
Mixed Criticality Scheduling in Fault-Tolerant
Distributed Real-time Systems
Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat

School of Innovation, Design and Engineering, Mälardalen University, Sweden
{abhilash.thekkilakattil, radu.dobrin, sasikumar.punnekkat}@mdh.se

Abstract—Modern safety critical real-time systems are com-
posed of tasks of mixed criticalities and the problem of scheduling
them in a fault tolerant manner, on a distributed platform,
is challenging. Fault tolerance is typically achieved by using
redundancy techniques, most commonly in the form of temporal
redundancy which involves executing an alternate task before
the original deadline of the failed task. Additionally, studies like
Zonal Hazard Analysis (ZHA) and Fault Hazard Analysis (FHA)
may impose extra constraints on the re-executions, e.g., spatial
separation of alternates, to improve reliability.

In this paper, we present a method for scheduling mixed
criticality real-time tasks on a distributed platform in a fault
tolerant manner while taking into account the recommendations
given by the reliability studies like ZHA and FHA. First, we use
mathematical optimization to allocate tasks on the processors,
and then derive fault tolerant and fault aware feasibility windows
for the critical and non-critical tasks respectively. Finally, we
derive scheduler specific task attributes like priorities for the
fixed priority scheduler. Our method provides hard real-time
fault tolerance guarantees for critical tasks while maximizing
resource utilization for non-critical tasks.

Keywords-Mixed Criticality Scheduling;Fault-tolerance; Real-
time Systems

I. INTRODUCTION

The increasing trend of integrating functionalities with
different levels of criticality on the same platform has in-
troduced new challenges in real-time scheduling, particularly
in providing fault tolerance guarantees and in certifying such
mixed criticality systems by a certification authority. A mixed
criticality real-time system typically consists of a set of real-
time tasks that vary in their ’importance’ in ensuring the
correctness of the system, e.g., the successful execution of
some tasks may be more important than the others. In general,
we can classify the tasks as either critical or non-critical,
based on the consequences of deadline misses; a deadline
miss on a critical task can cause catastrophic consequences,
while a deadline miss on a non-critical task can cause only
a minor degradation of the service provided by the system.
Integrating mixed criticality tasks on the same platform can
be beneficial in various ways, particularly in reducing cost and
energy consumption [1].

This work was partially supported by the Swedish Research Council project
CONTESSE (2010-4276) and Swedish Foundation for Strategic Research
project SYNOPSIS

Most of these mixed criticality systems are safety or mission
critical, and operate in environments which may introduce er-
rors in system, e.g., when using COTS components, potentially
leading to failures. Additionally, the critical tasks may need
to satisfy varying reliability requirements to facilitate graceful
degradation of the system in the event of failures. Graceful
degradation of the system under failures can constitute a
strong safety argument while getting the system certified by a
certification authority. In order to make sure that the system de-
grades gracefully under failures, the critical tasks may require
complex fault tolerance mechanisms. In classical real-time
systems, fault tolerance is typically achieved by using temporal
redundancy, i.e., by re-executing the failed tasks or executing
an alternate task. However temporal redundancy alone may
not be sufficient to guarantee reliability, for example if there
are permanent faults in the system. In this case, the tasks can
execute on a different processor while meeting their original
deadlines. A combination of temporal and spatial redundancy
techniques can be used to guarantee graceful degradation of
the system when failures occur.

In many systems, unforeseen interactions of unrelated tasks
can cause system failures e.g., two memory intensive tasks on
the same processor may cause memory overloads. Hardware
reliability studies like Functional Hazard Analysis (FHA) and
Zonal Hazard Analysis (ZHA) are done for safety critical
systems to ensure that the proposed redundancies on the hard-
ware components, e.g., wires and communication sub-systems,
indeed exist. Functional hazard analysis is first carried out on
such systems which identifies various function related events
that are of interest to the system and proposes a design
criteria based on these events. Zonal hazard analysis is then
used to analyze the physical locations of the components and
interconnections, the possible system to system interactions
and severity of potential hazards based on these factors,
i.e., it ensures that unrelated redundant subsystems are not
affected by common causes. Functional hazard analysis and
zonal hazard analysis, when applied to real-time systems,
may have a direct impact on the allocation and scheduling of
the real-time tasks, introducing extra constraints in addition
to the normal replication constraints. Such constraints may
recommend, for example, varying number of recovery attempts
for different tasks, allocation of particular tasks on particular
nodes, allocation of replicas on different nodes and physical
separation between replicas of different tasks. Integrating the978-1-4799-5026-3/14/$31.00 c© 2014 IEEE

recommendations of FHA and ZHA while scheduling real-
time tasks can improve the overall reliability of the system, as
well as contribute to safety.

Reducing development cost of the system is a major agenda
for most system designers. In mixed criticality systems, from
a certification point of view, the system needs to be build
considering the worst case scenario of only the critical tasks.
Consequently, the system designer can schedule the potential
re-executions of the critical tasks and the non-critical tasks in
an overlapping manner, with the caveat that non-critical tasks
are shed upon critical task failures to guarantee the critical
task re-executions.

In this paper, we aim to address the problem of allocation
and scheduling of mixed criticality hard real-time tasks on a
distributed system, while taking into consideration the recom-
mendations of reliability studies like functional and zonal haz-
ard analysis, when done on software systems [2]. We extend
the framework first presented in [3] and subsequently extended
to include the optimization formulation in a workshop in [4].

The main advantages of our approach are:
1) Efficient handling of task criticalities using feasibility

windows.
2) Improved processor utilization and hence cost reduction

through optimization.
3) Fault tolerance strategies covering multiple fault types.
4) Graceful degradation of the system under faults.
5) Supports the development of certifiable fault-tolerant

mixed criticality systems.
The rest of the paper is organized as follows: in Sections II
and III we present the related work and the system model
respectively. The problem statement is given in Section IV
and the methodology is described in Section V. Our approach
is illustrated by an example in Section VI, followed by
conclusions and ongoing work in Section VII.

II. RELATED WORK

There exist numerous works in the field of fault tolerant
scheduling of real-time systems. Kopetz [5] has detailed the
requirements of a fault tolerant real-time distributed system.
Ghosh et. al [6] proposed a fault tolerant scheduling algorithm
for aperiodic tasks in multi processor systems. Bannister and
Trivedi [7] proposed a simple heuristic algorithm that evenly
distributes the computational load of the tasks over the nodes.
More recently, Islam et al. [8] proposed a heuristic approach
to perform allocation by considering dependability and real-
time constraints as well as communication efficiency. In [9],
the authors presented an exact schedulability tests for fault
tolerant real-time task sets.

Baruah et al [10] presented a formal model of mixed
criticality work load and demonstrated the intractability of
mixed criticality scheduling under it. Guan et al [1] proposed
an algorithm for scheduling mixed criticality work loads.
Burns and Baruah [11] proposed two techniques for scheduling
mixed criticality systems under the assumption of timing
failures. While these works focused on transient faults, in this
paper, we consider transient faults as well as recommendations

of reliability studies like zonal and fault Hazard analysis
in scheduling mixed criticality work load in a fault tolerant
manner.

In [12], the authors underline the need for a comprehensive
zonal analysis on critical systems. Fenelon et al. [2] proposes
a design criterion based on such a kind of study when
undertaken on software systems. They have discussed the use
of safety analysis techniques in providing inputs to the design
assessment phase to adopt a suitable design strategy.

III. SYSTEM MODEL

A. Computational Model

We consider a distributed real-time system with identical
multi-processors that communicate over a reliable communi-
cation media and are synchronized by relatively loose synchro-
nization algorithms implemented in the software. We denote
the set of n tasks by Γ = {τ1, τ2, .., τn}, where each task
represents a real-time thread of execution. Each task τi has
a period Ti and a known worst case execution time Ci such
that Ci

Ti
≤ 1 ∀i ∈ [1, n]. The replication requirements on Γ are

specified by R = {r1, r2, . . . rn}, where ri ∈ [0, b Ti

Ci
c − 1].

Additionally, M = {m1,m2, . . .mn}, where mi ∈ [0, ri],
specifies the distribution requirement of τi, i.e., the number
of different nodes to be used for its replication. For instance,
m1 = 3 indicates that three replicas of the task τ1 needs to be
allocated in three different processors. We also use a binary
variable βi to denote the criticality of the task τi; βi = 1 if
τi is a critical task and βi = 0 if τi is a non-critical task. The
main task is called the primary and its recovery is called a
replica or an alternate.

The execution time of a replica of τi is denoted by Ci,
where Ci ≤ Ci. Consequently, we denote the set of critical
tasks, primaries and alternates by Γc = Γpric ∪ Γaltc , and the
set of non-critical tasks by Γnc. Additionally, we use τkj to
denote the kth replica of τj . When k = 0, τkj represents the
primary if τj is a critical task and the task itself in case it is a
non-critical task. LCM represents the least common multiple
of all the time periods of the tasks in Γ. The release time of
τkj is given by rel j k and its deadline is given by dl j k.

We assume that the tasks have deadlines equal to their
periods. Each task has three main operational stages. First
stage is the input stage where the input data is received
from sensors or other tasks. Second stage is the computation
stage and the third stage is the output stage where the output
is delivered to the next task in the task chain or to the
environment as a system output. We also assume that a task τi
can execute only on one processor at a time instant. Execution
of error detection or error handling mechanisms such as sanity
checks and re-execution of failed computations are considered
as a part of the computation stage.

B. Error Model

In this paper, we assume that a task represents a unit of
failure. This failure may be due to a value or a timing error that
compromises the correctness of the system. We also assume
another class of errors, which we refer to as zonal errors, that

Error
model Tasks

Functional/
Zonal

Analysis

Constraints

Task Allocation

Feasibility Window
Derivation

Timing
constraints

FT
requirements

Fig. 1. Methodology overview

arises due to the unpredictable interactions of unrelated tasks,
and is tolerated by ensuring physical separation of the recovery
tasks. This is assumed to be identifiable at the design time by
mechanisms such as Zonal hazard analysis [2]. We assume that
each critical task has a known error frequency which can be
determined with a high degree of confidence. We assume that
the error detection is implemented in the underlying system
and its worst case overhead is known. This error detection
mechanism flags the errors as soon as it detects one. We
assume that all the nodes have a consistent view of the errors
flagged in the system. The recovery action is performed by
the execution of a replica either in the same processor in case
of a value/timing errors or in a different processor in case of
a zonal error. It is assumed that during a recovery, the non-
critical tasks are shed to execute the alternates.

IV. PROBLEM STATEMENT

We assume a set of tasks Γ consisting of critical and non
critical tasks Γc ∪ Γnc = {τ1, . . . , τn} with associated repli-
cation requirements R = {r1, . . . , rn}, ri ∈ [0, b Ti

Ci
c − 1] and

distribution requirement M = {m1,m2, . . .mn}, mi ∈ [0, ri].
We want to find the contractual scheduling parameters for the
tasks Γ such that:

1) the schedulability of the critical tasks and alternates,
Γc = {τi ri 6= 0} is guaranteed

2) the schedulability of non critical tasks, Γnc = {τi ri =
0}, is maximized

3) the utilization on processing nodes is maximized
4) the number of processing nodes is minimized

V. METHODOLOGY

Our goal is to derive the task parameters that reflect the
criticality requirements of the real-time tasks that guarantees
their successful execution before the deadline. While deriving
the task parameters, there might be a need to split the real-
time tasks into artifact tasks, in order to maximize the resource
utilization per processor.

The task parameter derivation is performed in three steps:

A. Task allocation
B. Feasibility window derivation
C. Attribute derivation

We explain each of the steps in detail, in the following
subsections:

A. Task Allocation

In this step, the real-time tasks are allocated to the multi-
processors, considering the allocation constraints that result
from studies like functional and zonal hazard analysis. The
main constraints here are replication constraints, that specify
the number of times the tasks have to re-execute before
failing, and distribution constraints that require some of the re-
executions to be carried out on a different processors. We use
mathematical optimization to achieve an efficient allocation of
the tasks to the processors, that satisfy the required constraints.

Let Pi be the variable that indicate whether the ith processor
is used. Our goal function is to minimize the number of
processors:

G =

MAX∑
i=1

Pi, MAX = n+

n∑
j=1

mj

The MAX represents the number of processors required to
schedule the tasks and their last mi replicas (that has to be
scheduled on a different processor) exclusively to a processor
each.

Let Pi j k be the binary variable that represents whether
the kth replica of the task τj (i.e., τkj) is allocated to the
ith processor. Here, Pi j k can be either one or zero with
one indicating that τkj is allocated to processor Pi and zero
otherwise.

∀i ∈ [1,MAX], ∀j ∈ [1, n] and ∀k ∈ [0, rj]

Pi j k ≤ 1

Note that rj = 0 for a non-critical tasks and the equation for
the constraint remains valid.

If any one of Pi j k = 1, then the corresponding Pi is
also 1, i.e., ∀i ∈ [1,MAX],

Pi =

n∑
j=1

rj∑
k=0

Pi j k

1 +

n∑
j=1

rj∑
k=0

Pi j k

Here, we sum up the Pi j k’s and divide the sum by one
more than this sum and find the smallest integer greater than
or equal to the result. In case the Pi j k’s sum up to zero,
the one in the denominator will make sure that a divide by
zero error does not occur. If they do not sum up to zero, we
get one since any number when divided by a larger number
will result in a value between zero and one, the ceil of which
will give a zero or one.

The release time of the primary of a task τj , given by
rel j 0, is set to the start of its period, i.e., ∀j ∈ [1, n]

rel j 0 = 0

Similarly the release time of τkj , given by rel j k, is set to
the deadline of the previous replica i.e., τk−1

j for each critical
task τj :

∀j ∈ [1, n], ∀k ∈ [1, rj] and βj = 1

rel j k = dl j (k − 1)

The minimum size of a window of the primary of a task or
its replica, defined by a release time and deadline should be
at least equal to the WCET of the task or its replica. We write
this constraint as two constraints; one for the primary and the
other for the replicas since the primary and the replicas can
have different execution times and also because non-critical
tasks do not have replicas. That is, ∀j ∈ [1, n],

dl j 0 ≥ rel j 0 + Cj

and,
∀j ∈ [1, n], ∀k ∈ [1, rj], and βj = 1

dl j k ≥ rel j k + Cj

The deadline of the replica k of τj should not lead to an
infeasibility in the derivation of a valid execution window for
the replica k + 1 of the same task.

∀j ∈ [1, n], ∀k ∈ [0, rj], and βj = 1

dl j k ≤ Tj − ((rj − k)× Cj)

Similarly, the deadline of a non-critical task must be less than
or equal to the end of its period, i.e., ∀j ∈ [1, n], and βj = 0:

dl j 0 ≤ Tj

The two constraints given above specifies an upper bound
on the deadlines of a feasibility window. The first constraint
bounds the deadline of a replica k such that there is provision
to derive valid feasibility windows for replica k+1, of at least
the minimum size which is equal to the execution time of the
replica.

The next constraint ensure that the last mj replicas of τkj ,
are allocated to different processors.

∀i ∈ [1,MAX], ∀j ∈ [1, n], and βj = 1

Pi j 0 +

rj∑
k=rj−mj+1

Pi j k ≤ 1

Here either Pi j 0 or one of the last Pi j k’s can be equal
to 1.

The next constraint ensure that the primary and the replicas
of a task are indeed allocated to one of the processors i.e.,
none of them remain unallocated.

∀k ∈ [0, rj], and ∀j ∈ [1, n]

MAX∑
i=1

Pi j k = 1

The above constraint mandates that at least and only one of
the Pi j k of τkj is equal to one for i ∈ [1,MAX].

The last set of constraints ensure that the processor uti-
lization demand during any time interval does not exceed the
length of the interval. This ensures the schedulability of the
tasks allocated to each processor. The important problem here
is to allocate the tasks in such a way that the non-critical
tasks (βj = 0) and the replicas of the critical tasks (βj = 1)
are allocated in a mutually exclusive manner. This is because
non-critical tasks can be scheduled in overlapping windows
with that of the replicas since the non-critical tasks are shed
upon errors. This is achieved by two sets of constraints on
the utilization of each processor: one ensuring that the total
utilization of all critical tasks and its replicas scheduled on
a processor is less than 100% for any time interval and the
total utilization of critical and non-critical tasks scheduled on
a processor is less than 100% in any time interval on the same
processor.

The constraint while allocating the critical task primaries
and their replicas is, ∀i ∈ [1,MAX], t1 < t2,∑

τz
x∈Γc

ηx,z(t1, t2)C ′x ≤ t2 − t1, ∀t1, t2

Where, ηx,z(t1, t2) gives the number of instances of τzx re-
leased in the interval [t1, t2] and C ′x = Cx when the primary of
τx is considered and C ′x = Cx when its alternate is considered.
The above constraint ensures that the processor utilization
demand during any interval does not exceed the length of the
interval while allocating the critical tasks’ primaries and its
replicas.

The next set of constraints ensure the schedulability of the
critical tasks’ primaries along with the non-critical tasks.

∀i ∈ [1,MAX], t1 < t2∑
τ0
x∈Γpri

c ∪Γnc

ηx,0(t1, t2)Cx ≤ t2 − t1, ∀t1, t2

Where, ηx,0(t1, t2) gives the number of instances of τ0
x

released in the interval [t1, t2].

B. Feasibility Window Derivation

In order to derive the attributes that guarantee schedula-
bility, we first derive feasibility windows, which are temporal
windows that provides offline or online guarantees to the tasks
depending on their criticality.

We define two types of feasibility windows:
1) Fault Tolerant (FT) feasibility windows for critical tasks
2) Fault Aware (FA) feasibility windows for non-critical

tasks
A Fault Tolerant Feasibility Window (FTW) is a temporal
window in which a critical task has to complete its execution,
such that it can feasibly re-execute (i.e., before its original
deadline) upon an error. A Fault Aware Feasibility Window

A

B

FA deadlines

FT deadline

6 4

6 3 2

release time of a task deadline of a task

Fig. 2. FT and FA feasibility windows

(FAW) is a temporal window allocated to non-critical tasks,
in order to control their interference with the critical ones, i.e.,
the execution of a non-critical task may not jeopardize the fault
tolerant execution of any critical one. We use the method that
we proposed earlier in [13] to derive the feasibility windows.

Let us consider 2 tasks A and B, where A is a non-critical
task and B is a critical task. Let the time period and execution
time of A be 3 and 2 respectively and that of B be 6 and 2. Let
us assume that the maximum number of re-executions required
by B is 1.

a) Fault Tolerant Feasibility Window Derivation: The
latest time at which the alternate of task B should start
executing to enable one feasible execution is given by its
deadline minus the worst case execution time of the alternate.
Since, according to our assumption, the WCET of the alternate
is no greater than the WCET of the primary, the alternate of
task B must start executing at time t = 6−2 = 4 to guarantee
its successful execution. Hence the FT feasibility window of
the primary of B is given by the interval, (0, 4] and that of its
alternate is given by the interval (4, 6] as shown by the figure.

b) Fault Aware Feasibility Window Derivation: To derive
the FA feasibility window for task A, we first schedule the
primary of b to execute as late as possible and schedule A
in the remaining slack. The figure shows the FA deadlines of
task A. Hence the FA-feasibility window of task A is (0, 2]
for its first job and (3, 6] for its second job.

In some cases, it might not be possible to derive FA-
feasibility windows for the non-critical tasks. In these cases,
the non-critical tasks are assigned with their original feasibility
windows, given by their original release times and deadlines,
and while deriving task priorities, they are assigned a back-
ground priority so that they do not influence the critical task
executions.

C. Attribute Derivation

Once the feasibility windows are derived for every task,
we need to derive attributes that guarantee the task execu-
tions before its deadline. Remember that critical tasks and
their re-executions are provided offline guarantees, while the
non-critical tasks are provided online guarantees. Since, we
assume an FPS scheduler, we use integer linear programming

presented [13] to derive the task priorities. During the priority
derivation, there might be a need to split the tasks into artifact
tasks, to maximize resource utilization. The use of integer
linear programming ensures that the number of such splits
is kept to the minimum. In cases where no valid feasibility
windows were derived for the non-critical tasks, the tasks
are assigned a background priority. These non-critical tasks
execute only if there are enough resources at runtime e.g.,
in a better than worst case error scenario. Hence, the derived
task parameters guarantee critical tasks and their re-executions
offline, and provide the non-critical tasks with better levels of
service whenever the runtime scenario permits.

VI. EXAMPLE

We illustrate the proposed methodology by a simple exam-
ple. Consider a set of tasks Γ={A,B,C,D} with parameters
specified in Table I. We denote the kth alternate of the task

TABLE I
SET OF TASKS- EXAMPLE

τi Ti Ci Ri Mi Ui(pri+ alt) βi
A 10 2 2 1 0.6 1
B 5 2 1 1 0.8 1
C 5 1 0 0 0.2 0
D 10 6 0 0 0.6 0

A and B by Ak and Bk. In our example, task A has Ti=10,
Ci=2, Ri=2, Mi=1, which means that, the last of A’s alternate
needs to be executed in a different node than its primary.

The optimal allocation of the critical primaries, its alternates
and the non-critical tasks in Fault Tolerant and Fault Aware
Feasibility Windows, will result in a fault tolerant schedule
in the minimum number of processors. The allocation of the
FT/FA feasibility windows and the task executions in the worst
case error occurrence scenario, is presented in figure 3.A. In
this scenario, A0, B0 and A1are hit by faults. Hence, the non-
critical task D is shed due to the temporary overload on node
2, while C can still feasibly execute. At runtime, however, it
is unlikely that the worst case scenario will occur. Consider
that only the primary of A, i.e., A0 is hit by an error in
addition to the error on B0. In this case, A1 successfully
execute as a result of which the execution of A2 is no longer
required. This creates the sufficient slack for the execution of
task D, as illustrated in Figure 3.B, as a result of which D
can execute successfully. Note that the fault tolerant and fault
aware windows of the tasks in Figure 3.B are the same as in
Figure 3.A.

In any case, the execution of the critical primaries and
alternates are guaranteed feasible execution on the minimum
number of nodes.

VII. CONCLUSIONS AND ONGOING WORK

In this paper we present an approach for scheduling mixed
criticality real-time systems, by providing real-time guarantees
for the critical tasks offline, while ensuring flexibility for
the non-critical tasks. Mathematical optimization is used to

A2 B0 B0

B1 B1 A1

D D B0 B0

A0 B1 B1 A1

A0 C C

C C

FTW(A2) FTW(B0) FTW(B0)

FTW(A) FTW(A1)

FTW(B1) FTW(B1) FAW(C) FAW(C)

Maximum
error
occurrence

N
o

d
e

1

10 5 8 6

10 5 3 8 N
o

d
e

2

5 3

10

10

5

8

8 6 Less than
maximum
error
occurrence

N
o

d
e

1

N
o

d
e

2

D D

(A)

(B)

D is shed
during recovery

D executes
successfully

Fig. 3. (A). Allocation and execution under worst case error scenario (B).
Allocation and execution under average case error scenario

derive optimal feasibility windows for task executions and re-
executions while minimizing resource usage. The re-execution
requirements are derived from studies like Functional Hazard
Analysis and Zonal Hazard Analysis to maximize safety and
reliability.

Future works will focus on the implementation of the
proposed approach and comparison with other approaches,
extensions to incorporate energy aware mechanisms and mi-
gration of non-critical tasks to gain even better levels of

service.

REFERENCES

[1] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,” in The
IEEE International Real-Time Systems Symposium, December 2011.

[2] P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey, “Towards
integrated safety analysis and design,” SIGAPP Appl. Comput. Rev.,
1994.

[3] A. Thekkilakattil, R. Dobrin, S. Punnekkat, and H. Aysan, “Optimizing
the fault tolerance capabilities of distributed real-time systems,” in
14th International Conference on Emerging Technologies and Factory
Automation, WiP, 2009.

[4] A. Thekkilakattil, H. Aysan, and S. Punnekkat, “Towards a contract-
based fault-tolerant scheduling framework for distributed real-time sys-
tems,” in The 1st International Workshop on Dependable and Secure
Industrial and Embedded Systems, June 2011.

[5] H. Kopetz, “On the fault hypothesis for a safety-critical real-time sys-
tem,” in Automotive Software Connected Services in Mobile Networks,
Lecture Notes in Computer Science, 2006.

[6] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerance through schedul-
ing of aperiodic tasks in hard real-time multiprocessor systems,” IEEE
Transactions on Prarallel and Distributed Systems, 1997.

[7] J. A. Bannister and K. S. Trivedi, “Task Allocation in Fault-Tolerant
Distributed Systems,” Acta Informatica, Springer-Verlag, 1983.

[8] S. Islam, R. Lindstrom, and N. Suri, “Dependability driven integration of
mixed criticality sw components,” Ninth IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing,
2006.

[9] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” 1996.

[10] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2010.

[11] A. Burns and S. Baruah, “Timing faults and mixed criticality systems,”
in Dependable and Historic Computing, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011.

[12] R. Caldwell and D. Merdgen, “Zonal analysis: the final step in system
safety assessment [of aircraft],” 1991.

[13] R. Dobrin, H. Aysan, and S. Punnekkat, “Maximizing the fault tolerance
capability of fixed priority schedules,” in The 14th IEEE Internationl
Conference on Embedded and Real-Time Computing Systems and Ap-
plications, 2008.

