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Abstract

With the growing complexity of embedded real-time systems, requirements
validation becomes an ever-more critical activity for developing such systems.
Studies have revealed that most of the anomalies discovered in the development
of complex systems belong to requirement and specification phases. Model-
based techniques, enabling formal semantics and requirements traceability, are
emerging as promising solutions to cost-effective requirements validation. In
these techniques, the functional behaviors derived from lower-level require-
ments are specified in terms of analyzable models at a certain level of abstrac-
tion. Further, upper-level requirements are formalized into verifiable queries
and/or formulas. Meanwhile, trace links between requirements at various lev-
els of abstraction as well as between requirements and subsequent artifacts
(such as verifiable queries and/or formulas, and analyzable models) are built,
through which the queries and/or formulas can be fed into the correspond-
ing models for further analysis. However, such model-based techniques suffer
from some limitations, such as how to support semi- or fully-automatic trace
links creation between diverse development artifacts, how to ease the demand
of heavy mathematics background knowledge to specify queries and/or for-
mulas, and how to analyze models without encountering the state explosion
problem.

In this thesis, the technical contributions are four-fold: 1) we have intro-
duced an improved Vector Space Model (VSM)-based requirements traceabil-
ity creation/recovery approach using a novel context analysis and, 2) we have
proposed a lightweight model-based approach to requirements validation by
using the Timed Abstract State Machine (TASM) language with newly defined
Observer and Event constructs and, 3) we have combined our model-based
approach with a restricted use case modeling approach for feature-oriented re-
quirements validation and, 4) we have improved the Observer construct of the
extended TASM (eTASM) via proposing a new observer specification logic to
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facilitate the observer specification, as well as defining the corresponding ob-
server execution process. Finally, we have demonstrated the applicability of
our contributions in real world usage through various applications.
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Karlsson, Bo Liwång. Proceedings of the 22nd IEEE International Re-
quirements Engineering Conference (RE’14), Karlskrona, Sweden, Au-
gust 2014.

Paper D The Observer-based Technique for Requirements Validation in Em-
bedded Real-time Systems. Jiale Zhou, Yue Lu, Kristina Lundqvist. Pro-
ceedings of the 1st International Workshop on Requirements Engineer-
ing and Testing (RET’14), Karlskrona, Sweden, August 2014.

1The included articles have been reformatted to comply with the licentiate layout.

vii



viii

Related Publication not Included in the Licentiate
Thesis
• Formal Execution Semantics for Asynchronous Constructs of AADL.

Jiale Zhou, Andreas Johnsen and Kristina Lundqvist. Proceedings of the
5th International Workshop on Model Based Architecting and Construc-
tion of Embedded Systems (ACES-MB’12), Innsbruck, Austria, Octo-
ber, 2012.



Contents

I Thesis 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Overview of Contributions . . . . . . . . . . . . . . . . . 6
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Related work 9
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Embedded Real-Time Systems . . . . . . . . . . . . . 10
2.1.2 Information Retrieval (IR)-Based Traceability Cre-

ation/Recovery . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Model-Based Requirements Validation . . . . . . . . 13

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Traceability Creation/Recovery . . . . . . . . . . . . 17
2.2.2 Model-Based Requirements Validation . . . . . . . . 18
2.2.3 Runtime Monitoring . . . . . . . . . . . . . . . . . . 19

3 Research Overview 21
3.1 Research Questions, Challenges and Contributions . . . . . . 21

3.1.1 Research Question 1 (RQ1) . . . . . . . . . . . . . . 22
3.1.2 Research Question 2 (RQ2) . . . . . . . . . . . . . . 22
3.1.3 Research Question 3 (RQ3) . . . . . . . . . . . . . . 23
3.1.4 Research Question 4 (RQ4) . . . . . . . . . . . . . . 24

3.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . 25

4 Conclusions and Future Work 29
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



x Contents

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography 33

II Included Papers 39

5 Paper A:
A Context-based Information Retrieval Technique for Recovering
Use-Case-to-Source-Code Trace Links in Embedded Software Sys-
tems 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 IR-based Traceability Recovery . . . . . . . . . . . . 46
5.2.3 Context-based Analysis . . . . . . . . . . . . . . . . 48

5.3 The Proposed VSM-Based Context Analysis Method . . . . . 49
5.3.1 Overview of the VSM-based Context Analysis . . . . 50
5.3.2 Context Analysis of Use Cases . . . . . . . . . . . . . 50
5.3.3 The Weighted Knowledge Model . . . . . . . . . . . 53
5.3.4 Algorithm Description . . . . . . . . . . . . . . . . . 54

5.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 Definitions and Context . . . . . . . . . . . . . . . . 55
5.4.2 Research Questions . . . . . . . . . . . . . . . . . . . 55
5.4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.4 Analysis of Results . . . . . . . . . . . . . . . . . . . 57
5.4.5 Experiments Summary . . . . . . . . . . . . . . . . . 58
5.4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . 60

5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 60
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Paper B:
A TASM-based Requirements Validation Approach for Safety-
critical Embedded Systems 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 TASM Language and Its Extension . . . . . . . . . . . . . . . 70

6.2.1 Overview of TASM . . . . . . . . . . . . . . . . . . . 71
6.2.2 The Extension to TASM . . . . . . . . . . . . . . . . 72

6.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Contents xi

6.4 The TASM-based Approach to Requirements Validation . . . 76
6.4.1 Requirements Modeling . . . . . . . . . . . . . . . . 76
6.4.2 Features Modeling . . . . . . . . . . . . . . . . . . . 81
6.4.3 Requirements Validation . . . . . . . . . . . . . . . . 82

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 85
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Paper C:
Towards Feature-Oriented Requirements Validation for Automo-
tive Systems 89
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 Restricted Use Case Modeling . . . . . . . . . . . . . 93
7.2.2 The Extended TASM Language . . . . . . . . . . . . 95

7.3 Illustration Application . . . . . . . . . . . . . . . . . . . . . 96
7.4 The Approach to Feature-Oriented Requirements Validation . 97

7.4.1 Feature Specification . . . . . . . . . . . . . . . . . . 98
7.4.2 Feature Behaviors Formalization . . . . . . . . . . . . 99
7.4.3 Feature Requirements Formalization . . . . . . . . . . 105
7.4.4 Feature Validation . . . . . . . . . . . . . . . . . . . 106

7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 109
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8 Paper D:
The Observer-based Technique for Requirements Validation in
Embedded Real-time Systems 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.1 Timed Abstract State Machine . . . . . . . . . . . . . 119
8.2.2 The Extended Regular Expressions . . . . . . . . . . 119

8.3 The Extension of TASM . . . . . . . . . . . . . . . . . . . . 120
8.3.1 The Fundamental Concepts . . . . . . . . . . . . . . . 120
8.3.2 The Events Monitoring Logic . . . . . . . . . . . . . 123
8.3.3 The Observer Execution Process . . . . . . . . . . . . 127

8.4 Illustration Application . . . . . . . . . . . . . . . . . . . . . 131
8.4.1 Vehicle Locking-Unlocking . . . . . . . . . . . . . . 131
8.4.2 Observer Specification . . . . . . . . . . . . . . . . . 132



xii Contents

8.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.5.1 The Monitoring Logic . . . . . . . . . . . . . . . . . 134
8.5.2 Other Related Work . . . . . . . . . . . . . . . . . . 135

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



I

Thesis

1





Chapter 1

Introduction

1.1 Motivation

Embedded real-time systems (ERTS) have become an intrinsic part of human
life, which include highly critical systems in multiple domains, such as au-
tomotive, avionics, and industrial automation. With the growing complexity
of ERTS during the last decades, requirements can no longer be specified and
analyzed merely at the outset of the systems development life cycle (SDLC).
On the contrary, requirements tend to be formulated in a more complex set-
ting in which there is a continuum of requirement and specification1 levels as
more and more details are added throughout the development life cycle. This
setting presents an evolutionary development model of requirements and spec-
ifications, and implies a tight interleave between design activities and require-
ments engineering activities during the SDLC [1] [2], since the specifications
produced at upper-level will serve the role of requirements with respect to the
lower-level. Therefore, the term requirements and requirement specifications
are used interchangeably in this thesis, if no explicit explanation.

There are various models describing the SDLC in diverse sizes and ar-
eas [3], among which the V-model is the most widely recognized in the field of
ERTS. Figure 1.1 shows the traditional V-model SDLC featured with a three-
level requirements development model considered in this thesis. At the begin-
ning of the SDLC, it is an essential task to elicit a set of requirements for the

1A requirement specification is a collection of statements that describes the proposed system’s
behaviors aiming to meet the corresponding requirements.
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4 Chapter 1. Introduction

Figure 1.1: The V-model SDLC and the three-level requirements development
model.

proposed system based on the opinions of various stakeholders, i.e., customer-
level requirements. In doing so, a means of clarifying their needs and domain-
specific problems and a basis for discussion with the stakeholders will be given.
One example is “the customer wants a Brake-by-Wire system to substitute the
traditional mechanical brake system”. Rather than proceeding straight to im-
plementation phase, it is necessary to first determine what functionalities and
properties the proposed system must have, regardless of more detailed design.
Therefore, the initial customer-level requirements will be further transformed,
in terms of being decomposed or refined, into a set of system-level require-
ments, to help to establish a common understanding of the proposed solution
to the domain-specific problem. One typical example is “the system shall pro-
vide a base brake functionality where the driver presses the brake pedal so that
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the braking system starts decelerating the vehicle”. Based off of the system-
level requirements, it is now possible to consider alternative design architec-
tures. The design architecture defines what components the proposed system
consists of and how such components interact with each other. Subsequently,
the architecture-level requirements stipulate the requirements for each system
component w.r.t. their functional behaviors, interaction constraints, and any
other required properties featured with performance quality, reliability, safety,
etc. One example is “the brake torque calculator shall compute the driver re-
quested torque and send the value to the vehicle brake controller, when a brake
pedal displacement is detected”. Note that, in some cases, the components
at the architecture-level are still too complex to be implemented directly, and
therefore will be further refined into more specific requirement specifications
corresponding to software components and hardware components which are
associated with system implementation.

Many efforts have discussed the importance of a set of well-defined re-
quirements [4] [5] and the severe consequences when they were ill-defined [6].
Nevertheless, it is still a challenge to produce a set of well-defined requirements
in such a complex setting. Studies have revealed that most of the anomalies dis-
covered in late development phases can be traced back to hidden flaws in the
requirement phase [7] [8]. For instance, there exist contradictory functional
behaviors in the requirement specifications; the architecture-level requirements
do not satisfy all of the system-level requirements; or expected properties spec-
ified in the customer-level are discovered to be infeasible in the late phases of
development. For this reason, requirements validation is playing an ever-more
significant role in the development life cycle of ERTS, which confirms the
correctness of requirements at different levels of abstraction, in the sense of
consistency and completeness [1]. In detail, consistency refers to situations
in which there exist no internal contradictions at each level of requirements,
while completeness refers to situations in which the continuum of requirement
levels must possess two fundamental characteristics in terms of neither objects
nor entities are left undefined at each level of requirements and the require-
ments at lower-level can address all of the requirements at the corresponding
upper-level.

Model-based techniques, enabling formal semantics and requirements
traceability, are emerging as promising solutions to cost-effective requirements
validation of ERTS [9] [10]. Such techniques are considered to possess the ad-
vantages of accelerating project development, requiring less human efforts, and
making it possible to detect and fix the potential defects and errors in a fairly
early stage of the SDLC. In model-based techniques, the functional behaviors



6 Chapter 1. Introduction

derived from lower-level requirements are specified as analyzable models at a
certain level of abstraction. Further, upper-level requirements are formalized
into verifiable queries and/or formulas. Meanwhile, trace links between re-
quirements at various levels of abstraction as well as between requirements and
subsequent artifacts (such as verifiable queries and/or formulas, and analyz-
able models) are manually or (semi-)automatically created/recovered, through
which the queries and/or formulas can be fed into the corresponding models.
In this way, the requirements are reasoned about to resolve behavioral contra-
dictions and to discover unexpected behaviors, and it is also verified that they
are neither so strict to forbid desired behaviors, nor so weak to allow unde-
sired behaviors. Especially, model checking [11] and theorem proving [12] are
most widely explored as formal model-based techniques for the requirements
validation purpose. Model checking is a formal technique for automatically
and exhaustively verifying correctness properties against a finite-state system.
On the contrary, theorem proving is an interactive formal technique where a de-
signer employs a theorem-proving tool through partially guided, rigorous proof
steps, to show that the implementation implies the property of interest. How-
ever, such formal model-based techniques enabling trace link creation/recovery
also suffer from some limitations: 1) how to support semi- or fully-automatic
trace links creation between diverse development artifacts [13] and, 2) how to
analyze the system model without having the state explosion problem of model
checking occurred and, 3) how to ease the demand of heavy mathematics back-
ground knowledge to perform theorem proving.

1.2 The Overview of Contributions
In this thesis, we have tackled the aforementioned limitations and contributed
to a model-based technique for the purpose of requirements validation. In par-
ticular, the technical contributions are four-fold:

• We have introduced an improved VSM-based requirements traceability
recovery approach using a novel context analysis. As aforementioned, in
the three-level requirements development model featured with customer-
level, system-level and architecture-level, our method can better utilize
the context information extracted from the upper-level requirements to
discover the subsequent artifacts at the lower levels.

• We have proposed an observer-based approach to requirements valida-
tion by using the Timed Abstract State Machine (TASM) language [14]
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with newly defined Observer and Event constructs, namely the extended
TASM (eTASM) language . To be specific, our approach models both
functional and non-functional requirements of the system under consid-
eration at different levels, aiming to validate the completeness and con-
sistency of requirements by utilizing our in-progress toolset and a model
checker.

• We have presented a model-based approach to feature-oriented require-
ments validation by utilizing the eTASM. Especially, the approach starts
with the behavioral specification of features and the associated require-
ments by following a restricted use case modeling approach, and then
formalizes such specifications by using the eTASM language for the pur-
pose of validation.

• We have improved the eTASM language via proposing a new observer
specification logic, namely Events Monitoring Logic, to facilitate the
observer specification, as well as defining the corresponding observer
execution process.

1.3 Thesis Outline
This thesis is divided into two parts: Part I includes four chapters. Chapter 1
provides an introduction of the thesis where the motivation of our work and
an overview of the thesis contributions are presented. In Chapter 2, we de-
scribe the background knowledge of the research work underlying the thesis,
and related work. In Chapter 3, a research overview is presented, including the
research questions guiding our work, the challenges associated with each ques-
tion, our contributions to each question, and the research methodology adopted
in this thesis. In Chapter 4, we summarize the thesis work with concluding
remarks, and ending with a discussion of the future work.

Part II incorporates the research papers included in this thesis, which are
organized as:

• Chapter 5 Paper A: A Context-based Information Retrieval Technique
for Recovering Use-Case-to-Source-Code Trace Links in Embedded
Software Systems

• Chapter 6 Paper B: A TASM-based Requirements Validation Approach
for Safety-critical Embedded Systems.
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• Chapter 7 Paper C: Towards Feature-Oriented Requirements Valida-
tion for Automotive Systems.

• Chapter 8 Paper D: The Observer-based Technique for Requirements
Validation in Embedded Real-time Systems



Chapter 2

Background and Related
work

This chapter presents some background knowledge that underlies this thesis
and the related work in the field of requirements validation.

2.1 Background
Requirements validation is an indispensable activity that is performed to in-
crease the confidence that the system under consideration would meet its re-
quirements, which is imposed in the early phases of the SDLC. Different from
system validation which confirms that the built system does what it is supposed
to do, requirements validation is the process of confirming the consistency and
completeness of requirements throughout various levels of abstraction. Fur-
ther, once consistency and completeness of requirements are validated, then
the correctness of such requirements can be achieved [1]. Consistency refers
to situations in which requirements contains no internal contradictions. Com-
pleteness implies requirements must exhibit two fundamental characteristics:
1) The information does not contain any undefined objects or entities in the
continuum of requirements, and 2) lower-level requirements are able to satisfy
upper-level requirements.

Regarding the requirements development model considered in our thesis,
each of the three requirement levels has their own validation purpose as fol-
lows:

9
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• The customer-level requirements must be guaranteed that they collect all
of the stated business objectives, clarify the needs of various stakehold-
ers, and are easy-to-use for communication between stakeholders and
developers.

• The system-level requirements provide a high-level solution to imple-
mentation of the system under consideration, which must be validated
to make sure that they address the stated business objectives, meet the
needs of stakeholders, and contain no internal contradictions.

• The validation procedure for the architecture-level requirements not only
ensure that they are consistent and complete with the upper-level require-
ments (i.e., system-level requirements), but also makes sure the design
solution is feasible, unambiguous and verifiable.

There are numerous requirements validation techniques available in the lit-
erature, which can be roughly categorized into three categories in terms of
requirements review [15] [16] [17], requirements prototyping [18] and model-
based requirements validation [10]. Requirements review is conducted by fol-
lowing a well-planed process, during which the requirements are manually but
thoroughly searched, sorted and analyzed by domain experts, customers, de-
velopers and/or other stakeholders. Requirements prototyping is a process that
transforms written requirements into a workable version of the system under
consideration yet with limited functionalities. Prototypes aim at helping stake-
holders communicate with each other and identifying errors and omissions
in the requirements. With the increasing complexity of ERTS, model-based
techniques enabling formal semantics and requirements traceability, such as
model-checking and theorem proving, stand out as promising solutions to cost-
effective requirements validation of ERTS.

This thesis aims to contribute to requirements traceability and model-based
requirements validation techniques for ERTS, of which background knowledge
is presented in the following sections.

2.1.1 Embedded Real-Time Systems
An embedded real-time system typically have a primary purpose of provid-
ing at least partial control of the system or environment in which it is embed-
ded [19]. Automotive systems such as electronic brake systems are typical
examples of ERTS. Most of such systems can be modeled by using four types
of components in the sense of environment, sensors, controllers, and actuators.
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Environment models the behavior of the external entities interacting with the
ERTS by defining a set of variables. Sensors are used to monitor the behav-
iors of environment by measuring the variables of interest. Controllers are the
components used to perform computation in order to implement the control
function. Actuators model the components designed to affect the environment
by manipulating the corresponding variables.

Two inherent characteristics can explicitly distinguish ERTS from general
computer systems [20]: 1) From the real-time perspective, time plays a crit-
ical role in defining the correctness of an embedded real-time system since a
correct answer provided too late or too early can be as erroneous as providing
an incorrect answer, and 2) from the embedded perspective, ERTS represent a
special class of real-time systems where the software system is not stand-alone,
but is part of a larger system and must work with other components to achieve
the system’s goals.

The first characteristic stipulates that requirements validation for an em-
bedded real-time system should be defined in terms of two key aspects – func-
tional behaviors and non-functional properties. Meanwhile, the second charac-
teristic implies a more complex setting of performing requirements validation.
When several ERTS are put together to form a larger system, these sub-systems
usually run simultaneously and independently, possibly on different hardware.
Communication between different sub-systems is usually conducted in indi-
rect ways. To be specific, the sub-systems and their environment form a closed
loop where the output from the actuator of a sub-system changes the variables
of the environment, which is then read through the sensors and becomes input
to other sub-systems at a later time. Under this circumstance, unexpected be-
haviors can arise from the activation of two or more ERTS whose outputs from
different actuators create contradictory physical forces on the same physical
environment.

2.1.2 Information Retrieval (IR)-Based Traceability Cre-
ation/Recovery

Tracing requirements throughout the life cycle supports engineers in ensuring
requirements coverage, saving efforts for validation when changes occur, etc.
The challenges connected to traceability have been empirically investigated
and reported over the years, among which trace link creation/recovery remains
an interesting one to tackle [21].

The information retrieval (IR)-based traceability technique aims at utiliz-
ing IR techniques to create/recover trace links between diverse development
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Figure 2.1: An IR-based traceability recovery process.

artifacts. Typically, an IR-based traceability creation process follows the steps
depicted in Figure 2.1. The artifacts have to be preprocessed before they are
used to compute similarity scores. The preprocessing of the artifacts includes a
text normalization by removing most non-textual tokens (e.g., operators, punc-
tuations) and splitting compound identifiers into separate words by using the
underscore or camel case splitting heuristic. Furthermore, common terms, re-
ferred to as “stop words” (e.g., articles, prepositions, common usage verbs, and
programming language keywords), which contribute less to the understanding
about artifacts, are also discarded by using a stop word filter. Words with the
length less than a defined threshold are also pruned out. In addition, stem-
mer is commonly used to perform a morphological analysis, which reduces
the inflected words to their root, e.g., returning verb conjugations and remov-
ing plural nouns. After preprocessing, an artifact (e.g., a requirement) can be
represented as a plain document containing a list of terms (in this thesis, we
use documents and artifacts interchangeably). The extracted terms are gen-
erally stored in a m × N matrix (called term-by-document matrix), where m
is the number of all the terms that occur in all the documents, and N is the
number of documents in the corpus. A generic entry wi,j of the matrix de-
notes a measure of the relevance of the ith term in the jth document. Based
on the term-by-document matrix representation, diverse IR methods can be
used to calculate textual similarities between paired artifacts. The standard
Vector Space Model (VSM) [22] technique has been successfully applied to
calculate the similarity score between artifacts in the requirements traceability
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creation/recovery process [23]. In VSM, given the entire collection of unique
terms T = {t1, . . . , tm} in a corpus with N documents, the document dn
is represented as a vector dn = {w1,dn , . . . , wm,dn} consisting of m unique
terms from the corpus with an assigned weight wi,dn through a certain weight-
ing scheme. Therefore, the similarity score, denoted as sim(q, d), between the
query document q and the target document d is calculated by using the cosine
of the angle between their vectors:

sim(q, d) =

∑m
i=1 wi,q · wi,d√∑m

i=1 w
2
i,q ·

∑m
i=1 w

2
i,d

(2.1)

The weighting scheme wi,q and wi,d denoting the term frequency-inverse doc-
ument frequency (i.e., tf-idf ) are calculated as follows:

wi,q = tfi(q) · idfi, wi,d = tfi(d) · idfi (2.2)

where tfi(q) and tfi(d) are measured by the number of times the term ti occurs
in the query document q and the target document d respectively, and idfi is
computed as log( Ndfi ), where dfi is the number of documents containing the
term ti.

Pairs with a similarity score lower than a certain threshold (usually defined
based on engineers’ experience) are filtered out, and the reserved pairs form
the candidate trace link list. The ranked list of candidate trace links are then
vetted by software engineers to decide if such links are true positive or not.

2.1.3 Model-Based Requirements Validation
The principal idea of the model-based requirements validation is that the sys-
tem requirements at different levels of abstraction are specified in correspond-
ing (semi-)formal specification languages in order to perform formal verifi-
cation, such as model-checking and theorem proving. In this section, we
have an overview of model checking and theorem proving. An introduction
of the TASM specification language together with a lightweight verification
technique used in this thesis will be given as well.

Model Checking

Model checking [11] is a formal technique for automatically and exhaustively
verifying correctness properties against a finite-state system. Given a finite-
state system M and a correctness property ρ, the state transition graph of M is
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algorithmically traversed to verify if ρ holds in the current available state. If the
property holds in all of the system states, the property is marked as satisfied.
Otherwise, model checking can produce a counter-example i.e., a partial exe-
cution trace leading to a system state where the property is not satisfied by the
model. The model checking approach is conceptually simple and is applicable
in a wide variety of languages and application areas. However, this approach
highly relies on the exhaustive exploration of the state space, which has suf-
fered from the notorious state-space explosion problem. Newer approaches
relying on a symbolic representation of the state space can significantly im-
prove the performance of model checking, but only for systems with simple,
repetitive elements such as hardware applications.

Theorem Proving

Theorem proving [12] is an interactive formal technique, compared to model
checking. In this approach, both upper-level requirements and corresponding
lower-level specifications are represented as logic descriptions e.g., using pro-
cess algebras or higher-order predicate logics. Then, a designer employs a
theorem-proving tool through partially guided, rigorous proof steps, to show
that the specifications can imply the requirements and contain no internal con-
tradictions. Unfortunately, the logic descriptions commonly used in the the-
orem proving approach are typically not understandable by the non-software
stakeholders involved in most requirements engineering activities, and thus are
hardly suitable as high-level requirement languages.

An Overview of TASM

In this thesis, we use the Timed Abstract State Machine language [14] as the
formal specification language which we will extend for the purpose of require-
ments validation. TASM is a textual formal language for the specification of
ERTS, which extends the Abstract State Machine (ASM) [24] with the capa-
bility of modeling timing properties and resource consumption of the system
under consideration. TASM inherits the easy-to-use feature from ASM, which
is a literate specification language understandable and usable without extensive
mathematical training [25]. A TASM model consists of two parts – an envi-
ronment and a set of main machines. The environment defines the set and the
type of variables, and the set of named resources which machines can consume.
The main machine is made up of a set of monitored variables which can affect
the machine execution, a set of controlled variables which can be modified by
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machines, and a set of machine rules. The set of rules specify the machine
execution logic in the form of “if condition then action”, where condition is an
expression depending on the monitored variables, and action is a set of updates
of the controlled variables. We can also use the rule “else then action” which
is enabled merely when no other rules are enabled. A rule can specify the an-
notation of the time duration and resource consumption of its execution. The
duration of a rule execution can be the keyword next that essentially states the
fact that time should elapse until one of the other rules is enabled. Figure 2.2
shows a toy example of the TASM language, which models the behavior of a
switch turning on/off a light [14].

TASM describes the basic execution semantics as the computing steps with
time and resource annotations: In one step, it reads the monitored variables,
selects a rule of which condition is satisfied, consumes the specified resources,
and after waiting for the duration of the execution, it applies the update set
instantaneously. If more than one rules are enabled at the same time, it non-
deterministically selects one to execute. As a specification language, TASM
supports the concepts of parallelism which stipulates TASM machines are exe-
cuted in parallel, and hierarchical composition which is achieved by means of
auxiliary machines which can be used in other machines. There are two kinds
of auxiliary machines - function machines which can take environment vari-
ables as parameters and return execution result, and sub machines which can
encapsulate machine rules for reuse purpose [14]. Communication between
machines, including main machines and auxiliary machines, can be achieved
by defining corresponding environment variables. All the aforementioned fea-
tures of TASM make it as a good-fit for some key activities of requirements
engineering for ERTS, e.g., model-based requirements validation for ERTS.

Runtime Monitoring

Runtime monitoring comprises having an observer monitor the execution of a
system and check its conformity with a property of interest. Comparing model
checking and theorem proving, runtime monitoring implements a lightweight
technique for the purpose of system verification [26], which inspires us to ex-
tend the TASM language with observer constructs to perform requirements val-
idation in a lightweight way. The basic principle of runtime monitoring is that:
when a system is running, it will generate a number of events a1, a2, . . . , an
(n ≥ 0) reflecting the functional behaviors and non-functional properties; the
events can be abstracted as a linear trace ω = a1a2 . . . an; an observer repre-
senting a given correctness property of interest is usually specified as a logic
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1 ENVIRONMENT:
VARIABLES:

3 light_status light := OFF;
switch_status switch := DOWN;

5 USER-DEFINED TYPES:
light_status := {ON, OFF};

7 switch_status := {UP, DOWN};
RESOURCES:

9 power:=[0,10] % user-defined named resource
MAIN MACHINE:

11 MONITORED VARIABLES:
switch;

13 CONTROLLED VARIABLES:
light;

15 RULES:
R1: Turn On{ % the name of the rule

17 t:= 1; % the time duration of the rule
power:=[2,5]; % the resource consumption of the rule

19 if light = OFF and switch = UP then % the rule body
light := ON;

21 }
R2: Turn Off {

23 t:= [1,2];
power:=[3,5];

25 if light = ON and switch = DOWN then
light := OFF;

27 }

Figure 2.2: A toy example of the TASM language

expression E; then, the monitoring process can be regarded as solving the
membership problem for the given logic expression E and trace ω, which is
to determine whether ω is in the language defined by E. The observer can
either start monitoring as soon as any event is available, or store the available
events at first and then start working when a stored trace is available. In the
former case, we speak of on-line monitoring, while in the latter case we speak
of off-line monitoring.

2.2 Related Work

In this section, we describe the state-of-the-art in the related fields, in the sense
of traceability creation/recovery (related with Paper A), model-based require-
ments validation (related with Paper B and Paper C) and runtime monitoring
(related with Paper D).
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2.2.1 Traceability Creation/Recovery

Many recent studies have explored the feasibility of different IR methods for
semi-automatically or fully-automatically creating/recovering trace links be-
tween development artifacts. Deerwester et al. [27] discuss the effectiveness
of Latent Semantic Indexing (LSI) for recovering trace links between different
kinds of artifacts, and Marcus et al. [28] further the work, showing a promis-
ing result over VSM. Abadi et al. [29] present a novel IR technique based on
Jensen & Shannon (JS) model. They also compared JS, VSM and LSI for trace-
ability recovery purpose, and concluded that VSM and JS are the best-fits. A
similar comparison is also conducted by Oliveto et al. [30], which showed that
for building trace links between requirements and source code, the results of
JS, VSM and LSI are almost equivalent. Based on the aforementioned results,
we have chosen the VSM-based method to implement our context analysis ap-
proach.

Variants of basic IR methods have been proposed to improve the accuracy
of IR-based traceability recovery approaches. Fautsch et al. [31] present four
extensions to the classical tf-idf VSM model. The basic idea is to retrieve
domain specific information. Kong et al. [32] present a VSM enhancement
using term location. By utilizing the relationship between words in different
textual documents, a better accuracy was achieved. Lucia et al. [33] present
the approach that uses smoothing filter to improve the input in the IR-based
traceability recovery process. Specifically, the words that contribute less infor-
mation but repeatedly occur in the documents, are removed. Cleland-Huang et
al. [34] introduce three accuracy enhancement strategies, which are hierarchi-
cal modeling, logical clustering of artifacts, and semi-automatic pruning of the
probabilistic network. Our approach is a variant of IR methods as well, but it is
different from the strategies proposed in the prior pieces of work. We propose
to deal with the context information differently from the real intent of require-
ments. Therefore, our approach is possible to be combined with those prior
pieces of work, which can be a future research direction.

Some other pieces of work also show us another promising perspective.
Asuncion et al. [35] apply Topic Modeling technique, featured by Latent
Dirichlet Allocation (LDA) [36] to capture trace links prospectively. Lucia et
al. [37] discuss the feasibility of using user feedback analysis to improve the
accuracy of the results of traceability recovery tools. Mahmoud et al. [38] pro-
pose a semantic relatedness approach that exploits external knowledge sources,
e.g., Wikipedia, to identify a set of relevant terms that are used to expand the
query, in an attempt to improve traceability results.
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2.2.2 Model-Based Requirements Validation

In the field of model-based requirements validation, there are several inter-
esting pieces of work deserved to be mentioned. Event-B [39] similar with
eTASM is also a formal state-based modeling language that represents a system
as a combination of states and state transitions. Mashkoor et al. [40] propose a
set of transformation heuristics to validate the Event-B specification by using
animation. Iliasov [10] shows how to use Event-B for systems development,
where the system constraints are formalized as a set of visualized proof obli-
gations which can be synthesized as use cases. Such proof obligations are then
reasoned about their satisfaction in the corresponding Event-B model. This
work mainly focus on the validation of use cases. Cardei et al. [41] present a
methodology that first converts SysML requirements models into the proposed
requirements ontology model, and then performs the rule-based reasoning to
detect omissions and inconsistency. Different from our work, we validate re-
quirements from the behavioral perspective. Cimatti et al. [9] introduce a series
of techniques that have been developed for the formalization and validation of
requirements for safety-critical systems. Specifically, the methodology con-
sists of three main steps in terms of informal analysis, formalization, and for-
mal validation. Our approach has similar but more detailed steps, and we use
eTASM as the specification language which orients to embedded real-time sys-
tems. Scandurra et al. [42] propose a framework to automatically transform use
cases into ASM models, which are used to validate the requirements through
scenario-based simulation. However, in this work, non-functional properties
are not considered. MARTE [43] is a UML profile for modeling and analysis
of real-time embedded systems, covering both functional and non-functional
properties of the system. Nevertheless, to our best knowledge, there has not
been any work about using MARTE for the purposes of requirements valida-
tion.

A variety of model-based approaches have been proposed to perform
feature-oriented requirements validation. Kimbler et al. [44] introduce a user-
oriented approach to feature interaction analysis of telephony services. It aims
first at creating use case models to describe different possible ways of using
the system services, and then building service usage models which simulate
the dynamic relations between services. Moreover, Amyot et al. [45] propose
an approach to detecting feature interactions of telecommunication systems as
well, by using Use Case Maps (UCMs) for designing features, and LOTOS for
the formal specification of features. However, their work mainly aimed at mod-
eling the features of the telecommunication system which are different from the
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one of automotive systems. The approach proposed in this thesis aims to detect
the feature interaction problem in the automotive domain. In automotive indus-
trial, it becomes increasingly popular to organize requirements by using feature
models. Sampath et al. [46] present a formal specification and analysis method
for automotive features in the early stages of software development process.
This method starts with an empty specification, and then incrementally adds
clauses to the specification until all the feature requirements are satisfied. The
evolutionary approach inspires us to explore the possibility of using eTASM in
an evolutionary way in the future. Arora et al. [47] propose a method and algo-
rithms for identifying and resolving feature interactions in the early stages of
the software development life-cycle. The work uses State Machines to model
the behavior of independent features, context diagrams to integrate indepen-
dent features, and Live Sequence Charts to capture the interactions of features.
Compared to this work emphasizing the analysis of requirements specification,
our approach introduces restricted use case models [48] as intermediate arti-
facts between natural language specifications (NLS) and formal specifications,
in order to reduce ambiguities caused by NLS and to increase the automation
from NLS to other formalisms.

2.2.3 Runtime Monitoring

In the runtime monitoring field, many logics are used for the purpose of valida-
tion and verification. Giannakopoulou et al. [49] present an approach to check-
ing a running program against Linear Temporal Logic (LTL) specifications. In
particular, the LTL formulae representing the properties of interest are trans-
lated into finite-state automata, which are used as observers monitoring the
program behaviors. Barringer et al. [50] present a compact and powerful logic,
namely Eagle, which is based on recursive parameterized rule definitions over
the standard propositional logic operators together with three primitive tem-
poral operators in the sense of a past-state operator, a next-state operator, and
a concatenation-state operator. Basin et al. [51] extend the metric first-order
temporal logic (MFOTL) with aggregation operators in order to specify ob-
servers that represent the compliance policies on aggregated data. Compliance
policies represent normative regulations, which specify permissive and oblig-
atory actions for system users. The authors provide a monitoring algorithm
for the enriched observer specification language as well. However, to our best
knowledge, the extended regular expressions (ESE) language is much more
widely accepted in practice for its simplicity. Roşu et al. [52] present a rewrit-
ing algorithm for testing membership of a word in a regular language described
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by an extended regular expression. The algorithm is based on an event con-
sumption idea: a just arrived event is consumed by the regular expression, i.e.,
the extended regular expression modifies itself into another expression when
dropping the event. In our opinion, this algorithm can be easier to implement
and grasp by engineers, compared to the aforementioned pieces of work. Fur-
thermore, we have proposed our observer monitoring logic based on the event
consumption idea.

Some other pieces of work discuss runtime monitoring from another per-
spective, which are worth to notice. Bauer et al. [53] discuss a three-value se-
mantics (false, true, inconclusive) for LTL and TLTL observers on finite traces,
where an observer outputs false when a finite prefix is impossible to be the pre-
fix of any accepting trace and, true when a finite prefix can be accepted by any
infinite extension of the trace and, inconclusive in other cases. Additionally,
Falcone et al. [54] give an related and interesting discussion about the moni-
torability of properties in the safety-progress classification. Leucker et al. [26]
present a brief account of the field of runtime monitoring. They give a defini-
tion of runtime monitoring and make a comparison to well-known verification
techniques in terms of model checking and testing.
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Research Overview

3.1 Research Questions, Challenges and Contri-
butions

In this thesis, we aim at contributing to a general research question as follow:

• General research question: How can, in accordance with industrial
demands, requirements of complex and dependable embedded real-time
systems be validated, in a structured and practical way?

During our research, we have had four more specific research questions
that guided our work to contribute to the general question. In this section, we
present such specific research questions, describe research challenges associ-
ated with each question, and summarize our contributions to each question.
Table 3.1 presents the relations between our research questions and papers.

Table 3.1: Relations between the papers and research questions.
Paper Research Question Current State

Paper A RQ1 Published at SEAA’13
Paper B RQ2 Published at Ada-Europe’14
Paper C RQ3 Published at RE’14
Paper D RQ4 Published at RET’14

21
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3.1.1 Research Question 1 (RQ1)

How can we improve the quality (i.e., achieve higher level of precision and
recall) of semi-automatic or fully-automatic creation of trace links between
requirements at various levels of abstraction throughout systems development
life cycle, in order to facilitate requirements validation?

• The challenges associated with RQ1 (Ch1): Despite the wide recog-
nition of its necessary support to requirements validation [55], effec-
tive traceability is still rarely established in contemporary industrial
settings, especially for legacy systems [56]. This phenomenon may
be attributed to the difficulty in automating the generation of trace
links. Manual establishment and maintenance of trace links tend to
be costly to implement and are therefore perceived as financially non-
viable by many companies [55], [57]. To address this problem, many
efforts [27], [32], [33], [34], [36], [38], [58] have been devoted to semi-
automatic or fully-automatic trace link creation. However, the precision
and recall of generated trace links are still at a low level of accuracy,
such that the trace link creation throughout the entire systems develop-
ment process, remains a challenging issue [21].

– Our contributions to RQ1 (OC1): We have improved the Vec-
tor Space Model (VSM)-based requirements traceability recovery
approach by using a novel context analysis. Specifically, the anal-
ysis method can better utilize context information extracted from
requirements (e.g., use cases) to discover relevant subsequent arti-
facts (e.g., source code files). Our approach has been evaluated by
using three different embedded applications in the domains of in-
dustrial automation, automotive and mobile. The evaluation has
shown that our new approach can achieve better accuracy than
VSM, in terms of higher values of three main information retrieval
(IR) metrics, i.e., precision, recall, and mean average precision,
when it handles embedded software applications.

3.1.2 Research Question 2 (RQ2)

How can we validate requirements at various levels of abstraction in a
lightweight way, compared to formal methods, in early stages of model-based
development life cycle of embedded real-time systems?



3.1 Research Questions, Challenges and Contributions 23

• The challenges associated with RQ2 (Ch2): In order to increase the
confidence in the correctness of requirements, model-based formal meth-
ods techniques, such as model checking and theorem proving, have
been to a large extent investigated into the field of requirements vali-
dation [9] [10]. In these techniques, the system structure and behaviors
derived from lower-level requirements are often specified in terms of an-
alyzable models at a certain level of abstraction. Further, upper-level
requirements are formalized into verifiable queries or formulas and then
fed into the models to perform model checking and/or theorem prov-
ing. In this way, the lower-level requirements are reasoned about to re-
solve contradictions, and it is also verified that they are neither so strict
to forbid desired behaviors, nor so weak to allow undesired behaviors.
However, such formal methods techniques also suffer from some lim-
itations, such as how to ease the demand of heavy mathematics back-
ground knowledge to perform theorem proving, and how to model the
target without having the state explosion problem of model checking oc-
curring. Therefore, a lightweight approach to requirements validation is
of paramount importance to achieve success.

– Our contributions to RQ2 (OC2): We have extended a formal
specification language Timed Abstract State Machine (TASM) with
two newly defined constructs Event and Observer, and have pro-
posed an observer-based approach to requirements validation by
using the eTASM. Specifically, our approach can: 1) model both
functional and non-functional requirements of the system under
consideration at different levels of abstraction and, 2) perform re-
quirements validation by utilizing our developing toolset and a
model checker. Furthermore, we have demonstrated the applica-
bility of our approach in real world usage through an industrial
application of a Brake-by-Wire system.

3.1.3 Research Question 3 (RQ3)
How can we validate feature-oriented requirements, in order to detect the fea-
ture interaction problem that refers to the situation in which two or more fea-
tures exhibit unexpected behaviors in the requirements specification?

• The challenges associated with RQ3 (Ch3): Feature models, as a
domain-specific requirements model, can capture commonality and vari-
ability of a software product line through a set of features. With the
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increasing size of feature models, the inherent variability of the feature
sets will easily lead to the feature interaction problem (referring to the
situation that two or more features exhibit unexpected behaviors). Many
developed techniques [45], [47], [59] start with translating the natural
language specification (NLS) of a feature into a formal language speci-
fication (FLS) of the feature behaviors, and then requirements validation
is performed based on the generated formalisms. The main challenges
facing these techniques lie in: 1) ambiguities in the NLS cause imprecise
definitions and even wrong understanding of the feature behaviors and,
2) the direct translation from the NLS to an FLS tends to be very costly
and, 3) the NLS hinders to a large extent the possibility of performing
automatic feature-oriented requirements validation.

– Our contributions to RQ3 (OC3): We have proposed a feature-
oriented requirements validation approach. Such approach starts
with the behavioral specification of features and the associated re-
quirements by following a restricted use case modeling approach,
and then formalizes such specifications by using the eTASM lan-
guage for analysis. Moreover, we have demonstrated the applica-
bility of our approach through a Vehicle Locking-Unlocking sys-
tem.

3.1.4 Research Question 4 (RQ4)
How can we improve the observer-based approach proposed in our previous
work, Paper B [60] and Paper C [61], for the purpose of validating the require-
ments of such embedded real-time systems that are featured with complicated
behaviors?

• The challenges associated with RQ4 (Ch4): In our previous work [60]
and [61], we assume that the observer representing the property of in-
terest can be specified by following the logic of regular expressions, and
the entire event trace generated by the eTASM models should be avail-
able before observers start to monitor and analyze the trace. The mon-
itoring algorithm is implemented in an off-line way as searching for a
specific word matching the regular expression in a prepared document.
However, the main drawbacks of these assumptions are two-fold: 1) the
expressiveness power of regular expressions falls short of expressing un-
ordered fixed-count events where the occurrence multiplicities of these
events are pre-defined but the corresponding order is random and, 2) the



3.2 Research Methodology 25

monitoring algorithm used in [60] can not be applied at runtime because
of the assumption that the entire event trace is pre-achieved. Therefore,
improving the logic used to specify observers is of paramount impor-
tance for our observer-based validation technique to achieve success in
practice.

– Our contributions to RQ4 (OC4): 1) We have given the for-
mal definitions of the observer constructs and observer-related con-
cepts, as well as have defined the corresponding observer exe-
cution process and, 2) we have proposed the Events Monitoring
Logic (EvML) to facilitate the observer specification and, 3) we
have presented an execution process of running observers to val-
idate the requirements describing functional behaviors and non-
functional properties of embedded real-time systems. Finally, we
have illustrated the applicability of our technique by using a Vehi-
cle Locking-Unlocking system.

3.2 Research Methodology
In order to adequately contribute to our general research question listed above,
a research methodology suitable for such a given setting is planned and fol-
lowed. The methodology used in our research is based on the research steps
proposed by Shaw [62], which is summarized in the following steps, and shown
in Figure 3.1:

1. Formulating our initial research idea, based on the general research ques-
tion.

2. Conducting literature reviews to study the state of the art in the require-
ments validation field.

3. Understanding the current research settings and deriving a specific re-
search question from the research idea to guide our work.

4. Analyzing the state of the art in the requirements validation field based
on the guiding research question.

5. Answering the research question by presenting the proposed solutions
and achieved research results.
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Figure 3.1: The main research steps.
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6. Validating whether the research results can be applied in the real-world
applications.

7. Formulating a new research idea through the experience gained from
our previous research, in order to further answer our general research
question.

In this work, the general research question helps us formulate the initial
research idea at step 1. Then, the planned steps (2 - 7) are performed itera-
tively to conduct our research until the desired results for our general research
question is achieved.





Chapter 4

Conclusions and Future
Work

4.1 Conclusions

Requirements validation is an inevitable activity in the systems development
life cycle (SDLC), ensuring the successful development of embedded real-time
systems (ERTS). In this thesis, we have contributed to requirements validation
from two aspects in terms of trace link creation/recovery and model-based re-
quirements validation.

In order to improve the quality of trace links, we have proposed a new
Vector Space Model (VSM)-based approach for requirements traceability cre-
ation/recovery in Paper A, which uses a novel context analysis. Specifically,
our approach extracts context information (such as use case titles and precon-
ditions) from the requirement documents in the beginning. The context infor-
mation and requirements are respectively processed to generate a list of trace
links. Finally, the two lists are combined together to form a final list of trace
links, through a weighted knowledge model. Comparing the standard VSM
technique, the experiment results have shown that our approach can obtain bet-
ter quality candidate trace link lists, in terms of higher scores of three main
information retrieval metrics [13], i.e., recall, precision, and mean average
precision (MAP).

Since model checking and theorem proving involve exhaustive search of
system states and highly human interaction, respectively, we aim at develop-

29
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ing a lightweight approach to requirements validation. Briefly speaking, 1) we
have extended the TASM language with two newly defined Observer and Event
constructs in Paper B and, 2) we have presented an observer-based approach
to requirements validation by utilizing the eTASM language to model require-
ments at various levels in both Paper B and Paper C and, 3) we have pro-
posed an observer specification logic, namely EvML, as well as a newly intro-
duced rewriting-based monitoring algorithm for EvML in Paper D. Our illus-
tration applications by using a Brake-by-Wire system and a Vehicle Locking-
Unlocking system, have shown that our approach can achieve the goal of re-
quirements validation.

4.2 Future Work

In our viewpoint, this thesis work has brought possibilities to conduct further
research in certain research questions that are not thoroughly addressed and
could be interesting to investigate in the future. Some of these possibilities
could be:

Generally speaking, a comprehensive future work task involves: 1) since
the algorithms and approaches proposed in this thesis are merely formally de-
fined or described, we are about to implement or support them in our TASM
TOOLSET and, 2) we would like to include a wider industrial validation of our
developed techniques in the future.

It would be of great interest to further improve the evaluation part of our
trace link creation/recovery technique by providing some statistical evidence
with statistical hypothesis test, which can be conducted by performing, e.g.,
Wilcoxon signed-rank test with Monte Carlo permutation. Moreover, we also
consider determining the optimal value of the parameters in the weighting
schema for combining two ranked trace link lists in the analysis. We have
realized that it would also result in some interesting discoveries, by applying
some user feedback technique to our context analysis. The investigation of us-
ing other automated information retrieval methods, instead of VSM, together
with our context analysis is highly appreciated on our good side as well.

We would be interested in combining our proposed requirements modeling
approach with a set of assistant techniques, such as rule/pattern-based algo-
rithm in order to semi- or fully-automatically transform natural languages into
eTASM models.

Furthermore, we believe that the observer-based requirements validation
approach would be of more help by combining it with certain test-case gener-
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ation techniques, i.e., the observers could be specified automatically.





Bibliography

[1] D. Zowghi and V. Gervasi, “The Three Cs of Requirements: Consistency,
Completeness, and Correctness,” in Proceedings of REFSQ’02, 2002.

[2] J. Hammond, R. Rawlings, and A. Hall, “Will It Work?,” in Proceedings
of RE’01, pp. 102–109, 2001.

[3] N. M. A. Munassar and A. Govardhan, “A Comparison Between Five
Models of Software Engineering,” IJCSI International Journal of Com-
puter Science Issues, vol. 7, no. 5, pp. 94–101, 2010.

[4] B. Berenbach, F. Schneider, and H. Naughton, “The Use of A Require-
ments Modeling Language for Industrial Applications,” in Proceedings
of RE’12, pp. 285–290, 2012.

[5] E. Bjarnason, P. Runeson, M. Borg, M. Unterkalmsteiner, E. Engström,
B. Regnell, G. Sabaliauskaite, A. Loconsole, T. Gorschek, and R. Feldt,
“Challenges and Practices in Aligning Requirements with Verification
and Validation: A Case Study of Six Companies,” Empirical Software
Engineering, pp. 1–47, 2013.

[6] A. T. Bahill and S. J. Henderson, “Requirements Development, Verifica-
tion and Validation Exhibited in Famous Failures,” Syst. Eng, 2005.

[7] A. Ellis, “Achieving Safety in Complex Control Systems,” in Proceedings
of SCSC’95, pp. 1–14, Springer London, 1995.

[8] N. G. Leveson, Safeware: System Safety and Computers. NY, USA:
ACM, 1995.

[9] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta, “From Informal Re-
quirements to Property-Driven Formal Validation,” in Proceedings of
FMICS’09, pp. 166–181, Berlin, Heidelberg: Springer-Verlag, 2009.

33



34 Bibliography

[10] A. Iliasov, “Augmenting Formal Development with Use Case Reasoning,”
in Proceedings of Ada-Europe’12, pp. 133–146, Springer Berlin Heidel-
berg, 2012.

[11] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press,
2008.

[12] G. Spanoudakis and A. Zisman, “Software Traceability: A Roadmap,”
in Handbook of Software Engineering and Knowledge Engineering,
pp. 395–428, World Scientific Publishing, 2004.

[13] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and Systems Trace-
ability. Springer, 2012.

[14] M. Ouimet, A Formal Framework for Specification-Based Embedded
Real-Time System Engineering. PhD thesis, Department of Aeronautics
and Astronautics, MIT, 2008.

[15] T. Gilb and D. Graham, Software Inspection. Addison Wesley, 1993.

[16] S. H. Ow and K. Lumpur, “Design and Code Inspections to Reduce Errors
in Program Development,” in Proceedings of COMPSAC’97, pp. 542–
547, 1997.

[17] M. E. Fagan, “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal, vol. 38, no. 2.3, pp. 258–287, 1999.

[18] I. Sommerville, Software Engineering. Ninth ed., 2011.

[19] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,
“Requirements Specification for Process-Control Systems,” IEEE Trans.
Softw. Eng., vol. 20, pp. 684–707, Sept. 1994.

[20] J. Calvez, Embedded Real-Time Systems. Wiley, 1993.

[21] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
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Abstract

Post-requirements traceability is the ability to relate requirements (e.g., use
cases) forward to corresponding design documents, source code and test
cases by establishing trace links. This ability is becoming ever more crucial
within embedded systems development, as a critical activity of testing, ver-
ification, validation and certification. However, semi-automatically or fully-
automatically generating accurate trace links remains an open research chal-
lenge, especially for legacy systems. Vector Space Model (VSM), a notably
known Information Retrieval (IR) technique aims to remedy this situation.
However, VSM’s low-accuracy level in practice is a limitation. The contri-
bution of this paper is an improved VSM-based post-requirements traceability
recovery approach using a novel context analysis. Specifically, the analysis
method can better utilize context information extracted from use cases to dis-
cover relevant source code files. Our approach is evaluated by using three
different embedded applications in the domains of industrial automation, auto-
motive and mobile. The evaluation shows that our new approach can achieve
better accuracy than VSM, in terms of higher values of three main IR metrics,
i.e., recall, precision, and mean average precision, when it handles embedded
software applications.
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5.1 Introduction

Requirements Management (RM) is a critical activity for system development.
It should be carried out for all the phases of systems development life cycle (or
the software development process in other words), rather than a single phase.
RM assumes requirements elicitation, tracking and preservation of integrity,
and handles a large amount of software development artifacts (i.e., the arti-
facts hereafter). The quality of RM is very important for system development,
e.g., customers satisfaction, requirements coverage, efficient utilization of re-
sources.

The heart of RM is Requirements Traceability (RT), which is defined as
“the ability to describe and follow the life of a requirement, in both a forwards
and backwards direction (i.e., from its origins, through its development and
specification, to its subsequent deployment and use, and through periods of
on-going refinement and iteration in any of these phases)” [1]. RT provides
critical support for system developers throughout the entire software develop-
ment process. Tracing requirements can help to, but is not limited to, perform
change impact analysis, risk analysis, criticality analysis, regression testing,
and requirements satisfaction assessment. However, in traditional industrial
practices, especially for legacy systems [2], trace links are manually estab-
lished and maintained. Such activities tend to be costly to implement and are
therefore perceived as financially non-viable by many companies [1, 3]. To
address this problem, many efforts [4, 5, 6, 7, 8, 9, 10] have been devoted to
semi-automatic or fully-automatic trace link creation. However, such creation
throughout the entire systems development process, remains a challenging is-
sue [11].

Among these efforts, the algebraic model Vector Space Model (VSM) [12]
(referred to as the standard VSM hereafter), has been most investigated to
build trace links between textual artifacts, such as requirements and source
code [13, 14, 15]. After requirements and the target artifacts are preprocessed
by e.g., removing stop words, stemming, the obtained term-document matrix
is used by the standard VSM, which produces descending-ordered ranked lists
of candidate trace links. Such candidate trace links contain the scores which
express the similarity between requirements and subsequent artifacts, based on
the occurrences of terms. Then, different strategies are applied to prune un-
desired links, and finally, the resulting candidate trace link lists are vetted by
human analysts w.r.t. relevancy to a specific project. Nevertheless, statistical
analysis [16] showed that analysts’ tracing experience and amount of effort
(applied to look for missing links, comfort level with tracing and so on) do not
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affect the accuracy of the final trace link lists. Rather, the initial accuracy of the
candidate trace link lists is the most important factor, impacting the accuracy
of the final trace link lists. Our goal in this paper is to tackle the above problem
by using a novel VSM-based context analysis, which involves lightweight hu-
man intervention in the early phase of the RT recovery process. In doing this,
higher-accuracy candidate trace link lists are obtained when compared with the
standard VSM, which also dramatically reduces the human efforts involved in
the final phase of the RT recovery process.

Note that Use Case (UC) technique has been widely adopted as a Require-
ment Specification Language (RSL) in the embedded systems development,
with the advantage of many benefits it provides [17]. In order to better il-
lustrate our approach, we are particularly interested in establishing trace links
between UCs and source code files in this work. In particular, the technical
contributions of this paper are two-fold:

• We introduce the VSM-based context analysis, which consists of three
steps. Specifically, the first step is to analyze the constructs of the RSL,
in order to obtain the requirement intent and a set of context information.
Further, the extracted context information is classified into two groups,
i.e., requirements intent-positive and requirements intent-negative (cf.
Section 5.3). In the second step, the requirement intent and the intent-
positive context information are separately used by the standard VSM
as input, which generates two trace link lists. Lastly, the two trace link
lists are combined together through a weighted knowledge model, which
generates the candidate trace link list.

• We show that our new approach improves the traceability accuracy of the
standard VSM, by obtaining higher values of three main IR metrics, i.e.,
recall, precision, and mean average precision (MAP) scores. Typically,
our case studies are three different embedded applications in the domains
of industrial automation, automotive and mobile.

The remainder of the paper is organized as follows. Section 5.2 introduces
the related work and background theory. Section 5.3 firstly gives an overview
of our analysis, and then presents different parts of our proposed method to-
gether with the implementation of the algorithm in detail. Next, Section 5.4
that describes the evaluation setup, research questions for evaluation, evalua-
tion metrics, improvements of analysis results as well as results validity, and
finally, conclusions and future work are drawn in Section 5.5.
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5.2 Background
This section firstly describes the related work in Section 5.2.1, and then illus-
trates the trace link recovery process based on Information Retrieval (IR) tech-
niques in Section 5.2.2, which is followed by an introduction about context-
based analysis in Section 5.2.3.

5.2.1 Related Work

Many recent studies have explored the feasibility of different IR methods for
semi-automatically or fully-automatically recovering trace links between re-
quirements and subsequent artifacts. Deerwesteret al. [4] discuss the effec-
tiveness of Latent Semantic Indexing (LSI) for recovering trace links between
different kinds of artifacts, and Marcuset al. [18] further the work, showing
a promising result over VSM. Abadiet al. [14] present a novel IR technique
based on Jensen & Shannon (JS) model. They also compared JS, VSM and
LSI for traceability recovery purpose, and concluded that VSM and JS are the
best-fits. A similar comparison is also conducted by Olivetoet al. [19], which
showed that for building trace links between requirements and source code, the
results of JS, VSM and LSI are almost equivalent.

Variants of basic IR methods have been proposed to improve the accuracy
of IR-based traceability recovery approaches. Fautschet al. [15] present four
extensions to the classical tf-idf VSM model. The basic idea is to retrieve do-
main specific information. Konget al. [8] present a VSM enhancement using
term location. By utilizing the relationship between words in different textual
documents, a better accuracy was achieved. Luciaet al. [9] present the approach
that uses smoothing filter to improve the input in the IR-based traceability re-
covery process. Specifically, the words that contribute less information but
repeatedly occur in the documents, are removed. Cleland-Huanget al. [6] intro-
duce three accuracy enhancement strategies, which are hierarchical modeling,
logical clustering of artifacts, and semi-automatic pruning of the probabilistic
network. It should be pointed out that our approach is a variant of IR meth-
ods, but it is very different from the strategies proposed in the prior work. In
their work [6], though context information is obtained from the artifact hier-
archy to improve traceability results, it is not the type of “context” defined in
our work. In our case, such context information is the title, pre-condition, and
post-condition that are extracted from the requirements (i.e., UCs), which can
contribute greatly to improve the traceability results.

Some other pieces of work also show us another promising perspec-
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Figure 5.1: An IR-based traceability recovery process.

tive. Asuncionet al. [20] apply Topic Modeling technique, featured by Latent
Dirichlet Allocation (LDA) [5] to capture trace links prospectively. Luciaet
al. [21] discuss the feasibility of using user feedback analysis to improve the
accuracy of the results of traceability recovery tools. Mahmoudet al. [10] pro-
pose a semantic relatedness approach that exploits external knowledge sources,
e.g., Wikipedia, to identify a set of relevant terms that are used to expand the
query, in an attempt to improve traceability results.

5.2.2 IR-based Traceability Recovery

The IR-based traceability recovery aims at utilizing IR techniques to compare
a set of source artifacts as queries (e.g., requirements), against another set of
target artifacts e.g., source code files, and calculate the textual similarities of
all possible pairs of artifacts. The textual similarity between two artifacts is
based on the occurrences of terms (words) within the artifacts contained in the
repository. Pairs with a similarity score lower than a certain threshold (usually
defined based on engineers’ experience) are filtered out, and the reserved pairs
form the candidate trace link list. The ranked list of candidate trace links are
then analyzed by software engineers to decide if such links are true positive
or not. Typically, an IR-based traceability recovery process follows the steps
depicted in Figure 5.1.

The artifacts have to be preprocessed before they are used to compute sim-
ilarity scores. The preprocessing of the artifacts includes a text normaliza-
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tion by removing most non-textual tokens (e.g., operators, punctuations) and
splitting compound identifiers into separate words by using the underscore
or Camel Case splitting heuristic. Furthermore, common terms, referred to
as “stop words” (e.g., articles, prepositions and programming language key-
words), which contribute less to the understanding about artifacts, are also dis-
carded by using a stop word filter. Words with the length less than a defined
threshold are also pruned out. In addition, stemmer is commonly used to per-
form a morphological analysis, which reduces the inflected words to their root,
e.g., returning verb conjugations and removing plural nouns.

After preprocessing, an artifact (e.g., a UC requirement, a source code file)
can be represented as a plain document containing a list of terms (in this pa-
per, we use documents and artifacts interchangeably). The extracted terms are
generally stored in a m ×N matrix (called term-by-document matrix), where
m is the number of all the terms that occur in all the documents, and N is the
number of documents in the corpus. A generic entry wi,j of the matrix denotes
a measure of the relevance of the ith term in the jth document. Based on the
term-by-document matrix representation, different IR methods can be used to
calculate textual similarities between paired artifacts.

Particularly, in Vector Space Model (VSM) [13], given the entire collection
of unique terms T = {t1, . . . , tm} in a corpus with N documents, the docu-
ment dn is represented as a vector dn = {w1,dn , . . . , wm,dn} consisting of m
unique terms from the corpus with an assigned weight wi,dn through a certain
weighting scheme. Therefore, the similarity score, denoted as sim(q, d), be-
tween the query document q and the target document d is calculated by using
the cosine of the angle between their vectors:

sim(q, d) =

∑m
i=1 wi,q · wi,d√∑m

i=1 w
2
i,q ·

∑m
i=1 w

2
i,d

(5.1)

Next we introduce the term frequency-inverse document frequency, i.e.,
tf-idf, which is adopted as the weighting scheme by all the VSM-based ap-
proaches (including our method).

wi,q = tfi(q) · idfi, wi,d = tfi(d) · idfi (5.2)

where tfi(q) and tfi(d) are measured by the number of times the term ti occurs
in the query document q and the target document d respectively, and idfi is
computed as log( Ndfi ), where dfi is the number of documents containing the
term ti.
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The standard VSM described above has been applied to the requirements
traceability recovery process [12]. In our work, the corpus is the entire set of
requirements (i.e., UCs) and source code files. In applying the standard VSM,
we select a UC (as the query q) and repeatedly calculate the similarity scores
between the UC and all the source code files in the corpus. In this way, a
descending-ordered ranked list of candidate trace links to the requirement will
be generated by VSM. However, the low-level accuracy of the standard VSM
in practice is a limitation [22]. From our viewpoint, the main reason is that
the standard VSM takes the whole requirement document as its input, regard-
less of the relevance of the terms associated with the intent of the requirement.
Therefore, it is inevitable that the majority of the terms used by VSM are irrel-
evant ones, hence misleading VSM to produce a very low-accuracy trace link
list. Clearly, one possible improvement is to provide VSM with more rele-
vant terms that can better represent the requirement intents, which are obtained
through the context-based analysis introduced in the following section.

5.2.3 Context-based Analysis

Connolly [23] introduces an important fact about communication: Commu-
nication always takes place in a context. Suppose that we are interested in
studying an intent of others, which we denote as I . The context consisting of
whatever constructs surround I , serves to facilitate the communication between
speakers and listeners. Furthermore, the intents of people can be reflected by
the context of the conversation between them, based upon their understand-
ing and interpretation. Accordingly, if we regard a pair of a requirement and
its subsequent artifacts as “speaker” and “listeners”, between which there is
a successful communication, then context information surrounding speaker’s
intent is helpful to recover the pair, i.e., the trace link between the requirement
and its subsequent artifacts.

In order to have a better understanding about the idea of using context-
based analysis to improve the accuracy of the standard VSM, we give the
following example of a little boy buying ice cream: A little boy wanted to
eat an ice cream, so he wrote the words “ice cream” on his mother’s shop-
ping list. Later on, two actions took place and can be documented as: 1) his
mother went to a shop and bought an ice cream; 2) he updated the status of
his Twitter with the statement “Ice cream is my favorite dessert!”. From the
perspective of IR-based traceability recovery, we can consider his writing ice
cream on the shopping list as the requirement. The two documented actions
can be regarded as the subsequent artifacts, i.e., documents. In this case, both
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documents are kind of related with the requirement, because all of the require-
ment and documents share the term “ice cream”. Thereby, it is very hard to
conclude which document has the higher similarity score with the requirement
by using the standard VSM. Nevertheless, if we perform context analysis on
the requirement, we can find that the requirement intent is “eat an ice cream”
and the requirement context is “shopping list”. Obviously, the first document
and the requirement share the implicit information “shop”. Therefore, the first
document is more relevant to the requirement about “eat an ice cream”, when
the context analysis is applied. By using the above intuitive idea, we propose a
novel VSM-based context analysis, which can obtain better traceability results,
when compared with the standard VSM.

5.3 The Proposed VSM-Based Context Analysis
Method

A functional requirement is a need that a particular product or process must
be able to perform. It can also be regarded as one or a set of intents, of which
the detailed interpretations are subsequent software development artifacts, e.g.,
design documents, source code, testing and maintenance documents. Accord-
ingly, the traceability recovery process is about finding different relevant in-
terpretations of such intents. In matters of interpretation, it is very important
to understand the context. Since context not only plays a significant role in
influencing the way that the intent is interpreted with a certain level of satisfac-
tion, but also is a construct, helping project experts to improve the accuracy of
traceability recovery process. In this work, such useful requirements context is
extracted and used in the trace link recovery process.

In the following, we introduce the proposed VSM-based context analy-
sis for the post-requirements traceability recovery process in detail. Firstly,
an overview of the analysis is given in Section 5.3.1, which is followed by
the description of the context analysis of Use Case (UC) requirements in Sec-
tion 5.3.2. Next Section 5.3.3 describes the weighted knowledge model that we
used to combine the two generated trace link lists. In order to better illustrate
our approach, in this work, we are particularly focused on establishing trace
links between UCs and source code files. Some other interesting types of RSL
will be considered as part of our future work.
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5.3.1 Overview of the VSM-based Context Analysis
The main idea of our proposed VSM-based context analysis is to utilize the
context information to enhance the accuracy of the candidate trace link list that
will be vetted by experts at the end of the RT recovery process. To be specific,
its basic approach is summarized by the following three steps:

• The first step is to obtain the context information and the requirement
intent, by analyzing the constructs of the RSL based upon experts’ expe-
rience. The extracted context information will be further classified into
two groups i.e., intent-positive and intent-negative, according to whether
or not such context information can help to communicate and understand
the requirement intent. This is the core part of our context analysis.

• After the context analysis, we employ the standard VSM to generate two
ranked trace link lists between the requirement and artifacts, in terms of
using the intent-positive context query and the intent query (as input),
respectively. In doing this, we will get two candidate trace link lists at
the end of this step.

• Finally, the two generated ranked lists are combined together to form
a ranked candidate trace link list containing the recalculated similarity
scores. This is done by using a weighted knowledge model, and the
ranked candidate list will be vetted by experts to produce the final trace
link list.

Figure 5.2 shows the detailed work flow of our approach. Note that our
approach involves lightweight human intervention in the early phase of the RT
recovery process, which is very different from the traditional way that heavy-
weight human intervention is often involved in the last stage of the RT recovery
process. In doing this, we provide the standard VSM with more accurate infor-
mation to generate better candidate trace link lists. As a result, the final trace
link lists can be significantly improved as well as the pertaining human efforts
demanded in the final phase of the RT recovery process can be dramatically
reduced.

5.3.2 Context Analysis of Use Cases
Requirement context consists of whatever constructs surround requirement in-
tent, which are relevant to the requirement interpretation on the subsequent
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Figure 5.2: The work flow about our proposed VSM-based context analysis
approach.

artifacts. Moreover, there are various constructs which are contained by dif-
ferent RSLs, introducing great diversity. In order to avoid the case that the
constructs of requirements context become too intractable to be processed in
practice, it is essential to restrict the range. Therefore, our context analysis de-
fines the range of context and intent constructs for a given RSL, based around a
set of proposed criteria and definitions using experts’ experience. Additionally,
since the results of our context analysis can be reused for the projects using the
same RSL, we consider the human efforts involved in our approach can still be
regarded as light-weighted.

The criterion, which we apply to judge if a construct belongs to context or
intent, is given below:

Criterion 1. A construct is considered as the requirement intent if it is used by
the system developers to implement the functionalities of a system described by
the requirement; it belongs to context otherwise.

In this work, we choose UC technique as an example, to examine our ap-
proach. In general, although different projects or companies may use different
structured UC requirements, the constructs of the UCs as in the widely ac-
cepted industrial practice [17], can be expressed by Definition 1.

Definition 1. Use Case constructs of our interest include the title, pre-
conditions, flow of events and post-conditions of the use case.
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It is interesting to stress that our current research only focuses on the func-
tional requirements which describe the functionalities of a system. The above
definition should thereby be adapted when non-functional requirements are
considered.

According to Criterion 1, we give the following definitions of UC intent
and UC context used in our work.

Definition 2. Intent of a Use Case requirement refers to its flow of events.

Definition 3. Context of a Use Case requirement refers to its title, pre-
condition, and post-condition.

Further, our definitions are given based around the following train of
thoughts:

• The title of a UC is traditionally named as an active verb phrase. Al-
though its information is not rich enough for system developers to im-
plement the functional requirement, it still can help to provide extra in-
formation for traceability recovery process. Therefore, the title construct
is defined as context information.

• The initiation of a UC occurs whenever the pre-conditions are met, and
the post-conditions, on the other hand, describe what data need to be
stored in the UC. Therefore, they belong to context.

• The flow of events is the main part of a UC, which defines the relevant
functional requirements with all the details. Hence it is considered as the
intent of a UC.

However, from the traceability perspective, not all the context information
is helpful for the interpretation of requirement intent, we thereby give the fol-
lowing definition of

Criterion 2. If the construct aims at describing the functionalities of a system,
i.e., the requirement intent, the construct is defined as intent-positive. If the
construct aims at describing the constraints, extensions, meta information, etc.,
the construct is defined as intent-negative.

Based on Criterion 2, the pre-conditions and post-conditions should be
classified as intent-negative constructs, since they do not aim at describing
the functions of a system. The title of UC is usually associated with some
information about a certain functional requirement, it is thereby regarded as
intent-positive construct.
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5.3.3 The Weighted Knowledge Model
Getherset al.present the weighted knowledge model in [24], which is used in
our work. Next we introduce its basic idea in our context: The two trace link
lists generated by using requirements context query and requirements intent
query (i.e., the context query and the intent query hereafter) are viewed as
two knowledge sources, both of which can contribute greatly to address trace
link recovery between the requirement and a set of target artifacts. Since the
two trace link lists express their judgments from different perspectives (i.e.,
as either requirements context or requirements intent), their pertaining weights
should be considered when they are combined together to obtain a more accu-
rate candidate trace link list.

Formally, such a combination is obtained through two steps. At the first
step, the two set of similarity scores of two trace link lists are normalized by
using a standard normal distribution, as expressed by Equation 5.3:

simli(q, d)n =
simli(q, d)−mean(simli(q,D))

stdev(simli(q,D))
(5.3)

where q represents the query, D represents a set of related artifacts, d ∈ D,
simli(q, d)n is the normalized similarity score of simli(q, d) (where li is one
of the trace link lists), and simli(q,D) is a set of similarity scores in li. The
functions mean() and stdev() return the mean and standard deviation of the
similarity scores of two trace link lists respectively. Note that such normaliza-
tion is required to guarantee that the two different sets of similarity scores are
commensurable.

At the second step, the normalized scores are combined by using the fol-
lowing weighted knowledge model, as shown in Equation 5.4:

sim(cq, iq, d)c = λ× simli(cq, d)n + (1− λ)× simlj (iq, d)n (5.4)

where cq and iq represent the context query and intent query, λ ∈ [0, 1] ex-
presses the confidence in each query. The higher the value the higher confi-
dence gives by the technique. In our evaluation, we find the value of λ to be
0.3 (as the weight of context query), which usually produces good combined
similarity scores.

In a nutshell, our context analysis in practice provides the standard VSM
with both requirements intent query and requirements context query. Typically,
such a combination contains more enhanced semantics, which can accurately
represent the intent of the requirement. As a result, the accuracy of the standard
VSM toward recovering true trace links can be improved.
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5.3.4 Algorithm Description

The precise description of the algorithm using pseudo-code is outlined in Al-
gorithm 1, which takes four parameters and returns a ranked list of candidate
trace links at the end of its execution.
Parameters:

D: list - the collection of source code files D
uc: string - the UC requirement uc
iq: string - the intent query iq of the use case uc
cq: string - the context query cq of the use case uc

Returns:
LISTvsm−ca: list - the ranked candidate trace link list between the UC

requirement uc and the source code filesD, containing the combined similarity
scores.

Algorithm 1 V SM − CA(D,uc, iq, cq)

1 m← 0, D′ ← ∅
2 D ← d1, d2, ..., dn−1, dn
3 cq ← context(uc)
4 iq ← intent(uc)
5 for all di ∈ D such that 1 ≤ i ≤ n do
6 simcq,di ← sim(cq, di)
7 simiq,di ← sim(iq, di)
8 if simcq,di 6= 0 or simiq,di 6= 0 then
9 m← m+ 1

10 D′ ← D′
⋃
{di}

11 end if
12 end for
13 for all d′i ∈ D

′ such that 1 ≤ i ≤ m do
14 simcq,d′

i
← siml1 (cq, d′i)n

15 simiq,d′
i
← siml2 (iq, d′i)n

16 sim(uc, d′i)← sim(cq, iq, d′i)c
17 if sim(uc, d′i) ≥ threshold then
18 LISTvsm−ca ← LISTvsm−ca

⋃
{sim(uc, d′i)}

19 end if
20 end for
21 return LISTvsm−ca

5.4 Empirical Evaluation

This section describes the evaluation carried out to assess the improvement
given by our VSM-based context analysis over the standard VSM, comprising
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six parts. Section 5.4.1 introduces the evaluation setup, and Section 5.4.2 for-
mulates our research questions for evaluation. Our evaluation metrics and the
corresponding results are presented in Section 5.4.3 and Section 5.4.4 respec-
tively. Finally, we summarize the evaluation by highlighting some interesting
observations in Section 5.4.5, before we give our view of validity of results in
regard to some possible threats in Section 5.4.6.

5.4.1 Definitions and Context
The goal of the evaluation is to provide the evidence that our VSM-based con-
text analysis can obtain better results over the standard VSM, when it is used
for trace link recovery in embedded applications.

The evaluation consists of three different embedded software applications
developed at Mälardalen University in Sweden, which are: 1) one industrial
robotic control system iRobot and, 2) one truck navigation system iTruck and,
3) one embedded mobile application iSudoku. Specifically, iRobot is a C pro-
gram, which models a robotic control application containing complicated tim-
ing behavior, and it has been designed and evaluated in [25]. iTruck is also
a C program, which is developed for modeling a truck navigation system by
using SaveComp Component Model (SaveCCM) [26]. iSudoku is a Sudoku
game application developed in Java for the Android platform. In addition, all
the three applications have different number of UCs, source code files and true
trace links, as shown in Table 5.1. One example of the UCs in iSudoku, with its
title, pre-condition, flow of events and post-condition, is shown by Figure 5.3.
Moreover, all the relevant files of the three case studies, e.g., UCs, source code
files, are available upon request.

For implementation, we use the Lucene library [27], which is the well-
known VSM with tf-idf weighting scheme, and has been considered as the
default IR model by many pieces of work [14, 15, 20]. Our testbed is running
Mac OS X, version 10.6.8, and the computer is equipped with the Intel Core
Duo CPU i7 processor, 4GB RAM and a 256KB L2 Cache. The processor has
four cores and one frequency level: 2.2 GHz.

5.4.2 Research Questions
In this study, we aim at addressing the following research question:

• Can our VSM-based context analysis approach obtain better quality trace
link lists, compared with the standard VSM?
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Table 5.1: Characteristics of the three different embedded software applica-
tions used in our evaluation.

System KLOC UCs Source code files True links

iRobot 2706 21 20 45
iTruck 952 24 14 37

iSudoku 9285 18 54 51

1 List Puzzles on Screen Use Case
2 Pre-conditions:
3 The game is initiated.
4 Flow of events:
5 The application loads all the puzzles stored in the local database.
6 The puzzles and their corresponding folders can be listed on the
7 screen one by one.
8 Post-conditions:
9 List variables is initiated.

Figure 5.3: An example shows one use case in iSudoku.

To answer this question, we plan to use three well-known IR metrics for
results comparison (to be introduced in the following section).

5.4.3 Metrics
There are many different measures for evaluating the accuracy of IR methods.
In this work, we use three well-known IR metrics, i.e., recall, precision and
mean average precision (MAP) [22]. Specifically, recall shows the ratio of the
number of relevant documents retrieved by the method over the total number of
relevant documents, and 100% recall means that all relevant documents were
retrieved. Precision is the fraction of the relevant documents retrieved over the
total number of the retrieved documents, and 100% precision means that all
the retrieved documents are relevant ones, though there could be some rele-
vant links that were not discovered. Recall and precision can be expressed by
Equation 5.5 and Equation 5.6 as follows:

recall =
|Drel ∩Dret|
|Drel|

(5.5)

where Drel represents the collection of source code files that are relevant to a
UC, and Dret is the collection of the retrieved source code files using a certain
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IR technique.

precision =
|Drel ∩Dret|
|Dret|

(5.6)

where Drel represents the collection of source code files which are relevant to
a UC, and Dret is the collection of the retrieved source code files.

Another evaluation metric MAP, as one of the most frequently used IR
measures, considers the rank of the retrieved trace links. The higher the MAP
score is, the better quality of the retrieved ranked list of trace links is, in terms
of requirements relevance. In particular, given a collection of UCs as queries
Q, and a set of related source code files as documents Da, the MAP score of
the ranked list L of retrieved documents for the given query q, is defined as
below:

MAP =
1

|Q|

Q∑
q=1

1

|Da|

Da∑
d=1

SCORErank(d, L) (5.7)

where SCORErank(d, L) is the ranking score of the document d in the list L.
The higher the rank of d is, the larger ranking score the document has.

5.4.4 Analysis of Results
In this section, we investigate whether the accuracy of our VSM-based context
analysis approach is superior to that of the standard VSM approach.

Improvement of Recall and Precision Scores given by our VSM-based
Context Analysis

Recall and precision frequently exist in a state of mutual tension. For instance,
100% recall can be achieved simply by returning all possible links. This may
result in a very low level of precision, which is not so useful in practice [22].
When choosing any traceability recovery approach, the end-users should con-
sider which one between recall or precision is preferred. For example, for
safety-critical projects, recall will probably be more important than precision,
since the end-users will not want to run the risk of missing any true links. On
the other hand, in most cases, a non-safety critical project with a short time-to-
market may prefer to favor precision [22], i.e., the end-users would expect that
the traceability recovery approach can obtain more true links when they just
have time to check a part of the candidate trace link list. It should be pointed
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out that the level of recall at 90% is a common choice at which the precision
scores are compared to show improvements [6, 24]. Figure 5.4 provides the
precision/recall curves achieved by our approach and the standard VSM. As
shown in the figure, we have one case (i.e., iRobot) where our approach out-
performs for all levels of recall, and there are two other cases (i.e., iSudoku and
iTruck) where the precision scores of our approach are much better than that
acquired by the standard VSM approach when the level of recall is lower than
90%. This means that our approach would be more suitable for the embedded
systems which prefer precision rather than recall.

Improvement of MAP Scores given by our VSM-based Context Analysis

Table 5.2 shows the improvement of MAP scores given by our method over
the standard VSM, for all the three case studies. It is also interesting to stress
that we only show the average of the MAP scores of all the UCs for a certain
case study in the table, for the sake of space. Moreover, we also present such
improvements in terms of percentages (i.e., MAPvsm−ca−MAPvsm

MAPvsm
, where vsm-

ca is our VSM-based context analysis) in Column Imprv. % in Table 5.2. As
shown in the table, the most significant improvement achieved by our approach
is 28.0%, comparing the standard VSM.

Table 5.2: Our proposed VSM-based context analysis can retrieve higher MAP
scores, comparing the standard VSM.

System AVG of MAP VSM AVG of MAP VSM-CA Imprv. %

iRobot 0.717 0.733 2.23%
iTruck 0.660 0.762 15.4%

iSudoku 0.547 0.700 28.0%

5.4.5 Experiments Summary

Summarizing the above observations, our evaluation results have confirmed the
following points:

• Our proposed approach can help to recover more accurate trace links
than the standard VSM, in the sense of obtaining higher precision scores
corresponding to certain levels of recall.
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Figure 5.4: The precision/recall curves of our approach and the standard VSM
approach, in the order of iRobot, iTruck and iSudoku from top to bottom. In
addition, the curves in dashed lines are for the standard VSM.
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• Our proposed approach can help to recover more accurate trace links
than the standard VSM, in the sense of obtaining higher MAP scores.

• The computing time required by the trails of our approach, on average
took only a few minutes to compute. This is an important step toward
handling real life-scale requirements traceability problems.

5.4.6 Threats to Validity
In this section, we discuss the threats that can impact on the validity of our
evaluation, from the following four perspectives [28]. The first category is
construct validity, concerning the degree to which the study metrics accurately
measure the concepts. The metrics used in our evaluation, i.e., recall, precision
and MAP, have been widely adopted for assessing the traceability accuracy of
IR methods. Therefore, we believe that they can sufficiently quantify the ac-
curacy of two compared IR methods. The second category is internal validity,
referring to the extent to which a treatment changes what is measured in the
experiment. The internal validity of our experiment can only be affected by the
chosen value of the parameter λ in the employed knowledge model. We choose
the value of λ based on our empirical evidence. In the future, we will obtain
the optimal value of λ by using some advanced techniques, such as optimiza-
tion and machine learning. The third category is external validity, related to
the extent to which we can generalize the study results. The reason is that dif-
ferent systems with various requirements and subsequent artifacts may lead to
different results. In order to reduce the threats to the external validity, we have
chosen three embedded software applications in different domains. Last but
not least, the fourth category conclusion validity concerns if our evaluation ob-
servations can be supported by some valid statistical techniques as evidences.
In this stage, we just visualize our results to illustrate our improvement. In the
future, this will be done by using certain non-parametric or parametric statisti-
cal tests, such as Wilcoxon signed-rank test and ANOVA.

5.5 Conclusions and Future Work
In this paper, we have proposed a new Vector Space Model (VSM)-based ap-
proach for post-requirements traceability recovery, which uses a novel context
analysis. Specifically, our approach utilizes context information featured by
requirement context and requirement intent, to build trace links between use
cases and relevant source code files, through a weighted knowledge model. We
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have evaluated the approach by using three different embedded applications
in industrial automation, automotive and mobile. The experiment results have
shown that our approach can obtain better quality candidate trace link lists,
in terms of higher scores of three main IR metrics, i.e., recall, precision, and
MAP, comparing the standard VSM approach.

For future work, we will improve the evaluation part by providing some
statistical evidence with statistical hypothesis test, which can be conducted by
performing, e.g., Wilcoxon signed-rank test with Monte Carlo permutation.
Moreover, we will consider to determine the optimal value of the parameters in
the weighting schema for combining two ranked trace link lists in the analysis.
We also plan to apply some user feedback technique to our context analysis,
which would also result in some interesting discoveries. The investigation of
using other automated information retrieval methods, instead of VSM, together
with our context analysis, as well as the completion of some extensive evalua-
tion by using more datasets are also highly appreciated on our good side.
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Abstract

Requirements validation is an essential activity to carry out in the system devel-
opment life cycle, and it confirms the completeness and consistency of require-
ments through various levels. Model-based formal methods can provide a cost-
effective solution to requirements validation in a wide range of domains such as
safety-critical applications. In this paper, we extend a formal language Timed
Abstract State Machine (TASM) with two newly defined constructs Event and
Observer, and propose a novel requirements validation approach based on the
extended TASM. Specifically, our approach can: 1) model both functional and
non-functional (e.g., timing and resource consumption) requirements of the
system at different levels and, 2) perform requirements validation by utilizing
our developed toolset and a model checker. Finally, we demonstrate the appli-
cability of our approach in real world usage through an industrial case study of
a Brake-by-Wire system.
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6.1 Introduction

With the growing complexity of safety-critical systems, requirements are no
longer merely specified at the outset of the systems development life cycle
(SDLC). On the contrary, there is a continuum of requirements levels as more
and more details are added throughout the SDLC, which can roughly be divided
into two categories in terms of high-level and low-level requirements [1]. High-
level requirements describe what features the proposed system has (i.e., fea-
tures hereafter) and low-level requirements state how to develop such a system
(i.e., requirements hereafter). Studies have revealed that most of the anoma-
lies discovered in late development phases can be traced back to hidden flaws
in the requirements [2] [3], such as contradictory or missing requirements, or
requirements that are discovered to be impossible to satisfy features at the late
phase of development. For this reason, requirements validation is playing a
more and more significant role in the development process, which confirms the
correctness of requirements, in the sense of consistency and completeness [4].
In details, consistency refers to situations where a specification contains no
internal contradictions in the requirements, while completeness refers to situa-
tions where the requirements must possess two fundamental characteristics, in
terms of neither objects nor entities are left undefined and the requirements can
address all of the features.

In order to increase the confidence in the correctness of the requirements,
model-based formal methods techniques have been to a large extend investi-
gated into the field of requirements validation [5] [6]. In these techniques, the
system design derived from requirements is often specified in terms of analyz-
able models at a certain level of abstraction. Further, features are formalized
into verifiable queries or formulas and then fed into the models to perform
model checking and/or theorem proving. In this way, the requirements are rea-
soned about to resolve contradictions, and it is also verified that they are neither
so strict to forbid desired behaviors, nor so weak to allow undesired behaviors.
However, such formal methods techniques also suffer from some limitations,
such as how to ease the demand of heavy mathematics background knowledge
to perform theorem proving, and how to model the target without having the
state explosion problem of model checking occurred.

To tackle with the aforementioned limitations, we propose an approach
to requirements validation using an extended version of the formal language
Timed Abstract State Machine (TASM), which contains new constructs TASM
Event and TASM Observer. Additionally, TASM has shown its success in
the area of systems verification in [7] [8], with some distinctive features: 1)
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TASM supports the formal specification of both functional behaviors and non-
functional properties of safety-critical systems w.r.t. timing and resource con-
sumption and, 2) It is a literate language being understandable and usable with-
out requiring extensive mathematical training, which avoids obscure mathe-
matics formulae and, 3) TASM provides a toolset [9] to execute the pertaining
TASM models for the purposes of analysis. The Observer technique [10] has
an origin in the model-based testing domain where it has been used to specify
and observe coverage criteria as well as verify such observable properties, but
without changing the system’s behaviors. The applications and advantages of
using the Observer technique inspire us to exploit it to perform requirements
validation, which makes a detour on the state explosion issue of model check-
ing by not adding new states in the analysis. To be specific, our approach
consists of three main steps:

• Requirements modeling models requirements by using various con-
structs in TASM.

• Features modeling translates features into our newly defined TASM ob-
servers that are used for the later analysis.

• Requirements validation contains four kinds of validation checking on
focus, i.e., Logical Consistency Checking, Auxiliary Machine Checking,
Coverage Checking, and Model Checking, as in the consistency and com-
pleteness checking of requirements.

The main contributions of this work are three-fold: 1) We extend the TASM
language with two newly defined constructs in terms of Event and Observer
and, 2) We propose a novel approach to requirements validation by using the
extended TASM language and, 3) We demonstrate the applicability of our ap-
proach through a case study. The remainder of this paper is organized as fol-
lows: An introduction to the TASM language and its extension is presented
in Section 6.2. Section 6.3 introduces the Brake-by-Wire (BbW) system and
its requirements. Our approach to requirements validation is described and
demonstrated by using the BbW system in Section 6.4. Section 6.5 discusses
the related work, and finally concluding remarks and future work are drawn in
Section 6.6.

6.2 TASM Language and Its Extension
Figure 6.1 shows the meta-model of the extended TASM language in UML
class diagram. The constructs included in the dashed rectangle are the new



6.2 TASM Language and Its Extension 71

TASM constructs defined in this work. Section 6.2.1 gives an overview of the
TASM language and Section 6.2.2 presents the extension of TASM.

Figure 6.1: The Meta-model of the extended TASM language.

6.2.1 Overview of TASM

TASM [9] is a formal language for the specification of safety-critical systems,
which extends the Abstract State Machine (ASM) [11] with the capability of
modeling timing properties and resource consumption of applications in the
target system. TASM inherits the easy-to-use feature from ASM, which is
a literate specification language understandable and usable without extensive
mathematical training [12]. A TASM model consists of two parts – an envi-
ronment and a set of main machines. The environment defines the set and the
type of variables, and the set of named resources which machines can consume.
The main machine is made up of a set of monitored variables which can affect
the machine execution, a set of controlled variables which can be modified by
machines, and a set of machine rules. The set of rules specify the machine
execution logic in the form of “if condition then action”, where condition is an
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expression depending on the monitored variables, and action is a set of updates
of the controlled variables. We can also use the rule “else then action” which
is enabled merely when no other rules are enabled. A rule can specify the an-
notation of the time duration and resource consumption of its execution. The
duration of a rule execution can be the keyword next that essentially states the
fact that time should elapse until one of the other rules is enabled.

TASM describes the basic execution semantics as the computing steps with
time and resource annotations: In one step, it reads the monitored variables,
selects a rule of which condition is satisfied, consumes the specified resources,
and after waiting for the duration of the execution, it applies the update set
instantaneously. If more than one rules are enabled at the same time, it non-
deterministically selects one to execute. As a specification language, TASM
supports the concepts of parallelism which stipulates TASM machines are ex-
ecuted in parallel, and hierarchical composition which is achieved by means
of auxiliary machines which can be used in other machines. There are two
kinds of auxiliary machines - function machines which can take environment
variables as parameters and return execution result, and sub machines which
can encapsulate machine rules for reuse purpose [9]. Communication between
machines, including main machines and auxiliary machines, can be achieved
by defining corresponding environment variables.

6.2.2 The Extension to TASM
Our extension to TASM consists of two main parts, i.e., TASM Event and TASM
Observer (Event and Observer hereafter, respectively) as shown in Figure 6.1.

Definition 4. TASM Event (EV). TASM EventE defines the possible types of an
event instance, including ResourceUsedUpEvent, ChangeValueEvent, RuleEn-
ableEvent, and RuleDisableEvent. An event instance e is triggered by the cor-
responding TASM construct, which is a tuple < E, t >, where E is the type of
the event instance, and t is the time instant when the instance occurs.

The events of ChangeV alueEvent type is triggered by a specific TASM
environment variable whenever its value is updated,, which can be referenced
in the form of VariableName→EventType. The ResourceUsedUpEvent is
triggered by the case whenever the resource of the application is consumed to-
tally, which can be referenced in the form of ResourceName→EventType. The
RuleEnableEvent andRuleDisableEvent are triggered whenever a specific
TASM rule is enabled or disabled, respectively, which can be referenced in the
form of MachineName→RuleName→EventType.
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Definition 5. TASM Observer. An observer is a tuple
< ObserverEnvironment, Listener,Observation >, where:

• ObserverEnvironment is a tuple
< ObserverV ariable, EventsF ilter >, where ObserverV ariable is
a set of variables that can be used by both Listener and Observation,
andEventsF ilter can be configured to filter out events irrelevant to the
observer.

• Listener specifies the observer execution logic in the form of ”listening
condition then action”, where the condition is an expression describing
the sequence of the occurrence of events and the action is a set of actions
updating the value of observer variables when the condition evaluates to
be true.

• Observation is a predicate of the TASM model, which can evaluate to
be either true or false, depending on the value of corresponding observer
variables.

In this work, we only introduce the informal execution semantics of Ob-
server, as depicted in Figure 6.2, and the formal semantics is considered as part
of our future work. Basically, in the runtime, the TASM model often produces
massive events according to the modeled application. After the EventsF ilter
removes the irrelevant events, the remaining events will be logged in the lo-
cal database, namely EventsLog. Next, the Listener defined in Observer will
evaluate its condition based off of the sequence of logged events. Since regular
expression is usually used as a sequential search pattern, the specification of the
event sequence follows the syntax and semantics of regular expression. If the
condition is satisfied, then the action will start to update the observer variables.
Once all of the updates are executed, the Observation will be concluded based
on the updated observer variables. A running TASM model (representing the
target system) can be observed by several observers at the same time.

For a better understanding, we give an example of Observer as shown in
Figure 6.3, where eventA and eventB are RuleEnableEvent type, and eventC
and eventD are RuleDisableEvent type. The observer variables include a
Boolean variable ov (initiated as false) and a Time variable time (initiated as
zero). ChangeV alueEvent and ResourceUsedUpEvent are regarded as ir-
relevant events and removed by the EventsF ilter, the RuleEnableEvent
and RuleDisableEvent events are logged in the Eventslog database. As
shown in line 9 in Figure 6.3, the expression of the Listener condition in
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regular expression, represents the event sequence that begins with eventA,
followed by arbitrary events (represented by ”.*”) in the middle, and ends with
two events in terms of either eventB and eventD, or eventC and eventD. If
the condition evaluates to be satisfied, the observer variable ov will be assigned
as true, and time as the interval between eventA and eventD. In this exam-
ple, if the events sequence in the condition is detected and the interval time is
larger than 100, the Observation will be concluded as a true predicate.

Figure 6.2: The workflow of the Observer execution.

6.3 Case Study

Our case study is a Brake-by-Wire (BbW) system which is a demonstrator at
a major automotive company [13]. The BbW system aims to replace the me-
chanical linkage between the brake pedal and the brake actuators. Further, the
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1 ObserverVariables:{
2 Boolean ov := false;
3 Time time := 0;
4 }
5 EventsFilter:{
6 filter out: ChangeValueEvent, ResourceUsedUpEvent;
7 }
8 Listener:{
9 listening eventA.*(eventB | eventC)eventD then

10 ov := true;
11 time := eventD.t - eventA.t;
12 }
13 Observation:{
14 ov == true and time > 100;
15 }

Figure 6.3: An example of the TASM Observer.

BbW system consists of micro-controller units, sensors, actuators and com-
munication bus, which interprets driver’s operation and operating conditions,
through sensors, to decide on the desired brake torque of the brake actuators
for appropriate brake force on each wheel.

The features that the BbW system should possess are described as follows:

• Req H1: The system shall provide a base brake functionality where the
driver indicates that she/he wants to reduce speed so that the braking
system starts decelerating the vehicle.

• Req H2: When the brake pedal is not pressed, the brake shall not be
active.

• Req H3: The time from the driver’s brake request till the actual start of
the deceleration should be no more than 300 ms.

The list of requirements for the BbW system in our work is as follows:

• Req L1: The brake torque calculator shall compute the driver requested
torque and send the value to the vehicle brake controller, when a brake
pedal displacement is detected.

• Req L2: The vehicle brake controller shall decide the required torque on
each wheel and each of the required wheel torque values is sent together
with the sensed vehicle velocity to the Anti-lock Braking System (ABS)
function on respective wheel.
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• Req L3: The ABS function shall decide appropriate braking force on
each wheel, based on the received torque request, current vehicle veloc-
ity and wheel angular velocity.

6.4 The TASM-based Approach to Requirements
Validation

In this section, we will introduce our approach that addresses the issue of
formalizing and validating requirements specifications written in natural lan-
guage. Further, our approach is based on the use of the extended TASM lan-
guage to formalize both requirements and features. We will go into details
about each step by introducing the adhering sub-steps and show an illustration
by using the BbW system. Specifically, Section 6.4.1 and Section 6.4.2 dis-
cuss modeling of the requirements and features respectively, and Section 6.4.3
presents the analysis and results of requirements validation of the BbW system.

6.4.1 Requirements Modeling
The first step of our approach is to analyze the low-level requirements (i.e., ,
requirements) in natural language and formalize them by using the correspond-
ing TASM models. This step contains five sub-steps, as shown in Figure 6.4:

Figure 6.4: The sub-steps of requirements modeling.

• Step 1: Requirements Preprocessing distinguishes functional require-
ments from non-functional requirements.

• Step 2: Components Identification extracts the possible software com-
ponents of the system referred in the functional requirements and maps
them onto TASM main machines.

• Step 3: Connections Identification identifies the connections between
different software components, according to a certain type of interac-
tions.
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Main Machine Quantity Category Description
DRIVER 1 External Entity model the driver’s behavior

VEHICLE 1 External Entity model the behavior of the vehicle
TORQUE CALC 1 Micro-controller calculate the driver’s requested torque
BRAKE CTRL 1 Micro-controller calculate the requested torque per wheel

ABS CTRL 4 Micro-controller calculate the brake force on each wheel
BRAKE ACTU 4 Actuator perform the brake force on each wheel

WHLSPD SENSOR 4 Sensor sense the rotating speed of each wheel
VCLSPD SENSOR 1 Sensor sense the moving speed of the vehicle
PEDAL SENSOR 1 Sensor sense the position of the brake pedal

COMMU BUS 1 Bus the communication bus

Table 6.1: The TASM main machines model the entire Brake-by-Wired system.

• Step 4: Behavior Specification specifies the behaviors of components,
which implement different system functionalities.

• Step 5: Property Annotation adds timing and resource consumption
annotations to the relevant TASM model.

Requirements Preprocessing.

At this step, we need to distinguish functional requirements from non-
functional requirements. The functional requirements will be formalized into
executable TASM models, and non-functional requirement in terms of tim-
ing and resource consumption requirements can provide useful information for
property annotation. In the BbW system, all the requirements, i.e., ReqL1,
ReqL2 and ReqL3, are functional requirements.

Components Identification.

The identification of the system components and the mapping of each compo-
nent onto a TASM main machine is of importance in the process. In order to
do so, we recommend the following two tasks:

• Identification of the external (or environmental in other words) compo-
nents that interact with the system.

• Identification of the internal components that compose of the system.

At this step, a list of main machines will be defined for the BbW system,
as shown in Table 6.1.
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Connections Identification.

In the TASM model, asynchronous communication between different main ma-
chines can be implemented by using a set of variables, which ignores the trans-
mission delay between machines. On the contrary, the common form of inter-
process communication (IPC) is message-passing, which considers the trans-
mission delay and bandwidth consumption as unavoidable. To this end, we
define a main machine with the annotation of time and bandwidth as a means
of modeling the communication bus. In our case study, the sensors in the BbW
system communicate with the corresponding controllers through ports using
signals, where transmission delay can be ignored. Further, a specific TASM
main machine i.e., COMMU BUS (in Table 6.1) models the communication
bus, which is responsible for the communication between the brake controller
and the ABS controllers.

Behavior Specification.

There is no silver-bullet to model the behaviors of various components in
TASM. Based on our experiences, we recommend the following steps:

• Identification of possible states of the target system: A user-defined type
is used to represent the possible states, and a state variable is defined to
denote the current state of the system.

• Identification of the transition conditions of states: The conditions of a
certain machine rule are given, according to the corresponding value of
the state variable and the transition conditions.

• Identification of the actions when the system enters a specific state: The
actions of machine rules are specified, based on the behaviors of a com-
ponent and the next possible state.

In the BbW system, all of the identified components (i.e., TASM main
machines) are divided into five categories according to different functionali-
ties: external entity, micro-controller, actuator, sensor, and bus. For reasons of
space, we do not list all the rules used by the identified TASM main machines.
Instead, we list the rules of four typical templates in our case study, i.e., micro-
controller, actuator, sensor, and bus. In order to have a better understanding
on the proposed sub-steps, we discuss the specification of a micro-controller
component in detail.
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A micro-controller component is activated by an event, and it reads a set of
variables and performs a sequence of computation after being activated. When
it finishes execution, the result will be used by other components. Therefore,
the micro-controller component typically has three possible states – WAIT (ini-
tial state), COMPUTE, and SEND: The WAIT sate denotes that the micro-
controller is waiting for activation and, the COMPUTE state represents that
the micro-controller is performing computation. The SEND state introduces
that the micro-controller is sending the results to other components. Fig-
ure 6.5 shows the rules of the TASM main machine, which models the micro-
controller. PERFORM COMPUTATION() and SEND RESULT() are sub ma-
chines.

Figure 6.6 shows the machine rules that model an actuator, and PER-
FORM A- CTUATION() is a sub machine. Figure 6.7 shows the rules of
the TASM main machine, which models a sensor. Measure Quantity() is a
function machine. Figure 6.8 shows the machine rules, which models the
communication bus. Get Message() is a function machine and TRANSMIT-
TING MESSAGE() is a sub machine.

R1:Activation{
if ctrl_state=wait and new_event=True then

ctrl_state := compute;
new_event := False;

}
R2:Computation{
t:=computation_time;
if ctrl_state = compute then

PERFORM_COMPUTATION();
ctrl_state := send;

}
R3:Send{
if ctrl_state = send then

SEND_RESULT();
ctrl_state := wait;

}
R4:Idle{
t := next;
else then

skip;
}

Figure 6.5: The TASM main machine models the micro-controller component.
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R1:Trigger{
if actu_state=wait and new_event=True then

new_event := False;
actu_state := actuate;

}
R2:Actuation{
t:=actuation_time;
if actu_state=actuate then
PERFORM_ACTUATION();
actu_state := wait;

}
R3:Idle{
t:= next;
else then

skip;
}

Figure 6.6: The TASM main machine models the actuator component.

R1:Sample{
if sensor_state = sample then
sensor_value := Measure_Quantity();
sensor_state := send;

}
R2:Send{
if sensor_state = send and sensor_value >= threshold then
observer_value := sensor_value;
new_sample_value:= True;
sensor_state := wait;

}
R3:Wait{
t := period;
if sensor_state = wait then
sensor_state := sample;

}

Figure 6.7: The TASM main machine models the sensor component.

Non-functional Property Annotation.

The accurate estimation of the pertaining non-functional properties of the target
system is playing a paramount role in performing non-functional requirements
validation. The Property Annotation step can be carried out in the following
ways:

• The estimates can be determined based upon the non-functional require-
ments specified in the low-level requirements.
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R1:Transmit{
if bus_state=idle and new_message=True then
bus_message := Get_Message();
bus_state := engaged;

}
R2:Send{
t:=bus_delay;
band:= bandwidth;
if bus_state = engaged then
TRANSMITTING_MESSAGE();
bus_state := idle;

}
R3:Wait{
t := next;
else then

skip;
}

Figure 6.8: The TASM main machine models the communication bus compo-
nent.

• The estimates can be obtained by using existing well-known analysis
methods, e.g., Worst-Case Execution Time (WCET) Analysis [14] for
time duration of rules.

• The estimates can be determined based upon the information in the re-
lated hardware specifications, e.g., the time duration and power con-
sumption of a communication bus transferring one message.

• However, in some cases, the estimates can also be given by the experi-
ences of domain experts, if the accurate estimation is not possible.

We annotate the aforementioned TASM models with time duration and
resource consumption, and the annotation terms computation time, actua-
tion time, period, bus delay and bandwidth are either a specific value or a range
of values, which are given by our domain knowledge for simplicity.

6.4.2 Features Modeling
Our approach proceeds with the formalization of high-level requirements, i.e., ,
features. At this step, each feature will be translated into corresponding TASM
observer(s). The formalization consists of the following sub-steps:

• Step 1: Listener Specification specifies the possible events sequence
which represents the observable functional behaviors or non-functional
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properties required by the feature, and the corresponding actions taken
on observer variables when the sequence is caught by the Listener.

• Step 2: Observation Specification formalizes a predicate depending on
the observer variables. If the predicate of the Observation holds, i.e.,
evaluates to be true, it implies that the satisfaction of the feature can be
observed in the system.

• Step 3: Events Filtering identifies the interesting events and filters out
the irrelevant events by specifying EventsF ilter.

• Step 4: Traceability Creation links the specified Observer to the tex-
tual requirements. The link is used for requirements traceability from
the formalization to natural language requirements in order to perform
coverage checking.

In the BbW system, there are three features i.e., ReqH1, ReqH2 and ReqH3.
The specification of Observer is illustrated by applying the proposed steps to
ReqH1, as shown in Figure 6.9. To be specific, ReqH1 states ”The system
shall provide a base brake functionality where the driver indicates that she/he
wants to reduce speed so that the braking system starts decelerating the vehi-
cle”, and the interesting events sequence consists of three parts. The first part
”PEDAL SENSOR→Send→RuleEnableEvent” denotes the event that is trig-
gered when the Send rule of the PEDAL SENSOR main machine is enabled,
which models the behavior that the brake pedal is pressed by the driver. The
second part ”.*” has the same semantic with the counterpart defined in regular
expression, which means an arbitrary number of events regardless of their type.
The last part ”BRAKE ACTU→Actuation→RuleEnableEvent” represents the
event that is triggered after the Actuation rule of the BRAKE ACTU main
machine is executed, i.e., disabled, which models the behavior that the brake
actuator acts on the wheels i.e., decreases the speed of the vehicle. When the
events sequence is detected, the Observation ”ov == true” evaluates to be true,
which indicates that the satisfaction of ReqH1 can be observed in the TASM
model.

6.4.3 Requirements Validation
Validation of the formalized requirements aims at increasing the confidence
in the validity of requirements. In this work, we assume that there is a se-
mantic equivalence relation between the requirements and TASM models, and
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ObserverVariables:{
Boolean ov := false;

}
EventsFilter:{

filter out: ChangeValueEvent, ResourceUsedUpEvent, RuleDisableEvent;
}
Listener:{

listening PEDAL_SENSOR->Send->RuleEnableEvent
.*
BRAKE_ACTU->Actuation->RuleEnableEvent then

ov := true;
}
Observation:{

ov == true;
}

Figure 6.9: The Observer of Req H1.

between features and observers. This is built upon the fact that the TASM mod-
els and observers are derived from the documented requirements and features,
by following the proposed modeling steps based on our thorough understand-
ing of the BbW system. The validation goal is achieved by following several
analysis steps, based on the use of the derived TASM models and observers
which may help to pinpoint flaws that are not trivial to detect. Such validation
steps in our approach are:

• Logical Consistency Checking. The term of logical consistency can be
intuitively explained as ”free of contradictions in the specifications”. In
our work, the logical consistency checking can be performed on the exe-
cutable TASM models, i.e., requirements, by our developed tool TASM
TOOLSET. Two kinds of inconsistency flaws can be discovered. One
kind of flaw is that two machine rules are enabled at the same time,
which is usually caused by the fact that there exist unpredictable behav-
iors in the requirements. The other is that different values are assigned
to the same variable at the same time, which is usually caused by the fact
that there exist hidden undesired behaviors in the requirements.

• Auxiliary Machine Checking. Auxiliary machines include function
machine and sub machine. When the TASM TOOLSET starts to exe-
cute the TASM model, if there exists any undefined auxiliary machine,
the tool will detect this situation, stop proceeding, and generate an er-
ror message. The existence of undefined auxiliary TASM machines,
in terms of functions and sub machines, violates the completeness of
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TASM model specifying requirements. The undefined auxiliary TASM
machines are usually caused by the lack of detailed descriptions of the
proposed system’s behaviors.

• Coverage Checking. Coverage checking corresponds to checking
whether the desired behaviors specified in features can be observed in
the TASM model, which is an important activity of requirements com-
pleteness checking. To perform the coverage checking, all of the features
are translated into observers which observe the execution of TASM mod-
els at runtime. If the Observation holds, the corresponding feature can
be regarded as covered by the requirements.

• Model Checking. The TASM machines can be easily translated into
timed automata through the transformation rules defined in [9]. The
transformation enables the use of the UPPAAL model checker to verify
the various properties of the TASM model. This check aims at verifying
whether the TASM model is free of deadlock and whether an expected
property specified in a feature is satisfied by the TASM model. It is
necessary to stress that the essential difference between Model Checking
and Coverage Checking is whether a property is exhaustively checked
against a model or not. Although a sound property checking is desired,
in some cases Model Checking will encounter state explosion problem,
which limits its usefulness in practice.

We follow the validation steps to check the validity of the requirements
of the BbW system. First, we use the TASM TOOLSET to perform Logical
Consistency Checking on the formalized TASM model. As in the fact that
there are no inconsistency warnings reported by the tool, we therefore pro-
ceed the validation steps with Auxiliary Machine Checking. As shown in Fig-
ure 6.5, 6.6, 6.7 and 6.8, there exist some undefined auxiliary machines in the
TASM models of those typical components, which also have been detected by
our TASM TOOLSET. For instance, in the ABS CTRL main machine (a micro-
controller component), the PERFORM COMPUTATION sub machine is not
defined, which implies that the requirements need to specify in more details
about how ”The ABS function shall decide appropriate braking force on each
wheel”. Next for Coverage Checking, since the observations are determined
to be held according to the results of the TASM observers in the runtime, the
satisfaction of requirements towards features is therefore reached. On the note
about Model Checking, we first translate the TASM model into timed automata,
and then check the deadlock property as well as the ReqH3 requirement via the
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UPPAAL model checker. The corresponding results are: 1) Deadlock free is sat-
isfied and, 2) the ReqH3 is satisfied. Although the case study is a demonstrator,
it is an illustrative example to show how to follow our proposed approach to
perform requirements validation at various levels.

6.5 Related Work

In addition to the aforementioned related work, there are some other interesting
pieces of work deserved to be mentioned as follows. Event-B [15] is a formal
state-based modeling language that represents a system as a combination of
states and state transitions. Iliasov [6] showed how to use Event-B for systems
development, where the system constraints are formalized as a set of visualized
proof obligations which can be synthesized as use cases. Such proof obliga-
tions are then reasoned about their satisfaction in the corresponding Event-B
model. Mashkoor et al. [16] proposed a set of transformation heuristics to
validate the Event-B specification by using animation.

Cardei et al. [17] presented a methodology that first converts SysML re-
quirements models into a requirements model in OWL, and then performs the
rule-based reasoning to detect omissions and inconsistency. Becker et al. [18]
provided a formalization for self-adaptive systems and the corresponding re-
quirements, which enables a semi-automatic analysis of performance require-
ments for self-adaptive systems. Cimatti et al. [5] introduced a series of tech-
niques that have been developed for the formalization and validation of re-
quirements for safety-critical systems. Specifically, the methodology consists
of three main steps in terms of informal analysis, formalization, and formal
validation. Scandurra et al. [19] proposed a framework to automatically trans-
form use cases into ASM models, which are used to validate the requirements
through scenario-based simulation. MARTE [20] is a UML profile for model-
ing and analysis of RTES, covering both functional and non-functional proper-
ties of the system. Nevertheless, to our best knowledge, there has not been any
work about using MARTE for the purposes of requirements validation.

6.6 Conclusions and Future Work

In this paper, we have proposed a novel TASM-based approach to require-
ments validation. The approach 1) uses the extended TASM language to model
the documented requirements and, 2) performs the requirements validation by
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using two tools in terms of the TASM TOOLSET and the model checker UP-
PAAL. Our case study using a Brake-by-Wire (BbW) system developed by a
major automotive company, has shown that our approach can achieve the goal
of requirements validation via Logical Consistency Checking, Auxiliary Ma-
chine Checking, Coverage Checking, and Model Checking. Even if limited in
complexity, the BbW system consists of a number of parts presenting the real
world safety-critical systems, such as micro-controllers, sensors, actuators, and
communication buses.

In this work, the validity of our TASM model towards requirements and
features is built upon our thorough understanding of the BbW system, and
hence TASM models are semantic preserving. Moreover, we have observed
model validation issue as a common problem with model-based approaches.
This is getting more complicated when the system’s non-functional proper-
ties are considered. To address the situation, as future work, we will combine
our proposed modeling approach with a set of assistant techniques, such as
rule/pattern-based algorithm to semi- or fully-automatically transform natural
languages into TASM models. The future work also includes a wider indus-
trial validation of our approach, and the improvement of our current TASM
TOOLSET. Such improvement will not only facilitate our evaluation but also
power up our analysis with statistical methods [14] and probabilistic modeling
patterns.
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Abstract

In the modern automotive industry, feature models have been widely used as
a domain-specific requirements model, which can capture commonality and
variability of a software product line

through a set of features. Product variants can thus be configured by se-
lecting different sets of features from the feature model. For feature-oriented
requirements validation, the variability of feature sets often makes the hidden
flaws such as behavioral inconsistencies of features, hardly to avoid. In this
paper, we present an approach to feature-oriented requirements validation for
automotive systems w.r.t. both functional behaviors and non-functional prop-
erties. Our approach first starts with the behavioral specification of features
and the associated requirements by following a restricted use case modeling
approach, and then formalizes such specifications by using a formal yet liter-
ate language for analysis. We demonstrate the applicability of our approach
through an industrial application of a Vehicle Locking-Unlocking system.
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7.1 Introduction

With the growing maturity and standardization of the automotive domain, re-
quirements specifications for automotive systems tend to center around the
concept of feature models. Feature models [1] are proposed to capture the
commonality and variability within a software product line by using features,
between which there are relations and constraints. Further, a feature [2], [3] is a
logical unit of functionality comprehensible to end-users, which consists of the
requirements (i.e., the feature requirement hereafter) associated with the fea-
ture and the corresponding behavioral specification (i.e., the feature behaviors
hereafter). A product can be configured by selecting a set of features (i.e., the
feature set hereafter) from a feature model. The validity of a feature set refers
to two situations: 1) one is from the structural perspective, i.e., the selected
features should conform to the constraints defined by the feature model and, 2)
the other is from the functional perspective, i.e., no undesirable behaviors exist
between two or more (as integrated) feature behavioral specifications. In order
to increase the confidence of the validity of the feature set, several feature-
oriented requirements validation techniques [3], [4], [5], [6], [7], [8] have been
developed. However, it is well recognized that with the increasing size of fea-
ture models, the inherent variability of the feature sets leads to an inevitable
issue that the hidden flaws of features are difficult to avoid [9]. Especially, the
feature interaction problem (referring to the situation that two or more features
exhibit unexpected behaviors) cannot be detected when the features are used in
isolation.

As the unexpected behaviors can result in uncertainties and even hazards
of automotive systems, adequate efforts on detecting the unexpected feature
interactions thereby must be applied in the early stages of the pertaining devel-
opment process. In the literature, there are many examples [7], [10], [11] where
the process starts with translating the natural language specification (NLS) of
a feature into a formal language specification (FLS) of the feature behaviors,
and then the requirements validation is performed based on the generated for-
malisms. To our best knowledge, the main drawbacks of using NLS lie in:
1) ambiguities in the NLS cause imprecise definitions and even wrong under-
standing of the feature behaviors and, 2) the direct translation from the NLS
to a FLS tends to be very costly and, 3) the NLS hinders to a large extent the
possibility of performing automatic feature-oriented requirements validation.

To challenge the feature interaction problem and make up for the deficiency
in the current practice, in this paper we propose a model-based approach to
feature-oriented requirements validation. To be specific, our approach firstly
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specifies features by using an informal yet restricted natural language (from
scratch) without losing ease of use, and then formalizes a set of executable
models based upon the aforementioned intermediate specifications to perform
the requirements validation. The approach is comprised of four steps as fol-
lows:

• Feature Specification specifies the behaviors and requirements of
features by following the restricted use case modeling (RUCM) ap-
proach [12], which adopts a generic use case template and several re-
striction rules to reduce ambiguity and facilitate further analysis.

• Feature Behaviors Formalization formalizes the feature behaviors in
terms of a formal yet literate specification using the extended Timed
Abstract State Machine (eTASM) language [13], which generates exe-
cutable models for analysis.

• Feature Requirements Formalization models the feature requirements
by using the Observers technique [13] in eTASM for validation purpose.

• Feature Validation performs three kinds of model-based validation
checking to detect the hidden flaws in the selected features, including
Logical Consistency Checking, Coverage Checking, and Model Check-
ing.

We also demonstrate the applicability of our approach through an illus-
tration application, and the remainder of this paper is organized as follows:
An introduction to the background knowledge is presented in Section 7.2.
Section 7.3 introduces the illustration application i.e., the Vehicle Locking-
Unlocking (VLU) system. Our approach to feature-oriented requirements val-
idation is described and illustrated by using the VLU system in Section 7.4.
Section 7.5 discusses the related work, and finally concluding remarks and fu-
ture work are drawn in Section 7.6.

7.2 Background

In this section, we briefly introduce the RUCM approach [12] and the formal
specification language eTASM [13] used in our approach for a better under-
standing.
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7.2.1 Restricted Use Case Modeling
The restricted use case modeling (RUCM) [12] is a use case modeling approach
that extends the UML [14] use case diagram by proposing a use case template
and 26 restriction rules for reducing ambiguity and easing automated analysis.
In our work, we specify features by populating the proposed use case template
and following the restriction rules. In order to meet our needs, we make two
slight modifications to the template. First, for the purpose of traceability, the
use case name is required to follow the form of FeatureName UseCaseName
or merely FeatureName. Second, the Basic Description entry is replaced by
Feature Requirement which specifies the requirement that the feature is asso-
ciated with. Figure 7.1 shows the modified template and the brief explanation
for each entry.

Figure 7.1: The modified use case template of RUCM.

The feature behaviors are specified via use case flows, which are composed
of one basic flow and one or more alternative flows. The basic flow specifies the
main execution path in terms of a sequence of steps and a postcondition. Al-
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ternative flows specify execution branches when deviations occur somewhere
in the reference flow that can be the basic flow or an alternative flow. There
are three types of alternative flows: a specific alternative flow refers to a spe-
cific step in the reference flow; a bounded alternative flow refers to more than
one step in the reference flow; a global alternative flow refers to all steps in
the reference flow. RUCM defines 16 restriction rules to constrain the use of
natural language, as shown in Figure 7.2. A set of keywords are also defined
in the other 10 rules to specify control structures. For example, the keyword
VALIDATES THAT (as shown in Figure 7.4) is used for condition checking.
In particular, if the condition evaluates to be true, the current flow continues,
otherwise an alternative flow will be executed. The detailed description of all
the restriction rules and keywords are provided in [12].

Figure 7.2: The rules of RUCM to constrain the use of natural language.
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7.2.2 The Extended TASM Language

eTASM [13] is a formal language for the specification of safety-critical sys-
tems, which extends the Timed Abstract State Machine (TASM) language [15]
with the Observer and Event constructs. eTASM inherits the easy-to-use char-
acteristic from TASM, which is a literate specification language understandable
and usable without extensive mathematical training. An eTASM model con-
sists of three parts – an environment, a set of machines, and a set of observers.
The environment defines the set and the type of machine variables which ma-
chines can monitor or control, and the set of named resources which machines
can consume. An machine consists of a set of monitored variables (which can
affect the machine execution), a set of controlled variables (which machines
can modify), and a set of machine rules. The set of rules specify the machine
execution logic in the form of “if condition then action”, where condition is an
expression depending on the monitored variables, and action is a set of updates
of the controlled variables. We can also use the rule “else then action” which is
enabled merely when no other rules are enabled. A rule can specify the annota-
tion of the time duration and resource consumption of its execution. The dura-
tion of a rule execution can be the keyword next that essentially states the fact
that time should elapse until one of the other rules is enabled. The observers
will monitor the events triggered by the execution of machines, and each ob-
server represents one correctness property of interest that should be satisfied
by the proposed system. In the eTASM language, four types of events can be
triggered: The ChangeValueEvent type is triggered by a specific eTASM envi-
ronment variable whenever its value is updated, the ResourceUsedUpEvent is
triggered by the case whenever the resource of the application is consumed to-
tally, and the RuleEnableEvent and RuleDisableEvent are triggered whenever
the corresponding eTASM rule is enabled or disabled, respectively. An ob-
server is made up of an ObserverEnvironment, a Listener, and an Observation.
The ObserverEnvironment defines a set of observer variables and an EventsFil-
ter that filters out irrelevant event types to the observer. The Listener specifies
the expected events sequence following the syntax and semantics of regular
expression. The Observation indicates the monitoring result, i.e., whether the
correctness property monitored by the observer is satisfied.

eTASM describes the basic execution semantics as the computing steps
with time and resource annotations: In one step, it reads the monitored vari-
ables, selects a rule of which condition is satisfied, consumes the specified re-
sources, and after waiting for the duration of the execution, it applies the update
set instantaneously. During the execution, eTASM triggers events whenever
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possible. The events sequence is monitored by observers. Once an expected se-
quence is observed, the corresponding monitoring result will be concluded. As
a specification language, eTASM supports the concepts of parallelism (which
stipulates that eTASM machines are executed in parallel) and hierarchical com-
position (which is achieved by means of auxiliary machines which can be used
in other machines). There are two kinds of auxiliary machines - function ma-
chines that can take machine variables as parameters and return an execution
result, and sub machines that can encapsulate machine rules for reuse pur-
pose [15]. Communication and interaction between machines can be achieved
by defining corresponding environment variables.

7.3 Illustration Application

In this section, we describe a simplified Vehicle Locking-Unlocking (VLU)
system, as a running example to illustrate our approach in this work. The pro-
posed VLU system aims to replace the mechanical key, as a control access to
a vehicle, and it follows a common pattern in feature-oriented requirements
specification: The basic functionality is encapsulated as an individual feature,
and additional/optional enhancements are specified as features that provide the
increments in functionality. Specifically, such features are Central Locking
(CL), Auto-lockout (AUL) and Anti-lockout (ANL). Figure 7.3 shows the fea-
tures of the VLU system in the form of technical feature model tree which is
presented in EAST-ADL [16].

Central Locking (a basic feature) locks and unlocks all the doors of the
vehicle upon receipt of a command from the user key fob.

Auto-lockout (an optional feature) locks all the doors of the vehicle when
a timeout expires after the vehicle has stopped. It provides a theft protection in
case that the driver forgets locking the doors manually.

Anti-lockout (an optional feature) enables unlocking of the doors while
a key is in ignition after the vehicle has stopped, of which purpose is to prevent
the driver from being locked out of the vehicle.

In simple applications such as the one above, it is possible to manually
analyze the interactions between features for requirements validation. How-
ever, the real-world systems often have a large number of complex features,
making the pertaining manual analysis extremely time-consuming and error-
prone. The main motivation for our approach is to provide a semi-automatic
technique for feature-oriented requirements validation for automotive systems,
by performing undesirable feature interaction analysis. In the rest of the paper,
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we will use the aforementioned simplified application to illustrate our approach
for features modeling, features specification, and auto-detection of undesired
interactions.

Figure 7.3: The technical feature model tree of the VLU system.

7.4 The Approach to Feature-Oriented Require-
ments Validation

In this section, we will introduce our approach that addresses the issue of for-
malizing and validating feature-oriented requirements specifications. In gen-
eral, our approach is conducted in four steps as follows:

• Step 1: Feature Specification specifies the behaviors and requirements
of features by using the RUCM use cases, which facilitates the further
analysis.

• Step 2: Feature Behaviors Formalization formalizes the feature be-
haviors using the eTASM machines, which are executable analysis mod-
els.

• Step 3: Feature Requirements Formalization formalizes the feature
requirements by using the eTASM Observer technique.

• Step 4: Feature Validation performs three types of checking by using
model-based analysis techniques, to detect the hidden flaws in feature
specifications.

We will go into details about each step by introducing the adhering sub-
steps and show a running example to illustrate our approach. Specifically,
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Table 7.1: The identified use cases and corresponding feature requirements.
Feature Use case name Feature requirements
Central
Locking

CL Lock The system shall lock the doors
CL Unlock The system shall unlock the doors

Auto-lockout Auto-Lockout
The system shall automatically lock
the doors after 20 seconds, when
the vehicle has stopped

Anti-lockout Anti-Lockout
The system shall anti-lock the doors
if the key is in ignition and the ve-
hicle has stopped

Section 7.4.1 introduces feature specification using the RUCM use cases. Sec-
tion 7.4.2 and Section 7.4.3 discuss modeling of the behaviors and require-
ments of features respectively. Section 7.4.4 presents the analysis and results
of feature validation of the VLU system.

7.4.1 Feature Specification

The Feature Specification step describes the features of a system in a restricted
natural language, which can facilitate the further transformation from an infor-
mal specification to the formal one, for the purpose of validation. In this step,
each feature will be specified by following the RUCM approach, and there are
two sub-steps in our work as follows:

• Step 1.1: Use Cases Identification: Since a feature captures a set of
cohesive functionalities in the form of requirements and corresponding
behaviors, it is therefore necessary to split the functionalities and identify
the possible use cases based on the expert’s understanding of the feature.

• Step 1.2: Use Cases Specification: Use cases are specified by filling the
RUCM template using a restricted natural language. In order to facilitate
the further analysis, some predefined restriction rules must be followed.

In the VLU system, there are three selected features i.e., CL, AUL and ANL
(as introduced in Section 7.3). The specification of features, as an example,
is illustrated by applying the proposed steps to the CL feature. To be specific,
since the CL feature describes two opposite functionalities, two use cases can
be thereby identified in terms of CL Lock and CL Unlock, as shown in Ta-
ble 7.1. Figure 7.4 and Figure 7.5 describe the filled use case templates of
CL Lock and CL Unlock, respectively.
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Figure 7.4: The CL Lock use case of the CL feature.

Figure 7.5: The CL Unlock use case of the CL feature.

7.4.2 Feature Behaviors Formalization
This step is to analyze the specified RUCM templates and formalize the corre-
sponding feature behaviors by using eTASM models which are executable sim-
ulation models for analysis. The Feature Behaviors Formalization step contains
four sub-steps:

• Step 2.1: System Constituents Identification extracts the relevant sys-
tem constituents referred in the RUCM use cases and specifies them in
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eTASM machines.

• Step 2.2: Constituents Interaction Identification identifies the inter-
actions between different system constituents referred in the RUCM use
cases and specifies them in eTASM environment variables.

• Step 2.3: Machine Rules Specification analyzes the possible states of
identified machines and specifies feature behaviors by using a set of
eTASM machine rules.

• Step 2.4: Property Annotation adds non-functional property annota-
tions to the relevant eTASM machines.

System Constituents Identification

The identification of the system constituents from the use cases is of impor-
tance in the process to formalize the behaviors of the proposed system and
model the scenarios for model-based validation. In order to do so, we recom-
mend the following two tasks:

• External Constituents Identification: Use case actors are considered as
external constituents which interact with the proposed system. The ex-
ternal constituents will be modeled to simulate the execution scenarios.

• Internal Constituents Identification: Each use case is considered to be
an internal constituent, making up the proposed system. The internal
constituents will be modeled to simulate the proposed system.

In this step, a list of eTASM machines w.r.t. the identified constituents is
defined for the VLU system, as shown in Table 7.2.

Constituents Interaction Identification

Two types of interaction between the sending constituent (i.e., sender) and re-
ceiving constituent (i.e., receiver) are considered in our approach:

• Data Transmission Interaction (DTI) represents that data (such as the
state information and various sensor values) are transferred from the
sender to the receiver, which are modeled as eTASM environment vari-
ables. The variables are named as sender datatype which denotes the
transferred data. Line 2 in Figure 7.7 shows an example.
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Table 7.2: The eTASM machines identified for the VLU system.
Machine Quantity Category Brief Description

KEY FOB 1 External model the key fob’s behavior
LIGHT 1 External model the light’s behavior
DOORS 1 External model the behavior of doors

IGNITION 1 External model the behavior of ignition
VEHICLESPEEDSENSOR 1 External model the behavior of speed sensor

CL LOCK 1 Internal lock doors
CL UNLOCK 1 Internal unlock doors

AUTO LOCKOUT 1 Internal lock doors when timeout expires
ANTI LOCKOUT 1 Internal anti-lock doors if key is in ignition

• Data Modification Interaction (DMI) represents that the data of the re-
ceiver is directly changed by the sender, which are modeled via directly
modifying the value of the receiver’s environment variable. The vari-
ables are named in the form of receiver datatype, which denotes the
modified data. One example can be found in Lines 9 and 10 in Fig-
ure 7.7.

Since RUCM requires the interaction between a system and an actor to
be clearly described without omitting some information about its sender and
receiver, it is therefore easy to identify interactions between constituents from
the use case models. Figure 7.6 shows the identified interactions in our VLU
system, which are twelve interactions. Further, the solid lines represent DTIs,
and the dashed lines represent DMIs.

Machine Rules Specification

The restricted use case flow sentences (e.g., in basic and/or alternative flows)
can to a large extent facilitate the transformation from use case models to anal-
ysis models [17]. Based on the sentences specified in use case flows, we rec-
ommend the following sub-steps to specify the eTASM machine rules:

• Identification of possible states of the corresponding constituent: The
possible states of a constituent can be identified via analyzing the ad-
jectives and verbs in the use case flows. A user-defined type is used to
represent the possible states, and a state variable is defined to denote the
current state of the constituent.

• Identification of the transition conditions of states: The conditions of a
certain machine rule are given, according to the pertaining values of the
state variables and the transition conditions.
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Figure 7.6: The identified interactions between constituents in the VLU sys-
tem.

• Identification of the actions when the system enters a specific state: The
actions of machine rules are specified, based on the behaviors of a con-
stituent and the next possible state.

In our VLU application, there are five external constituents and four inter-
nal constituents under consideration, as shown in Table 7.2. The KEY FOB
machine simulates the behaviors of a user’s key fob. This machine has two
possible states lock and unlock, in which the lock/unlock state denotes that the
lock/unlock command is sent to the proposed VLU system. The LIGHT ma-
chine simulates the behaviors of the vehicle light, which has two states i.e., the
flashed state and the off state. The flashed state denotes that the light flashes
for several times. The DOORS machine simulates the behaviors of the vehicle
doors, which has three possible states open, close and locked. The IGNITION
machine simulates the behaviors of the vehicle ignition, which has two possible
states haskey and nokey. The VEHICLESPEEDSENSOR machine simulates
the behaviors of the vehicle speed sensor, which has two possible states still
and running.

The CL LOCK machine, as shown in Figure 7.7, models the CL Lock use
case. The machine has two possible states in terms of idle and lockdoor. The
Rule ReceiveCommand represents that the system receives the lock command
from the key fob. The Rule Locking represents that the system locks the doors.
The Rule Idle keeps the machine alive and represents the system is idle. The
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CL UNLOCK machine has similar rules, which will not be introduced for sim-
plicity.

R1:ReceiveCommand{
if cllock_state = idle and keyfob_cmd = lock then
cllock_state := lockdoor;
keyfob_cmd := NONE;

}
R2:Locking{
t:=locking_time;
if cllock_state = lockdoor then
door_state := locked;
light_state := flashed;
cllock_state := idle;

}
R3:Idle{
t := next;
else then

skip;
}

Figure 7.7: The eTASM main machine models the CL Lock use case.

The AUTO LOCKOUT machine, as shown in Figure 7.8, models the be-
haviors of the Auto-Lockout use case. The Rule Timeout represents that when
the vehicle stops and the doors are close, the feature will be activated upon the
timeout expires (i.e., 20s in our case). The Rule Autolock represents that the
system is to automatically lock the doors. The Rule Timer represents the timer
measuring time intervals. Rule Idle keeps the machine alive and represents that
the timer will be reset either when the doors are open or when the vehicle starts
running.

The ANTI LOCKOUT machine, as shown in Figure 7.9, models the be-
haviors specified in the Anti-Lockout use case. The Rule HasKey represents
that when the vehicle stops, the feature will be activated if the key is in igni-
tion. The Rule Antilock represents that the system is to unlock the doors after
activated. The Rule Idle keeps the machine alive and represents that the system
is idle.

Property Annotation

Validation of non-functional requirements in this stage relies on the estimates
of the pertaining non-functional properties of the proposed system. This step
can be carried out in the following ways:
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R1:Timeout{
if aul_state = idle and door_state = close and
vehicle_state = still and timer = 20 then
aul_state := timeout;
timer := 0;

}
R2:Autolock{
t:=locking_time;
if aul_state = timeout then
door_state := locked;
light_state:= flashed;
aul_state := idle;

}
R3:Timer{
t := 1;
if aul_state = idle and door_state = close and

vehicle_state = still and timer < 20 then
timer := timer + 1;

}
R4:TimerReset{
t := next;
else then

timer := 0;
}

Figure 7.8: The eTASM main machine models the Auto-Lockout use case.

R1:HasKey{
if anl_state = idle and ignition_state = haskey and

vehicle_state = still then
anl_state := antilock;

}
R2:Antilock{
t:=unlocking_time;
if anl_state = antilock then

door_state := close;
anl_state := idle;

}
R3:Idle{
t := next;
else then

skip;
}

Figure 7.9: The eTASM main machine models the Anti-Lockout use case.

• The properties are determined based upon the non-functional require-
ments specified in the use cases.

• The properties are determined by using the experience or analysis of
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existing systems (in which estimates can be obtained by using exist-
ing well-known analysis methods, e.g., Worst-Case Execution Time
(WCET) analysis [18], [19] for time duration of rules).

We annotate the aforementioned eTASM models with time durations, as
shown in Figures 7.7, 7.8, and 7.9. The annotation terms locking time and
unlocking time are either a specific value or a range of values.

7.4.3 Feature Requirements Formalization
Our approach proceeds with the formalization of feature requirements by using
the eTASM Observer technique, which consists of four sub-steps as follows:

• Step 3.1: Listener Specification specifies the possible events sequence
which represents the proposed system’s observable functional behaviors
and/or non-functional properties required by the feature requirements,
and the corresponding actions taken on observer variables when the se-
quence is caught by a Listener.

• Step 3.2: Observation Specification formalizes a predicate depending
on the observer variables. If the predicate of the Observation holds, i.e.,
evaluates to be true, it implies that the property satisfaction of the feature
is achieved, as it can be observed in the proposed system.

• Step 3.3: Events Filtering identifies the interesting events and filters
out the irrelevant events by specifying EventsFilter.

• Step 3.4: Traceability Creation links a specific Observer to the tex-
tual requirements. The link is used for requirements traceability from
the formalization to natural language requirements in order to perform
coverage checking.

In the VLU system, there are four feature requirements, i.e., CL Lock,
CL Unlock, Auto Lockout and Anti Lockout. The specification of an observer
is illustrated by applying the proposed steps to the ANL feature requirement,
as depicted in Figure 7.10. To be specific, the ANL feature requirement states
"The system shall anti-lock the doors if the key is in ignition and the vehi-
cle has stopped", and the interesting events sequence consists of three parts.
The first part "ANTI LOCKOUT→Haskey→RuleEnableEvent" denotes that
the event is triggered when the Rule HasKey of the ANTI LOCKOUT
machine is enabled, modeling the behavior that the key is in ignition.
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The second part "[ˆ(AUTO LOCKOUT→Autolock→RuleEnableEvent|
CL LOCK→Locking→RuleEnableEvent)]*" represents an arbitrary number
of events that are not triggered by the enabling of either the Rule Autolock of
the AUTO LOCKOUT machine or the Rule Locking of the CL LOCK ma-
chine. Both of these two rules model the behavior that the doors are locked.
The last part "ANTI LOCKOUT→Idle-→RuleEnableEvent" represents the
event that is triggered when the Rule Idle of the ANTI LOCKOUT machine is
enabled, which models the situation in which the key is removed. If the events
sequence is detected, the Observation "ov == true" evaluates to be true, which
indicates the situation in which after the key is in ignition, the doors are not
locked before the key is removed, i.e., the ANL feature requirement is satisfied
in the eTASM model.

ObserverVariables:{
Boolean ov := false;

}
EventsFilter:{

filter out: ChangeValueEvent, ResourceUsedUpEvent,
RuleDisableEvent;

}
Listener:{

listening ANTI_LOCKOUT→Haskey→RuleEnableEvent
[ˆ(AUTO_LOCKOUT→Autolock→RuleEnableEvent|

CL_LOCK→Locking→RuleEnableEvent)]
ANTI_LOCKOUT→Idle→RuleEnableEvent then

ov := true;
}
Observation:{

ov == true;
}

Figure 7.10: The observer for the ANL feature requirement.

7.4.4 Feature Validation
Validation of the formalized requirements aims at increasing the confidence
of the validity of selected features. In this work, we assume that there is a se-
mantic equivalence relation between the RUCM use cases and eTASM models.
This is built upon the fact that the eTASM models are derived, by following the
proposed modeling steps as well as our thorough understanding of the VLU
system. The validation goal is achieved by following several analysis steps,
based on the use of the derived eTASM models which may help to pinpoint
flaws that are not trivial to detect. Such validation steps in our approach are:
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• Step 4.1: Logical Consistency Checking. The term of logical con-
sistency can be intuitively explained as "free of contradictions in the
specifications". In our work, the logical consistency checking is per-
formed on the executable eTASM models, by using our developed tool
TASM TOOLSET. Furthermore, there are two kinds of inconsistency
flaws to discover. One kind of flaws is that two rules in the same ma-
chine are enabled simultaneously, which is usually caused by the fact
that there exist unpredictable behaviors in the specification of the corre-
sponding feature. The other is that different values are assigned to the
same variable simultaneously by different machines, which is usually
caused by the fact that there exist hidden undesirable feature interactions
in the specifications of the corresponding features.

• Step 4.2: Coverage Checking. The coverage checking corresponds to
checking whether the feature requirements can be observed in the inte-
grated feature specifications, which is an important activity of require-
ments completeness checking. To perform the coverage checking, all
the feature requirements are translated into observers which monitor the
execution of the features specifications, i.e., the derived eTASM mod-
els. If an Observation cannot hold, it indicates that although the features
specifications satisfy their individual requirements in isolation, there are
behavioral inconsistencies in the integrated feature specification.

• Step 4.3: Model Checking. The eTASM machines can be easily
translated into timed automata through the transformation rules defined
in [15]. The transformation enables the use of the UPPAAL model
checker to verify the various properties of the eTASM model. This type
of checking aims at verifying whether the eTASM model is free of dead-
lock and whether an expected property specified in a feature require-
ment is satisfied by the eTASM model. It is necessary to stress that the
essential difference between Model Checking and Coverage Checking
is whether a property is exhaustively checked against a model or not.
Although a sound property checking is desired, in some cases Model
Checking will encounter state explosion problem, which limits its use-
fulness in practice.

We follow the aforementioned validation steps to check the validity of the
selected features of the VLU system. First, we use the TASM TOOLSET to
perform Logical Consistency Checking on the formalized eTASM model. Two
inconsistencies are detected, one of which is that the Rule Autolock of the
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AUTO LOCKOUT machine and the Rule Antilock of the ANTI LOCKOUT
machine update the door state variable simultaneously with different values.
An analysis of the inconsistency reveals: When the key is in ignition, the ANL
feature will keep the doors unlocked. Meanwhile, if the autolock timeout ex-
pires, the AUL feature will try to lock the door. Since no rules are explic-
itly specified in the selected features to handle this situation, undesirable be-
haviors will occur. The other inconsistency is detected in a similar situation
where the Rule Locking of the CL LOCK machine and the Rule Antilock of
the ANTI LOCKOUT machine update the door state variable simultaneously
with different values. In this work, we correct such inconsistencies by assign-
ing a higher priority (as an extra condition of the corresponding rule) to the
Rule Antilock, which guarantees that it will be executed at first when both of
two rules are enabled at the same time. Note that there are some other methods
that can be used to remove the discovered inconsistencies, which are however
out of the scope of this paper.

After the removal of the inconsistencies, we proceed to Coverage Check-
ing. The TASM TOOLSET is applied, and the result has shown that the ob-
servations of all eTASM observers are met. Therefore, the integrated features
specifications satisfies the feature requirements, from the Coverage Checking
perspective.

On the note about Model Checking, we first translate the eTASM model into
timed automata, and then check the deadlock property as well as the feature
requirements via UPPAAL. The corresponding results are: 1) Deadlock free
is satisfied and, 2) the CL Lock feature requirement is satisfied and, 3) the
CL Unlock feature requirement is satisfied and, 4) the AUL feature requirement
is satisfied and, 5) the ANL feature requirement is satisfied. As a result, the
satisfaction of deadlock-free and feature requirements has been achieved.

In summary, our approach has found two behavioral inconsistencies in the
integrated features specifications. Although the VLU system is not complex, it
is enough, as an illustrative example, to show how to perform feature-oriented
requirements validation by following our proposed approach.

7.5 Related Work

Kimbler et al. [20] introduce a user-oriented approach to feature interaction
analysis. It aims first at creating use case models to describe different possi-
ble ways of using the system services, and then building service usage models
which simulate the dynamic relations between services. This work is quite
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similar with our idea, however its focus is in the telecommunication domain.
Moreover, we use the RUCM approach to facilitate the transformation from
use case models to subsequent formalisms. Eriksson et al. [21] propose a soft-
ware product line use case modeling approach i.e., PLUSS to modeling SPL.
The difference between their work and ours is the purpose of using use cases.
PLUSS aims to utilize use cases to capture variants of SPL, while our approach
utilizes use cases to specify behavioral specifications of features. The white pa-
per of EAST-ADL [16] mentions that use cases can be used to specify features
but no more details were given. In this work, we have provided a set of steps
to specify features and perform requirements validation.

Amyot et al. [10] propose an approach to detecting feature interactions
of telecommunication systems, by using Use Case Maps (UCMs) for design-
ing features, and LOTOS for the formal specification of features. Sampath et
al. [22] present a formal specification and analysis method for automotive fea-
tures in the early stages of software development process. This method starts
with an empty specification, and then incrementally adds clauses to the speci-
fication until all the feature requirements are satisfied. Arora et al. [7] propose
a method and algorithms for identifying and resolving feature interactions in
the early stages of the software development life-cycle. The work uses State
Machines to model the behavior of independent features, context diagrams to
integrate independent features, and Live Sequence Charts to capture the inter-
actions of features.

7.6 Conclusions and Future Work

In this paper, we have proposed a novel approach to feature-oriented require-
ments validation by using the RUCM approach and the eTASM language. Our
approach 1) specifies the behaviors and requirements of features in the RUCM
use cases and, 2) transforms such RUCM use cases to the formal yet liter-
ate eTASM models and, 3) performs the requirements validation by using the
TASM TOOLSET and the model checker UPPAAL. Our illustration applica-
tion using a Vehicle Locking-Unlocking (VLU) system has shown that our
approach can achieve the goal of feature-oriented requirements validation via
Logical Consistency Checking, Coverage Checking, and Model Checking.

As inspired by Scandurra et al. [17] showing the promise of rule-based
transformation from RUCM use cases to analysis models, we will in the future
combine the proposed modeling approach with such rule/pattern-based algo-
rithms, to achieve a fully automatic transformation between the RUCM use
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cases and eTASM models. We are also interested in integrating our approach
and related tools for the development of correct-by-construction systems (e.g.,
developed by EAST-ADL language) in a seamless and cost efficient way. An-
other part of future work also includes a wider industrial validation of our ap-
proach, as well as the improvement of our current TASM TOOLSET.
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Abstract

Model-based requirements validation is an increasingly attractive approach to
discovering hidden flaws in requirements in the early phases of systems de-
velopment life cycle. The application of using traditional methods such as
model checking for the validation purpose is limited by the growing complex-
ity of embedded real-time systems (ERTS). The observer-based technique is a
lightweight validation technique, which has shown its potential as a means to
validate the correctness of model behaviors. In this paper, the novelty of our
contribution is three-fold: 1) we formally define the observer constructs for
our formal specification language namely the Timed Abstract State Machine
(TASM) language and, 2) we propose the Events Monitoring Logic (EvML) to
facilitate the observer specification and, 3) we show how to execute observers
to validate the requirements describing the systems functional behaviors and
non-functional properties (such as timing) of ERTS. We also illustrate the ap-
plicability of the extended TASM language through an industrial application of
a Vehicle Locking-Unlocking system.
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8.1 Introduction

Studies [1] [2] have revealed that most of the anomalies discovered in late
phases of systems development life cycle can be traced back to hidden flaws
in the requirements specification. These deficiencies in the requirements spec-
ification will usually lead to extensive rework costs and sometimes even unre-
coverable failures. For this reason, requirements validation techniques play a
pivotal role in increasing the confidence that the requirements are correct in the
sense of consistent and complete. This is particularly true for embedded real-
time systems (ERTS) which require a set of stringent requirements to describe
their functional behaviors and non-functional properties.

With the growing maturity of the model-based development paradigm, ex-
ecutable requirements specifications (i.e., requirements models) become in-
creasingly attractive to cope with the boosting complexity of modern ERTS as
well as to reduce the underlying anomalies. In this scenario, requirements mod-
els with well-defined semantics can capture the intended behavior of the system
and thus are used as the source of information for validation purpose. Model
checking [3] is a rigorous approach to assuring that correctness properties hold
for the system under development. In this technique, the system design derived
from requirements is specified in terms of analyzable models at a certain level
of abstraction. Further, requirements are formalized into verifiable queries and
then fed into the models to be checked. In this way, requirements are reasoned
about to resolve contradictions, and it is also verified that they are neither so
strict to forbid desired behaviors, nor so weak to allow undesired behaviors.
However, such validation technique suffers from the state explosion problem.

The need for a lightweight validation technique to avoid the aforemen-
tioned problem has motivated the development of our requirements validation
technique via observers [4]. To be specific, we choose the Timed Abstract
State Machine (TASM) language [5] as the requirements modeling language
for ERTS, based upon its distinctive features in terms of the ability to specify
systems’ functional behaviors and non-functional properties, the low learning
costs, and a toolset that supports model execution. Additionally, we extend the
TASM language with the Event and Observer constructs to specify the corre-
sponding requirements. When the TASM models are executed, they will gen-
erate a number of events reflecting the functional behaviors and non-functional
properties of the system under consideration, which can be abstracted as a
linear trace of events. An observer monitors the event trace and determines
whether a given correctness property is satisfied by the system under consid-
eration. In our previous work, we assume that the observer representing the
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property of interest can be specified by following the logic of regular expres-
sions [6], and the entire event trace generated by the TASM model is available
before the observer starts to monitor. The monitoring algorithm is implemented
in the same way as searching for the sub-traces that match the observer regular
expression. However, the main drawbacks of these assumptions are two-fold:
1) the expressiveness power of regular expressions falls short of expressing un-
ordered fixed-count events where the occurrence multiplicities of these events
are pre-defined but the corresponding order is random and, 2) the monitoring
algorithm used in [4] can not be applied at runtime because of the assumption
that the entire event trace is pre-achieved. Therefore, improving the logic used
to specify observers is of paramount importance for our validation technique
to achieve success in practice.

In this paper, we enhance our observer-based requirements validation tech-
nique via proposing a new observer specification logic that originates from the
Extended Regular Expressions (ERE) and introducing a rewriting-based mon-
itoring algorithm. Especially, the novelty of our contributions are three-fold:
1) we formally define the observer constructs for our formal specification lan-
guage namely the Timed Abstract State Machine (TASM) language and, 2) we
propose the Events Monitoring Logic (EvML) to facilitate the observer speci-
fication and, 3) we show how to execute observers to validate the requirements
describing functional behaviors and non-functional properties of ERTS. We
also illustrate the applicability of our technique by using a Vehicle Locking-
Unlocking (VLU) system.

The remainder of this paper is organized as follows: An introduction to the
background knowledge is presented in Section 8.2. The improved observer-
based technique is described in Section 8.3. Section 8.4 illustrates the appli-
cability of the extended TASM through an industrial application of the VLU
system. Section 8.5 discusses the related work, and finally concluding remarks
and future work are drawn in Section 8.6.

8.2 Background

In this section, we briefly introduce the formal specification language TASM
used in our validation approach and ERE for better understanding of our work.



8.2 Background 119

8.2.1 Timed Abstract State Machine

TASM [5] is a formal language for the specification of ERTS, which extends
the Abstract State Machine (ASM) [7] with the capability of modeling timing
properties and resource consumption of the target system. TASM inherits the
easy-to-use feature from ASM, which is a literate specification language un-
derstandable and usable without extensive mathematical training [8]. A TASM
model consists of two parts – an environment and a set of main machines. The
environment defines the set and the type of variables, and the set of named
resources which machines can consume. The main machine is made up of a
set of monitored variables which can affect the machine execution, a set of
controlled variables which can be modified by machines, and a set of machine
rules. The set of rules specify the machine execution logic in the form of
“if condition then action”, where condition is an expression depending on the
monitored variables, and action is a set of updates of the controlled variables.
We can also use the rule “else then action” which is enabled merely when no
other rules are enabled. A rule can specify the annotation of the time duration
and resource consumption of its execution. The duration of a rule execution
can be the keyword next that essentially states the fact that time should elapse
until one of the other rules is enabled. TASM describes the basic execution
semantics as the computing steps with time and resource annotations: In one
step, it reads the monitored variables, selects a rule of which condition is sat-
isfied, consumes the specified resources, and after waiting for the duration of
the execution, it applies the update set instantaneously. If more than one rules
are enabled at the same time, it non-deterministically selects one to execute.
As a specification language, TASM supports the concepts of parallelism which
stipulates TASM machines are executed in parallel, and hierarchical compo-
sition which is achieved by means of auxiliary machines which can be used
in other machines. There are two kinds of auxiliary machines - function ma-
chines which can take environment variables as parameters and return execu-
tion result, and sub machines which can encapsulate machine rules for reuse
purpose [5]. Communication between machines, including main machines and
auxiliary machines, can be achieved by defining corresponding environment
variables.

8.2.2 The Extended Regular Expressions

The Extended Regular Expressions (ERE) [6] represent a succinct and useful
technique to specify patterns in strings by inductively utilizing the union (+),
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concatenation (·), repetition (∗) and complementation (∧) operators. There
are programming and/or scripting languages, such as Perl and Java, which
are mostly based on efficient implementations of pattern matching via ERE.
Because of their convenience in specifying patterns, ERE have many applica-
tions including but not limited to text searching. The observer-based technique
(a.k.a. runtime monitoring or runtime verification) is one of the application ar-
eas of interest for ERE. Since the running behaviors of computer programs or
executable models can usually be abstracted as a linear trace of events or sys-
tem states, the main idea behind the observer-based technique is to specify a set
of observers (i.e., the extended regular expressions) that monitor the received
events or system states and report abnormalities. Then, the monitoring process
can be regarded as solving the membership problem for an extended regular
expression R and a given word ω = a1a2 . . . an (an represents an event or a
system state), which is to decide whether ω is in the regular language generated
by R.

The observer-based technique usually assumes that the events or system
states are received incrementally, i.e., each event is supposed to be processed as
it arrives. An efficient implementation of the incremental membership problem
are of critical importance to this application. A rewriting-based algorithm has
been proposed in [9] for monitoring system events. The intuition is that in or-
der to incrementally check the membership of an incoming trace of events to a
given extended regular expression, the algorithm can process the events as soon
as they are available by rewriting the extended regular expression contingently.
Since the event is consumed incrementally in this way, the event consump-
tion idea is more suitable for runtime monitoring, comparing the monitoring
algorithm used in [4].

8.3 The Extension of TASM

In this section, we introduce the extension of TASM in terms of the fundamen-
tal concepts, the Events Monitoring Logic, and the observer execution process.

8.3.1 The Fundamental Concepts

The extended constructs comprise two main parts, i.e., TASM Event and TASM
Observer as shown in Figure 8.1, which defines the meta-model of the extended
TASM language.



8.3 The Extension of TASM 121

Figure 8.1: The Meta-model of the extended TASM language.

Definition 6. TASM Event. An event e is a tuple <E, t, r1, r2...>, where
E defines the type of an e in the sense of ResourceUsedUpEvent (ReUUE),
ChangeValueEvent (ChVE), RuleEnableEvent (RuEE), and RuleDisableEvent
(RuDE), t records the time stamp when the event occurs, r1, r2, etc. denotes
the possible consumed resources by the event.

In our extension, an event e which is triggered by the corresponding
TASM construct c, can be referenced in the form of c→e. To be specific,
the event of ChangeV alueEvent type triggered by a specific TASM en-
vironment variable whenever its value is updated, is referenced in the form
of VariableName→ChVE. The ResourceUsedUpEvent type triggered by
the case whenever the resource of the application is consumed up, is ref-
erenced in the form of ResourceName→ReUUE. The RuleEnableEvent
(resp. RuleDisableEvent) type triggered whenever a specific TASM
rule is enabled (resp. disabled), is referenced in the form of Machine-
Name→RuleName→RuEE (resp. MachineName→RuleName→RuDE). Sim-
ilarly, the time stamp t of an e is referenced in the form of e→t and the con-
sumed resource r in the form of e→r. Examples illustrating how a certain



122 Paper D

event is referenced can be found in Figure 8.10.
Here are some useful definitions which are related to TASM Event:

Definition 7. Event trace. An event trace is a finite sequence of events, denoted
by ω = e1e2 . . . en.

Definition 8. Event pattern. An event pattern is an expression following a cer-
tain logic to describe a set of event traces of interest in a compact and succinct
way, denoted by E. The set of the event traces of interest (i.e., matching the
EvML expression E), are denoted by L(E).

The TASM Observer monitoring events is defined as comprising:

Definition 9. TASM Observer. An observer ob is a tuple <OE,L,Obv>,
where:

• OE denotes the ObserverEnvironment, which is defined as a tuple
<OV, TU,EF>, where

– OV denotes the ObserverV ariables, which defines a set of local
typed variables that can only be used by the L and Obv defined in
this observer,

– TU denotes the TypeUniverse, which is a set of types that in-
clude the TASM primitive types (i.e., Reals, Integers, Boolean
and User-defined) and the TASM extended types in terms of Time
and Resource,

– EF denotes the EventsF ilter, which defines a set of events con-
sidered to be relevant or irrelevant to the observer.

• L denotes the Listener, which is in the form of “listening keyword:
condition then action”, where the keyword can be either compulsory
or optional which will be further explained in Section 8.3.3, the condi-
tion specifies the event pattern following the Events Monitoring Logic
(EvML) which will be defined in Section 8.3.2, and the action is a set
of actions updating the value of observer variables when the condition
evaluates to be true.

• Obv denotes the Observation, which is a predicate representing the
properties needed to validate. An observation can evaluate to be either
true or false, depending on the value of corresponding observer vari-
ables.
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8.3.2 The Events Monitoring Logic
The Events Monitoring Logic (EvML) is inspired by the extended regular ex-
pressions (ERE) that have been widely applied to solve the pattern matching
problem. Although ERE can provide a compact and powerful implementation
of pattern matching, we encounter an issue when we use it in our case. When
specifying an event pattern by using ERE, the occurrence order of events is im-
plied in the expression, e.g., E = e1e2 implies that the event trace, where the
occurrence of event e1 is immediately followed by the occurrence of event e2,
will match the pattern. However, in some cases, the occurrence order of events
is trivial. For instance, when we monitor the synchronization of two events, we
are merely concerned about whether both events do occur in the event trace,
rather than which event comes earlier. To describe an event trace like this (i.e.,
unordered event trace, hereafter), ERE have to list all the possibilities of the
occurrence order, which is a clumsy and error-prone task.

Therefore, we formally define a logic, namely the Events Monitoring
Logic, which can specify an unordered event trace in a more elegant way.
EvML inherits the basic syntax and semantics from ERE, which defines the
set of interested events by inductively applying union (+), concatenation (·),
repetition (∗), and complementation (∧) operators. To solve the aforementioned
issue, we introduce a new delimiter parallel and the event multi-set expression
into EvML, denoted as ‖M‖, in order to specify unordered event traces.

The EvML Syntax

For an alphabet Σ whose elements are the possible events, an EvML expression
E over Σ is defined as follows:

E::= ∅|ε|e|E + E|E · E|E∗|∧E|‖M‖,

where ∅ denoting the empty set, ε denoting an empty event, and e∈Σ denoting
a regular event. M denotes the event multi-set expression over Σ, which is
defined as a tuple <A,m>:

• A denotes the underlying set of events composing the unordered event
trace,

• m :A→Mul≥0 is a function indicating the multiplicity of the occur-
rences of the event eA∈A in the event trace, denoted as m(eA) ∈
Mul≥0 = {0, 1, 2, 3, · · · }∪{∗}. The repetition operator (∗) denotes that
the number of an event eA∈A is not explicitly-defined, which can be any
number n∈Mul≥0.
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We define a set of additional rules to further facilitate the specification of
event pattern:

• In order to keep the expression succinct, we define a meta-character (.)
to represent any event in the alphabet Σ.

• The concatenation operators between EvML expressions can be omitted
for simplicity (i.e., E1 · E2 can be denoted as E1E2),

• The operators (∧) for complementation, (∗) for repetition, (·) for con-
catenation, and (+) for union in the EvML expression are defined in
decreasing order of precedence,

• The delimiter “()” for parentheses can increase the precedence of the
braced operators,

• The multi-set expression ‖M‖ can be written in the form of
‖{e1, e2, . . . }, {m(e1),m(e2), . . . }‖

The EvML Semantics

Some new notions and notations are needed before we can define the EvML
semantics. For any given event trace ω, we assume that it is easy to calculate the
underlying set of events composing the trace (denoted as Cω) and the number
of occurrences of a given event e∈ω (denoted as nω(e)). The semantics of
EvML is defined as shown in Figure 8.2.

L(∅) = ∅
L(ε) = {ε}
L(e) = {e}

L(E1 + E2) = L(E1) ∪ L(E2)

L(E1 · E2) = {ω1 · ω2|ω1 ∈ L(E1) and ω2 ∈ L(E2)}
L(E∗) = (L(E))∗

L(∧E) = Σ∗\L(E)

L(‖M‖) = {ω|Cω = AM and ∀e ∈ ω, nω(e) = mM (e)}

Figure 8.2: The semantics of EvML
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Note that the operator (+) is associative and commutative, and the operator
(·) is associative.

(E1 + E2) + E3 ≡ E1 + (E2 + E3)

E1 + E2 ≡ E2 + E1

(E1 · E2) · E3 ≡ E1 · (E2 · E3)

According to the EvML semantics, several simplification equations are de-
fined, including the following:

E + ∅ ≡ E

E + E ≡ E

E1 · E3 + E2 · E3 ≡ (E1 + E2) · E3

ε · E ≡ E

Figure 8.3 shows some examples to illustrate the EvML semantics.

Examples:
Assume that Σ={ε, e1, e2, e3}.

”e1 + e2 ∗ ” denotes {ε, ”e1”, ”e2”, ”e2e2”, ”e2e2e2” . . . }

”(e1 + e2) ∗ ” denotes {ε, ”e1”, ”e2”, ”e1e1”, ”e1e2”, ”e2e2”, ”e2e1”, ”e1e1e1” . . . }

”‖{e1, e2, e3}, {1, 1, 1}‖” denotes {”e1e2e3”, ”e1e3e2”, ”e2e1e3”, ”e2e3e1”, ”e3e1e2”,
”e3e2e1”}

”.e1” denotes {”e1”, ”e1e1”, ”e2e1”, ”e3e1”}

”∧e1” denotes {”e2”, ”e3”}

Figure 8.3: The examples of the Events Monitoring Logic

The EvML Operational Semantics

In this work, the event pattern matching algorithm is based on the event con-
sumption idea as well, in the sense that the EvML expression E can con-
sume an event e in the trace and produces another EvML expression denoted
as E{e}, with the property that for any trace ω, e · ω∈L(E) if and only if
ω∈L(E{e}). Roşu et al. [9] presented a set of rewriting rules and a rewriting-
based algorithm to implement the event consumption idea for ERE. In our case,
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(E1 + E2){e} → E1{e} + E2{e} (8.1)

(E1 · E2){e} → (E1{e}) · E2 + if (ε ∈ L(E1)) thenE2{e} else ∅ fi (8.2)

(E
∗
){e} → (E{e}) · E∗ (8.3)

(
∧
E){e} → ∧

(E{e}) (8.4)

e1{e} → if (e1 = e) then ε else ∅ fi (8.5)

ε{e} → ∅ (8.6)

∅{e} → ∅ (8.7)

‖M‖{e} → if (e ∈ AM andmM (e) 6= 0) thenmM (e) = m
′
M (e) else ∅ fi (8.8)

Figure 8.4: The rewriting rules for EvML

since EvML is a further extended version of ERE, we can easily adapt their
work to the Events Monitoring Logic. We give the rewriting rules which define
the EvML operational semantics recursively, using the structure of the EvML
expression, as shown in Figure 8.4. In particular, the Rules 8.1 to 8.7 are de-
fined for the inherited ERE operators. The Rule 8.8 defines that when the avail-
able event is found in the specified event multi-set, if the occurrence number of
the event is explicitly-defined, the number is decreased by one; otherwise, the
number remains not explicitly-defined, where:

m′M (e) =

{
n− 1 ,mM (e) = n and n > 0
∗ ,mM (e) = ∗

and once all of the explicitly-defined occurrence numbers decrease to zero, we
have the rewriting rule:

‖M‖ → if (∀e ∈ AM ,mM (e) = 0 or ∗)
then ε else ‖M‖ fi (8.9)

The structure “if then else” taking a boolean term and two EvML expres-
sions is defined by two rewriting rules:

if (true) then E1 else E2 fi → E1 (8.10)
if (false) then E1 else E2 fi → E2 (8.11)

For the evaluation of the boolean expression ε∈L(E), we define the fol-
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lowing rules:

ε ∈ (L(E1) + L(E2)) → ε ∈ L(E1) ∨ ε ∈ L(E2) (8.12)
ε ∈ (L(E1) · L(E2)) → ε ∈ L(E1) ∧ ε ∈ L(E2) (8.13)

ε ∈ (L(E∗)) → true (8.14)
ε ∈ (L(∧E)) → not (ε ∈ L(E)) (8.15)

ε ∈ L(e) → false (8.16)
ε ∈ L(ε) → true (8.17)
ε ∈ L(∅) → false (8.18)

ε ∈ L(‖M‖) → false (8.19)

Since we also use the meta-character (.) to specify EvML expressions for
simplicity, we have the rewriting rule for it:

.{e} → ε (8.20)

Additionally, the Rule 8.20 for the meta-character (.) is a special case of the
Rule 8.5, where e1 ≡ e.

These rewriting rules are natural and intuitive. We omit the proof of the
terminating and Church-Rosser property of the rewriting system, and leave it
as our future work.

The Event Pattern Matching Algorithm

After introducing the operational semantics of EvML, we present the Algo-
rithm 2 that describes the event pattern matching algorithm. The algorithm
will be used in the observer execution process (as stated in Section 8.3.3) to
determine that the first m-events trace (ωm = e1e2 . . . em where m ≤ n) of an
input trace (ω = e1e2 . . . en) matches the event pattern:

8.3.3 The Observer Execution Process
In this section, we introduce the observer execution process operated to en-
able an observer working with a given event trace. Briefly speaking, with the
execution of the TASM model at runtime, different TASM constructs will gen-
erate massive events which can be abstracted as a linear sequence of events.
The observer can spawn one or more child observers, together to determine
the satisfaction of the upcoming events with the event pattern and to evaluate
corresponding observations.
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Algorithm 2 EventPatternMatching(E,ω)

INPUT: An EvML expression E and an event trace
ω = e1e2 . . . en.

OUTPUT: match when ωm = e1e2 . . . em (m≤n) matches E ;
nomatch when ωm does not match E

let E′ be E; % start the matching process
let m be 1;
while m≤ n do

wait until em is available;
let E′ be E′{em}; % consume one event
if ε ∈ L(E′) then

return match; % the first m-events trace matches E
if E′ = ∅ then % the current event does not match E

return nomatch; % the input trace does not match E
let m be m+1; % consume the next event

return nomatch; % the input trace does not match E

In particular, the events in the trace are consumed one by one. When an
event e is available, the EventsF ilter is applied to filter out irrelevant events
to the desired property. If the available event is relevant, the expressions of
the observer Eo and its child observers Ec (if any exists) will be transformed
to the corresponding new expressions E′o and E′c by applying the rewriting
rules. Regarding the parent observer, if the new expression can match ε (i.e.,
ε ∈ L(E′o)), which means the Listener’s condition is satisfied, then the action
will be executed and the observation will be concluded. If the new expression
is the empty set (i.e., E′o = ∅), which means the current event can not satisfy
the Listener’s condition, then the event is dropped and the observer waits for
the next available event. If the new expression neither is the empty set, nor
matches ε, which means the current event is probably the first event of one of
the event traces that can satisfy the Listener’s condition, then the observer
will spawn a child observer that inherits the new expression (i.e., Ec = E′o)
and the child observer starts to wait for the next available event, as depicted in
Figure 8.5.

Regarding the child observers, they will take over monitoring whether the
subsequent events match the event expression Ec by applying the event pattern
matching algorithm, as illustrated in Figure 8.6. When a new relevant event is
available, the child observer event expression will be rewritten into E′c:

• If the condition is satisfied by the subsequent trace (i.e., ε ∈ L(E′c)),
then the action will be immediately executed to update corresponding
variables. The observation predicate will be concluded based on the up-
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Figure 8.5: The observer execution process

dated observer variables. In this situation, if the value of the predicate is
evaluated to be false, which means the represented property is deemed
to be violated, its parent observer and all the other child observers will
stop monitoring. On the contrary, if the predicate is evaluated to be true,
the child observer is deemed to be satisfied. Then, its parent observer
and all the other child observers will continue monitoring.

• If the subsequent events violate the event pattern (i.e., E′c = ∅), one
of the two possible consequences will take place, which depends on the
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Figure 8.6: The child observer execution process

keyword of the Listener. If the keyword is specified as optional, then
the child observer will be destroyed and its parent observer continues
monitoring. If the keyword is compulsory, then the property represented
by its parent observer will directly evaluate to be violated and the parent
observer and all the other child observers will stop monitoring.

Note that a running TASM model can be observed by several observers at the
same time. Meanwhile, an observer can have many active instances (i.e., child
observers) simultaneously before the end of monitoring an event trace.
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8.4 Illustration Application
In this section, we describe a simplified Vehicle Locking-Unlocking (VLU)
system. This is used to illustrate how to specify the observer according to the
requirement for validation purpose.

8.4.1 Vehicle Locking-Unlocking
The proposed VLU system aims at replacing the mechanical key, as a con-
trol access to a vehicle, and it follows a common pattern in feature-oriented
requirements specification [10]: The basic functionality is encapsulated as an
individual feature, and additional/optional enhancements are specified as fea-
tures that provide increments in functionality. Specifically, such features are
Central Locking (CL), Auto-lockout (AUL) and Anti-lockout (ANL), where:

• Central Locking (a basic feature) locks and unlocks all the doors of
the vehicle upon receipt of a command from the user key fob.

• Auto-lockout (an optional feature) locks all the doors of the vehicle
when a timeout expires. It provides theft protection in case that the driver
forgets to manually lock the doors.

• Anti-lockout (an optional feature) enables unlocking of the doors
while a key is in ignition. The purpose of this feature is to prevent the
driver from being locked out of the vehicle.

Figure 8.7 shows the features of the VLU system in the form of technical
feature model tree presented in the EAST-ADL language [11].

Figure 8.7: The technical feature model tree of the VLU system.
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8.4.2 Observer Specification

Assume that we are interested in monitoring the satisfaction of the AUL feature
requirement which states that “The system shall lock all the doors of the vehicle
when the vehicle is still and a timeout (timer = 20 in this case) expires.” This
feature can show how to use the TASM language and the extended observer-
based technique to specify functional behaviors as well as non-functional prop-
erties in terms of timing property in this case. In addition, assume that we have
two TASM machines in terms of AUL (as shown in Figure 8.8) and DOOR
(as shown in Figure 8.9), modeling the behaviors of the AUL feature and the
doors, respectively. Recall that each event is time-stamped during the model
execution, and the time stamp of the event can be obtained by referencing the
time property t of the event.

R1:Timeout{ % the name of the rule
if aul_state = idle and door_state = close and

vehicle_state = still and timer = 20 then
aul_state := timeout;
timer := 0;

}
R2:Autolock{

if aul_state = timeout then
door_action := lock;
aul_state := idle;

}
R3:Timer{

t := 1; % the time duration of the rule
if aul_state = idle and door_state = close and

vehicle_state = still and timer < 20 then
timer := timer + 1;

}
R4:TimerReset{

t := next;
else then

timer := 0;
}

Figure 8.8: The TASM machine models the behavior of the Auto-lockout fea-
ture.

The observer is specified as shown in Figure 8.10. The EventsF ilter
will filter out the events of the ReUUE, ChVE, and RuDE types. Since
the auto-locking process can be interrupted by either moving the vehicle
or manually locking the doors, the keyword of the Listener is optional.
The event pattern of the Listener consists of three parts, as shown in
Line 9, 10, and 11 respectively. The first part “||{AUL→Timer→RuEE,
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R1:Close{
t:=closing_time; % the time duration of the rule
if door_action = close then
door_state := closed;

}
R2:Lock{
t:=locking_time; % the time duration of the rule
if door_action = lock then

door_state := locked;
}
R3:UnLock{
t:=unlocking_time; % the time duration of the rule
if door_action = unlock then
door_state := closed;

}
R4:Open{
t := opening_time; % the time duration of the rule
if door_action = open then

door_state := opened;
}

Figure 8.9: The TASM machine models the behavior of the doors.

∧AUL→TimerReset→RuEE},{20, ∗}||” models the behavior that the
timer starts and then expires, where the event AUL→Timer→RuEE is sup-
posed to be triggered 20 times and there could be some other events but
TimerReset→RuEE events that will be triggered during the expiring pro-
cess. The second part “.∗” represents an arbitrary number of arbitrary events
that could be triggered by other TASM machines after the timer expires but be-
fore the doors are locked. The last part “DOOR→Lock→RuEE” models the
behavior that the doors are locked. If the event pattern is matched, the obser-
vation “obt2−obt1==20+DOOR→Lock→locking time” will be evaluated
accordingly, which indicates whether the doors are locked properly when the
timer expires.

If the observer is violated, it means there must exist some inconsistencies
in the requirements. Those inconsistencies cause the doors not being locked
properly when the timer expires.
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1 ObserverVariables:{
2 Time obt1 := 0; Time obt2:=0;
3 }
4 EventsFilter:{
5 irrelevant event types: ReUUE, ChVE, RuDE;
6 }
7 Listener:{
8 listening optional:
9 ||{AUL→Timer→RuEE,∧AUL→TimerReset→RuEE},{20,∗}||

10 .∗

11 DOOR→Lock→RuEE then
12
13 obt1:=AUL→Timer→RuEE(1)→t; %the stamped time of the first event
14 of the AUL→Timer→RuEE type
15
16 obt2:=DOOR→Lock→RuEE→t;
17 }
18 Observation:{
19 obt2-obt1 == 20+DOOR→Lock→locking time;
20 }

Figure 8.10: The Observer for the AUL feature requirement

8.5 Related Work

8.5.1 The Monitoring Logic

Giannakopoulou et al. [12] present an approach to checking a running program
against Linear Temporal Logic (LTL) specifications. In particular, the LTL
formulae representing the properties of interest are translated into finite-state
automata, which are used as observers monitoring the program behaviors.

Roşu et al. [9] present lower bounds and rewriting algorithms for testing
membership of a word in a regular language described by an extended regular
expression. The algorithms are based on an event consumption idea: a just
arrived event is consumed by the regular expression, i.e., the extended regular
expression modifies itself into another expression dropping the event.

Barringer et al. [13] present a compact and powerful logic, namely Eagle,
which is based on recursive parameterized rule definitions over the standard
propositional logic operators together with three primitive temporal operators
in the sense of a past-state operator, a next-state operator, and a concatenation-
state operator.

Basin et al. [14] extend the metric first-order temporal logic (MFOTL) with
aggregation operators in order to specify observers that represent the compli-
ance policies on aggregated data. Compliance policies represent normative
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regulations, which specify permissive and obligatory actions for system users.
The authors provide a monitoring algorithm for the enriched observer specifi-
cation language as well.

Comparing the aforementioned observer-based techniques, EvML has a
more succinct way to express unordered fixed-count events sequence. More-
over, the observers defined in the aforementioned techniques merely use logi-
cal expressions to specify the property of interest, but we use the combination
of the logical expression (i.e., Listener′scondition) and other constructs (i.e.,
Listener′saction,ObserverEnvironment andObservation). By using the
combination, more expressiveness power is possible to achieve, which will be
discussed in detail as our future work.

8.5.2 Other Related Work

Bauer et al. [15] discuss a three-value semantics (false, true, inconclusive) for
LTL and TLTL observers on finite traces, where an observer outputs false when
a finite prefix is impossible to be the prefix of any accepting trace and, true
when a finite prefix can be accepted by any infinite extension of the trace and,
inconclusive in other cases. Additionally, Falcone et al. [16] give an related
and interesting discussion about the monitorability of properties in the safety-
progress classification. Leucker et al. [17] present a brief account of the field of
runtime monitoring. They give a definition of runtime monitoring and make a
comparison to well-known verification techniques in terms of model checking
and testing.

8.6 Conclusion
In this paper, we have enhanced our observer-based requirements validation
technique presented in [4] via a proposed new observer specification logic
(namely EvML), as well as a newly introduced rewriting-based monitoring al-
gorithm for EvML. EvML originates from the extended regular expressions,
and can help to specify the situation in which the occurrence number of
the events of interest is predefined and the occurrence order is trivial. The
rewriting-based monitoring algorithm implements the incremental event con-
sumption idea which enables runtime monitoring. Our illustration application
using a Vehicle Locking-Unlocking system has shown that EvML is capable to
specify observers for validation purpose. As a part of our future work, we are
interested in having more extensive industrial cooperations for validating our
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observer-based technique, as well as improving the current implementation of
our TASM TOOLSET.
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