
Software Architectures for Real-time Systems

Anders Wall
Department of Computer Engineering
Mälardalen Real-Time research Center

Mälardalen University
Sweden

anders.wall@mdh.se
MRTC Technical Report 00/20, May 2000.

ABSTRACT

The solution to the complex nature of developing software is software engineering.
Software engineering provides techniques for structured design, formal- and informal
analysis, and software metrics. The part of software engineering concerned with high-
level design and analysis is called software architectures. The objective of
architectural analysis is to verify quality requirements on software. It can be applied
on any level in the design but it focuses on the structure of the software. While the
architecture provides a high-level abstraction of the software, divergences between
the designed system and the requirements can be detected early in the design phase.
However, the structure of the software alone does not always provide enough
information in order to analyze all requirements put upon a software system.
Additional information about the software construction is provided by different
architectural views. The number of views, and their contents varies depending on the
system domain and the required quality properties to analyze.

In this report, the state of the art in the field of software architectures is described.
The survey is focused on software architectures for real-time systems but many of the
described techniques can be applied to general software systems.

2

3

 Contents

1 Introduction ..5

1.1 Towards a definition..6

1.2 Open research areas ...6

1.3 Outline ..7

2 Architecture description languages...9

2.1 Desired properties of an architecture description language9

2.2 Semantics of an ADL ..10

2.3 Examples of existing architectural description languages...11

3 Architectural views...13

3.1 Discussions ...18

4 Architectural analysis ..19

4.1 Methods for architectural analysis ...19

4.2 Functional analysis ..21

4.3 Nonfunctional analysis ..26

5 Architectural design ...31

5.1 An example ...32

6 Conclusions...35

7 References ...37

Appendix A - Terminology ..41

4

5

1 Introduction
The number of projects in industry developing software is constantly increasing. Software is
not only replacing old and well-established technologies, but also increasing in size and
complexity. To manage the complexity, engineering methods for constructing software
needed, i.e. software engineering. Software engineering has been established as a broad
discipline that covers topics ranging from requirements capture, design, implementation, and
software metrics, to maintenance, verification and validation. An established engineering
practice is taken for granted in many engineering disciplines but not in the software
community. In order to be considered an engineering practice, we must be able to construct
models that can be analyzed and verified. Moreover, design methods are needed including
established techniques that have been proven successful as well as tools supporting the
methods. The part of software engineering that focuses on high-level design and analysis is
called software architectures.

Edsger Dijkstra pointed out in a paper from 1968 the importance of partitioning and
structuring software, in contrast to just focusing on programming to produce the correct
functionality [dijk68]. This is what software architecture, and software architectural analysis
is about as it deals with how to structure a software system and how to evaluate that
structure with respect to different quality properties. The interest in the software architecture
field has increased lately due to the increased functionality provided by software systems,
the increased size and complexity, and the increased cost of developing and maintaining
software products. Today, industry is aware of the benefits of being able to analyze and
verify software constructions in an early phase of the development process. If a software
development project diverges from the functional requirements or the quality requirements,
and if those divergences are not detected early, the cost of revising the design in the end of
the project will be significant due to redesign. Almost 80 percent of the cost for developing a
software product are spent after the initial design and implementation phases [Clem96b].
These 80 percent spent on maintenance, which includes error detection, correction and
evolutionary development.

Not only does a structured description of a software system constitute a basis for
architectural analysis, it can also improve the productivity of new members in a project. The
architecture provides a simple and holistic view of the whole system. This is very important
since complex system usually engage a lot of people, all with unique competencies, at
different stages of the development process. Since designing real-time systems usually
require multi-disciplinary knowledge, it is very important to have an architectural description
that can be understood by software engineers as well as control and mechanical engineers.
Furthermore, many software projects employ a lot of consultants. Consultants may have
little knowledge of a company’s product line and need a quick briefing in order to get
productive and cost efficient.

The complexity of software systems also causes problems when maintaining and correcting
errors in a software product. It is seldom possible to, in advance, be aware of all the side
effects that particular a correction may give rise to. If an architectural description is at hand,
it could give some guidance on what modules are most likely to be affected by the
correction. This is highly related to evolutionary development. If the architecture of the
software construction is violated, it ceases to exist in its former shape. The construction still

6

has an architecture, but as long as the architecture is not explicitly, and correctly described,
it is of no use. Consequently, the architectural description may, and should, evolve as the
construction that it describes evolves.

1.1 Towards a definition

There are almost as many definitions of software architecture in the literature as there are
software architects and designers. We mention a few examples:

The software architecture of a program or computing system is the structure or
structures of the system, which compromise software components, the external visible
properties of those components, and the relationships among them [BCK98].

In [Paul94] the following definition is given:

 Software architecture not only reflects how the functional requirements are met, but
addresses:

1. non-functional requirements

2. design rationale

3. architecture style

Yet another definition is provided in [Clem96a]:

A view of a system that includes the system’s major components, the behavior of
those components as visible to the rest of the system, and the ways in which the
components interact and coordinate to achieve the system’s mission.

One property that seems to be common among almost every proposed definition is that the
software architecture describes a system by a composition of its software components and
their interrelationships. In addition, software architectures should provide a high level
description, i.e. a more abstract level than the level that algorithms and data structure
provides. However, defining a software architecture only as a syntactical representations of
components and their interconnections in the software systems is not sufficient. To be useful,
additional information must be present in the description, in particular the semantics of
components and connections. Different domains of software systems have different
semantics of their software architectural description. A domain defines the class of
application to which a product belongs, e.g. desktop applications and industrial control
applications. As a consequence, there will be variations in the definitions of software
architectures depending on the domain. Furthermore, the definition also depends on the aim
of the architectural description, e.g. support for architectural analysis, representation or
description of the designed system. It is probably impossible to unify software designers in
one single definition as it depends on the aim of the architecture and the domain in which it is
used. What we can state is that software architecture is a description of the software
structure and methods to evaluate and compare design solutions.

1.2 Open research areas

As software architecture is an immature research area, a lot of open questions still exist.
Most of the ongoing research in the field of software architectures is focused on description
languages and analysis of architectures for non-real-time systems. The analysis methods are

7

still informal in their nature. As the analysis methods are informal they provide rough metrics
and estimations. We believe that formality can be added to architectural models. Thus, the
models can provide means for formal verification of some of the quality properties that are
listed in this survey.

Most of the material on software architectural analysis found in the literature ignores the
temporal aspects. By adding the temporal dimension on software, completely new problem
arises. As an example, components developed for real-time systems, i.e. system for which
correctness depend on both the functionality and the temporal correctness, can not be
reused in new environments unless at least the temporal constraints are still fulfilled. Quality
properties such as flexibility, i.e. the ability of a software system to adopt new, or remove
old functionality, are also important. As real-time systems are restricted to resources such as
processors, communication busses, etc., a lot of additionally parameters must be taken into
account in such an analysis.

The tool support for architectural design and analysis is poor. Tools that support the
complete process of developing an architecture are needed. Today, architectural tools for
real-time systems almost exclusively focus on schedulability analysis. As indicated in this
report, there are a lot of other important properties of real-time systems software. However,
implementing such tools is non-trivial. One approach is to use existing tools for automatic
verification. This can be done if the problem of analyzing a specific quality property can be
transformed into a property that can be verified using that tool. Examples of existing tools for
formal verification are UPPAAL and KRONOS [LPY97][DaYo95].

1.3 Outline

Chapter 2 discusses architectural description languages and desired properties of such. In
Chapter 3, the architectural view necessary for an architectural analysis of real-time software
architectures is discussed. Architectural analysis is dealt with in Chapter 4. Finally, Chapter
5 concludes the report. Terminology used in the paper is explained as it is used. Appendix A
provides, however, a complete list of the vocabulary together with a short explanation.

8

9

2 Architecture description languages
Communication among software engineers is crucial. Without means for communication,
important information into- and from the design phase might accidentally get lost, resulting in
misinterpretations. Moreover, a system designer must be able to communicate with
customers, other project members and management in an unambiguous way. An
unambiguous architectural description is also a necessary condition for performing
architectural analysis. A parable is the building trade, where building architects transform the
customer requirements into a design. This design must be described in a way the building
constructor understands in order to do mechanical strength calculus and for building workers
to use as a blueprint. When developing software, a software engineer formalizes the
customer requirements. Based on the requirements, a high-level design is described in a
language that is commonly understood by customers and designers. The common language
is a necessity in order to communicate and discuss design solutions. As output from the high-
level design phase, one or several candidate architectural solutions are produced.

To verify that the quality requirements of the system are met by the architectural solutions,
the architecture has to be analyzed. Hence, the description language used in the high-level
design must support the analysis methods. Once a software architecture is constructed that
fulfils the requirements, the architectural description is used as a ”blueprint” when
implementing the system. In addition, an architectural description makes maintenance easier
since it facilitates the understanding how parts of software systems cooperate. Thus, the
parts of a software system, i.e. components and sub-systems, affected by a correction are
detected in advance.

2.1 Desired properties of an architecture description language

Languages for architectural description are called Architecture Description Languages
(ADL). There is an abundance of ADL:s, each of them with its own specific syntax,
semantics, expressiveness and purposes[EHLS94][LKAV93][Vest94]. An ideal ADL
should however, provide six classes of properties: composition, abstraction, reusability,
configuration, heterogeneity and analysis [SHGA96]. By composition is meant that a
software system should be described as a composition of components and connections.
Furthermore, components and connections must also be described in a way that clearly and
explicitly describes the exact role of each element, i.e. modeled on an appropriate level of
abstraction.

As components are reused in different applications that are described using different
description languages, the architectural description must be able to adopt to reuse. That is, it
should be possible to reuse components, connectors describing the interconnection between
components and architectural patterns in different architectural descriptions. Related to
reusability is heterogeneity. Heterogeneity is the possibility of combining different
heterogeneous architectural descriptions.

Configuration means that the architectural structure among components in the system
should be separated from the structure in the components. The language should also support
dynamic reconfiguration. As will be discussed in Chapter 3, the structural view describes all

10

components and connections, whereas the module view unveils the structure of each
component.

Finally, as high-level design analysis is one of the primer justifications for using software
architectural techniques, the architectural description must support different kinds of
analyses.

Considering the desired properties of an architectural description above, how can a
software architecture be described? One possibility is a plain textural description in a natural
language. However, natural languages tend to be ambiguous, making them really hard to
interpret in a consistent manner. By using a formal language an unambiguous description is
obtained. With formal languages it is possible to use mathematics when modeling and
verifying the architecture. The disadvantage of using formal languages as architectural
descriptions are that most of them requires a lot of experience and mathematical skill.
Consequently, such a description may be sufficient and useful at some stage in the design
process but not for communication with partners in a project without a computer science
background. By relaxing the formality, a semi-formal, graphical representation may be
obtained. Even inexperienced people can get a feeling for how a system is constructed by
interpreting a graphical representation. The semi-formal description also permits analyses
and quality predictions to be made as described later in this report. The graphical approach
has been adopted by many of the available ADL, where the software design is constructed

using components and their interconnections in a 4th generation language manner as
illustrated in Figure 1.

2.2 Semantics of an ADL

The architectural description in Figure 1 provides only the information that there are tree
components in the system, which are connected to each other. The connections could
indicate a class hierarchy or a network communication link over a distributed hardware
architecture. As stressed by Clements and Northrop [Clem96b], it must be known exactly
what the components are, what the connections mean and what the position of the
components imply, i.e. a well-defined semantics. If the semantics is not clear the
architectural description is quite useless.

Component A

Component B Component C

Figure 1. A graphical software architecture
description.

11

One single architectural description language can not fit the desired level of abstraction for
every different software domain and application. There is for example a big difference
between designing a real-time system with hard- and soft temporal requirements compared
to designing an administrative application with database management and transactions.
Consequently, we need a unique description language for every application domain.

Even though there must be differences in the architectural description depending on the
application domain, there might exist a least common denominator. Such a least common
denominator could, for instance, consist of components and connections. But the
significance of a connection or a component could be domain specific.

If the ADL has an unambiguous semantics, design tools for architectural analyses can be
developed [ERGUSA97] [LPY97]. However, analysis of quality properties usually requires
more information than just the architectural structure. This additional information is provided
by the architectural views and is discussed in Chapter 3.

2.3 Examples of existing architectural description languages

There exist several architectural description languages for real-time systems. Typically they
differ in their expressiveness and formality. As an example of a formal modeling language
that can be used for describing architectures for real-time systems we use timed automata
[ALDI92]. Architectures are described in timed automata as a network of finite state
machines, where a process or a component is one state machine. Synchronization channels
connect processes in timed automata to each other. A synchronization channel defines the
name of the signal used for synchronization. Thus, architectural interconnections are
described using synchronization. Below is a more rigorous description of timed automata.

A timed automaton is a finite state machine extended with real-valued clocks that increases
uniformly. Moreover, transitions in a timed automaton are decorated with guards and
actions. Guards are clock constraints that enables or disables a transition, i.e. if the guard is
true then the transition can be taken. In Figure 2, the transition from S1 to S2 can be taken if
the clock x has a value greater than 10 time units.

S2

x>10

S1

Figure 2. A simple timed automaton

Actions enable synchronization between different timed automata in a rendezvous manner,
i.e. processes halts until both participating processes can synchronize. This indicates that a
complete system is modeled by a set of timed automata, such a set is called a network and
consists of the parallel composition of the included processes. Consider Figure 3 where a
small network is displayed consisting of two processes, A and B.

12

S1 S2

S3

a!

S4 S5

S6

a?

A B

Figure 3. A network of timed automata processes

Whenever process B is in state S5, it will wait for another process to send a signal on
channel a. The question mark after the channel name indicates that B is waiting for the signal.
As long as no signal is being sent on channel a, B is stuck in state S5. As soon as process A
reaches state S3, the processes can synchronize and the processes progress to S1 and S4
respectively. During this transition, no clocks are progressing, i.e. it is a discrete transition.
Models of timed automata can be constructed and automatically verified using existing
model-checking tools, e.g. UPPAAL and KRONOS [LPY97][DaYo95].

Another example of an ADL for real-time systems is MetaH [Vest94]. This is a language
that models a system on level of abstraction higher than timed automata. MetaH provides
means for specifying real-time processes, referred to as tasks, that can be either periodic or
aperiodic, communication among tasks, modes and composites of processes and modes
that are called macros. Furthermore, the hardware allocation of processes and
characteristics of the hardware such as channels that are used for communication among
processors can be specified. As the temporal properties of tasks and modes are provided in
the models, MetaH support different kinds of real-time analyses such as schedulability
analysis. There exist a graphical tool that supports the modeling in MetaH and analysis of
real-time software architectures described in MetaH. The schedulability analysis in this tool
is based on rate-monotonic [LILA73].

13

3 Architectural views
Architectural views constitute an important part of a software architectural description as
they expose architectural information apart from only the structure. In Figure 4, architectural
description languages for different software families (domains), are viewed as an inheritance
graph. The top node includes description primitives shared by all domains (compare with a
virtual base class in the object orientation community). Two common description primitives
could, for example, be syntactical symbols representing components and the connections
between components. This means that components and links can describe the structure of
any sub-domain of software applications. However, the component primitives and the
connection primitives have no semantics in the top node. Semantics and new syntactical
symbols will be added while moving down in the inheritance hierarchy. For instance, the
semantics of a component in a real-time system is probably a task, and the links are the
communication among tasks or precedence relations. In an administrative software
application on the other hand, components are most certainly databases or user interfaces,
and connections denote database transactions.

The nodes in Figure 4 are intentionally displayed in a 3-dimensional manner. Each side of a
cubical node is a metaphor for a unique view of the architecture. There might be arbitrary
many different views, depending on the needs for verification and analysis in a software
development project.

In this Chapter, views important for the real-time systems domain are discussed. Note that
not all views must be modeled in a project developing real-time systems. Only the views
sufficient for the analyses required must be present in the architectural description. The
names of the views and their contents are not standardized but we propose the following:

• Structural view

• Module view

• Logical view

• Hardware view

All domains

Administrative Real-Time System ...

... Periodic

... Static Schedule

Figure 4. Architectural description and view hierarchy.

14

• Temporal view

• Communication view

• Synchronization view

Structural view

The structural view describes the overall architectural design and style, providing the highest
level of abstraction. This is the natural starting point for an architect designing a software
system. The structural view consists of software modules and their interconnections, i.e. the
interfaces between them. The syntactical representation of modules and connections is
optional but should be uniform within the development project for the sake of
communication among engineers.

As design on this level is rather rapid, it is possible to design several competing architectures
for evaluation and comparison. Once a software architecture satisfying the quality
requirements is selected, it is settled. Depending on the required analyses, more views might
have to be modeled in order to make a correct decision. For instance one or more of the
views proposed in this chapter could be considered.

In Figure 5, the structure of a system consisting of four components is displayed. The arrows
between the components represent function calls through the component interfaces.

Module A

Module DModule C

Module B

Figure 5. The structural view of the software architecture.

In the design methodology called Module Approach to Software Construction,
Operation and Test (MASCOT), the structural view is modeled with a diagram called the
decomposed component level view [Masc87]. This view provides a decomposition of a
sub-system into its main constituents, i.e. its tasks.

The object-oriented methodology for real-time systems called Hard Real-Time
Hierarchical Object-Oriented Design (HRT-HOOD), also has a structural view that is
provided by the so-called parent-objects [BuWe94]. A parent-object is a component on its
highest-level that may be further decomposed.

The corresponding abstraction for networks of timed automata is the processes. A system
modeled in a network consists of a set of automata (processes). Each of these processes
could be seen as a component. The interconnections are modeled using synchronization
actions. Interconnections visualize the data flow. Information of the control flow is given by
the logical view, which is discussed in Chapter 3.3.

15

Module view

The module view exposes all the functions, methods or sub-modules in all the components
modeled in the structural view. A software component is a software module, which is
further, decomposed into functions and sub-modules in order to unveil the division of
functionality. This view should also describe the interactions between the functions. It is, for
example, desirable that the interaction between functions in different components is held to a
minimum. Some communication between components is necessary, but the communication
must be performed trough well-defined interfaces that conceal the underlying functionality.

Hierarchical methods such as MASCOT and HRT-HOOD both provide means for
component decomposition. In MASCOT the module view becomes the structural view as
each component is refined, while in HRT-HOOD, the module view is described by child-
objects derived from each parent-object.

Figure 6. The Module view of components.

Logical view

In this view the functions from the module view is described in more logical details. It serves
as a model of the actual implementation, which can be used as a low-level description or
constitute the basis for formal verification. Some possible descriptions are state machines or
algebra like CCS [Miln87]. These are all different ways of describing the functionality of
software formally. State machines can be of different types depending on the application.
For example, timed automata can be used for real-time systems as it provides a notion of
time as well as concurrency [ALDI92]. If time is of no concern, an ordinary state machine
can be used. CCS is a process algebra with which it is possible to model concurrent
systems. Such algebra is useful when modeling communication and synchronization, which is
essential when designing real-time systems.

In Figure 7, The logical view for the sub-components is modeled using time automata. The
upper sub-module synchronizes with the lower sub-module by sending signal a.

From the software architecture perspective, the logical view may be on a far too detailed
level since software architectures are descriptions of software systems on a higher level than
algorithms. However, this view will eventually be implemented, if not in logic so in the
chosen programming language which in itself is a formal description of the specification.

The logical view is of no interest when settling the architectural style. It provides a basis for
formal verification and in the end the program source code.

16

a!

a?

Figure 7. The logical view.

Hardware view

If the system is distributed, i.e. a set of interconnected and geographically separated CPUs,
or a multi-processor system, i.e. a set of interconnected and geographically collected CPUs,
there might be requirements of pre-allocated functionality among the nodes in the system.
Such an allocation will affect the final architecture and the performance of the application.
Yet another reason for having a hardware view description in the software architecture is the
issue of portability. If software should be easy to move between different types of platforms,
the dependencies to the hardware and the operating systems must be encapsulated from the
rest of the software system. One can discuss whether this is a software architectural view or
not, but as long as hardware has an impact on the software architecture, we consider it a
view.

Processor 1

Processor 2

Figure 8. The processor allocation in the hardware view.

In the Yourdon Structured Method (YSM), the allocation of functions to hardware
processors is called the processor environment model [Cool91]. Besides the function
allocation, this view reveals the data that will be communicated among the processors.

Temporal view

The views discussed so far are common among different software families and consequently
reside in the topmost node in the architectural hierarchy shown in Figure 5. The temporal
view is, however, domain specific. As the correctness of a real-time system not only
depends on correct function, but also correct timing, the temporal constraints must be

17

present in the architecture. By correct timing we mean not too early and not too late. In
order to verify whether or not tasks in a real-time application will be schedulable, i.e. all
temporal constraints are fulfilled such as all deadlines are met, we need a view of the
temporal requirements.

The temporal view contains data such as release time i.e. the earliest start time of a task, the
deadline i.e. the latest completion time of a task, the period time (the frequency) of a task,
etc. We say that a task model determines the exact content of the temporal view. The exact
appearance of a task model varies depending on the execution strategy. The execution
strategy defines the rules that determine what task to execute.

As an example of a variation in the temporal view, consider a periodic task that samples a
sensor in a process. As the sampling should be performed with some specific frequency in
order to obtain a correct view of the process, a period specifying the interval between two
consecutive executions of the sampling must be specified. In contrast, if the application is
purely event trigged, i.e. tasks have arbitrary release times, there is no need for specifying
period times. Instead, the minimum inter-arrival times must be specified for the tasks.

HRT-HOOD has a temporal view that is divided into two parts, one that describes the
execution strategies for a class and one that provides the temporal attributes. The execution
strategy can be either cyclic or sporadic. Depending on the execution strategy, classes can
be assigned, e.g. period times, minimal inter-arrival times, and deadlines.

In timed automata, clocks and guards on clocks describe the temporal view.

Communication view

For telecommunication systems, and for real-time systems in general, it is desirable to model
communication among tasks and processes. Communication is typically performed using
messages and signals that are sent back and forth in the system, either locally on one
processor or among nodes in a distributed system. For this purpose the communication view
can be used. In Figure 9, the communication is visualized with Message Sequence Charts
(MSC). The vertical line in each process depicts time which increase downwards. The
horizontal lines between the processes depict the messages or signals.

P 1 P 3P 2

msg 1

msg 2

msg 3
msg 4

Figure 9. Message Sequence Chart

The MSC can be translated into ordinary finite state automata which makes it possible to
formally verify them using, for instance, temporal logic [LaLe94].

18

Synchronization view

As real-time systems often are multi-tasking systems having several tasks running
concurrently, it is necessary to synchronize access to shared resources in order to avoid
inconstancy. Tasks that uses a shared resource must mutually exclude each other, i.e. only
one task can use the resource at the time. There exist several techniques for handling mutual
exclusion in real-time systems, e.g. semaphores, signals or separation of task in time. In
addition, to guarantee precedence relations, i.e. requirements of the execution order among
tasks in a system, synchronization is necessary.

What synchronization technique to choose depends on the provided infrastructure, i.e. the
real-time operating system (RTOS), and the available task models. For instance, if the
system is pre-run-time scheduled, i.e. a pre-runtime generated table defines the execution
order of the tasks, time-vise separation of tasks can be used. On the other hand, if the
system is event-triggered, and semaphores are the only means for synchronization provided
by the infrastructure, the semaphore approach must be used.

The information unveiled in the synchronization view is implicitly present in other views
discussed in this section. For instance, if synchronization is resolved by separation in time,
this is visible in the temporal view, or if signals are used, this is visible in the communication
view.

In MASCOT, communication and synchronization is modeled using paths along which
entities communicate. A path can indicate a dependency to commonly used data, or a
dependency to another entity that results in a sending/receiving of messages.

Communication and synchronization between processes can be modeled in timed automata
by using synchronization actions.

3.1 Discussion

All the different views should not be designed in the beginning of a development project.
Instead an iterative process is often preferred. For some applications, some of the views can
be excluded. For instance, if there is no distribution and no requirements regarding
portability, the hardware view may be excluded.

There exist relations among different architectural views. The relation between the structural
view and the module view is obvious as the module view provides a decomposition of the
architecture specified in the structural view. The logical view defines the ”low-level-design”,
specified in some formal language suitable for formal verification of, for instance, the
communication and synchronization among the modules in the software system. The
schedulability of a distributed real-time system depends on how tasks are allocated, i.e. how
the tasks are distributed. The allocation affects the utilization of each processor and the time
spent on communication between tasks allocated on different processors.

19

4 Architectural analysis
The main incitement for using software architecture notation when designing a software
system is the ability to analyze and verify the design in an early stage of the development
process. By comparing different candidate architectures, confidence in early design
decisions is achieved. Such a comparison is done by listing pros and cons for each
architectural solution according to the quality requirements put on the system. Furthermore,
architectural analysis enables the possibility to get software metrics based on the high-level
design, e.g. the level of coupling and cohesion within and between the different modules that
constitute the software system [Fenton96].

In this report, the software system quality properties are divided into two different classes,
functional and nonfunctional. Functional quality properties are those concerned with the
runtime behavior of the software, e.g. performance or reliability, whereas nonfunctional
quality properties are concerned with the quality of the software itself, e.g. maintainability or
reusability. Most of these software quality properties are qualitative rather than quantitative,
thus being practicable only for comparison between different architectures.

4.1 Methods for architectural analysis

An architectural analysis process is divided into two stages, questioning and measuring.
The questioning phase generates questions that are answered by the measuring phase. Len
Bass et. al. [BCK98], have categorized the questioning stage in architectural review and
evaluation into three different classes namely Scenario-based, checklist-based and
questionnaire-based.

Scenarios are a set of cases where the software architect asks a lot of ”what if” questions
that reflect the requirements. It is however not a trivial task to construct the right questions
and to know when to stop generating scenarios. This requires a lot of experience and
knowledge, which can be achieved by being involved in many design projects. A scenario is
always system specific, i.e. tailor-made for a particular application in a domain, whereas
questions that are valid for all architectures in a particular domain resides in a checklist. The
items in the checklist can either generate scenarios or be verified in the measuring stage
directly. As an example, consider the domain of safety-critical real-time systems. The
checklist contains the following items:

1. Is the system schedulable?

2. Is there error recovery code in the system to clean up after error detection?

The first item is verified directly by performing a mathematical schedulability analysis. The
second item is too general and therefore it must be formalized into a set of scenarios before
it can be answered. As scenarios are system specific, they can stress different types of
errors in specific modules residing in the system. One possible scenario is: “What happen
when division by zero occurs in the control task”. The scenarios can than be verified by,
for instance, simulation or scenario execution, both described later in this chapter.

The questionnaire-based questioning typically stresses general logistical software
architecture questions. These questions have usually very little to do with the quality of the

20

software itself, but rather focusing on issues such as documentation, and how the
architecture was generated. Although the logistical questions do not examine the quality of
the software product itself, it has impact on the quality since good quality requires a mature
development process. Examples of such questions are: “Is a standard architectural
description language used?”, or “Is the intended work distribution supported by the
architecture?”.

There are a couple of measuring techniques available for architectural analysis namely
scenario execution, simulation and prototyping, mathematical methods and experience
based knowledge reasoning. The idea with scenario execution is to “execute” the
question stated by a scenario on the architecture. By executing a scenario is meant that the
effects on the architecture imposed by a scenario is investigated. This method is particular
suited for analysis of non-functional quality properties.

Simulation requires a prototype implementation of the architecture. Such a prototype
should be as small as possible, containing only the information needed for the analysis to be
performed. Simulation is a method targeting on analysis of functional quality properties.

Experienced-based reasoning can be used for any of the two classes of quality properties.
Actually, experienced-based reasoning is usually how the software architecture evaluation is
done in industry today, although in a relatively unorganized manner. As an organization and
its development process mature, more of the formal evaluation techniques will be adopted.

Mathematical methods can be used provided that a mathematical model of the architecture
exists. Such a model is provided by, e.g. timed automata. More examples of mathematical
measuring techniques are the schedulability test for real-time systems and statistical reliability
modeling. These methods give a clear yes- or no answer, or a quantitative value that is
comparable among all different types of software applications.

Figure 10 provides a schematic picture of how the different evaluation techniques relate.

 Questionnaire based Checklist based

Scenario based

Nonfunctional properties Functional properties

Scenario execution Simulation/Prototyping

Mathematical methods

Project logistics

Questioning

Measuring

Property class

System requirements System domain

Figure 10. Schematic picture of the relations between the evaluation techniques

21

Although measuring techniques might give quantitative values, these values must be treated
carefully. The quantitative values should be used as relative values when comparing
competing software architectures. Moreover, if scenarios or experienced reasoning was
used to obtain the values, the exact same set of scenarios and reasoning must be used when
evaluating the competing or refined architecture. Otherwise, the measures are not
comparable. Consequently, it is impossible to compare measured quality of a software
architecture across the application domain i.e. within the same class of products but in
different environments or applications.

4.2 Functional analysis

There exist functional quality properties in abundance, among which the properties of
particular interest when designing safety-critical real-time system is listed in Table 1.

Performance The systems capacity of handling data or events.

Reliability The probability of a system functioning correctly over a given period of time

Safety The property of the system that it will not endanger human life or the
environment

Security The ability of a software system to resist malicious intended actions

Availability The probability of a system functioning correctly at any given time

Temporal constraints Real-time attributes such as deadlines, jitter, response time, worst case
execution times (wcet), etc.

Table 1. Functional quality properties

Performance

Certain functional properties of a software system are tricky or even impossible to predict
using the architectural description level only, e.g. performance. Performance estimations
must have the algorithmic solutions as input. As discussed in the introduction, software
architecture is a description of the system on a higher level of abstraction than algorithmic
solutions and data structures. However, by using prototyping and simulation techniques,
performance in terms of ,for instance, event throughput or queuing length for events in a
system, can be estimated [GRBO]. Since such a performance measure is not absolute, it can
only be used when comparing two different architectural solutions, not when estimating, for
instance, the worst execution time for handling an event in the system.

Reliability

There are mathematical methods based on probability theories such as Markov models for
assessing reliability [Tram95]. However, these theories are developed for hardware where
failures often are caused by physical wear such as corrosion, overheating, etc. Such failures
are probabilistic in nature whereas software failures are mistakes (errors), made in the

22

specification, the design or in the implementation. These types of failures are certainly not
probabilistic according to some distribution over time. Furthermore, software can never be
worn out. Attempts have been made to apply the methods from the hardware community to
software. In software, the statistics are the numbers of errors in the program or the
likelihood of a failure in a point of time based upon the error distribution in the past
[Fenton96]. To get such failure estimations, there must be an implementation of the
application or at least a prototype. Anyhow, a description of the application on a lower level
than the architecture is needed. With some heuristics from similar applications developed
earlier experienced engineers can estimate the expected number of errors in the
components. Such estimations are very complex, giving rough metrics. An alternative to
directly measure the reliability of the architecture is to measure the testability. The testability
is a function of the effort required in order to assure the required level of reliability or
availability.

There are three different approaches to handle faults in order to achieve a reliable system
[Lapr92]:

• Fault avoidance

• Fault removal

• Fault tolerance

Fault avoidance is about designing error free systems. This implies the use of structured
design methodologies such as formal methods or semi-formal methods. Formal methods are
based on mathematical models of the software system and the requirement specification.
These models form the basis when proving correctness of the model with respect to the
system specification. There exists a wide area of formal methods and formal modeling
languages, each supporting different system domains. Semi-formal methods are, as the name
suggests, less formal, i.e. they do not support techniques to exhaustively prove correctness
of the models. Instead, they offer a structured way of reasoning, both when designing
models of the system and when analyzing the models. The methods are usually based on
some “formal” notation, e.g. Unified Modeling Language (UML)[BRJ98], ADLs, etc.,
representing the system model. Examples of such methods are object-oriented analysis
and design (OOA/OOD), and software architecture techniques in general.

No matter how accurate the models are analyzed, there may still be errors in the
implementation. These errors usually originate from the specification and from the mismatch
when mapping the models to the source code. In order to improve reliability in the program,
fault removal techniques can be applied. Fault removal is basically the task of finding the
errors by testing and removal of them by error correction. Under the assumption that no
new errors are introduced, the reliability will grow as errors are corrected. This assumption
is, unfortunately, seldom true, implying that the whole system has to be re-tested after each
increment. The results from testing and re-testing can be used for statistically forecasting of
the failure rate (and consequently the reliability), of a software system. Such a method is the
reliability growth model, first proposed for software by Jelinsky et. al. [JEMO72]. There
exist an abundance of different approaches to model reliability growth; they are all based on
data collected during testing, but differ in the way the statistical model is made.

23

Some faults are impossible to avoid regardless of how accurate the design and the tests are
performed. If it is particularly important that a certain module in the system does not fail,
fault-tolerance can be introduced. Fault-tolerance is a technique which can be interpreted
in two different ways: it could be the ability of a software system to tolerate faults from its
environment, e.g. the operator, hardware errors, etc., or it could mean that the system
should be tolerant against design faults in the software itself. The two different fault-tolerance
approaches are, naturally, solved using different techniques. For instance, to be fault-tolerant
against hardware errors such as electromagnetic distortion, redundant hardware can be
used, each with equivalent software running on them. This solution will however not tolerate
software faults. Different approaches to be tolerant against software faults are recovery
blocks and N-version programming [Storey96][CA78].

Recovery blocks are based on acceptant tests of the calculated values. If the processed
value is not accepted the program tracks back to a recovery point where it is safe to
continue the execution after having restored the system’s state.

N-version programming is achieved by developing N different versions of the software;
each developed by different and isolated design teams. All N different versions run in parallel
at runtime and their respective results are voted upon. This technique has, however, been
proven not so successful since all different versions of the software start out from the same
specification, and since most design errors originate from the specification, they will contain
common errors.

Even if the source code is absolutely correct, the compiler may still produce erroneous
binaries. Faults introduced by the compiler can be tolerated by using the N-version
approach. Each version has exactly the same code, but they are all compiled using different
compilers.

It is important to note that the different techniques discussed above can be applied at any
stage in the development process. For instance fault removal can be used when verifying the
designed architecture against the system specification. Fault-tolerance is also a matter of
architectural design. The techniques for fault-tolerance discussed above are all achieved
using different architectural solutions.

Safety

Safety seems, at a first glance, very similar to reliability. There is however a clear distinction
as safety is only concerned with failures that endangers human life and the environment, i.e.
hazards, whereas reliability deals with all failures regardless of their consequences.
However, before any safety analysis of the architecture can be performed, the hazards must
be identified. This is done in a hazard analysis that is a reasoning based method for finding
all hazards in the system that is going to be designed [Leve95].

There exist several techniques for assessing safety properties in software designs. Most of
them are scenario based and work either backward or forward. If the method works
backwards, the analysis starts with the hazard as a scenario, trying to trace down the
responsible component. On the contrary, if the method works forward, the effects of an
error in a component is investigated.

24

Some of the most well known forward methods are Failure Mode and Effects Analysis
(FMEA) and Hazard and Operability studies (HAZOP). Both methods analyze the
consequences of failures in the components. One commonly used backward technique is
called Fault Tree Analysis (FTA)[Storey96]. FTA starts with a hazard, trying to determine
its origin among the components. This kind of analyses give an understanding of where in the
architecture fault-tolerance techniques should be introduced, or if already introduced,
verifying whether the intended fault-tolerance is achieved or not.

Depending on the results from the safety analysis, changes in the design may have to be
performed. Different design approaches to avoid catastrophic failures can be applied based
on the severity of an accident caused by the hazard. The different approaches are [Leve95]:

• Hazard elimination

• Hazard reduction

• Hazard control

• Damage minimization

The severity is a quantified value that makes it possible to compare and rank hazards.
Typically, the severity is given in terms of the cost or, lost lives, for the stakeholder if the
accident occurs.

Substitution, decoupling, and simplifications achieve hazard elimination. By substitute a
dangerous design possibility by a functionally equivalent, but not dangerous solution, the
hazard itself is eliminated. For instance, if the system involves a very toxic chemical liquid,
substituting the liquid with a non-toxic one eliminates the hazard. Moreover, by decoupling
safety-critical parts of the software from non-critical software, the risk for an error in the
non-critical part to propagate into the safety-critical parts is eliminated. There exist some
known architectural solutions based on decoupling, e.g. safety kernels, firewalls, hierarchical
architectures [Storey96].

Hazard reduction reduces the likelihood of the occurrence of a hazard. It might not be
feasible or even possible, to eliminate the hazards. Then the designer has to design the
system in such a way that the hazard is not very likely to occur. An example of hazard
reduction is to erect a fence around an industrial robot, preventing humans to come close
enough in order to get hurt.

Hazard control is applied in order to reduce the likelihood of an accident if a hazard arises.
This can be achieved using fail-safe design, i.e. the system should be designed to detect the
hazard and then transfer it into a safe state if such exists. There are, however systems where
no safe state exists. A typically example of such a system is airplanes. These systems must
keep operating even if something goes wrong. This is achieved using fault-tolerance such as
redundancy. It is essential that an airplane keeps flying even if one engine breaks down by
using the second engine. The performance will of course be reduced, but the airplane can
still be maneuvered to its safe state on the ground.

Yet, if an accident still occurs, the consequences and losses must be reduced. This is
achieved with damage minimization that strives to minimize the exposure of the accident to
the environment or human beings.

25

Availability

Reliability and availability are strongly correlated. According to the definitions given in Table
1, reliability is the probability of a software system functioning correctly over a given period
of time and availability is the probability of a software system functioning correctly at any
given time. More generally, reliability is equivalent to Mean-Time-Between-Failure (MTBF)
and the availability is a percentage figure given by the formula below:

Availability
MTTR
MTBF

= −1

MTTR is an abbreviation for Mean-Time-To-Repair, i.e. time spent on service. The relation
is shown graphically in Figure 11 below. If any point of time is picked randomly along the y-
axis, there is a probability of having correct functionality, i.e. the availability of the software
system.

Security

Security is concerned with protecting a software system from malicious intended actions,
e.g. intrusion by unauthorized users or locking out unintended accesses to safety-critical
parts of the system. This can be achieved by different architectural solutions: safety/security
kernels, firewalls, etc. which all are different ways of restricting the access to the system or
sub-systems. As security can be achieved using different architectural solutions, it can be
assumed that security is assessable by architectural analysis. A scenario-based method can
be used. Typically, such a scenario could reason about what happens if an operator or a
sub-module tries to access a protected region of the system. Another possible way of
analyzing software architectures from the security point of view, is simulation, provided that
the logical view of the software architecture contains sufficient information regarding rules for
authorization and identification.

Real-time requirements

When designing real-time systems it is important to ensure the temporal correctness of tasks
in the application. The timing must be just perfect, neither too fast nor too slow. The

time

Functionality

MTBF

MTTR

 Figure 11. Availability and reliability

26

information necessary for the verification of temporal constraints is provided by the temporal
view of the architecture. A typical example of such an analysis are schedulability test, i.e.
analyzing whether the task set is schedulable or not given the resources and temporal
constraints given as release times, deadlines, worst case execution times (wcet), jitter, etc.
The resources taken into account when analyzing the schedulability of a system are typically
CPUs, communication busses, actuators, etc.

There exist a lot of mathematical methods for verifying the temporal behavior of a real-time
system, all having different assumptions on the scheduling strategy and the task model
[LILA73][ABDTW95]. A task model defines the temporal requirements put upon a task,
i.e. priorities, period times, etc. The task model and the scheduling strategy is strongly
coupled since the task model provide the input to the schedulability analysis.

In Figure 12, a classification of different scheduling strategies is illustrated.

Run-time scheduling

Priority based

Static priorities Dynamic priorities

User defineradeRM RM+PCP ED

 RM Rate Monotonic
 FPS Fixed Priority Scheduling
 ED Earliest Deadline
 PCP Priority Ceiling Protocol

Pre-run-time scheduling

Preemtive/non-preemtive

Scheduling

Figure 12. Classification of scheduling strategies.

4.3 Nonfunctional analysis

The number of nonfunctional quality properties is, as the functional quality properties in the
previous chapter, very large. In Table 2, a subset of all such quality properties is listed, all
being important in a mature and modern design process for real-time systems.

Cost The cost for performing any action such as development, evolution and
verification

Testability How easy it is to prove correctness of the system by testing

Reusability The extent to which the architecture can be reused

Portability How easy it is to move the software system to a different hardware-
and/or software platform

Maintainability The aptitude of a system to undergo repair and evolution

Modifiability How sensible the architecture is to changes in one or several components

Table 2. Nonfunctional quality properties

27

A very simple but yet powerful method for analysis of nonfunctional quality properties is
execution of scenarios. Several of the direct and indirect quality properties listed in Table 2
can be examined and analyzed by using scenarios. By direct we mean an attribute that focus
on the software only such as the reusability of a module or subsystem or the portability i.e.
how easy or hard it is to move the system to another operating system or hardware
platform. An indirect property is one that depends on a direct one. A typical example is the
cost. The cost is always related to the action, for instance the cost associated with testing,
development, maintenance, etc.

Cost

As discussed above, cost is an indirect quality property, always depending on other quality
properties of the system. Typically, after a system has been released and been running for a
while, new functionality is required from the customer or new features and improvements are
desired within the organization. Then the cost is probably dependent on the reusability,
maintainability and testability of the software. Cost estimations are probably one of the
hardest tasks for every development project. The cost estimation for the design of a
completely new system is extremely hard to achieve. Usually such estimations are based
only upon historical experiences with similar systems. If no such experience is available, the
estimation gets even more imprecise. The software architecture description could help
illuminate the cost of developing a system or adding new functionality to an existing system.
Partly by being a structured description of the application, helping the designer to get a full
perspective of the application scope, but also by providing techniques for analyzing the
effects of adding new features to an existing software system.

Testability

Testing is essential in order to prove functional correctness of a software system. It is also
used for obtaining some confidence in functional quality properties such as reliability,
performance, etc. A lot of time and consequently, money is spent in the testing phase of
software development. To reduce the amount of time needed for testing of the software, the
architecture must be designed so that it is easy to test, i.e. having high testability. The
testability is dependent on three individual properties: observability, controllability, and for
concurrent systems and systems dependent on time, reproducibility [Bind94]. Testability is
consequently an indirect quality property as well.

In order for a test case to be useful, the result of it must be observed. If the components in
the architecture are seen as “black boxes”, i.e. the structural view, only the interfaces are
observable. The bigger interface, the more visibility. Apparently, bigger interfaces give
higher observability, thus higher testability.

When performing a test, a particular input is given to the system or a sub-system. This input
is the only way in which the test engineer can control the path taken in the program. If the
path taken only depends on the input itself, maximum controllability is achieved. This is of
course not the case in general. There are often data dependencies between different
modules such as global variables etc. If those data dependencies, which are not controllable

28

by the test input data, affect the control flow, the controllability is decreased, giving lower
testability.

Finally, when testing concurrent system or real-time systems in general, the order in which
different processes in the system are executed will influence the observed result from a test.
For instance, in a system controlling the water level in a tank, there is one process sampling
the actual water level and one process calculating how to adjust the water level based on the
measured value and some set value. If the control process executes twice without any
intermediate execution of the sampling process, the result of the control decision will be
different in the second invocation than if the water level was re-sampled in between. To get
high testability, the order in which processes execute must be controllable or deterministic,
i.e. high reproducibility [ThHa99].

Reusability

Reusing a software component to its full extent, without any modifications, is extremely
difficult if not the domain in which the reuse is intended is the exact domain of the component
origin. When a component or architecture is reused in the same application domain we call it
a domain-dependent reuse. When containers are reused, i.e. lists, arrays, sets, etc., they can
be reused across different application domains. An example of such reuse is the Standard
Template Library (STL) for the object-oriented language C++. Reuse, which is possible
across the application domains, is consequently called domain-independent reuse.

When analyzing the level of reusability of a component or a part of the architecture, one
must consider not only the original application domain, but also how isolated and
independent it is from rest of the system. The less dependencies, the more reusable, and vice
versa.

The focus on reuse, in industry, has been intensified due to the potential cuts of cost. The
time spent on implementation decreases when reusing components. Furthermore,
components can be bought from third-party developers. Such components are called
Commercial-Off-The-Shelf components (COTS).

Portability

To be able to analyze software architectures with respect to portability, the platform on
which the system is going to run on has to be modeled as well. This to unveil the
dependencies between the software components in the system and the platform. As
platform we consider the hardware, e.g. processors, A/D converters, as well as the
software providing the infrastructure e.g. operating systems. If the amount of direct
dependencies, i.e. the number of components having a direct connection to the platform, is
low, then the architecture as whole is quite insensible to a change of platform. Thus, having a
high degree of portability.

Maintainability

29

Kazman et. al. [KAC96], have proposed a methodology for visualizing the amount of
changes required in the modules or in the architecture when adding or changing functionality
in the system. The amount of changes in the software architecture enforced by adding new
functionality or error corrections, are referred to as maintainability. By using scenarios
developed from the requirements of the new function, the existing architecture is analyzed.

The concept, direct scenarios, were introduced meaning scenarios that are directly
supported by the existing architecture i.e. no major architectural changes are required. In
opposite, an indirect scenario exposes the need for architectural changes, which is more
difficult and costly to achieve. Remember that there is a difference between a direct or
indirect scenario and the direct and indirect quality properties introduced earlier in this
chapter. After having mapped the scenarios on the architectural structure and determined if
the scenario is direct or indirect, scenario interaction should be revealed. Two or more
indirect scenarios are said to interact if they affect the same module.

To make the potential architectural violations and changes in the system visible, graphical
representation of modules were scaled in the ADL according to the amount of indirect
scenario interactions.

30

31

5 Architectural design
Architectural analysis can, and should, be used as guidance when designing a software
system. A software system can be implemented in several ways, all having different
architectural solutions. By using architectural analysis, the architecture that fulfills the
requirements best can be chosen. The workflow for designing architectures for a system is
shown in Figure 13.

The first phase when developing a software system is to develop candidate architectures and
a set of scenarios that reflects the requirements on the system. The number of scenarios to
develop is related to the generation of ordinary test cases. Eventually, a state is reached
where the added value of a new scenario is less then the effort required to develop the
scenario itself. When this point in time is reached or when the development budget is
violated, the scenario generation should stop.

Now we have the candidate architecture and a set of scenarios. By executing the scenarios
on the architecture a table with the desired quality attributes can be constructed. In the table,
all requirements are marked with plus signs and minus signs representing how well the
architecture fulfills the requirements. If the result from the analysis is satisfactory, the next
phase is to do low-level design and implementation. However, if the analysis results are not
satisfactory, an alternative architecture must be developed on which exactly the same
scenarios are executed. Consequently, the evaluation must be done all over again. The work
of finding a sufficient architecture is highly iterative, meaning that the architecture can evolve
by small steps until a reasonable solution is found. Consequently, changes suggested by the
analysis may result in a complete redesign using a completely different architectural style or
minor modifications in subsystems only.

The table produced in the analysis phase containing all the analyzed quality properties
constitutes the input to a tradeoff analysis. In a tradeoff analysis the set of competing
architectures is compared or the result from a refined architectural solution is compared with
the result from the analysis of the preceding generation of the architecture. The objective of
the tradeoff analysis is to choose the architectural alternative that best complies with the
ranking among the quality properties.

A method for tradeoff analysis called Architecture Tradeoff Analysis Method (ATA) has
been developed at the Software engineering institute (SEI) at Canegie Mellon university
[Kazm98]. It is an iterative development method that is similar to the process shown in
Figure 13.

Describe candidate architectures Develop scenarios

Evaluate each scenario

Visualize pros and cons

Iterate

Figure 13. Architecture development and analysis process.

32

A method called Software Architecture Analysis Method (SAAM) is also developed at
SEI. The purpose of SAAM is to analyze software quality attributes by examining
competing architectures [KBAW94]. To do so, they partitioning the functionality in the
architecture i.e. identifies were in the different architectures the functionality of the system is
allocated. The functional partitioning is system domain specific. Some domains already have
a well-defined functional partitioning; a typical example of such a domain is compilers.
Compilers are built with a front-end, a parser, a code generator etc. However, nothing is
assumed about how functions are organized and structured, i.e. the architecture of the
compiler. This partitioning gives a common description and common modules, each with the
same functionality but organized in different ways. The communal description is an absolute
condition for the comparison, which aims to unveil how well a certain quality attribute, is
adopted by the architecture. Again, the analysis is based on scenarios, constructing input for
a tradeoff analysis.

5.1 An example

As an example of how an architecture is constructed, analyzed and transformed in order to
better comply with the requirements consider a real-time system that controls the water
level in a tank. The system samples a water level sensor, takes a decision whether to let
water out, or pour water into the tank. The system actuates a pump or a valve if the level
has to be adjusted. As it is a real-time system, the temporal constraints on the system must
be fulfilled, i.e. there is a functional quality requirement on timing. Moreover, the system
should easily be modified to run on different platforms (real-time operating system and
hardware), i.e. portability.

First, the structural view of the architecture is developed, identifying the components in the
system and their interconnections. In this case, the interconnections represents transportation
of data among the task using services provided by the RTOS. While portability is crucial,
the operating system and the hardware view is modeled as well. The first candidate
architecture is shown in Figure 14.

Sampling
Task

Control
Task

Actuate
Task

RTOS HW

Figure 14. The first candidate architecture for a water tank controller

Next the compliance between the architecture and the required quality properties must be
analyzed. Verifying the temporal behavior requires the temporal view of the architecture. For

33

this particular application, the period time, the estimated worst execution time (wcet), and
the deadlines for the three tasks is shown in Table 3.

Task Period time (T) wcet (C) Deadline (D)

Sampling task 1 ms 50 µs 60 µs

Control task 2 ms 200 µs 1 ms

Actuate task 2 ms 50 µs 1 ms

Table 3. The temporal view

The temporal behavior is verified using exact analysis where the worst case response time
for all tasks is calculated. If the response times are less than the specified deadlines for all
tasks, the system is schedulable [JOPA86]. Exact analysis requires priorities to be assigned
to the tasks. In this particular example, priorities are assigned according to the rate
monotonic algorithm where the task with the shortest period gets highest priority [LILA73].
Rate monotonic gives the sampling task high priority, the control task medium priority and
the actuating task low priority. The exact analysis formula is recursive and calculates the
worst case response time with respect to interference of the execution of tasks with higher
priorities. The recursion stops when two subsequent calculations result in the same response
time, i.e. a fix-point is reached. The formula is shown below:

∑
∈∀

+

+=

)(

1

ihpj
j

j

n
i

i
n
i C

T
R

CR ∀ ∈j hp i() Denotes all tasks j with higher priority than

task i.
The response times for the sampling task is 50 µs as no other task interferes with it since it
has the highest priority. The response time for the control task is 250 µs. Finally, the actuate
task has a response time of 300 µs. If the calculated response times are compared to the
specified deadlines, it could easily be verified that the system is schedulable as the response
times for all tasks are less than corresponding deadlines.

To assess portability, scenarios can be used. For the matter of simplicity, only one scenario
is used in this example, namely: ”Move the system to another platform”. The idea is to
execute this scenario on the proposed software architecture to estimate the number of
component being subjects to changes. As portability is the issue, the number of affected
components should be held to a minimum. In the architecture suggested in Figure 14, all the
components interact with the real-time operating system. Consequently, there are a lot of
platform specific system calls embedded in each and every component, giving poor
portability since every component has to be changed as a result of a changed platform. To
increase the portability, architectural transformations have to be performed, i.e. the software
architecture has to be refined. One possible transformation is to introduce a proxy-
component between the task components and the real-time operating system. This
transformation is shown in Figure 15.

34

The proxy provides the tasks with all necessary services in order for them to perform their
intended tasks, while hiding the actual system calls. To verify the new architecture according
to the requirements, the scenario has to be re-executed. Now the proxy component is the
only one affected by a changed platform, i.e. a maximal portability is achieved. However,
the portability is achieved at the expense of an increased overhead for system calls.
Therefore, the worst case execution times for the individual task components must be re-
estimated and the exact analysis must be done all over again to verify the temporal behavior
of the system. The phenomena that quality properties might affect each other in a negative
manner, is referred to as tradeoff.

Sampling
Task

Control
Task

Actuate
Task

RTOS HWProxy

Figure 15. The architecture after the transformation

35

6 Conclusions
Software architecture is part of what generally is referred to as software engineering.
Software engineering also includes a lot of other techniques like software metrics, formal
methods, test methodologies, etc. Thus, software engineering is an umbrella for all
techniques and methods needed to establish a ”science of engineering” practice in the
software community. Software architectures are an important part of software engineering
since it deals with high-level modeling and evaluation. The software architecture community
is still very young, but the recent interests from the industry have launched a lot of research
activities in academia. Especially relevant are the software architecture analysis methods as
the analysis provides the information for early design decisions.

To make architectural analysis possible, the architecture must be described in a language
with well-defined semantics. A language that describes software architectures is called
Architectural Description Language (ADL). There exists a lot of different ADL:s, but few of
them have received any particular attention since it is very difficult to design a language with
syntax and semantics powerful enough to cover all possible application domains and that can
be interpreted by all stakeholders in a project. As a consequence, software developers use
their own description languages. An important property of an ADL is the architectural views,
providing detailed information needed for the analysis. The number of views and the
contents of each view will vary between different application domains and the required
analyses. Finally, a description language with a well-defined semantics is also a necessary
condition for developing tools that support architectural development and evaluation.

This report has described existing techniques for describing and evaluating software designs
based on information mainly provided by the high level description, i.e. the software
architecture. The ability to evaluate early design decisions is very important since early
design decisions are crucial for the final result, both regarding correct functionality and cost.
The earlier design mistakes are detected, the less time has to be spent on redesign. The
properties analyzed using software architectures are called quality properties. In this survey,
the quality properties are divided into two separate classes, functional and nonfunctional.
Functional quality properties are concerned with the run-time behavior of the software
system, for instance performance and reliability. In contrast, nonfunctional quality properties
are concerned with the quality of the software itself. Examples of nonfunctional properties
are reusability, maintainability, and testability.

Tool support for architectural development and evaluation is poor. It is possible to formalize
knowledge in frameworks, guiding the designer in both architectural transformations and in
the tradeoff analysis. There exist tools for some of the analyses, for instance tools for
verifying the temporal behavior in a real-time system [ERGUSA97], but these tools are still
islands in the ocean called software engineering. We need to discover, or build new islands
and connect them to each other in order to get complete suits of tools, supporting the
complete software development- and maintenance process. In mature engineering
disciplines, such tool support is taken for granted. Software engineering tools will probably
appear as the software community gets more mature, it is still very young, at least when
compared to other traditional engineering disciplines.

36

37

7 References
[ABDTW95] N. C. Audsley, A. Burns, R. I. Davis, K. Tindell, and A. J. Wellings, Fixed
Priority Pre-emptive Sceduling: An Historical Perspective, Real-Time Systems 8(2-3):173-
198, 1995

 [ALDI92] R. Alur, and D. L. Dill, A theory of timed automata, 1992

[BCK98] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
Addison Wesley 1998

[Beng97] PO. Bengtsson, and J. Bosch, Scenario-based Software Architecture
Reengineering, University of Karlskrona/Ronneby 1998

[Bind94] R. V. Binder, Design for Testability in Object-Oriented Systems,
Communications of the ACM, Volume 37, No 9, pp. 87-101, 1994

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, Addison Wesley ISBN 0-201-57168-4, 1998

[BuWe94] A. Burns, and A. Wellings, HRT-HOOD, a Structured Design Method for Hard
Real-Time Systems, 1994

[CA78] L. Chen, and A. Avizienis, N-version programming: a Fault Tolerant Approach to
Reliability of Software Operation, In proceedings of 8th Annual International Conference on
Fault Tolerant Computing, pp. 3-9, 1978

[Clem96b] P. C. Clements, and L. M. Northrop, Software Architecture: An Executive
Overview, Technical report CMU/SEI-96-TR-003 1996

[Clem96a] P. C. Clements, Coming Attractions in Software Architecture, Technical report
CMU/SEI-96-TR-003 1996

[DaYo95] C. Daws, and S. Yovine, Two examples of verification of multirate timed
automata with KRONOS, In proceedings of 16th IEEE Real-Time Systems Symposium, PP
66-77, 1995

[dijk68] E. W. Dijkstra, The Structure of ”THE”-Multiprogramming System, ACM on
Operating System Principles 1967

[EHLS94] S. Edwards, W Heym, T. Long, M. Sitarman, and B. Weide, Specifying
Components in RESOLVE, Software Engineering Notes, vol. 19, no. 4, 194

[ERGUSA97] K. Sandström, C. Eriksson, and M. Gustafsson, RealTimeTalk - a Design
Framework for Real Time Systems - a Case Study, SNART 1997

[Fenton96] N.E. Fenton, and S. Lawrence Pfleeger, Software Metrics, International
Thomson Computer Press 1996

[Garl93] D. Garlan, and M. Shaw, An Introduction to Software Architecture, Advances in
Software Engineeri Vol 1 World Scientific Publishing Company 1993

[GHJV94] E. Gamma, R. Helm, R. Johanson, and J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley 1994

38

[GRBO] H. Grahn, and J. Bosch, A Simulation Approach to Predict and Evaluate the
Performance of Software Architectures, University of Karlskrona/Ronneby 1998

[JEMO72] Z. Jelinsky, and B.P. Moranda, Software Reliability Research, Statistical
Computer Performance Evaluation, pp 465-484, New York , SA, Academic Press, 1972

[JOPA86] M. Joseph, and P. Pandya, Finding Response Times in a Real-Time System,
The Computer Journal, Volume 29, No. 5, pp. 390-395, 1986

[KAC96] R. Kazman, G. Abowd, L. Bass, and P. Clements, Scenario-Based Analysis of
Software Architecture, IEEE Software 1996

[KBAW94] R. Kazman, L. Bass, G. Abowd, and M. Webb, SAAM: A Method for
Analyzing the Properties of Software Engineering, Int. Conf. On Software Engineering IEEE
Computer Science Press pp. 81-90, 1994

[Kazm98] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere,
The Architecture Tradeoff Analysis Method, Submitted to the 1998 International
Conference on Software Engineering

[LaLe94] P. B. Ladkin, and S. Leue, What Do Message Sequence Charts Mean?, IFIP-
Transactions-C:-Communication-Systems.n C-22, pp 301-316, 1994

[Lapr92] J.C. Laprie, Dependability: Basic Concepts and Associated Terminology,
Dependable Computing and Fault-Tolerant Systems, vol. 5, Springer Verlag, 1992

[Leve95] N.G. Leveson, Safeware, System Safety and Computers, Addison Wesley 1995

[LILA73] C. L. Liu, and J. W. Layland, Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment, Journal of ACM, Volume 20, Nr. 1, pp. 46-61, 1973

[LKAV93] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann,
Specification and Analysis of System Architecture Using Rapide, Stanford University
technical report, 1993

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi, Uppaal in a Nutshell, In Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997

[Masc87] The official handbook og MASCOT, Version 3.1, Issue 1, 1987

[Miln87] R. Milner, Communication and Concurrency, Prentice Hall 1989

[Paul94] F. Paulisch, Software Architecture and Reuse – An Inherent Conflict?,
Proceedings of 3 rd International Conference on Software Reuse, pp 214, 1994

[SHGA96] M. Shaw, and D. Garlan, Software Architecture - Perspective on an
emerging Disipline, Prentice Hall 1996

[Storey96] Neil Storey, Safety-Critical Computer Systems, Addison-Wesley 1996

[ThHa99] H. Thane, and H. Hansson, Towards Systematic Testing of Distributed Real-
Time Systems, In proceedings of the 20th IEEE Real-Time Systems Symposium, 1999

[Tram95] C. Trammell, Quantifying the reliability of software: statistical testing based on a
usage model, In 'Experience and Practice', Proceedings., Second International IEEE
Software Engineering Standards Symposium,. , pp. 208 –218, 1995

39

[Vest94] S. Vestal, Mode Changes in a Real-Time Architecture Description Language,
Proceedings of 2nd International Workshop on Configurable Distributed Systems, 1994,
Page(s):136-146

40

41

Appendix A - Terminology

ADL - Architectural Description Language, Language for describing software architectures

Architectural style - Standard types of architectures identified with names and patterns

Architectural view - Provide the architecture description with information needed when
analyzing it. The components and their interconnections are shown in the structural view.

Architectural transformation – Changing the architecture in order to obtain required
functionality and quality

Availability - The probability of a system functioning correctly at any given time

Checklist based questions – Domain specific questions used when evaluating a software
architecture

Cost - The cost for performing any action such as development , evolution and verification

COTS - Commercial Off The Shelf components

Design patterns - Named object oriented solutions in the object oriented community

Design space - A N-dimensional space where every axis represents a design parameter,
scaled with the different design options possible for that particular parameter

Direct scenario - A scenario that is directly supported by the architecture

Fault-tolerance - The ability of software to detect and tolerate errors in the design and/or
from its environment

Framework - An architectural pattern for a particular domain, widely used in the object
oriented community.

Functional quality property – Quality properties concerned with the run-time behavior of
the software system

Indirect scenario – A scenario that requires an architectural transformation to be
supported by the architecture

Maintainability - The aptitude of a system to undergo repair and evolution

Modifiability - How sensible the architecture is to changes in one or several components

MTBF – Mean-Time-Between-Failure

MTTR – Mean-Time-To-Repair

Nonfunctional quality property - Quality properties concerned with the software itself

Performance - How fast or slow the system performs its functions measured in time or the
systems capacity measured in event-throughput

Portability - How easy it is to move the software system to a different hardware- and/or
software platform

42

Reference style - Architectural styles widely used in particular application domains, e.g.
the pipe-and-filter Architecture used in compilers.

Reliability - The probability of a system functioning correctly over a given period of time

Reusability - The extent to which the architecture can be reused

Safety - The property of the system that it will not endanger human life or the environment

Scenario based questions – Application specific questions used when evaluating a
software architecture

Scenario execution - Method for analyzing an architecture by asking “what if” questions

Security - The ability of a software system to resist malicious intended actions

Temporal constraints - Real-time attributes such as deadlines, jitter, response time, worst
case execution times (wcet), etc

Testability - How easy it is to prove correctness of the system by testing

Tradeoff - A relation between two or more quality attributes where an increased level of on
property results in a decrease of another property.

Questionnaire based evaluation – Questions used when evaluating project logistic
properties of software architectures

