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Sweden

{tomas.olsson,peter.funk}@mdh.se
2 Volvo Construction Equipment, SE-63185 Eskilstuna, Sweden

{elisabeth.kallstrom, joakim.jl.lundin, jonas.jl.larsson}@volvo.com
3 SICS Swedish ICT, Isafjordsgatan 22, Box 1263, SE-164 29 Kista, Sweden

{tomas.olsson,daniel.gillblad}@sics.se
4 ProcessIT Innovations, Lule̊a University of Technology, Lule̊a, Sweden

john.lindstrom@ltu.se
5 Department of Applied Signal Processing, Blekinge Institute of Technology, 371 79

Karlskrona, Sweden
lars.hakansson@bth.se

6 Volvo Group Trucks Technology, Götaverksgatan 10, 405 08 Göteborg, Sweden
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Abstract. This paper presents a generic approach to fault diagnosis of
heavy duty machines that combines signal processing, statistics, machine
learning, and case-based reasoning for on-board and off-board analysis.
The used methods complement each other in that the on-board methods
are fast and light-weight, while case-based reasoning is used off-board
for fault diagnosis and for retrieving cases as support in manual deci-
sion making. Three major contributions are novel approaches to detect-
ing clutch slippage, anomaly detection, and case-based diagnosis that is
closely integrated with the anomaly detection model. As example appli-
cation, the proposed approach has been applied to diagnosing the root
cause of clutch slippage in automatic transmissions.

Keywords: Case-based Reasoning, Machine Learning, Signal Process-
ing, Fault Diagnosis

1 Introduction

Many heavy duty machines, like construction machines, are complex vehicles
with many interdependent parts. As time goes by, new features are added and
thereby, the complexity is further increased. As a consequence, this leads to
longer time in diagnosing faults and often, unnecessary replacement of parts to
address the source of problem.



In order to reduce above problems, we are developing an automated, data
driven approach to fault diagnosis that in a novel way combines methods from
signal processing, statistics, machine learning and case-based reasoning (CBR).
The system will continuously monitor a vehicle on-board to detect potential
problems (anomalies) and then classify the problem off-board, either using CBR
or manually with the help of experts.

CBR has been used for fault diagnosis since the beginning of the CBR field
[1–3], and often it has been combined with methods from signal processing and
machine learning [4–6]. In the proposed approach, the different methods com-
plement each other in that signal processing and machine learning provide fast
and light-weight on-board feature extraction and fault detection, while CBR, in
addition to fault diagnosis, can retrieve relevant cases as decision support [7].
In addition, a major contribution, apart from a novel solution to fault diagno-
sis, is to integrate CBR and the statistical anomaly detection model using a
theoretically sound approach to defining similarity grounded in statistics and in-
formation theory [8, 9]. Previously, it was used as a complement to probabilistic
predictions, while it is central for the current work. Furthermore, as an example
application, the approach was applied to identifying the root cause of clutch
slippage, and therefore, a method for detecting slipping clutches is proposed.

The rest of the paper is organised as follows. Section 2 presents the example
problem domain and the used statistical methods. Section 3 gives an overview of
the system. Section 4 describes how data was collected and how signal processing
is used for extracting features. Section 5 presents an approach for detecting faults
(anomalies) on-board a machine. Section 6 describes the off-board diagnosis
using CBR. Section 7 relates the proposed approach to previous work. Finally,
Sect. 8 ends with some conclusions and future work.

2 Preliminaries

In this section, we firstly present the problem domain that we are addressing,
that is, diagnosis of automatic transmission clutches, considering especially the
problem of clutch slippage. Last, we present two statistical machine learning
algorithms that we use for anomaly detection.

2.1 Automatic Transmission Clutch Slippage

The automatic transmission clutches in wheel loaders are a crucial component
of the driveline. A clutch enables connection and transfer of torque between
two rotating shafts when engaged [10]. Multiple disc wet clutches are generally
used in automatic transmissions. A multiple disc wet clutch pack consists of
separator discs, friction discs, lubricant, piston and two shafts. To engage the
clutch, a hydraulic induced normal force is applied to the clutch piston thereby
clamping together the friction disc and the separator disc, which allows torque
transfer between the two shafts [11]. During gear change both the disengaging
clutch for previous gear (off-going clutch) and the engaging clutch for next gear



(on-going clutch) have different angular speeds, the engaging clutch’s angular
speed drops to zero at the end of engagement due to generated friction [12].

In this paper, we use the problem of clutch slippage as an example applica-
tion. Clutch slippage occurs when a gear change takes longer time than expected.
This can happen due to several reasons, such as, special working conditions and
different types of faults. One such root cause is pressure drop in the transmission
due to oil leakage. Thus, when the pressure in the transmission is too low, the
time to go from one gear to the next will increase. Occurrence of clutch slippage
can be detected but the root cause is not that easily identified. Thus, in this
work we have started to automate the root cause analysis of clutch slippage as
an example use of the proposed approach.

2.2 The Gaussian Mixture Model and Logistic Regression

The Gaussian mixture model assumes that cases are generated from a set of
clusters modelled as normal (or Gaussian) probability distributions [13]. So, for
cases that are numerical vectors of length K, assuming a mixture with Z clusters:
p(x) =

∑Z
z=1 p(x|z)pz where x is a case, z is a cluster, pz is the probability of a

cluster and p(x|z) is the normally distributed likelihood of x conditioned on z.
Logistic regression is a classifier that can be trained to distinguish between

two classes [13]. For the two classes c ∈ {0, 1} we have the following probability
distributions given a feature vector (a case) x: p(c = 1|x) = 1

1+exp(−ωTx)
and

p(c = 0|x) = exp(−ωTx)
1+exp(−ωTx)

where ω is a weight vector with K + 1 weights

assuming that x has K + 1 features including an extra feature that is 1 for all
cases. Then, the case is classified as c = 1 if ωTx ≥ 0 and c = 0 otherwise.

3 System Overview

In this section, we give an overview of the system for diagnosing wheel loaders
where computation is being performed both on-board and off-board the machine.
On-board the system filters signals for interesting events that then are analysed
off-board. In the future, more automatic diagnosis might be performed on-board,
but in the current approach, an important function is to enable decision support
to an expert panel for querying the off-board system for relevant cases.

Figure 1 presents an overview of the proposed system, showing the flow of
computation from on-board a wheel loader to a central off-board server. The sys-
tem works as follows (numbers in Fig. 1): (1) The on-board feature extraction
component continuously monitors the machine using on-board sensors for inter-
esting events. (2) Extracted features are assessed for anomalies by a combina-
tion of a statistical model of the normality of each feature and logistic regression
trained on both normal and anomalous data. (3) If classified as anomalous, the
cased-based diagnosis will classify the fault or indicate whether it is a new type
of fault, and assess its severity. Feature extraction will be presented in Sect. 4,
anomaly detection in Sect. 5, and case-based diagnosis in Sect. 6. A prototype
was implemented using the scikit-learn library [14] and the minepy library [15].
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Fig. 1. On-board and off-board fault diagnosis system.

4 Data and Extracted Features

This section describes the data collected from the wheel loader and how features
are extracted. In this paper, we only consider the gear change between two gears,
from clutch 1 to clutch 2. For the experiments that follows, we have used six
signals logged from the on-board electronic system (the CAN-bus). The logged
signals are the turbine torque, clutch 1 differential speed, clutch 2 differential
speed, out-going speed, input speed, and turbine speed. The data was read at
a sampling frequency of 500Hz. Collecting non-anomalous signals was easy but
in order to get faulty data we had to simulate a fault. Thus, we simulated oil
leakage in a clutch by installing two manual needle valves on the pressure out-
takes on clutch 1 and clutch 2. Thereby, we could adjust the oil pressure going
to the piston in the clutch. The valve can then be opened in seven steps from
fully closed to fully opened (0-7 turns) that also simulate the severity of the
fault. From the six CAN-bus signals, we have extracted five feature for each
gear change: the length in time, mean value, standard deviation, kurtosis and
maximum of the sliding mean square value filtering (SMSVF) of the clutch 1
differential speed signal. A clutch slippage is an increase in time of a gear change,
so the length of a gear change is clearly relevant. Also the shape of the signal
is important, which is captured by the next three features. In experiments, we
also validated that computing maximum of the SMSVF gives a good indication
when a clutch slippage occurs. However, it is not in itself enough for identifying
the root cause. Below we describe the SMSVF and kurtosis in more details.

4.1 Mean Square Value and Sliding Mean Square Value filtering

The mean square value of a signal is related to the power of the signal [16]. If a
sampled signal is weakly ergodic, an estimate of its mean square value may be
calculated by squaring each signal sample and sum them, and finally dividing
this sum with the number of samples in the sum [16]. The mean square value of
a weakly ergodic signal x(n), n = 1, 2, . . . , N is given as

x̄2 =
1

N

N∑
n=1

x(n)2 (1)



Where N is equal to the number of samples in the average. The Sliding mean
Square Value filtering is realised by filtering the square of a sample of a signal
with an adequate filter [17]. The moving Average filter is frequently used as a
de-noising technique because of its simplicity in implementation and low compu-
tational load [18]. The mean square value estimates may also provide information
about the stationarity of a signal [19] .

4.2 Higher-order cumulant: Kurtosis

Higher order cumulants has been trending in diverse applications for many years
for their ability to handle non-Gaussian processes [20]. Cumulants above the
third-order are regarded as higher order cumulants while lower order cumulants
are from the third-order and below [21]. Higher-order cumulants are preferred
instead of second-order for signals corrupted with Gaussian measurement noise
since they are blind to Gaussian processes [20]. The first order cumulant is the
mean value, while the second order cumulant is the variance and the third order
cumulant is the third central moment or skewness [20, 21]. Kurtosis is based
on the fourth order cumulant and thus it is a higher order cumulant [22]. The
kurtosis gives an indication of the peakedness and tailedness of a distribution
[22]. The Kurtosis is the normalized fourth order cumulant about the mean and it
is expressed as Kurtosis = E[(x(t)−E[x(t)])4]/((E[(x(t)−E[x(t)])2])2) = µ4/σ

4

Where µ4 is the fourth order cumulant and σ is the standard deviation [22].

5 Anomaly Detection

This section presents our work in developing on-board anomaly detection that
uses the output of the feature extraction component. We assume that there is
a very large set of cases known to be normal and a relatively small set of cases
known to be anomalous. In addition, not all fault classes are known beforehand
so new faults should also be detected. Thus, given these assumptions, an ordinary
classifier is not sufficient. So, we use an anomaly detection approach instead.

A common way of doing anomaly detection is to fit a statistical model to
the non-anomalous cases and then, by choosing a suitable threshold, classify
cases above the threshold as normal and below the threshold as anomalous since
they are unlikely [23]. In the following, we instead consider this as a binary
classification problem, so that a soft threshold can be introduced by training a
probabilistic classifier using as case features the output of the statistical model.

The anomaly detection component consists of two parts: the first part is the
statistical modelling part where we fit GMMs to the non-anomalous data and
the second is the classification part where we fit logistic regression to distinguish
between anomalous and non-anomalous data. In most cases when doing anomaly
detection, a GMM is fitted directly to the whole feature vectors, while we instead
fit a GMM to each feature in the feature vectors, independently of the other
features. The output from the GMMs is then a new feature vector with the log-
likelihood of each pair of feature value and cluster. For instance, if we have 5



signals for which we extract 5 features each that result in 25 features in total
and then run a GMM using 5 clusters each, then we end up with feature vector
of length 125. The GMM step can be considered as making a anomaly score
for each pair of feature and cluster that are then, fused together in the next
step using logistic regression. In other words, the linear regression will learn the
weights and thresholds for distinguishing between normal and anomalous signals
from the log-likelihood features.

For the experiment, we trained the GMM and logistic regression on 80%
normal data and 50% fault data and the rest of the data was used for testing
and validation. This was repeated 10 times and the resulting AUC measures
were then averaged. The total size of the data set is 337 of which 63 cases are
faults. Table 1 shows the results measured in the Area Under the Curve (AUC)
that is a common performance measure for anomaly detection based on the
receiver operating characteristic curves (ROC curves) [15]. The AUC is a value
between 0.5 and 1, where 1 means perfect detection while 0.5 means completely
random detection. The two AUC columns compare the use of only the mean,

Table 1. The Area Under the Curve (AUC) for the anomaly detection.

Feature Type AUC (3 features) AUC (5 features)

Original features 0.948 0.965
Auto cluster 0.959 0.949

Clusters (12 and 14)) 0.968 0.955

standard deviation and the length of the signal as original features (3 features)
and, in addition to that, the kurtosis and the squared mean value (5 features).
In the table, Original features means that we do not use the GMM but the
original features, while Auto cluster means that we use an automatic means of
selecting the number of clusters for each feature that evaluate the goodness of
fit of the statistical model and Clusters means that we used the same number
of clusters for all features but selected the number of clusters that had the best
validation AUC. As can be seen in the table, the GMM (the last two rows) does
not improve the AUC, which is already quite high. Thus, we are able to learn to
detect faults not far from perfect (1.0), but the use of GMM does not improve
the performance.

6 Case-Based Diagnosis

In this section, we describe our approach to diagnosis using CBR that integrate
the statistical model from previous section. An essential component of a CBR
approach is a similarity metric that measures the usefulness of a case compared
to a new case. In our approach, we measure similarity between cases as how sim-
ilarly they deviate from the normal cases with respect to the statistical anomaly
detection model from Sect. 5, and thereby, integrates CBR with the GMMs.



In [9], we defined the similarity between two cases using an information the-
oretical metric of similarity – the symmetric Kullback-Leibler divergence (J-
divergence) – that compared the predicted class distributions of the two cases
[24]. Likewise, in this paper, we derive a similarity metric for comparing cases
with respect to the cluster distributions of the GMMs, which however is a multi-
label problem in that each case can belong to many clusters. Thus, we let z be
a vector with one cluster zk ∈ {1, . . . , Z} for each feature k = 1, . . . ,K, then the
J-divergence between two cases xi,xj relative to the distribution of z is

J(xi,xj) =
∑
z

(
log(p(z|xi))− log(p(z|xj))

)(
p(z|xi)− p(z|xj)

)
=

K∑
k=1

Z∑
zk=1

(
log(p(zk|xki ))− log(p(zk|xkj ))

)(
p(zk|xki )− p(zk|xkj )

)
≤

K∑
k=1

Z∑
zk=1

∣∣ log(p(xki |zk))− log(p(xkj |zk))
∣∣

where p(z|xi) = p(z1|x1i ) · p(z2|x2i ) · . . . · p(zK |xKi ) (assuming independence of

cluster zk given feature k and value xki ) and p(zk|xk) =
p(xk|zk)p

zk

p(xk)
. The less-

than-equal row is valid since log(p(zk|xki )) − log(p(zk|xkj )) = log(p(xki |zk)) −
log(p(xkj |zk)) + log(p(xkj )) − log(p(xki )) (last terms are independent of zk and

thereby canceled out in the sum) and max(
∣∣p(zk|xki ) − p(zk|xkj )

∣∣) = 1. Thus,
starting from the J-divergence, we can derive the Manhattan distance for the
log-likelihood feature vectors that were defined in the previous section.

For evaluation, we use the same data as for anomaly detection. However,
since we only have data from one type of fault, but with varying severity, we
only evaluate the predicted severity. Thus, we train the k-nearest neighbour
algorithm to predict the valve opening using the average of the most similar
cases. In the experiments, we performed 5 times leave-two-out cross-validation
using one case for testing and one case for validation, and the remaining for
training. The features were normalised to have a mean of 0 and a standard
deviation of 1. Then, each feature was weighted using the maximum information
coefficient (MIC) between the predicted attribute and the features [13]. The
number of neighbours was selected using 5-fold cross validation. The result is
shown in Table 2. For both the original features and log-likelihood features, we

Table 2. The mean squared error (MSE) for clutch slip severity diagnosis.

Feature Type MSE (3 features) MSE (5 features)

Original features 4.32 3.91
Auto cluster 4.59 5.24

Clusters (14 and 5)) 4.36 5.18



used the Manhattan distance. As can be seen, the combination of 5 features and
Original features has the lowest mean squared error, although the performance
is not very good. The clustering seems not to have any positive effect in this
case either.

7 Related Work

There are several fault diagnosis approaches that combine CBR with other meth-
ods. One application in the INRECA project is fault diagnosis of robots that
integrates causal trees, decision trees and CBR [4]. A hybrid CBR system with
an ART-Kohonen neural network (ART-KNN) for diagnosing an electric en-
gine is described in [5]. A CBR approach for diagnosing faulty robot gearboxes
was presented in [25, 26] that uses methods from signal processing, the Discrete
Wavelet Transform as well as the Discrete and Fast Fourier Transform. In [6],
an advanced CBR system for automobile service troubleshooting is described
that integrates the use of associate-rule mining, CBR and text mining. In [27],
the authors describe an approach resembling ours for fault detection in locomo-
tives that is an add on to the CBR diagnosis system ICAROS presented in [28].
Like in our system, the signals are processed individually to detect an anomaly
and then fused together using another machine learning algorithm. However, the
integration of the CBR and anomaly detection systems is not described.

8 Conclusions and Future Work

This paper presents a novel approach to fault diagnosis in heavy duty vehicles
that was applied to diagnosing the root case of clutch slippage of automatic
transmissions. The approach integrates methods from signal processing, statis-
tics, machine learning and CBR. We have investigated five different types of
extracted features, among which one feature is a novel approach to detecting
clutch slippage. We have also presented an approach to anomaly detection that
combines GMMs with logistic regression. In addition, we have defined similar-
ity metrics that integrates the case-based diagnosis with the statistical anomaly
detection model in a novel way.

In addition, we have reported preliminary results showing that the approach
works in that it is able to learn from the original features, but more data is
needed, including additional fault types, in order to draw more precise conclu-
sions. Another issue is that the anomaly detection and CBR were evaluated in
isolation, while they would be connected in a real system. Thus, a normal case
would have a valve opening of 0 if also evaluated by for its severity. Also, any
false positives generated by the anomaly detector should be considered, so that
the CBR would be able to classify them as normal.

One possible use of the proposed approach is to support emerging business
models which use monitoring for predicting problems to prevent risk due to
failure, such emerging business models includes, Product-Service Systems, In-
dustrial Product-Service Systems and Functional Products [29]. Yet, there is a



lot of work left before this becomes a reality. We could further investigate other
types of features for improved performance. The anomaly detection and logistic
regression could also be compared with other related approaches. The case-based
diagnosis could use other metrics or be compared to other learning approaches.
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11. Mäki, R.: Wet clutch tribology: friction characteristics in limited slip differentials.
(2005)



12. Fatima, N., Marklund, P., Larsson, R.: Water contamination effect in wet clutch
system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering 227(3) (2013) 376–389

13. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT Press (2012)
14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011) 2825–2830

15. Albanese, D., Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G., Furlanello,
C.: minerva and minepy: a c engine for the mine suite and its r, python and matlab
wrappers. Bioinformatics 29(3) (2013) 407–408

16. Campbell, D.: Statistical Measures of Signals. School of Computing, University of
Paisle

17. Andrén, L., H̊akansson, L., Brandt, A., Claesson, I.: Identification of dynamic
properties of boring bar vibrations in a continuous boring operation. Mechanical
systems and signal processing 18(4) (2004) 869–901

18. Koswatta, R., Karmakar, N.C.: Moving average filtering technique for signal pro-
cessing in digital section of uwb chipless rfid reader. In: Asia-Pacific Microwave
Conference, IEEE (2010) 1304–1307

19. Bendat, J.S., Piersol, A.G.: Random data: analysis and measurement procedures.
Volume 729. John Wiley & Sons (2010)

20. Mendel, J.M.: Tutorial on higher-order statistics (spectra) in signal processing and
system theory: theoretical results and some applications. Proceedings of the IEEE
79(3) (1991) 278–305

21. Cumulant. http://en.wikipedia.org/wiki/Cumulant (Last Accessed: July 2014)
22. DeCarlo, L.T.: On the meaning and use of kurtosis. Psychological methods 2(3)

(1997) 292
23. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM

Computing Surveys (CSUR) 41(3) (2009) 15
24. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Math-

ematical Statistics 22(1) (1951) 79–86
25. Olsson, E., Funk, P., Xiong, N.: Fault diagnosis in industry using sensor readings

and case-based reasoning. Journal of Intelligent and Fuzzy systems 15(1) (2004)
41–46

26. Olsson, E., Funk, P., Bengtsson, M.: Fault diagnosis of industrial robots using
acoustic signals and case-based reasoning. In: Advances in Case-Based Reasoning.
Springer (2004) 686–701

27. Xue, F., Yan, W., Roddy, N., Varma, A.: Operational data based anomaly detection
for locomotive diagnostics. In: MLMTA. (2006) 236–241

28. Varma, A., Roddy, N.: Icarus: design and deployment of a case-based reasoning sys-
tem for locomotive diagnostics. Engineering Applications of Artificial Intelligence
12(6) (1999) 681–690

29. Lindström, J., Plankina, D., Nilsson, K., Parida, V., Ylinenpää, H., Karlsson, L.:
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