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ABSTRACT 
Federated embedded systems (FES) is an approach for systems-
of-systems engineering in the domain of cyber-physical systems. 
It is based on the idea to allow dynamic addition of plug-in 
software in the embedded system of a product, and through 
communication between the plug-ins in different products, it 
becomes possible to build services on the level of a federation of 
products. In this paper, architectural concerns for FES are elicited, 
and are used as rationale for a number of decisions in the 
architecture of products that are enabled for FES, as well as in the 
application architecture of a federation. A concrete 
implementation of a FES from the automotive domain is also 
described, as a validation of the architectural concepts presented. 

Categories and Subject Descriptors 
D.2.11 [Software Architecture]: Domain-specific architectures.  

General Terms 
Management, Documentation, Performance, Design, Reliability, 
Standardization, Verification. 

Keywords 
Systems-of-systems; federated embedded systems; system 
architecture; cyber-physical systems. 

1 INTRODUCTION 
With the increasing availability of affordable communication 
services, the possibility to connect different systems to each other 
has grown in importance, and led to large interest from industry 
and academia in the challenges of creating systems of systems 
(SoS) [14]. Some characteristics of an SoS is that a number of 
independent systems are connected to create emergent functions 
and properties at the SoS level. Each constituent system, which 
will be referred to as a product in this paper, has a value on its 
own, even when used outside the SoS, and may be delivered and 
deployed independently by different manufacturers. The 
integration of the products into an SoS can use any kind of 
interface, including mechanical or electrical, but often the 
communication interfaces through wired or wireless connections 
are the most prominent ones. 
Recently, SoS have also been given attention in the area of cyber-

physical systems (CPS). Here, the traditional embedded systems 
(ES), where electronics and software of a product interact with the 
physical world through sensors and actuators, are extended with 
connectivity [5]. Due to their interaction with the physical world, 
CPS are often subject to other, and more stringent, requirements 
than other software-based systems, including dependability, 
timing requirements, product cost, and various life-cycle related 
qualities. For connected CPS, security also becomes an issue since 
the communication interfaces provide an entry point which could 
be subject to threat. The architecture of a typical CPS in a product 
is a complex system in itself, using a distributed architecture 
where a number of computer nodes are connected through internal 
communication networks. 

In this paper, we will present findings related to a kind of SoS in 
the CPS area, which we call federated embedded systems (FES). 
In a FES, the creation of the SoS is based on connecting the ES in 
each product with each other, and also potentially with software 
running on servers outside the embedded systems. In this way, it 
becomes possible to create services on top of a combination of 
products. We call such an SoS a federation, since the constituent 
systems choose to participate voluntarily, for mutual benefit of the 
participants. The federation services are the intended emergent 
functions of the SoS. A single product may at any time participate 
in a number of federations, and the actual federations they form 
can vary dynamically over time, with participants coming and 
leaving based on their interest in the federation.  

To provide a simple example of a FES from the transportation 
domain, consider a system that gives vehicles information about 
the status of the traffic lights ahead of them, allowing them to 
adapt their speed to pass without stopping. This has benefits both 
to each vehicle since it can lower fuel consumption, and to the 
road owners due to higher traffic throughput. The products 
involved would be the vehicles, and in addition, a connection to 
the traffic light controller is needed. Each vehicle could 
communicate its position, planned path, and speed, and receive 
information about the suggested speed to pass the next red light. 
This suggestion can either be displayed to the driver, or fed into 
the vehicle’s cruise control, if it is lower than the set speed.  
A key benefit of FES is that the adaptation of a particular product 
to a certain federation should be flexible and dynamic, allowing 
the addition of services that were not thought of at the time of 
designing the products, something that it is not possible with a 
pre-defined communication interface. In traditional ES, the 
example above would have required many years of 
standardization on the level of individual communication 
messages [19], and would only be implemented in new vehicles, 
whereas FES allows new services to be deployed also in already 
produced vehicles that just have the basic mechanism. 

As described in [4], one of the key success factors in developing 
FES is the software architecture. In fact, there are two 
architectures that are relevant, namely the base product 
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architecture whose ES will be enabled for participating in 
federations, and the federation architecture, that structures the 
services provided by that federation, which may need to include a 
large number of different products. The product architecture can 
be thought of as an infrastructure on which FES are built, whereas 
the federation architecture is the applications using the 
infrastructure.  

Both these architectures have a number of challenges, some of 
them shared, and others individual. Therefore, the two research 
questions of this paper are as follows: 

1. What are the important architectural characteristics 
needed to enable a product for FES? 

2. What are the important architectural characteristics of a 
federation service to be built on products enabled for 
FES? 

The main contribution of the paper is thus a description of 
important elements that could become a reference architecture for 
FES. It also includes an initial validation of these findings. 

The research method used is based on design science [11] and 
constructive research [8], and it has been driven by interactions 
with practitioners in over 10 companies who in a sense represent 
stakeholders of different actors that are needed in an ecosystem 
around FES. The research has been highly iterative, but some of 
the main activities were: 

1. Applications and key concepts: After formulating our 
initial ideas, a series of workshops were conducted with 
industry partners to brainstorm a large number of 
applications and also identify key concepts needed [13]. 

2. Key stakeholders and concerns: Based on the selected 
concept, a series of interviews were conducted with 
industry representatives, leading to the identification of 
a number of needs and concerns in the areas of business 
models, architecture, and process, methods and tools 
[4]. 

3. Architecture design: Given the requirements, the 
important parts in the architectures for FES were 
designed based on best practices for architecture 
descriptions, as documented in international standards 
[12]. 

4. Implementation and validation: To validate the 
architectures, a system based on it was developed. The 
application domain is automotive, and the 
implementation is based on the AUTOSAR industry 
standard [3].  

This paper follows the structure of the research approach, with the 
first step covered in this introduction. In the next section, the key 
system concerns that drove the architecture are presented, 
followed in Section 3 by the architectural concepts. In Section 4, 
the implementation and validation is described, and in Section 5 
some of the findings are discussed further. Finally, in Section 6, 
the conclusions are summarized together with some directions for 
further research. 

2 ARCHITECTURAL CONCERNS 
In this section, the main concerns of different stakeholders on the 
architecture are discussed. They will be presented as a set of 
qualities that are essential in FES. Some of the qualities are 
equally relevant for both the federation and product architectures, 
and others are primarily relevant for one of them (although there 

may be minor implications also for the other). The section also 
discusses some of the tradeoffs between the qualities. Since the 
concerns described here are valid for a general FES, a specific 
instance would normally have many other concerns that relate to 
its functions and its environment. Table 1 gives a summary of the 
concerns, and to which of the two architectures they primarily 
apply. 

2.1 Dependability 
The first concern is dependability [2], which applies to both 
architectures. For a federation service, the dependability is 
important since the services are what are offered to its users, and 
they will rely on the information provided by them.  

For the products, they often have dependability requirements 
when used stand-alone, and the added mechanisms of plug-in 
software must not compromise their integrity, no matter what 
plug-ins are installed. 

2.2 Security 
Security is related to dependability [2]. It is essential that opening 
up the product architecture to federations does not lead to 
possibilities to inject malware, or access private information in the 
products. At the same time, the federation level functionality must 
also be protected against tampering and intrusion attempts. 

2.3 Assurability 
Closely related to dependability is assurability, i.e., to be able to 
efficiently and effectively deal with verification and validation. 
On the federation level, this means to be able to assure the 
qualities of the emergent services offered, which has to rely on 
information and processing from all the participants, and hence 
requires verification of parts of these.  

For the products, it is mainly a question of verifying dependability 
concerns of the base product, given a set of plug-ins. 
 
 

Table 1. Summary of architectural concerns for FES. 

Acronym Concern Product 
architecture 

Federation 
architecture 

D Dependability x x 

S Security x x 

A Assurability x x 

V Variability x x 

C Composability  x 

P Portability x x 

O Openness x  

F Flexibility x  

R Resource usage x x 

M Maintainability  x 
 

2.4 Variability 
For federation services, variability is given by the fact that many 
different product types could be potential members in the 



federation, and a there may be variations between them, so that 
different variants of the federation services are needed.  

For the products, it is often the case that the same producer uses a 
product-line approach, having somewhat different architectures, to 
which the general mechanisms for participating in federations 
need to be adapted. In both cases, the architectures must support 
efficient ways of dealing with the variability.  

2.5 Composability 
For the federation services, a main concern is composability. A 
product should be allowed to participate in several federations 
simultaneously, and hence the services must be possible to 
develop independently and be used in parallel within the same ES. 
In cases of conflicts between services, these conflicts should be 
detectable before connecting to the services. 

2.6 Portability 
For both architectures, a key issue is portability. On the federation 
level, the services should be possible to execute on the hardware 
platforms in different products, to avoid the need of the federation 
developer to have development tools for many platforms.  

In the product architecture, portability of the mechanisms that 
enable federations is essential, and the intrusion in the existing 
functionality of the control units should be minimized. Note that 
due to the distributed nature of many ES, it could sometimes be 
necessary to include federation mechanisms in several control 
units, to be able to access local data in them. 

2.7 Openness 
The product architecture should exhibit openness to federation 
services, allowing them to interact with the base application in a 
control unit and access data in it. 

2.8 Flexibility 
The product architecture should offer a high flexibility in what 
combinations of services can be installed, and in what interactions 
they may have with the base application. This is to not limit what 
federation services can be developed. 

2.9 Resource usage 
Most ES are resource constraint, since they are parts of products 
where the cost is an important business factor. Therefore, the 
resource usage of the federation mechanisms is important. 
Inevitably, a dynamic mechanism for handling various numbers of 
federations will require that additional processing power and 
memory is installed in the control units, but this should be 
minimized. 
For the federation services, bandwidth for communication 
between different products and servers can be a limited resource. 

2.10 Maintainability 
When a federation is operating, plug-ins will be distributed over 
possibly a large number of products, and the maintainability of 
the federation must be assured. This includes handling updates of 
the software implementing federation services, managing 
situations where the product is repaired (e.g., when control unit 
hardware is replaced), and other life-cycle events. 

2.11 Trade-offs 
As usual, some of the architectural concerns are contradicting, and 
trade-offs are needed. In this case, one important trade-off is 

between openness on the one hand, and dependability and security 
on the other hand. The openness is providing value to system 
users in allowing the systems to participate in a wide range of 
federations, but at the same time it can lead to risks in disturbing 
the base product. 

Another trade-off is between flexibility and resource usage. To 
allow maximum flexibility, generous processing resources should 
be provided in the control units, but that leads to higher product 
cost. 

3 ARCHITECTURAL DESIGN 
After having described the architectural concerns, this section will 
elaborate on key design decisions made in the product and 
federation architectures, with the rationale for those decisions 
expressed in relation to the concerns. In the next part of this 
section, some of the programming concepts are presented that 
were chosen to allow efficient development of FES. Then, in the 
remaining two subsections, the key concepts of the product 
architecture and federation architecture are described. The 
description is on the level of a reference architecture, since it deals 
with the concepts related to FES, whereas all concrete architecture 
instances would also include many other aspects specific to its 
functionality and domain. The main constructs in the architectures 
are shown in Figure 1, with indication of the rationale based on 
the concerns. In the figure, the shaded parts are belonging to the 
federation architecture and the rest belong to the product 
architecture. The letters in black circles indicate concerns, using 
the acronyms indicated in Table 1. 

3.1 Programming concepts 
To be able to implement federation services that integrate 
products and central servers, the functionality has to be expressed 
as a number of software modules that can be allocated to different 
parts in the federation. A key aspect of the architecture for FES is 
the idea of using plug-in software in the products, and this concept 
is described in the next subsection, followed by a presentation of 
the structuring mechanism for services. 

3.1.1 Plug-in software 
In order to deal with the flexibility concerns, the ES in the 
products will be extended with a mechanism for plug-in software 
that can be added dynamically, in a way similar to how a smart 
phone can be extended with apps. Through the combination of 
connectivity and plug-in software, a large freedom is given to the 
service developers in where to allocate software, and potentially, 
much more data from the products can be accessed than would be 
possible if only having a fixed communication interface with no 
software in the ES. The resource usage of communication 
bandwidth would be reduced, since only those signals actually 
needed by a service are sent over the external interface. Also, it 
becomes possible to allocate functionality that closes local control 
loops directly in the product, without the need of going over 
slower external communication. To make a given product adapted 
for a certain federation, the correct plug-in modules have to be 
added, and it is possible to dynamically select which federations 
are relevant by adding or removing plug-ins during runtime. 

A key benefit of FES is the flexible interfaces created through the 
plug-in mechanisms, which makes it possible to add services that 
were not thought of at the time of designing the products, Beyond 
the use in SoS, the plug-in mechanism also has other uses, for 
instance in shortening the deployment time of new features, and 
opening up the ES for open innovation by third party. 



3.1.2 Component-based software 
The main idea about FES is to provide an efficient way of 
building SoS where the emergent functionality is described as 
federation services, and hence the programming concepts used to 
create those services are very important. Based on the variability 
and composability concerns, we advocate the use of a component-
based approach [9] for structuring all parts of a federation service, 
including the plug-in software and software residing on servers. In 
such an approach, all functionality is encapsulated in components 
whose only relations to the outside are through their own ports.  
To create a system, the components of different ports are 
connected. The data that is transferred over these ports will, in the 
context of FES, mainly be signals, which can be periodic or 
aperiodic, and due to the highly distributed nature of the system, 
the communication will be asynchronous. 

In the description of a service, communication between 
components is ignorant of whether they are allocated as a plug-in 
to a product, or if they are on a server outside the ES, or a 
combination. Due to the general nature of these mechanisms, it is 
also possible for one federation to provide services through ports, 
to which another federation can connect and build new services on 
top of the ones provided by the first federation. 

The components are all concurrent, and if they are plug-ins, they 
are started immediately when they are installed on the control 
unit, after which they stay alive until the unit is shut down. 
Internally, the components may implement various application-
dependent states, but more generically, they will need to deal with 
the formation of federations, i.e., if the product is currently 
actively participating in a federation, or if it is only enabled for it 
through the installation of the relevant plug-ins. 

3.2 Federation architecture components 
Having defined the core FES concepts of plug-in software and 

connectivity, the federation level concepts will be studied next. 
The presentation is on the level of a number of functions that are 
needed for managing the operation of a federation and for 
managing its lifecycle, as illustrated in Figure 1. 

3.2.1 Federation operation management functions 
In order to operate a federation, a number of functions are needed 
to coordinate the execution, connecting products, etc. These 
functions are to some extent application dependent, in that not all 
applications necessarily require all functions, or the full 
functionality, depending on the dynamic structure of the 
federation. Therefore, the presentation here is limited to listing a 
number of functions that may be needed.  
The first set of functions relates to federation formation and 
dissolving. Once a federation has been created by setting up the 
necessary server-side software, and making plug-ins available to 
products, a given product has to discover the federation. This can 
mean different things, since a federation can only be relevant 
under certain conditions, such as a certain location. Next, the 
product needs to join the federation, to actually become an active 
member of it, after which the operation phase starts. During 
operation, the products need support for addressing specific other 
products in the federation to let them communicate. Finally, a 
product may choose to leave the federation, if it becomes 
irrelevant. For all these functions, application specific rules need 
to be described, and usually they will assign different roles to the 
members. 

Another set of functions deals with overall management of the 
federation, including supervision of its operation, fault handling, 
control¸ security mechanisms, and conflict handling in case 
different participants try to take incompatible actions. These 
functions primarily address the concerns for dependability and 
security. 

For all these functions, different possibilities exist when it comes 
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Figure 1. Overview of FES architectures, with relations to concerns.  
 
 
 
 
 
 
 



to distribution of functionality to the members. One extreme case 
is complete centralization, where one server implements all the 
management functionality, and the other extreme is totally 
distributed, in which a federation consists only of products and no 
servers, and has the management functions included in plug-ins. 
Which solution is appropriate depends on the application 
characteristics of the federation services, and has to be defined in 
its specific architecture. 

3.2.2 Federation life-cycle management 
The main life-cycle phases of a federation are: development; 
configuration; operation; and maintenance. Most development 
aspects are covered in other parts of the paper, and the operation 
was covered in the previous subsection, so here the focus is on 
configuration and maintenance. 

At the core of those phases is the handling of plug-ins in the 
product. In the FES architecture, this is centralized in a 
component called the trusted server [16], to efficiently deal with 
concerns for maintainability and security, but also to minimize 
resource usage in the ES. The trusted server is the only place 
from where a plug-in can be downloaded into a certain product, 
which means that many security mechanisms can be installed 
there instead of in the product. The trusted server stores all 
available plug-ins, and keeps track of which plug-ins are actually 
installed in a given product instance. It is thus responsible for 
maintenance activities, such as restoring plug-ins after a hardware 
repair of a control unit in the product, or upgrading to new 
versions. 

3.3 Product architecture components 
In this subsection, the elements that need to be included in the 
product architecture to deal with plug-in execution and 
communication are described, together with some tool support. 

3.3.1 External communication manager 
The communication with other systems is handled through the 
External Communication Manager (ECM) component. This 
includes both the external signaling of a plug-in which is part of a 
federation service, and the communication related to plug-in 
management. 
There is only one instance of this component in each product, and 
it is typically located in the control unit that contains the wired or 
wireless communication interface. As shown in Figure 1, all 
communication related to plug-in management is between the 
ECM and the predefined trusted server, for reasons described 
above.  

When a plug-in arrives in the ECM from the trusted server, the 
ECM will do three things: First it will examine what components 
are parts of the plug-in, and on which control units they will be 
distributed. Secondly, it will investigate the connections between 
those components, and ensure that appropriate addressing 
information is provided to implement the communication within 
the target architecture. Lastly, it will send each plug-in to its 
destination control unit, where it will start executing. Note that it 
is possible to analyze these steps offline on the trusted server, and 
thereby minimizing the intelligence needed in the ECM, which is 
often desirable to minimize resource usage in the ES. The control 
unit will acknowledge successful installation to the ECM, and 
inform the trusted server of the status for future maintenance 
actions.  

In the case of a distributed product architecture, there are two 
ways in which the plug-in code can be stored. One option is to 

store it centrally in the control unit where the ECM is allocated. In 
that case, the plug-ins will be retransferred to the different control 
units on system startup, and then executed from RAM. If the 
control units have provision for local storage, e.g. in FLASH 
memory, another possibility is to store the code locally in each 
control unit, which would reduce start up time. However, this 
requires additional software mechanisms, such as a rudimentary 
file system, which is not usually available in ES control units. 

3.3.2 Plug-in runtime environment 
At the heart of a FES is the mechanism for plug-in execution in 
the product architecture. In our concept, this mechanism is 
encapsulated in a component called the Plug-In Runtime 
Environment (PIRTE), as shown in Figure 1. It consists of a 
virtual machine (VM) executing a machine independent 
representation of the plug-in software, thereby contributing to the 
portability of the plug-ins.  

Typically, a producer would need to provision for plug-in 
execution in a number of control units based on different 
hardware. Therefore, the VM itself should be written in a high-
level language to the greatest possible extend to increase its 
portability between control units, and should only rely on a bare 
minimum of hardware and operating system services. 

PIRTE needs to have an interface to the underlying application 
software in the control unit, in order to access data and influence 
its behavior. To deal with security and dependability concerns, 
this interface is the only way in which a plug-in can access any 
parts of the control unit. To deal with openness, this interface is a 
trade-off point where product developers must consciously decide 
what input and output signals should be available to plug-ins. 
Possibly, different interface subsets could be offered, depending 
on the trust placed in the plug-ins. 

The architecture does not make any assumptions about which 
control units of a distributed ES should be equipped with PIRTE, 
but it is possible to include as many PIRTE’s as the designers find 
suitable. If several PIRTE’s are included, there needs to be a 
logical communication channel between each of them, to allow 
communication between plug-ins that are part of the same 
federation service. Between each PIRTE component and the ECM 
component in the product, a logical communication link is also 
needed, to allow plug-in installation and management, and to 
allow plug-ins to communicate outside the product. 

Also related to dependability is the need to isolate the VM from 
other application software in the control unit. PIRTE has to be 
allocated to its own operating system task, which should have 
lower priority than time critical application tasks, but should be 
assured a minimal share of the processing resources. Also, the 
VM will have its own memory area for stack and heap data. To 
make the product flexible, sufficient memory and processing 
resources need to be set aside for the PIRTE, while at the same 
time limiting the resource usage in order to keep cost down. 

To be able to execute multiple plug-ins simultaneously, which is 
required for composability, the VM needs to be able to handle 
threads. In many ES, only statically defined tasks are possible, 
and the VM therefore has to provide its own threading concept.  

3.3.3 Configuration support 
As mentioned above, the product developers need to decide what 
signals should be available for the plug-ins on a certain control 
unit. If a component-based approach is used also for the control 
unit’s built in functionality, which is sometimes the case [1][16], 
then it is possible to extract all available signals in the application. 



Then, a simple, interactive approach can be used where the 
developer picks those signals that should be available to the plug-
ins, and the generic PIRTE can be instantiated based on that, 
setting up all the required connections. This would address the 
portability and variability concerns for the product architecture. 
However, such a flexible approach may in practice lead to issues 
with unstable and volatile interfaces towards the plug-ins between 
product versions, which could negatively affect portability of 
plug-ins between product generations, and lead to increased 
variability on that side, if not used with care. 

Even though complete tool support is possible for some parts of 
the interface, in particular in those cases where signals are only 
read by plug-ins, more elaborate efforts may be required for the 
parts of the interface that allow a plug-in to write signals to the 
product application. In particular, there is a risk that several 
independent plug-ins could try to write conflicting signals to the 
same interface, in which case an arbitration mechanism is needed 
to ensure dependability. At this point, we have not identified any 
general mechanisms to handle this, but it has to be dealt with 
based on the characteristics of the underlying application. 

3.3.4 Simulation  
To deal with assurability concerns, in a situation where the plug-
ins are possibly developed by other organizations than the base 
products, it is necessary to provide tool support. If the actual 
product is not accessible to the plug-in developers, or if some 
testing cannot be performed efficiently, simulation support is 
needed, which captures the key characteristics of the product from 
the plug-in’s point of view. This could be complemented with 
other kinds of static or formal verification. 

4 INSTANTIATION AND VALIDATION 
To validate the architectures, and provide a means to gather more 
empirical data on FES development and usage, a demonstrator has 
been created. It is called the Mobile Open Platform for 
Experimental Design (MOPED) [3], and consists of a model car 
in scale 1:10, which is equipped with a distributed computer 
system consisting of three control units based on Raspberry Pi 
hardware, and connected via Ethernet. Two of the control units 
execute software based on the AUTOSAR automotive software 
standard [1], and the third is based on Linux, which makes the 
configuration very representative of the software in a real vehicle. 
Each AUTOSAR node has various sensors and actuators, whereas 
the Linux node acts as a telematics unit responsible for external 
communication. It will now be described how the FES 
architectures have been instantiated in MOPED. The main focus 
will be on the product architecture, and some of the key design 
decisions made will be explained. 

Since AUTOSAR uses a component-based approach, it was 
decided to base the component model for services on similar 
concepts, to maximize transparency between the built-in software 
and plug-ins. However, the base software is implemented in C, 
whereas it was decided to use Java for services, in order to make 
use of existing Java VMs inside the PIRTE. Therefore, a Java 
library with basic classes for ports and connectors was created and 
used for programming services. 

The PIRTE is generated from configuration files that exist within 
the AUTOSAR framework. Those files, which are on XML 
format specified by the AUTOSAR standard and hence tool 
vendor independent, contain all the information about what ports 
exist on application software components in the control unit. The 
developer can thus easily select which ports to make visible for 

plug-in software in this PIRTE. In the model car, one PIRTE is 
created in each of the two AUTOSAR units, and the ECM is 
allocated to the Linux telematics unit, since that is where the 
external communication is placed. Since the Linux node has a file 
system, which is not the case for AUTOSAR nodes, the plug-ins 
are stored in the Linux node and transferred to the respective 
PIRTE on system start-up. 

To complete the development environment, a simulator has also 
been constructed, that allows execution of plug-ins on a PC to test 
new functionality prior to deploying them in the ES. 

For life-cycle management of the plug-ins, a trusted server has 
been implemented, that allows the users to select which plug-ins 
to install in the car. Developers can upload new plug-ins, handle 
variants for different platforms, and manage versions. 

To create a federation service, such as the traffic light speed 
adaptation mentioned in the introduction, would require the 
implementation of different federation management functions on a 
server, that can inform plug-ins in each car about the next time the 
traffic light will switch. Joining and leaving this federation would 
be based on the location of the car, since information about the 
traffic light is really only relevant when the car is close to the light 
and travelling in that direction. The federation management 
functions such as supervision and fault-handling, are in this 
example fairly uncomplicated. 

5 DISCUSSION 
Through the work presented in this paper, a foundation has been 
laid for experimenting with SoS in the form of FES. We believe 
that we have captured many elements of a future reference 
architecture for such systems, but we also recognize that open 
issues exist, that can only be resolved through further 
investigations based on example applications. In this section, 
some of these issues will be discussed. 

In the current work, initial attempts to build federation services 
have been described, including the management functions that are 
needed in federations. Most likely, more can be done in 
structuring these functions, e.g. in layers, and identifying 
recurring patterns and levels of functionality in order to provide 
blueprint solutions that can be used when creating a federation 
service. This can be complemented with other types of support, 
such as programming libraries with useful routines that are 
needed. 
In the proposed FES architecture, a component-based approach is 
used, and we think there are strong arguments for this. In the case 
study, this was realized in Java, mainly due to the availability of 
VMs and the wide spread use of the language. At the moment, 
there is really no evidence that points at a need for a programming 
language of such complexity for this kind of applications. It 
would be relevant to look at what a minimalistic language would 
be, which could also lead to a minimal VM with even less 
requirements on resources for plug-in execution, thereby 
removing some of the barriers of adaptation in very small ES, 
such as sensor networks. 
The architectures described in this paper are technical ones, but it 
is important to also recognize the relation to business 
architectures, as discussed in [18]. With the open principles of 
FES, it becomes relevant to study the software ecosystems that 
result around a product and around federation services. Some 
initial results around this have been identified [4], and it is clear 
that the success of the approach is closely related to the possibility 



of finding appropriate business models, leading to additional 
concerns that the architecture must support. 

A question that is often raised is whether there is a need for 
standardization to make the FES approach work. Standardization 
would be beneficial, but is utopic since it requires a certain 
maturity of the application domain and usually takes years if not 
decades to accomplish. FES is targeted at domains that have not 
reached this stage, and where innovation is moving very fast. 
Therefore the focus has instead been on providing flexibility and 
variability in order to cater for new circumstances. The plug-in 
mechanism gives access to a potentially much broader interface to 
an ES than would a traditional signal based communication 
interface. 

In the design of the FES architecture, steps have been taken to 
allow dependable systems. However, dependability can never be 
assured by this level of architecture alone, but always depends 
also on characteristics of the application. Further work is needed, 
again based on empirical evidence from concrete examples, to 
investigate if even better support for building dependable services, 
and for ensuring dependability in the individual products, can be 
provided in the architecture. This includes issues like resolving 
conflicts between plug-ins and services.  

Related to dependability is also the possibility to build automatic 
control functionality in the services, such as the traffic light speed 
control sketched above. Due to the distributed, net centric nature 
of FES, parts of the functionality of a service will be central and 
parts in the plug-ins of different products. This means that some 
communication will inherently be subject to unpredictable delays, 
and also the execution of plug-ins will be time-variant, since it 
depends on what other plug-ins share the computational resources. 
These are all fundamental threats to building control functions, 
especially if there are dependability requirements, which is often 
the case. Most likely, support for dealing with this will be needed. 
One approach could be to add explicit time stamps on signals, in 
order to allow recipients to compensate for delays in 
communication and computation. Also, signals may come from 
sources whose trustworthiness is not known, and therefore, 
concepts for describing the quality of signals may be needed. This 
could be combined with supervision by the federation of the 
quality produced by different participants, in order to detect, and 
possibly isolate, products which are not behaving correctly. A 
strength of the FES architecture is that it gives the designer many 
options for allocating functionality between the products and 
central servers, and this can be used to deal with some of the 
timing issues, by allocating control loops close to the sensors and 
actuators inside the products instead of centrally, which would 
increase the use of communication with unpredictable latencies.  

6 RELATED WORK 
Although the engineering of SoS is a fairly new area, that still 
lacks systematic methods and proven solutions, some previous 
work exists with relation to the results presented in this paper. To 
start with, there are different definitions of types of SoS. In [14], 
three different types are included, namely “directed SoS” which 
are centrally managed with a common purpose; “collaborative 
SoS” which also have a common purpose but lacks central 
coordination; and “virtual SoS”, which lacks both these. In [10], 
the type “acknowledged SoS” is added, which is similar to 
directed ones, but still retain their own individual objectives as 
well and stress the cooperative nature of the constellation. The 
FES concept can in principle encompass all these four types, and 
it is a matter of how the services are defined. As [10] points out, 

acknowledged SoS are probably the most common variant, and 
this is likely to apply to FES as well.  

The same reference also discusses principles for SoS, and among 
these are “using an architecture based on open systems and loose 
coupling”, which is exactly the principle followed for FES. 
Meilich [15] also discusses principles for SoS, with a focus on net 
centric environments and thus highly applicable for FES, 
concluding that flexibility, composability, and extensibility are 
important concerns. In his words, “capabilities that can be 
assembled or composed on-the-fly will be how effectiveness will 
be measured”, and this is taken care of by the plug-in mechanism 
in the FES product architecture. In [21], a number of research 
challenges for SoS architecture is listed, and several of them are 
factors that also went into the design of FES, such as resilience 
(which encompasses dependability), flexibility, agility, and 
modularity. 

One of the underlying thoughts in the FES architecture was to 
come up with concepts that can scale and evolve without 
increasing the complexity of the framework itself, and this need 
was earlier observed also in [20]. They point out that standardized 
interfaces are beneficial for the evolvability of SoS, but at the 
same time recognize that this is not so realistic. In FES, the 
approach has been to device a stable mechanism for plug-in 
development, giving flexibility in the interfaces and providing a 
kind of interface layer, in the terminology of the reference. Other 
thoughts on the elements of SoS architecture are provided in [6], 
who proposes a network based solution with design-by-contract 
interfaces between the parts. FES uses a similar, but possibly 
more flexible, approach through component-based software. The 
authors also identify the need for control functions in the SoS, and 
present a case study from the defense domain. 

In [6], the concrete architecture for a SoS satellite system is 
elaborated, but it appears to be primarily an example of a 
“directed SoS”, and does not give more general principles that 
could support an SoS reference architecture. 

In comparison to the above examples, the FES approach presented 
in this paper is a general framework that can encompass many of 
the concepts previously presented. It also addresses many of the 
concerns identified by others through a light-weight and highly 
flexible approach with moderate assumptions about coordination 
and control of the SoS. The current work is fairly unique in that it 
aims at creating a reference architecture for a wide class of SoS. 
Many others are either speculating on SoS in general on a high 
level of abstraction, or working with a singular system example. 
We are systematically analyzing the properties of certain general 
mechanisms, and validating them through concrete 
implementation. 

7 CONCLUSIONS 
In this paper, an approached to systems of systems called 
federated embedded systems has been described. As described in 
the two research questions that has directed the work, the focus 
has been on the architecture of the products participating in the 
SoS, and on the architecture of the management functionality 
needed to operate a FES. The description of these architectures is 
on the level of a reference architecture, and to be able to validate 
them, an experimental platform from the automotive domain has 
been developed. 

7.1 Future work 
The development of the FES concept is still at an initial state. We 
believe that many of the important parts have been identified, but 



they need to be more detailed in order to reach the ultimate goal, 
which is to create and validate a stable reference architecture for 
FES. The sound approach to reaching this goal is to gain more 
experience from actually building FES, and use empirical 
evidence from this to extend the architecture descriptions. In 
particular, two kinds of cases will be used. First, more example 
applications will be implemented as federation services, and this 
will primarily be done using the experimental platform described 
above. From this, common patterns in federation architectures can 
be inferred, in particular for the federation management functions. 
Secondly, the product architecture will be validated through case 
studies at partner companies, to check that the architectural 
solutions presented here can match a wide variety of product 
architectures. 

An especially important area of future work is on assurances, and 
an overarching concern for all SoS is how to build reliable 
systems out of unreliable components. Better methods are needed 
to discover and handle conflicts between plug-ins, and to assess 
that timing behavior meets the requirements. In particular, it 
would be valuable to find ways of analyzing these effects on the 
trusted server, prior to installation of plug-ins. Since the trusted 
server keeps a record of what plug-ins are installed on a particular 
product, it has the needed information to analyze the 
consequences of adding one more plug-in. For instance, it could 
assess if there is sufficient memory and processing power 
available, but also check for conflicts with the other plug-ins. 
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