was also applied, in saccades the cross symbol was 
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jumping in 2 second interval as an example. Thus the data are recorded in a control 
environment and achieved three different types of ocular activities. An example of 
raw EEG signals of 16 seconds saccades movement is shown in Fig. 2. 

 
Fig. 2. EEG recording of Saccades movement 

For the pre-processing the recorded EEG signals, are divided into 3 seconds epoch 
and the signals are pre-processed to remove 50 Hz channel noise using notch filter. 
After pre-processing, Independent component analysis (ICA) has been applied. ICA is 
a method that finds a linear representation of non-Gaussian where data are statistically 
independent [15]. ICA assumes a data model 𝑋 = 𝐴𝑆, where X is a queued column 
vectors, A is a weight matrix for mixing independent components back to original 
signals, S is queued column vector of statistically independent components. In the 
ICA model, number of sources N and the mixing matrix A are usually unknown. The 
task of ICA method is to recover unknown source signals 𝑠 𝑡  by introducing unmix-
ing matrix W; 𝑌 = 𝑊𝑋, Where W is the inverse matrix of the mixing matrix A. Y 
represents the independent components that are estimates of sources S. Since there is 
no knowledge of matrix A, it is not possible to determine W exactly. 

A set of features are extracted and considered in order to abstract EEG signals 
based on each independent component (ICs) of ICA and they are: sample entropy, 
hurst exponent, kurtosis, activity, mobility and complexity from Hjorth’s descriptors, 
and mean and standard deviation from mutual information. Sample Entropy is a non-
linear feature, which helps to find a complexity of a time series signal and based on 
the complexity value the blinking in the EEG is identified. That is, the eye blink is 
related to sample entropy since they are more regular and predictable, and high entro-
py is for other activities [17]. Sample Entropy is calculated through the following 
equation [17]:  

 Sample_Entropy (mT, r)=log !!!"

!!!"!!  (1) 



Here, the maximum length of epochs mT = 2 and tolerance r = 0.2 × SD (standard 
deviation of the data vectors) [18][19], and C is counter i.e. number of templates 
matches within the tolerance value r. Kurtosis is the fourth-order central moment of a 
distribution that characterizes the relative flatness or peakedness of a signal distribu-
tion. Kurtosis is defined by the following equation: 

 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑠 =   𝐸 𝑠! − 3𝐸 𝑠! ! (2) 

Where s is the signal and E is the statistical expectation function of s. highly positive 
kurtosis indicates highly peaked distribution in the signal [20][21]. Hjorth’s de-
scriptors are defined by three descriptors as activity, mobility and complexity [22]. 
The activity and mobility are calculated follows: 

 Activity(𝑋!)=𝑣𝑎𝑟(𝑋!) (3) 

 Mobility(𝑋!)=!!!
!!!

 (4) 

 Complexity 𝑋! = !! !!
!! !! ! ! = 𝜎! 𝜎! ! ! (5) 

Here, Activity(𝑋!) is the variance of the normalized signal, and 𝜎𝑋!is the standard 
deviation of the first derivative of 𝑋!. Hurst Exponent usually used to evaluate the 
self-similarity and correlation properties of fractional Brownian noise. It is the meas-
ure of the smoothness of a fractal time series based on the asymptotic behavior of the 
rescaled range of the process. 

 𝐻 = !"# ! !
!"# !

 (6) 

Where T is the duration of the sample of data and R/S is the corresponding value of 
rescaled range. Long-range dependencies and its degree in time series can be evaluat-
ed using Hurst exponent. Mutual information (MI) measures the linear and non-linear 
dependencies between M random variables, 𝑋 = 𝑋!,… . . ,𝑋! . Mutual information is 
defined as: 

 𝑀𝐼 𝑋 = 𝐻 𝑋!!
! − 𝐻 𝑋!,…… ,𝑋!  (7) 

Here, H(X) is the entropy, 

 𝐻 𝑋 = − 𝑝 𝑥! log 𝑝 𝑥!
!!
!!!  (8) 

Where, 𝐻 𝑋!,… ,𝑋!  is the joint entropy of the random variable X, and p(xi) is the 
probability of X estimated at xi, i=1,...,Mx, and Mx is the number of samples of each 
realization of the random variable X. 

Finally, a new problem case was formulated considering the extracted features, 
which were fed into the case-based retrieval classification scheme. The initial case-
library has been built by applying hierarchical clustering and manual inspection pre-
sented in chapter 3.1. The cases are labeled as EEG, Eye Movement, Eye Blink and 
Saccades and considered as a classification solution. The similarity of a feature value 



between two cases (i.e. a target case and one case from library) was measured using 
the normalized Manhattan distance between the feature values of two cases. The top 
most similar case and its classification were used to classify the ocular artifacts. Final-
ly, artifacts were identified from the recorded EEG signals. 

3.1 Hierarchical clustering in order to build initial case-library 

The Hierarchical algorithm clusters data over a variety of scales by creating a hierar-
chical structure (tree) or ‘dendrogram’. The tree is not a single set of clusters, but 
rather a multilevel hierarchy, where clusters at one level are joined as clusters at the 
next level [16]. Hierarchical clustering applied on each epoch data to categorize each 
ICs in to two clusters. For eye movement and saccades EEG recording clusters were 
labelled as EEG and eye movements ICs. And, for eye blink recording data clusters 
were labelled into EEG and eye blink ICs. The steps of the approach to build initial 
case-library are presented in Fig. 3. 

 

Fig. 3. Steps of the approach to build initial case-library  

In Hierarchical, the distance between pairs of objects is calculated using Euclidean 
distance as a ‘correlation’ parameter of the MATLAB function ‘pdist’. The linkage 
function applies ‘complete’ (i.e. Furthest distance) as parameter, which determines the 
objects in the data set that should be grouped into clusters. Finally, a cluster function 
is applied to group the sample data set into clusters by specifying the cluster’s num-
ber.  

Case Classes Total cases 
EEG 2538 
Eye Movement 192 
Eye Blink 249 
Saccades 213 
Total 3192 

Table 1. Number of cases and class distributions identified by Hierarchical clustering algorithm 
and used to initiate the case-library.  

Here, a visual inspection has been applied to label the ICs for the clusters since the 
data were recorded in a controlled environment and each epoch is time synchronized 
with the task performed by the subject. Thereafter, a case library has been created 
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using these clusters data [32]. Number of cases and class distributions from 1st order 
categorization using Hierarchical clustering algorithm are presented in Table 1. 

4 Experimental work 

The classification accuracy of the CBR retrieval classification scheme has been eval-
uated by developing a prototypical system where the main goal of the experiment is to 
see how accurate the CBR approach can classify with the extracted features from the 
signals. The evaluation has been conducted by considering both the control and test 
data sets. The control data set is used to develop and fine tune of the CBR retrieval 
classification scheme. The case-library has been built with 3192 cases with 4 classes 
(i.e. EEG, Eye Movement, Eye Blink and Saccades) in total, and each case contains 8 
features extracted from the signals. For the retrieval, a “leave-one-out” retrieval tech-
nique is used i.e. one case is taken from the case library as a query case and then the 
system retrieves the most similar cases. The confusion matrix of the correctly classifi-
cation on the 4 classes are presented in Table 2. 
 

  EEG Eye Movement Eye Blink Saccades Total  
EEG 2365 (91.6%) 33 (1.3%)  63 (2.4%) 77 (2.9%) 2538 
Eye Movement 39 (20.3%) 96 (50%) 37 (19.3%) 20 (10.4%) 192 
Eye Blink 68 (27.3%) 38 (15.3%) 75 (30.1%) 68 (27.3%) 249 
Saccades 53 (24.9%) 28 (13.1%) 60 (28.2%) 72 (33.8%) 213 
Total 2538 192 249 213 3192 

Table 2. Confusion matrix based on CBR classification. 

As can be seen from Table 2, the percentage of classification accuracy of the CBR 
system considering EEG, Eye Movement, Eye Blink and Saccades classes are 92%, 
50%, 30% and 33%. Here, the classification accuracy shows poor result and the cases 
are classified by other classes. Since Eye Movement, Eye Blink and Saccades classes 
are related to the Ocular Artifacts by definition the CBR system classifies them as 
80%, 77% and 75% respectively. A sensitivity, specificity and overall accuracy are 
also calculated and presented in Table 3, here, all the cases belong to Eye Movement, 
Eye Blink and Saccades are treated as Ocular Artifacts group and rest of them are 
normal group.   

 
Criteria/Indices Values 

Total cases 3192 
Cases belong to Ocular Artifacts group (P) 654 

Cases belong to Normal group (N) 2538 
True positive (TP): 494 
False positive (FP): 173 
True negative (TN): 2365 
False negative (FN): 160 



Sensitivity = TP / (TP + FN) ≈ 0.76 
Specificity = TN / (FP + TN) ≈ 0.93 
Accuracy = (TP+TN)/(P+N) ≈ 0.95 

Table 3. Statistical Analysis of the system’s classification 

It can be seen from Table 3, 2538 cases belong to the normal class and 654 cases 
belong to Ocular Artifacts group. The sensitivity, specificity and overall accuracy are 
76%, 93% and 95% respectively. 

The test dataset contain 12 cases from 2 subjects where each case is 42 seconds 
long and it contains the artifacts between 11 and 33 times. However, the case library 
still used the controlled 3192 cases and 4 classes discussed earlier. Here, CBR retriev-
al approach considers only one top similar case to calculate the classification accuracy 
and the results are presented in Table 4. 

 
No. Test_Case_id Number of 

Ocular Arti-
facts 

Correctly Clas-
sification 

Missed Classi-
fication 

1 Subject_1_Test_1 87 74 (85.1%) 13 (14.9%) 
2 Subject_1_Test_2 57 43 (75.4%) 14 (24.6%) 
3 Subject_1_Test_3 62 57 (91.9 %)  5 (8.1%)  
4 Subject_1_Test_4 67 59 (88.1%) 8 (11.9%) 
5 Subject_1_Test_5 64 51 (79.7%) 13 (20.3%) 
6 Subject_1_Test_6 64 53 (82.8%) 11 (17.2%) 
7 Subject_2_Test_1 54 31 (57.4%) 23 (42.6%) 
8 Subject_2_Test_2 44 26 (59.1%) 18 (40.9%) 
9 Subject_2_Test_3 42 29 (69%) 13 (31%) 

10 Subject_2_Test_4 35 25 (71.4%) 10 (28.6%) 
11 Subject_2_Test_5 46 22 (47.8%)  24 (52.2%) 
12 Subject_2_Test_6 32 24 (75%) 8 (25%) 
Total Ocular Artifacts in 

12 test cases 
654 494 (75.5%) 160 (24.5%) 

Table 4. Ocular Artifacts identification on 12 test data sets, where each case is 42 seconds long 
and it contains the artifacts between 11 and 33 times. 

As can be seen from Table 4, around 76% that is 494 out of 654 ocular artifacts are 
correctly classified and around 24% is misclassified by the CBR system. 

5 Summary  

Brain waves or neural signals obtained by the EEG recordings is an important re-
search area and plays vital role in medical and health applications and in Brain Com-
puter Interface (BCI). In this study eye movement and eye blink artifacts are identi-
fied and classified from EEG signals. The proposed approach is a combination of 



ICA, Hierarchical clustering and CBR. Here ICA is mainly used to separate the eye 
movement and eye blink components from the EEG signal. Since, the representation 
of components i.e., components represent EEG and eye movement is unknown in the 
independent components of ICA, Hierarchical clustering is used to cluster the data. 
Later, these clusters are classified as EEG, eye movement, eye blink and saccades 
based on the visual inspection and time synchronized information. After that CBR 
classification has been performed to evaluate each component. In this study only 2 
subjects data have been used and the total number of cases in the case library was 
3192. We are collecting more data in the project so in future the case library will also 
increase in size therefore clustering will help to mine the cases to build the case li-
brary. However, with the increased number of cases it will become difficult to per-
form visual inspection of components. Therefore, in future the system can be updated 
for instance, hierarchical clustering can group known components into cluster and 
later spectral analysis or statistical measures can be used to automatically classify the 
data.  
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