
A Communication-Aware Solution Framework for Mapping
AUTOSAR Runnables on Multi-core Systems

Hamid Reza Faragardi, Björn Lisper
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden
Email: {hamid.faragardi, bjorn.lisper}@mdh.se

Kristian Sandström, Thomas Nolte
ABB Corporate Research

SE-721 78 Västerås, Sweden
Email: kristian.sandstrom@se.abb.com, thomas.nolte@mdh.se

Abstract—An AUTOSAR-based software application contains
a set of software components, each of which encapsulates a set
of runnable entities. In fact, the mission of the system is fulfilled
as result of the collaboration between the runnables. Several
trends have recently emerged to utilize multi-core technology
to run AUTOSAR-based software. Not only the overhead of
communication between the runnables is one of the major
performance bottlenecks in multi-core processors but it is also
the main source of unpredictability in the system. Appropriate
mapping of the runnables onto a set of tasks (called mapping
process) along with proper allocation of the tasks to processing
cores (called task allocation process) can significantly reduce
the communication overhead. In this paper, three solutions are
suggested, each of which comprises both the mapping and the
allocation processes. The goal is to maximize key performance
aspects by reducing the overall inter-runnable communication
time besides satisfying given timing and precedence constraints.
A large number of randomly generated experiments are carried
out to demonstrate the efficiency of the proposed solutions.

Keywords-AUTOSAR; runnable; mapping; multi-core;
feedback-based search; Simulated Annealing; Ant System.

I. INTRODUCTION

AUTOSAR [1] is applied as a standard architecture to
develop automotive embedded software systems. AUTOSAR
originated from component-based software engineering where
a system is divided into a number of software components
each of which encapsulates a set of related functions which
are called runnable entities in the context of AUTOSAR. As
a result of collaboration of these runnables, the mission of the
system is fulfilled. Recent trends towards using multi-cores in
automotive industry [2] arises new challenges related to how
AUTOSAR can utilize the maximum potential of multi-core
platforms. Timing predictability and obtaining a reasonable
performance are the most important challenges in running an
AUTOSAR-based software on a multi-core processor. Such
challenges are inherent in 1. the communication between
runnables located on different cores, 2. shared resources,
where the former is the focus of this paper. Communication
time plays a significant role, as it impacts on performance
aspects relevant in the domain of embedded real-time systems,
such as throughput and response time [3]. In other words, if
the overall inter-runnables communication time is reduced then
the total utilization of a given workload is decreased and as
a result of the utilization reduction, system throughput and
response time can be potentially improved.

The runnables should be mapped onto a set of tasks, this
process is called mapping. The mapping directly affects the
schedulability of the task set. The generated task set should
then be allocated among the cores of a multi-core processor,
this process is called allocation (partitioning). To reach an
optimal solution both the mapping and allocation must be
considered together because, if the task set is not properly
formed, even a highly efficient task allocation in terms of com-
munication overhead may not lead to an acceptable solution,
and vice versa.

In order to address the problem, it can be formulated as
an optimization problem. For this purpose, the communica-
tion time between the runnables should be formulated for
different scenarios such as inter-core and intra-core commu-
nications. The analysis is totally dependent on the memory
hierarchy used in multi-core processor architectures. In this
paper, an abstract communication model for shared-memory
multi-cores is applied where inter-core communication usually
happens through the memory sharing mechanism. Based on
the communication time analysis the optimization problem
is proposed. An efficient heuristic solution to cope with
the optimization problem forms the key part of a solution
framework. The solution should deal with both the mapping
and allocation processes to satisfy all timing and precedence
constraints along with minimizing the overall inter-runnable
communication time. In this paper, three solutions are sug-
gested which subsequently develop the framework in the sense
that the first solution is the simplest one and the third solution
applies a more flexible mapping algorithm along with a new
parallel evolutionary algorithm.

In order to evaluate the proposed solution framework, a
large number of randomly generated experiments are carried
out for different sizes of systems. For each system size the
three solutions are executed and as we intuitively expected,
the third solution outperforms the other two in terms of
both assignment quality and execution time. Furthermore, to
demonstrate the size of the gap between the assignments gen-
erated by the proposed solutions and the optimal assignment,
an exhaustive search is executed for small size systems.

Concisely, the main contributions of this paper are:
1) We introduce a solution framework for mapping of

AUTOSAR-based software on a multi-core processor,
subject to minimizing the overall inter-runnables com-

munication time.
2) Three different solutions are suggested to develop the

proposed framework.
3) An abstract communication time analysis for shared-

memory multi-core processors is proposed.
4) A novel parallel evolutionary algorithm is introduced

to find an efficient allocation of tasks to cores in an
acceptable execution time.

The paper is organized as follows: In Section II a brief review
of related work is presented. The problem is described in detail
and assumptions are defined in Section III. In Section IV, the
three solutions are introduced. In Section V the performance
of the proposed solutions are compared. Finally, the main
results are concisely summarized along with directions for
future work in Section VI.

II. RELATED WORK

A large number of studies have been conducted to solve
the challenges related to static allocation of communicating
real-time tasks to a set of processors [4], [5], [6]. In such
studies, the task set is often described as an acyclic directed
graph where the tasks indicate nodes, and the edges between
the tasks display either data dependency [7] or triggering
[8]. In [9] a holistic solution containing task allocation,
processor scheduling and network scheduling was presented.
They applied Simulated Annealing (SA) to find an optimal task
allocation in a heterogeneous distributed system. In [5] two
algorithms based on the Branch and Bound (BB) technique
were proposed for the static allocation of communicating peri-
odic tasks in distributed real-time systems. The first technique
assigns tasks to the processors and the latter schedules the
assigned tasks on each processor. Due to the exponential nature
of BB, it fails in finding a solution for most real-world sized
problems. In [10] this problem is solved for a more general
communication model where the tasks can send data to each
other at any point of their execution – not necessarily at the
end point of their life time. In [11] a mixed linear integer
programming formulation is proposed to model the problem
where in addition to find a proper allocation of tasks to the
processing nodes, task priorities and the minimum cost of
underlying hardware are taken into account. Similarly, [7]
investigated the problem of task allocation, priority assignment
and signal to message mapping however, the goal in the paper
is to minimize end to end latencies.

The above-mentioned studies have been dedicated to the
task allocation problem on a distributed system however,
there are few works which are considering the problem on a
multi-core system. Although the proposed solutions are more
general and may be applicable for multi-core systems, focusing
on inter-core communication properties can lead to more
efficiency and higher predictability. The approaches introduced
for real-time multi-core systems [12], [13], [14] cannot be
directly applied in the context of AUTOSAR systems because
a proposed solution should be able to embrace the problem
of mapping runnables into a task set along with allocation of
the task set onto the cores. An improper task set even with an

optimal task allocation may not result in a reasonable system
performance. Recently, in [15] the problem of assigning a
set of runnables into tasks is taken into consideration where
the target objective is to minimize the end-to-end latencies.
The authors apply a genetic algorithm to cope with the
problem. However, unfortunately it is often not possible to
obtain optimal solutions (or even feasible solutions) if the two
activities (mapping and allocation) are handled in isolation,
similar to what they do.

III. PROBLEM MODELING

In this section, first the problem is formally defined, then
a communication time analysis is suggested considering the
architecture of the target processor. Finally the problem is
formulated as an optimization problem.

A. Problem description
Let’s suppose that there is a set of loosely-coupled runnables

which could be concurrently executed on different cores of a
multi-core processor. Let R = {Ri : i = 1,2, ...,m} be the set of
m≥ 2 runnables to be allocated among a set of N ≥ 2 process-
ing cores, ρ = {ρ j : j = 1,2, ...,N} of a homogeneous multi-
core chip. The runnable Ri has a Worst Case Execution Time
(WCET) denoted by ei. Runnables have inter-communication
relationships that are assumed to be based on non-blocking
read/write semantics [16]. Let’s suppose that runnables have
read-execute-write semantic, meaning that they first read input
data, then perform manipulations and finally write output
data. In our model two types of communication between the
runnables are taken into account. The first type covers data
dependency between the runnables where they have to run with
a specific execution order to fulfill the dependency whereas,
the second communication type is when a pair of runnables
can transfer data in between each other, while there may not
be any precedence among their execution order (e.g., there is
a shared buffer with sufficient size).

The first communication type is modeled by a set of
independent transactions {Γi : i = 1,2, ...,M} where each of
which represents an end-to-end function implemented by a
sequence of runnables. Indeed, each transaction is a directed
acyclic graph in which each node is a runnable and links
represent data dependency between them. It should be noted
that the dependency between the runnables in a transaction
does not imply triggering, in the sense that a successor can
start with obsolete data generated by its predecessor. However,
to fulfill the mission of a transaction all successors must start to
run with the fresh data. Fig. 1 shows a sample of a transaction.
Without loss of generality we can assume that all runnables are
covered by at least one transaction, because if a runnable is not
included in any transaction, then we assume a new transaction
covering this runnable.

Fig. 1. A sample of a transaction.
The transaction Γi has a relative end-to-end deadline de-

noted by Di before which all runnables of the transaction

must finish their execution. The transaction deadline is cor-
responding to the deadline of the mission of that transaction.
For example, the mission could be the braking system in a
car where the whole transaction must be performed before a
specific end-to-end deadline. There are three approaches to
handle the scheduling of such transactions, time triggering,
event triggering and mixed time/event triggering. In this paper,
we adopt the time triggering approach in the sense that a
transaction arrives periodically or sporadically, but with a
known minimum inter-arrival time denoted by Pi. In the time
triggering approach, determining the optimal period of trans-
actions strongly affects the system performance [16] because,
finding a maximum period in which a transaction meets its
deadline reduces processing load. Nevertheless, determining
the optimal periods is not included in the scope of this paper.
Instead, a conservative approach is to consider the period of
a transaction equal to its given relative deadline. It is worth
noting that all runnables in a given transaction share the same
period which is equal to the transaction period.

The second communication type is modeled by an undi-
rected graph called Runnables Interaction Graph (RIG). Each
node of the RIG represents a runnable and the arcs between
the runnables show data communication between them. Fur-
thermore, there is a label on each arc which indicates the
amount of data that should be transferred between a pair
of runnables in both directions per hyper-period. The hyper-
period is the Least Common Multiple (LCM) of the periods
of all the transactions, denoted by H. When a transaction has
a short period then it generates data more frequently, hence,
to compare the amount of data sent across various runnables
irrespective of their periods, we consider data transfer rate per
hyper-period. Fig. 2 illustrates a RIG instance.

Fig. 2. A sample of a RIG in an AUTOSAR system.

B. Communication time analysis
Let us look more closely at the target multi-core architec-

ture to analyze different communication time delays. Let’s
suppose a multi-core processor with a common three-level
cache architecture. The shared-cache architecture has become
increasingly popular in a wide variety of embedded real-time
applications [17]. In such architectures each core has its own
private L1 cache while a second-level (L2) cache is shared
across each pair of cores, and finally a third-level cache (L3)
is shared among all cores. It is difficult to characterize the
latency values with precise numbers, but in general L2 cache
latency is almost two to three times larger than the L1 cache
latency, L3 cache latency is roughly ten times larger than L1
cache latency, and RAM latency is two orders of magnitude
larger than the latency of the L1 cache [18]. Fig. 3 represents
a sample of such an architecture with 4 processing cores.

Fig. 3. A three-level shared-cache quad core architecture.

In the abstract model, four scenarios to communicate be-
tween the runnables are considered.

I. If the runnables Ri and R j are allocated within the same
task, then the runnables share the same address space
and can communicate to each other through the local
cache (L1) even without requiring a context switch. It
should be noted that in the same task, since the time
interval between writing and reading data is too short,
the chance of preemption and removal of data from the
L1 cache during this period is negligible. Let’s suppose
that the worst-case latency to transfer each unit of data
in this scenario is α.

II. When the runnables are allocated in different tasks on the
same core, a first-level cache miss is more probably to
happen in comparison to the first scenario. The reason
is that after finishing the execution of a writer task,
the scheduler may select another task to run instead
of the reader task. It also imposes a context switch
overhead twice. Let’s suppose that the worst-case latency
to transfer each unit of data in this scenario is β.

III. When the runnables are executed on separate cores which
share a L2 cache, the communication can go through
the second-level cache. In this scenario, the worst-case
communication delay for each unit of data is θ.

IV. Finally, when they are located on different cores without
a shared L2 cache, communication has to go through the
shared memory (or L3 cache). As the shared memory
has a significantly larger latency than the local cache, a
considerable difference is expected between this and the
third scenario [3]. γ is chosen to represent the worst-case
delay in this case.

It is interesting to note that this model can easily be gen-
eralized to cope with other common types of shared-cache
processors. For example, if in the processor architecture, the
L2 cache is also private for each core and it is not shared
among pair of cores (e.g., Intel Core i7), then it is sufficient
to set θ equal to γ. In this case, we expect a lower value for
both α and β. Formally, Eq. 1 formulates the above mentioned
communication time delays.

CRi j =

α× cri j if I
β× cri j else if II
θ× cri j else if III
γ× cri j else

(1)

where CRi j denotes the delay of data transfer, and I denotes
a condition in which Ri and R j belong to the same task (the
first scenario) whereas, II denotes a condition in which the
corresponding tasks of Ri and R j are located on the same core
(the second scenario), and III is corresponding to the third
scenario.

It is worth to noting that if we want to include more
details, then several other factors impact on the communication
time analysis such as the size of the first, second and third-
level cache, the cache replacement mechanism, the hit rate of
cache levels (L1, L2 and L3) etc. Nonetheless, in this paper
an abstract communication model is applied to address the
problem in a general manner without confining the model to
a limited range of shared-cache multi-core processors.

C. Optimization problem

In this subsection, we introduce an optimization problem.
There are two variable vectors in the optimization problem, the
first vector shows mapping of runnables to tasks and the sec-
ond one is used for allocation of tasks to cores. Let’s suppose
that the assignment SR comprises both of these vectors. The
straightforward way to model an optimization problem is to
define a total cost function reflecting the goal function along
with constraint functions. In this case, minimizing the total
cost function is equal to minimizing the goal function while
there is not any constraint violation. The total cost function
for our problem can be computed by Eq. 2 which returns a
real value for the assignment SRz, and this value is used to
evaluate the quality of a given assignment.

TC(SRz) =
m

∑
i=1

m

∑
j=i+1

TYi(SRz)

H
×CRi j(SRz)+σ×P(SRz) (2)

where Yi(SRz) is a function that returns the index of the task
to which Ri is mapped by the assignment SRz, and P(SRz) is
the penalty function being applied to measure satisfiability of
a given assignment. It means that if the value of the penalty
function is zero, then the assignment SRz satisfies all the end-
to-end timing constraints. Otherwise, some of the deadlines are
missed. σ is the penalty coefficient used to guide the search
towards valid solutions. This coefficient tunes the weight of
the penalty function with regards to both the range of the cost
function and the importance of the constraint violation. For
example, in a soft real-time system, where missing a small
number of deadlines may be tolerable, the coefficient should
be set to a lower value.

The penalty function should be defined according to the
processor scheduler. Because of resource efficiency, most
automotive systems are designed based on a static priority-
based scheduling [7] using for example, rate monotonic
[19] which is also supported by the AUTOSAR standard
whereas, dynamic priority schedulers like the Earliest Deadline
First (EDF) are not supported by AUTOSAR. Therefore, we
assume that each processor employ a preemptive static priority
scheduling based on the rate monotonic priority assignment.

The penalty function is given by Eq. 3.

P(SRz) =
N

∑
i=1

∑
∀τk,allocated to theρi

max{0,rk−Tk}

rk = Ek(SRz)+ ∑
j∈hp(k)

d rk

Tj
eE j(SRz)

(3)

where Tk denotes the period of the task τk, and hp(k) implies
the tasks with a shorter period than that of τk, and Ek(SRz)
indicates the WCET of the kth task for the assignment SRz
which means that in our model task execution time is depen-
dent on both the assignment of runnables to tasks and tasks
to cores that will be examined in Section IV-C.

IV. SOLUTION FRAMEWORK

As we already mentioned, the solution framework should
deal with both the mapping and allocation processes. These
processes can be done either separately in a subsequent
manner, denoted non-feedback-based approach, or carried out
together denoted feedback-based approach. In this paper, we
propose three solutions where the first one follows the non-
feedback-based approach whereas the feed-back based idea is
applied to design the other two solutions. The framework is
subsequently developed in the sense that the solutions attempts
to resolve the disadvantages that exist in the previous solution.

A. Solution 1: Simple mapping

In the first solution, the mapping function is simply carried
out by considering each transaction as one task. Consequently,
the task deadline is set equal to the transaction deadline,
and the task period is also equal to the transaction period
(i.e., Pi = Ti). In this case, if a task meets its deadline then
the corresponding transaction meets its end-to-end deadline
as well. In this solution, after creating a task set as the
output of the mapping phase, the allocation phase is ex-
ecuted to assign the generated task set among the cores.
An evolutionary algorithm called Systematic Memory Based
Simulated Annealing (SMSA) [20] is applied as an allocation
algorithm. The experimental results in [21] demonstrated that
SMSA outperforms SA in the task allocation problem. After
finishing the allocation phase, a REfinement Function (REF)
is applied on the generated allocation which attempts to merge
the communicating tasks located on the same core together.
Concisely, REF merges all the mergeable tasks described as
follows:
• Two tasks are mergeable if they are located on the same

core, they have the same period, and they communicate
with each other.

• Two tasks communicate with each other if and only if at
least one of the runnables of the first task communicates
with one (or more) of the runnables of the second task.

The basic notion of REF is that when we merge communicat-
ing tasks having equal period time, the overall communication
time can be decreased as the communication between these
tasks is performed at a lower latency α instead of β. On
the other hand, if we merge two tasks with different periods

(deadlines), then to ensure the fulfillment of timing constraints,
the deadline of the new task should be set to the minimum
deadline of those tasks [22] thus, the period of the new task
becomes equal to the minimum period of the merged tasks
(remember we assume that the period of each task is equal
to its deadline). As a result of this period reduction, not only
the total amount of communication data is increased due to
sending data more frequently but also the utilization of the new
task might be significantly higher than the sum of utilization
of those two tasks. Accordingly, in order to avoid the increase
of CPU utilization as well as communication time, REF does
not merge tasks with different periods.

B. Solution 2: SMSAFR

The second solution is similar to the first solution however
with one major difference. In the first solution, since the
allocation phase is not aware of the task refinement procedure
(not using feedback of the refinement function), it may select
a non-optimal solution. For example, let’s suppose that X
and Y are two candidates for the solution of the allocation
problem. Before doing the refinement, X outperforms Y but
after refinement, due to a stronger merging applicable on Y ,
it surpasses. To manage this issue, a feedback-based approach
is taken into account by the second solution in which REF is
frequently invoked from the inside of SMSA to refine the task
set before evaluation of each individual (candidate solution). In
this way, SMSA reflects the effect of task merging in guiding
the search towards an optimal solution. This algorithm is called
SMSA with Feedback Refinement (SMSAFR). To implement
this algorithm, it is sufficient to invoke REF at the beginning
of the total cost function to refine the task set and then the total
cost value can be computed. Although, the SMSAFR is more
efficient in comparison to the simple mapping framework in
terms of the overall communication time reduction, it takes
a longer execution time to search the problem space. The
longer search time is inherent in the frequency of the REF
invocation. In other words, REF is frequently invoked by
SMSAFR compared to the first solution that invokes only one
instance of REF after finishing the allocation phase. To address
both performance –with respect to optimizing communication
time– and framework execution time, a novel third solution is
proposed.

C. Solution 3: The utilization-based refinement approach

The main notion in the third solution –PUBRF– is similar to
SMSAFR with two principal differences. The first difference
is that SMSAFR uses REF as the refinement function which
only merges communicating tasks located on the same core
with the same period into one task whereas PUBRF uses an
extended version of the refinement function called Utilization-
Based Refinement (UBR) which merges the tasks on the same
core if and only if merging them into one task causes a
processor utilization reduction on that core. In other words,
UBR considers a trade-off between the amount of inter-task
communication and the amount of increasing CPU utilization
caused by merging tasks with different periods. Therefore, not

only UBR merges the communicating tasks with the same
period similar to REF, but it also allows to merge tasks with
different periods when they have a lot of communication
together. To form this trade-off, the communication time
between the tasks should be translated into CPU utilization.
We can then easily decide whether merging a pair of tasks is
efficient or not in terms of CPU utilization. Eq. 4 integrates
communication time and computation time to calculate the
utilization of tasks. As the communication time depends on the
assignment of tasks to cores, in this equation task utilization
is a function of the assignment SRz.

uτk(SRz) =
Ek(SRz)

Tk

Ek(SRz) = tcomput(k)+ tcommun(k)
(4)

where tcomput implies the computation time of τk which is
independent from the assignment of tasks to cores and it can
be calculated by

tcomput(k) = ∑
∀l,Rl∈τk

el (5)

tcommun represents the communication time between τk and
other tasks according to the assignment SRz which is derived
by

tcommun(k) =
Tk

H ∑
∀i,Ri∈τk

∑
∀ j,R j∈R

CRi j(SRz) (6)

Another advantage of such a refinement method is that it guar-
antees if a task set is schedulable on a multi-core processor,
after running this refinement function the system keeps its
schedulability. In Alg. 1 the pseudo-code of the new refinement
function is provided. It should be mentioned that uτi j in this
algorithm indicates the utilization of the task containing both τi
and τ j if we merge them into one task which can be computed
by Eq. 7.

uτi j(SRz) =
∑∀l,Rl∈τi∪τ j el +

Ti j
H ∑∀k,Rk∈τi∪τ j ∑∀l,Rl∈R CRkl (SRz)

Ti j

Ti j = min{Ti,Tj}
(7)

It is important to emphasize that since we never split a transac-
tion into more than one task, the precedence relations between
the runnables of a transaction do not generate precedence
constraints between the tasks, and the generated task set is
independent.

The second difference is that PUBRF utilizes a more
effective evolutionary algorithm which is able to find high
quality solutions in a shorter execution time. This evolutionary
algorithm is a Max-Min Ant System [23] being leveraged
by an asynchronous parallel version of the SMSA algorithm.
A flowchart scheme of this framework is given by Fig. 4.
As is seen in the flowchart, most parts of this algorithm are
implemented in a multi-threading manner where the threads
can be executed concurrently on different cores, and thus we
exploit the potential of multi-core processors to accomplish
a highly efficient search. Some further details regarding the

Algorithm 1 UBR
1: Inputs: a given task set τ and a vector indicating allocation of the tasks to cores
2: Create a strictly upper triangular matrix with the size of M, named profitMatrix
3: for each task i do
4: for each task j > i do
5: if τi and τ j are located on the same core then
6: profitMatrix[i, j] = min{0,(uτi +uτ j)−uτi j }
7: else
8: profitMatrix[i, j] = 0
9: end if

10: end for
11: end for
12: repeat
13: Find the pair of tasks with the maximum profit value (let’s suppose they are k

and l while k < l)
14: Add all the runnables of the lth task to the kth task
15: Set the deleted flag of the lth task (logically remove)
16: Tk = min{Tl ,Tk}
17: Recompute the Uτk
18: Set all elements of the lth row and the lth column of the profitMatrix equal to

zero
19: Recompute non-zero entries of the kth row and the kth column
20: until (The maximum element of the profitMatrix becomes zero)
21: Delete the tasks which have been logically removed
22: return the updated task set

. . .

. . .

. . .

. . .

Termination
condition is

satisfied

Update the best solution.
Increment iteration counter.
Update the pheromone trails.

Generate 𝑁𝐴 ants
according to the Eq. 13

Consider the first ant as
the initial solution for the

first thread

Consider the second ant
as the initial solution for

the second thread

Consider the 𝑁𝐴th ant ant
as the initial solution for

the last thread

Return the best solution
along with the mapping

result of the best solution

Create 𝑁𝐴 threads and
assign the SMSA function

to each of which

Generate a random initial
solution as the starting

point for the SMSA

Generate a random initial
solution as the starting

point for the SMSA

Generate a random initial
solution as the starting

point for the SMSA

Apply the UBR function on
the first initial solution,

and compute its total cost

Apply the UBR function on
the second initial solution,
and compute its total cost

Apply the UBR function on
the 𝑁𝐴th initial solution,

and compute its total cost

Run SMSA+UBR function,
and return the best local

solution

Run SMSA+UBR function,
and return the best local

solution

Run SMSA+UBR function,
and return the best local

solution

Yes

No

Thread 0 Thread 1 Thread 𝑁𝐴

Start

Fig. 4. Flowchart representation for the proposed solution framework.

framework configuration are described below:

• Problem space: The set of all possible allocations for
a given set of tasks and processing cores is called the
problem space.

• Solution representation: Each point in the problem space
is corresponding to an assignment of tasks to the cores
that potentially could be a solution for the problem.
The solution representation strongly affects the algorithm
performance. We represent each allocation solution with
a vector of Ntask elements, and each element is an integer
value between one and N. Since the number of tasks in
the initial task set is equal to the number of transactions,
then Ntask = M. The vector is called Allocation Repre-

sentation (AR). Fig. 5 shows an illustrative example for
an allocation solution. The third element of this example
is two, which means that the third task (corresponding
to the third transaction) is assigned to the second core.
Furthermore, this representation causes satisfaction of the
no redundancy constraint, meaning that each task should
be assigned to no more than one core.

Fig. 5. Representation for assigning the tasks onto the cores.

• Neighborhood structure used by the SMSA function:
SMSA constitutes a sub set of the problem space that
is reachable by moving any single task to any other
processing core as the neighbors of the current solution.
Therefore, each solution has M(N − 1) different neigh-
bors, because each task can run on one of the other N−1
cores.

• Selecting neighbor in SMSA: SMSA in each step, instead
of considering all neighbors (i.e., M(N− 1) neighbors),
selects one task randomly and then it examines all
neighbors of the current solution in which the selected
task is assigned to another core. Hence, it visits N− 1
neighbors, and then the best solution of this subset is
designated irrespective of whether it is better than the cur-
rent solution. We call this process stochastic-systematic
selection, because we use a combination of systematic
and stochastic process to select the neighbor.

• Cooling schedule in SMSA: There are two common
types of cooling schedules, namely, monotonic and non-
monotonic. The cooling schedule of the SMSA in this
paper is assumed monotonic in the sense that the tempera-
ture of the current iteration is equal to µ × the temperature
in the previous iteration, where µ is a real value between
zero and one. Based on [24] an appropriate value for the
initial and final temperatures of the SA can be achieved
by Eq. 8 and 9 respectively, and we use them for SMSA
as well.

ψs =
TCbest −TCworst

log0.9
(8)

ψ f =
TCbest −TCworst

log0.01
(9)

where TCbest denotes the lower bound of the total cost
function in the problem space, and TCworst indicates the
upper bound for this function. It is not difficult to estimate
an upper bound and a lower bound for the total cost
function. Eq. 10 creates an upper bound whereas Eq. 11
makes a lower bound for the total cost function.

TCworst = γ×
TYi(SRz)

H
×

m

∑
i=1

m

∑
j=i+1

cri j +σ× ∑
∀k,τk∈τ

Emax
k
Tk

(10)
where Emax

k denotes the maximum execution time of the
kth task which can be calculated by the assumption that

τk communicate with other tasks by the cost γ.

TCbest = α×
TYi(SRz)

H
×

m

∑
i=1

m

∑
j=i+1

cri j (11)

It should be mentioned that these values are applied
in the first iteration of the main algorithm however, in
order to make the main algorithm to converge, the initial
temperature in the next iteration of the main algorithm is
set to a lower value which is equal to half of the initial
temperature in the previous iteration. In other words,
when SMSA starts its execution in the first iteration of
the main algorithm with the initial temperature ψs, then
SMSA will start in the second iteration with the initial
temperature ψs

2 .
• Stopping condition of SMSA: The algorithm terminates

when the current temperature ψi becomes less than ψ f .
• SMSA+UBR: In the forth level of the flowchart

SMSA+UBR implies the SMSA function in which before
computing the total cost value, the UBR function is
invoked to create a new task set and then the total cost
value is calculated for the new task set.

• Updating the pheromone trails: Real ants use trails of
a chemical substance to communicate with other ants
to inform them about the directions in which food can
be found. Actually, the pheromone trails are a kind of
distributed numeric information which is modified by the
ants to reflect their experience achieved during solving a
particular problem. In order to apply the ant system to
task allocation problems, a pheromone matrix Ph with
the size of M×N is required where the element Phi j is
corresponding to the assignment of the ith task to the
jth core. Updating the pheromone trails is done first by
lowering the pheromone trails by a constant factor (called
evaporation) and then by allowing the best ant to deposit
pheromone on the direction that it has visited (called
reinforcement). In particular, the update can be performed
by

PhI+1
i j = ϖ×PhI

i j +
xbest

i j

TC(ARbest)
(12)

where ϖ denotes the evaporation factor, PhI+1
i j indicates

the pheromone value for the next iteration, xbest
i j is a binary

variable which is equal to one if in the best solution the
ith task is assigned to the jth core, otherwise it is set to
zero, and TC(ARbest) denotes the total cost value for the
best solution.

• Generation of ants: The ants are created based on a
probabilistic decision relevant to the pheromone values.
In other words, if the pheromone value for the element
Phi j is a large value then the ith task will probably be
assigned to the jth core in the next ants. This concept is
reflected by the following formula

Probk(xi j) =
Phi j

∑
NA
l=1 Phil

(13)

TABLE I
APPLICATION PARAMETERS AND THE CORRESPONDING VALUE RANGES.
Parameters Description Value ranges

c communication rate per hyper-period [0,2000] KB
e runnable execution time [2,100] msec

Di transaction deadline [400,1200] msec
|Γ| number of runnables per transaction [1,10]

where Probk(xi j) denotes the probability of assigning the
ith task to the jth core in the kth ant.

• Stopping condition of the main algorithm: The algorithm
terminates after a specific number of iterations, denoted
by υ.

It is worth noting that the algorithm is developed in such a way
that only some light instructions are located in the non-parallel
part such as updating the pheromone trails and selecting the
next generation of ants while the CPU-intensive functions like
the total cost and the UBR are handled in the parallel part. In
Section V, it is discussed why in spite of the more complexity
of the PUBRF, it surpasses even in terms of search execution
time.

V. PERFORMANCE EVALUATION

In this section the performance of the proposed solutions
are assessed based on a large number of experiments. We
created a set of randomly generated applications which are
supposed to be executed on a multi-core platform. In Tab.
I application parameters along with the corresponding value
ranges are mentioned. In addition, two types of multi-core
processors are considered where the first one is a quad-core
processor and the second one is a six-core processor, both of
them have a three-level cache architecture similar to Fig. 3.

For each problem size, all three frameworks were run 20
times to reach 95% confidence interval. They are run in C#
4.5 and on a PC with 2.3 GHz six-core Intel Core i7 and
8 GB of RAM memory. Furthermore, in order to investigate
the quality of the proposed algorithms, we also implemented
an exhaustive approach to generate the exact solution. The
exhaustive algorithm is based on Back-Tracking (BT) search
which traverses a search tree whose leaves correspond to
potential solutions to the task assignment problem. We use
a fast bounding method that prunes unpromising branches
that cannot lead to an optimal solution. To find out whether
a vertex is promising or not, the CPU utilization of all the
cores should be computed, and if the CPU utilization of
at least one of them is greater than one, then the solution
is unpromising, and otherwise it is a promising solution.
To compute the CPU utilization we need to calculate the
tasks’ execution times for each vertex of the search tree.
This simple way consumes a long time to compute tasks’
execution times for each vertex. A faster and smarter way
could be to compute a minimum execution time for each task
irrespective of the scheduling of tasks, that could be performed
before starting the BT algorithm. In order to calculate the
minimum task execution time, we assume the cost β for all
inter-task communication. It leads to a minimum utilization
for each vertex and if the minimum utilization of a core is
greater than one, then the actual utilization is definitely equal

or higher, and thus the vertex is unpromising. It should be
noted that only for the leaves, the total cost function (Eq. 2)
is invoked which of course works with the actual utilization.
Moreover, to have a fair comparison, the BT algorithm must
be equipped with a refinement function in order to allow it
to merge the communicating tasks located on the same core.
We applied the UBR function to merge tasks before invoking
the total cost function in the leaf nodes. Another method
could be to consider all possible combinations to merge the
communicating tasks located on the same core however, it is
extremely time consuming. Even for the current version of BT
which is using UBR, we could only run relatively small sizes
of the problem.

TABLE II
ALGORITHM PARAMETERS AND THE CORRESPONDING VALUE RANGES

Parameters Description Value
ψs start temp. by Eq. 8
ψ f final temp. by Eq. 9
µ cooling factor 0.9/0.995
Q size of queue m
ϖ evaporation factor 0.9
NA the number of ants 4
υ the number of iterations 10
σ penalty coefficient 10×Costmax

α intra-task latency 50µsec
β inter-task latency 55µsec
θ inter-core latency (through L2) 80µsec
γ inter-core latency 85µsec

The algorithm parameters have a substantial impact on the
performance of both SMSA and the Max-Min Ant Optimiza-
tion algorithm. We strive to check all possible values in a
reasonable range for every parameter to select the best value
for them. Algorithm parameters are listed in Tab. II. The only
point related to parameters which may need more clarification
is that the cooling factor of SMSA is chosen 0.995 while in
the third solution it is set to 0.9 – it is the main reason for
the speedup of the third solution in comparison to the first
and the second solution. However, the two first solutions are
unfortunately not working properly with a cooling factor lower
than 0.995.

Fig. 6. Average utilization results.

In order to measure the latency values we performed some
empirical experiments on a 32-bit version of the Ubuntu 12.04
LTS operating system (kernel version 3.2.29) patched with the
PREEMPT RT patch (version 3.2.29-rt44) platform to transfer
1KB data in different communication scenarios (intra-task,
itra-task, inter core through L2 and inter-core). To investigate

the first scenario we created two functions in a Posix thread.
The first function writes 1KB data in a shared array and then
the second function is invoked and read the data from the array.
Both the writing and reading are done by the sequential data
access pattern. Other scenarios were implemented through an
event triggering task in which when the first task wrote data
on the shared memory, the second task is triggered to read
the data. Additionally, to reduce the probability of unwanted
interference we put the tasks in the highest priority level.

As the BT algorithm has a very long execution time (around
70 hours for 15 transactions on four cores), we only run it
for five small applications on a quad-core platform. In Fig. 6
the results generated by the three solutions along with the
BT outputs are listed where horizontal elements are pairs
of the number of transactions and the number of runnables
while vertical elements indicate the sum of inter-runnable
communication time in a hyper period 1. It is noticeable that
in all experiments the results of the third framework and
the BT algorithm are identical except to the last experiment
where the deviation is still infinitesimal. In order to asses the

Fig. 7. Total communication time results.

performance of the solutions for larger problem sizes, a set
of larger applications is considered which is supposed to be
executed on an six-core processor. Fig. 7 represents results of
the experiments. As we already anticipated, the third solution
outperforms the Simple Mapping and SMSAFR in terms of
both the total communication time and the time complexity of
the solution. This preference becomes significant with growth
of the size of the problem. In average, the third solution
decreases the total communication time by 15% and 10% in
comparison to the Simple Mapping and SMSAFR respectively.
On the other side, since according to our model, task execution
time is related to the inter-runnable communication time, it is
expected that the third solution is superior in terms of CPU
utilization in comparison to the other two frameworks. Fig. 8
illustrates the utilization results. In average the third solution
reduces the average processor utilization by 10% and 6% in
comparison to the first and the second solution respectively.
We also expect that by increasing the size of the application on
a higher number of cores the advantage of the third solution
becomes more considerable which also indicates scalability of
the third solution.

1Although GA has been recently applied in the literature, we have not
compared our solution with GA because it was already demonstrated in [20]
that SMSA outperforms GA for the task allocation problem.

Fig. 8. Average utilization results.

VI. CONCLUSION

In this paper, we have investigated challenges related to
utilization of multi-core platforms in the design of highly effi-
cient and predictable AUTOSAR-based software application.
Specifically, we have looked into the challenges of designing
a resource efficient solution in terms of minimizing the overall
communication time inherent in communication among AU-
TOSAR runnables executing on a multi-core processor. An
abstract communication time analysis was introduced which
is able to cover most of the common multi-core architectures.
Three solutions were proposed to deal with the problem.
Although the second has a better performance than the first
one, it often does not yield the best results even for small
applications. Therefore, the third solution was suggested which
significantly outperforms the other two solutions. The reason
to include the first two solutions in this paper (not only
the third solution) is that the first solution conforms with
the common approach in the literature where the mapping
and allocation is done separately, and the second solution
implies when we neglect the effect of communication time on
CPU utilization. In the future, we plan to investigate another
solution which is able to split a transaction into more than one
task to handle very large transactions. In addition, transactions
with shared runnables could be another direction for future
work.

ACKNOWLEDGMENT

The work presented in this paper is supported by Mälardalen
University and Vinnova via the FFI initiative ”AUTOSAR for
Multicore in Automotive and Automation Industries”.

REFERENCES

[1] AUTOSAR methodology, AUTOSAR std. [Online]. Available:
http://www.autosar.org

[2] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys (CSUR), vol. 43,
no. 4, p. 35, 2011.

[3] J. Feljan and J. Carlson, “The impact of intra-core and inter-core
task communication on architectural analysis of multicore embedded
systems,” in ICSEA 2013, The Eighth International Conference on
Software Engineering Advances, 2013, pp. 402–407.

[4] P. M. Yomsi and Y. Sorel, “Schedulability analysis for non necessarily
harmonic real-time systems with precedence and strict periodicity con-
straints using the exact number of preemptions and no idle time,” in 4th
Multidisciplinary International Scheduling Conference, 2009.

[5] D.-T. Peng and K. G. Shin, “Static allocation of periodic tasks with
precedence constraints in distributed real-time systems,” IEEE transac-
tion on software engineering, vol. 23, pp. 745–758, 1997.

[6] J. M. Rivas, J. J. Gutiérrez, J. C. Palencia, and M. González Harbour,
“Schedulability analysis and optimization of heterogeneous edf and fp
distributed real-time systems,” in 23rd IEEE Euromicro Conference on
Real-Time Systems (ECRTS), 2011, pp. 195–204.

[7] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, and A. Sangiovanni-
Vincentelli, “Optimization of task allocation and priority assignment in
hard real-time distributed systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 11, no. 4, p. 85.

[8] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and microprogram-
ming, vol. 40, no. 2, pp. 117–134, 1994.

[9] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-time
tasks: an np-hard problem made easy,” Real-Time Systems, vol. 4, no. 2,
pp. 145–165, 1992.

[10] J.-M. Chang and M. Pedram, “Codex-dp: co-design of communicating
systems using dynamic programming,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 19, no. 7, pp.
732–744, 2000.

[11] Y. Yang, “Software synthesis for distributed embedded systems,” Ph.D.
dissertation, Ph. D. thesis/Yang Yang, 2012.

[12] L. D. Briceño, J. Smith, H. J. Siegel, A. A. Maciejewski, P. Maxwell,
R. Wakefield, A. Al-Qawasmeh, R. C. Chiang, and J. Li, “Robust
static resource allocation of dags in a heterogeneous multicore system,”
Journal of Parallel and Distributed Computing, vol. 73, no. 12, pp.
1705–1717, 2013.

[13] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” Real-Time Systems,
vol. 49, no. 4, pp. 404–435, 2013.

[14] T. C. Xu, P. Liljeberg, J. Plosila, and H. Tenhunen, “Exploration of
heuristic scheduling algorithms for 3d multicore processors,” in 15th
International Workshop on Software and Compilers for Embedded
Systems. ACM, 2012, pp. 22–31.

[15] E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, and
S. Gerard, “An optimization approach for the synthesis of autosar
architectures,” in Emerging Technologies & Factory Automation (ETFA),
2013 IEEE 18th Conference on. IEEE, 2013, pp. 1–10.

[16] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in Proceedings of the 44th annual
Design Automation Conference. ACM, 2007, pp. 278–283.

[17] Software techniques for shared-cache multi-core systems. [Online].
Available: https://software.intel.com/en-us/articles/software-techniques-
for-shared-cache-multi-core-systems

[18] Performance analysis guide for intel core i7 processor
and intel xeon 5500 processors. [Online]. Available:
http://software.intel.com/sites/products/collateral/hpc/vtune/performance
analysis guide.pdf

[19] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[20] H. R. Faragardi, R. Shojaee, M. A. Keshtkar, and H. Tabani, “Op-
timal task allocation for maximizing reliability in distributed real-
time systems,” in Computer and Information Science, 12th IEEE/ACIS
International Conference on. IEEE, 2013, pp. 513–519.

[21] H. R. Faragardi, K. Sandstrom, B. Lisper, and T. Nolte,
“Communication-aware scheduling of autosar runnables on multi-
core systems,” in International Workshop on Design Space Exploration
of Cyber-physical. Springer, 2014.

[22] H. R. Faragardi, B. Lisper, and T. Nolte, “Towards a communication-
efficient mapping of AUTOSAR runnables on multi-cores,” in Emerging
Technologies and Factory Automation, 18th IEEE Conference on. IEEE,
2013, pp. 1–5.

[23] T. Stützle and H. H. Hoos, “Max–min ant system,” Future generation
computer systems, vol. 16, no. 8, pp. 889–914, 2000.

[24] Q.-M. Kang, H. He, H.-M. Song, and R. Deng, “Task allocation for
maximizing reliability of distributed computing systems using honeybee
mating optimization,” Journal of Systems and Software, vol. 83, no. 11,
pp. 2165–2174, 2010.

