
Per Processor Spin-Lock Priority for Partitioned
Multiprocessor Real-Time Systems

Sara Afshar1, Moris Behnam1, Reinder J. Bril1,2, Thomas Nolte1

1Mälardalen University, Västerås, Sweden
2Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Email: {sara.afshar, moris.behnam, reinder.j.bril, thomas.nolte}@mdh.se, r.j.bril@tue.nl

ABSTRACT
Two traditional approaches exist for a task that is blocked on a
global resource; a task either performs a non-preemptive busy wait,
i.e., spins, or suspends and releases the processor. Previously, we
have shown that both approaches can be viewed as spinning either
at the highest priority (HP) or at the lowest priority on the pro-
cessor (LP), respectively. Based on this view, previously we have
generalized a task’s blocking behavioral model, as spinning at any
arbitrary priority level. In this paper, we focus on a particular class
of spin-lock protocols from the introduced flexible spin-lock model
where spinning is performed at a priority equal to or higher than the
highest local ceiling of the global resources accessed on a proces-
sor referred to as CP spin-lock approach. In this paper, we assume
that all tasks of a specific processor are spinning on the same pri-
ority level. Given this class and assumption, we show that there
exists a spin-lock protocol in this range that dominates the classic
spin-lock protocol which tasks spin on highest priority level (HP).
However we show that this new approach is incomparable with the
CP spin-lock approach. Moreover, we show that there may exist an
intermediate spin-lock approach between the priority used by CP
spin-lock approach and the new introduced spin-lock approach that
can make a task set schedulable when those two cannot. We pro-
vide an extensive evaluation results comparing the HP, CP and the
new proposed approach.

1. INTRODUCTION
The interest from the industry to replace uni-processors with multi-
core1 platforms raises a demand for investigating efficient tech-
niques for such platforms.

In real-time embedded systems, tasks may share resources with
each other that may lead to variations in response time of the tasks.
For industrial setups that have critical tasks in terms of timing con-
straints, such as control tasks, not only meeting the deadlines is
important but also how long it takes for tasks to finish and the im-
posed jitter to the tasks can become an important issue. Long re-
sponse times and/or induced jitter to control tasks may introduce
delays in control loops that can decline the control performance
and in the worst case destabilize the system. Therefore, it is of
great significance to take advantage of techniques that can mini-
mize such induced jitters. Considering resource sharing as a source
for such induced jitters in such systems, efficient resource handling
techniques can benefit tasks in this context.

In multi-core platforms, upon a request to a global resource, the
resource may be in use by a task on another processor. Currently,
1In this text we will use the terms core and processor interchange-
ably.

two approaches exist when such a request for a global resource
cannot be satisfied, a task either spins or suspends. Under the spin-
based approach, the task performs a non-preemptive busy wait (also
called spin) on the highest priority level on the core, which we refer
to as HP (highest priority level) spin-lock approach. Under the
suspension-based approach, a task is suspended.

In previous work [1], we showed that this latter approach can also
be viewed as spinning at the lowest priority level on the core. We
refer to this approach as LP (lowest priority level) spin-lock ap-
proach, or simply LP. Based on such a view, we generalized a
task’s blocking behavior while spinning, by selecting any arbitrary
priority level in the range of LP to HP. We referred to this model
as flexible spin-lock model. In [1], we also introduced two specific
spin-lock approaches where the task that is blocked on a (global)
resource (i.e. has requested the resource but is not granted since the
resource is not available at the moment of request) uses two priority
levels that are within the range of HP and LP spinning priority lev-
els. These two spin-lock approaches are called CP (ceiling priority
level) and OP (own priority level) spin-lock approaches. The CP
approach uses the highest local ceiling of global resources on a core
for spinning. The OP approach uses the task’s own priority level
for spinning. One of our conclusions in [1] was that CP and HP
are incomparable, i.e, if some task sets are schedulable under CP
but not HP and vice versa, therefore neither approach dominates
the other.

In this paper, we focus on a particular class of spin-lock protocols
from the introduced flexible spin-lock model [1], where spinning is
performed at a priority level equal to or higher than that used by CP.
A main advantage of this class of spin-lock protocols is that at most
one task on a processor can either have a pending global resource
request or access a global resource (see Lemma 12 in [1]). As a
consequence, a task that spinning on a global resource will have to
wait for at most m−1 accesses of tasks on remote cores, where m
is the number of cores. Similarly, the length of any global resource
queue is at most m− 1. Using priority levels other than this range
from the whole spectrum may result in a higher number of pending
requests for a global resource on a processor. We therefore leave
the study of the rest of the spectrum for optimal spin-lock priorities
as future work. In this paper, we focus on partitioned scheduling
systems considering FIFO-based queues for global resources.

Further, in this work, we assume that all tasks on a specific proces-
sor use the same spin-lock priority. Given this class of spin-lock
protocols and this assumption, we introduce a new spin-lock ap-
proach which we call ĈP and uses the highest ceiling of any re-
source (either local or global) for spinning. We show that ĈP out-

1

performs the classic HP spin-lock approach. Moreover, we show
that the CP and ĈP approaches are incomparable. We show that
there may exist a spin-lock approach with spinning priority level
between the priority level used by CP and ĈP that can make a task
set schedulable which is unschedulable under both CP and ĈP.

Contributions. In this paper we introduce a new spin-lock ap-
proach (ĈP) that dominates the classic HP spin-lock approach.
Moreover, we provide a tighter analysis for the CP approach. Fur-
ther, we provide unified blocking terms for the range of spin-lock
priorities [CP, HP]. We show by means of illustrative examples
that CP and ĈP are incomparable. Further, we show that there may
exist an intermediate spin-lock approach within the range of spin-
lock priorities for CP, ĈP that can make a task set on a processor
schedulable where CP and ĈP cannot. Finally, we perform experi-
mental evaluations to compare the three HP, CP and ĈP spin-lock
approaches where we measure the improvement in response time
of tasks under each approach versus the other.

2. RELATED WORKS
A non-exhaustive amount of work has been done for both variants
of spin-based and suspension-based of lock-based resource sharing
synchronization protocols. In the following we will briefly present
the most related synchronization protocols used in multiprocessor
platforms.

The Multiprocessor Stack Resource Policy (MSRP) was introduced
in [13] for partitioned platforms. MSRP is an extension of Stack
Resource Policy (SRP) [4] for multiprocessors and is a spin-based
approach. Global resource waiting queues are FIFO-based.

The Multiprocessor Bandwidth Inheritance (M-BWI) protocol, an
extension of the Bandwidth Inheritance (BWI) protocol, has been
presented for global scheduling in [12]. However the M-BWI pro-
tocol is neutral to the underlying scheduling approach, since it can
be implemented in both global and partitioned scheduling systems.
M-BWI protocol is a spin-based synchronization protocol that can
be used in open systems where tasks can dynamically be added or
removed. The resource queues used in M-BWI are FIFO-based.

The Flexible Multiprocessor Locking Protocol (FMLP) introduced
in [6] combines both spin-based and suspension-based approaches.
Tasks spin for short resources when they are blocked on a global
resource, whereas they are suspended for long resource requests.
The resource classification for short and long is user defined under
this approach. FMLP uses FIFO-based global resource queues and
has been introduced for both partitioned and global scheduled sys-
tems. The partitioned FMLP, was later extended for fixed-priority
scheduling in [7].

Distributed Priority Ceiling Protocol (DPCP) is a suspension-based
synchronization protocol introduced in [20, 19] and has been de-
veloped for partitioned scheduling and the global resource wait-
ing queues are priority-based. The Multiprocessor Priority Ceiling
Protocol (MPCP) has been introduced for partitioned systems [20,
18]. MPCP a variant of the Priority Ceiling Protocol (PCP) [21]
extended for multiprocessor partitioned scheduling platforms,is a
suspension-based protocol. The global resource queues used in
MPCP are priority-based. A recent variant of MPCP [15] devel-
oped for partitioned scheduling systems introduces some busy wait-
ing that can decrease the blocking duration of higher priority tasks.

The O(m) Locking Protocol (OMLP), which is a suspension-based
synchronization protocol, has been proposed in [8], for both parti-
tioned and global scheduling. In a suspension-oblivious protocol,
suspensions are accounted in the execution time of tasks, which
means that suspended jobs are assumed to occupy the processor.
Brandenburg and Anderson showed that priority-based queues can
introduce starvation for lower priority tasks [8]. As a result OMLP
uses a hybrid queue structure consisting of a FIFO-based queue of
a specified length m along with a priority-based queue. This design
scheme causes OMLP to be confined to a fixed factor of blocking
(asymptotically optimal [8]) as an advantage.

Multiprocessor Synchronization Protocol for Open Systems (MSOS),
is another suspension-based synchronization protocol which has
been developed for compositional independently-developed real-
time applications [17]. The global resource waiting queues are
FIFO-based, however, for the resource waiting queues within each
application, both variants of FIFO-based and Priority-based queue
have been investigated. MSOS was extended for priority-based
applications later [2], where it is shown that it could improve the
schedulability performance.

A recent work has investigated different queuing policies for spin
lock multiprocessor systems [22]. Such investigation is out of the
scope of this paper, and we hafocous on a fixed set-up for queuing
policy, being FIFO-based global resource queues.

All aforementioned synchronization protocols have been introduced
for spinning on highest and/or lowest priority level. In [1], we have
introduced a flexible spin-lock model which introduces the possi-
bility of using any arbitrary priority-level for spin-locking. More-
over, we have introduced two new spin-lock approaches that can
have better schedulability performance compared to spin-lock ap-
proaches that use the highest priority level on a processor for spin-
ning and suspend-based approaches for a specific class of tasks on
a processor. In this paper, we investigate further spin-lock priorities
for tasks on a processor. Note that, we select one unique spin-lock
priority that is used by all tasks on a specific processor.

3. SYSTEM MODEL
Our system consists of m identical processors where a set of n spo-
radic tasks execute on. The scheduling policy used in this paper is
fixed-priority partitioned scheduling. The set of tasks allocated to
a processor Pk is denoted by TPk .

Each task τi is presented by a tuple < Ci,Ti > and consists of an
infinite sequence of jobs. Ci denotes the worst-case execution time
of task τi and Ti denotes the minimum inter-arrival time of τi. We
assume implicit deadlines tasks, i.e. the deadline of a task denoted
by Di is equal to Ti. The priority of the task τi is denoted by ρi.
Ui denotes the utilization of a task τi. We assume that a task τi has
a priority higher than that of a task τ j, if i > j (i.e., ρi > ρ j). We
assume priorities are unique on each processor. Tasks in the system
may use local or global resources. Local resources are those that
are accessed only by tasks on the same processor, whereas global
resources are accessed by tasks on more than one processor. The
sets of local and global resources which are accessed by tasks on a
processor Pk are denoted by R L

Pk
and R G

Pk
, respectively. Similarly,

we denote the set of local and global resources that are accessed
by jobs of a task τi as R SL

i and R SG
i , respectively. Further, Csi,q

denotes the worst-case execution time among all requests of any job
of a task τi for a resource Rq. Moreover, nG

i,q denotes the maximum
number of possible requests by any job of a task τi for a specific

2

global resource Rq. The set of tasks on a processor Pk requesting
access to a specific resource Rq is denoted by TPk ,q.

Nested resource requests is not the focus of this paper. Moreover,
as it will be presented later in this section (Section 3.2), queues
used for global resources are FIFO-based and global critical sec-
tions (gcses i.e. the sections of a task that uses global resources)
are non-preemptive.

Moreover, we categorize the delay that is introduced to any task
due to resource sharing to two different blocking notions: (i) prior-
ity inversion blocking (pi-blocking) [19, 21] which is when a lower
priority job is scheduled while a higher priority job on the same
core is pending and (ii) acquisition delay that is incurred to a job of
a task that has to wait to obtain a resource that is locked on a remote
processor (i.e., a processor other than the task’s allocated proces-
sor). The first term is also referred to as Local Blocking since it is
incurred to a task by tasks on the same processor and the later terms
is also referred to as Remote Blocking since it is due to tasks on a
different processor. When a task is experiencing remote blocking
it is said that the task is blocked on the resource. In this paper, we
denote the Bi term as the total pi-blocking incurred to a task τi and
we exclude the remote blocking from this term. Based on our flex-
ible spin-lock model [1], a task spins when it is remotely blocked
on a resource, so we will look at this term separately in the analysis
(see Definition 9).

3.1 General definitions
Below, we present a set of definitions easing the presentation of the
proofs.

DEFINITION 1. The highest priority level on a processor Pk is
denoted by ρmax

Pk
as follows:

ρmax
Pk

= max
∀τi∈TPk

{ρi}+1. (1)

DEFINITION 2. Local resource sharing protocols similar to SRP
assign a ceiling to any local resource Rl ∈ R L

Pk
, where ceilPk (Rl) =

max{ρi| Rl ∈ R SL
i }. [4]

DEFINITION 3. We denote the highest local ceiling of any global
resource on a processor Pk as rcG

Pk, where rcG
Pk
= max{ρi|τi ∈ TPk ∧

R SG
i 6= /0}.

DEFINITION 4. We denote the highest local ceiling of any re-
source on a processor (either local or global) Pk as rcLG

Pk , where
rcLG

Pk
= max{ρi|τi ∈ TPk ∧R SG

i ∪R SL
i 6= /0}.

DEFINITION 5. When a task spins on a processor to acquire a
resource, its priority level might change during spinning to a new
priority level due to the spin-lock approach that is used. We denote
the ρ

spin
Pk

as an arbitrary spin-lock priority level that is used for
every task when spins on a processor Pk. Note that, in this paper,
we consider ρ

spin
Pk

where rcG
Pk
≤ ρ

spin
Pk
≤ rcLG

Pk
.

DEFINITION 6. We refer to pi-blocking that is incurred to a
task τi ∈ TPk by lower priority tasks on the same core requesting
local resources as local blocking due to local resources (LBL).

DEFINITION 7. We refer to pi-blocking that is incurred to a
task τi ∈ TPk by lower priority tasks on the same core that request
global resources as local blocking due to global resources (LBG).

DEFINITION 8. The maximum spin lock time that any task on a
processor Pk may incur due to waiting for a global resource Rq ∈
R G

Pk
, to be released by remote processors is denoted by spinPk ,q.

DEFINITION 9. The maximum spin lock time that a task τi may
incur due to waiting for all its global resource requests is denoted
by spini.

DEFINITION 10. Spinning approach A is said to dominate spin-
ning approach B, if all of the task sets that are schedulable accord-
ing to spinning approach B are also schedulable according to spin-
ning approach A, and task sets exist that are schedulable according
to A, but not according to B. (Similar to [11])

DEFINITION 11. Spinning approach A and B are incompara-
ble, if there exist task sets that are schedulable according to spin-
ning approach A, but not according to spinning approach B and
vice versa. (Similar to [11])

3.2 Resource sharing rules
This section presents the resource sharing rules based on the flex-
ible spinning model presented in [1] for all synchronization proto-
cols with spin-lock priorities in the range [CP, HP]. The key idea
is that a task τi waiting for a global resource, will busy wait, i.e.
spin, whenever the resource is not available. However, the priority
level on which the task spins is fixed for a core.

RULE 1. Local resources are handled by means of SRP unipro-
cessor synchronization protocol.

RULE 2. For each global resource, a FIFO-based queue is used
to enqueue the tasks waiting for the related resource.

RULE 3. Whenever a task τi on a core Pk requests a global re-
source that is used by tasks on other processors, it places its request
in the related resource queue and performs a busy wait. The task
will spin with a priority level ρ

spin
Pk

, where rcG
Pk
≤ ρ

spin
Pk
≤ ρmax

Pk
.

RULE 4. When a task is granted access to its requested global
resource on a processor Pk, its priority is boosted in an atomic
operation to ρmax

Pk
, i.e., becomes non-preemptive.

RULE 5. The priority of the task is changed to its original pri-
ority as soon as it finishes the global critical section and it becomes
preemptable again.

RULE 6. When the global resource becomes available (i.e. it is
released), the task at the head of the global resource queue (if any)
is granted the resource.

Note that, conceptually, we view spinning as accessing a local pseudo
resource [14] with a local resource ceiling equal to the spinning pri-
ority. In this way, we can treat spinning in the same way as a regular
local resource access in ceiling-based resource-access protocols.

4. EXISTING APPROACHES RECAP
In this section we recapitulate existing spin-lock approaches and
some lemmas and equations which also have been presented in [1].
We briefly present the commonality among all spin-lock protocols
presented in this paper in Section 4.2 (i.e. the spin-lock protocols
which use spin priority levels equal to or higher than rcG

Pk). Next
in Sections 4.3 and 4.4, we briefly recapitulate the blocking terms
under HP and CP [1].

3

4.1 Recap of useful lemmas
Here we repeat some lemmas presented in [1] that also hold under
ĈP and will be used in later sections.

LEMMA 1. A lower priority task τ j cannot issue any resource
request after a higher priority task τi arrives, where in case of spin-
ning of τi, it spins with a priority higher than or equal the priority
of the task itself. (Lemma 2 in [1]).

LEMMA 2. A lower priority task τ j can incur pi-blocking to a
higher priority task τi at most once, where in case of spinning of τi,
it spins with a priority higher than or equal the priority of the task
itself. (Lemma 3 in [1]).

LEMMA 3. For a task τi at most one LBL (recall Definition 6)
can be incurred from lower priority tasks when SRP is used. (Lemma
4 in [1]).

Note that, the above lemma is in fact a property of SRP [4].

LEMMA 4. At most one task at a time can have a pending re-
quest on a global resource on a processor Pk when ρ

spin
Pk
≥ rcG

Pk
.

(Lemma 12 in [1]).

Note that Lemma 4 holds for every spin-lock approach with a pri-
ority in the range [CP, HP], since for all these approaches ρ

spin
Pk
≥

rcG
Pk

.

4.2 Commonality of all spin-lock approaches
In this section we present the commonalities for spin-lock approaches
where ρ

spin
Pk
≥ rcG

Pk
.

LEMMA 5. Maximum LBL (recall Definition 7) that is incurred
to a task τi ∈ TPk from lower priority tasks on the same processor,
when ρ

spin
Pk
≥ rcG

Pk
is denoted as BL

i and is upper bounded as follows.

BL
i = max

∀ j,l:ρ j<ρi∧ τi,τ j∈τPk
∧ Rl∈R S L

j ∧ ρi≤ceilPk (Rl)

{Cs j,l}.
(2)

PROOF. In order to a task τi experiences LBL blocking (Def-
inition 6) from a lower priority task τ j, the lower priority task
should use a local resource with ceiling higher than the priority
of τi. Based on this and according to Lemma 3, (2) is inferred.

LEMMA 6. A task τi can experience at most one LBG (recall
Definition 7) from lower priority tasks, when ρ

spin
Pk
≥ rcG

Pk
.

PROOF. By contradiction. We assume two tasks τ j and τm with
a lower priority than that of τi that incur LBG to τi. According to
Lemma 1, τ j and τm both can issue their requests only before τi
arrives at time t1 and their requests can contribute in delaying τi
only if the resource is not granted before time t1 to them. Let us
assume τ j has arrived earlier than τm and issue its request and start
spinning since the resource was not granted. Now let after a while
(before time t1) task τm arrives. In order to τm issues its request, it
must preempt τ j while spinning. In order to τm preempts spinning,
thus ρm > ρ

spin
Pk

. Since ρ
spin
Pk
≥ rcG

Pk
, this concludes that ρm > rcG

Pk
.

By definition (Definition 4), τm does not use any global resource
which contradicts our first assumption. This finishes the proof.

When a task requests a global resource it may happen that the re-
source is in use by another task on another processor. Therefore,
from the time that a task τi requests a global resource Rq which
is not available at the moment of the request, it spins with priority
ρ

spin
Pk

according to Rule 3 until it locks the resource. The maximum
time that a task may spin, depends on the maximum time that any
other processor can lock Rq. According to Lemma 4 multiple tasks
cannot request and be granted to global resources. Therefore, one
task only from each processor can request Rq at any time. Hence,
from any Pk’s remote processors, at most one longest gcs on Rq can
delay any request on Pk for Rq. As a result, (i) the length of every
FIFO-queue can be bounded by m−1 (m the number of processors
in the platform), and (ii) every task has to wait for at most m− 1
accesses to a global resource upon a request to that resource.

Followed by the above discussion, the maximum spinning time for
a task τi which is spinPk ,q (recall Definition 8) is given by:

spinPk ,q = ∑
∀Pr 6=Pk

max
∀τ j∈TPr ,q

{Cs j,q}. (3)

spini by definition (recall Definition 9) is calculated as follows:
spini = ∑

∀q:Rq∈R S G
i ∧τi∈TPk

{nG
i,q× spinPk ,q}. (4)

The critical section length of a task and consequently its execution
time will be increased by spinning. Therefore, the actual execution
time of a task τi is denoted by Ći and is calculated as follows:

Ći =Ci + spini. (5)

4.3 HP spin-lock approach
Under the HP spin-lock approach ρ

spin
Pk

= ρmax
Pk

(recall Definition 1
and Rule 6). This means that, from the time that a task requests
a global resource it non-preemptively performs a busy wait if the
resource is in use by another processor, until it locks the resource.
This leads to tasks be non-preemptive while spinning. Similar spin-
lock approach is used in MSRP [14] and FMLP for short resources,
[6] and [7]. Below we briefly present the blocking terms that occur
under this protocol which has been introduced in [14].

The Maximum LBL that is incurred to a task τi ∈ TPk under the HP
spin-lock approach is denoted as BLHP

i .

BLHP
i = BL

i . (6)

where BL
i is calculated according to Lemma 5.

The maximum LBG that is incurred to a task τi ∈ TPk under the
HP spin-lock approach is denoted as BGHP

i and is upper bounded as
follows:

BGHP
i = max

∀ j,q:ρ j<ρi∧τi,τ j∈TPk
∧Rq∈R S G

j

{Cs j,q + spinPk ,q}.
(7)

The total pi-blocking (local blocking) that is incurred to a task τi
under the HP spin-lock approach is denoted as BHP

i and is calcu-
lated as follows:

BHP
i = max(BLHP

i ,BGHP
i). (8)

Note that, the delay that is incurred to a task τi due to waiting
for locking global resources is considered as an inflation in task’s
worst-case execution time (5).

4

4.4 CP spin-lock approach
Under the CP spin-lock approach [1], ρ

spin
Pk

= rcG
Pk

(recall Defini-
tion 3). Hence, the spinning can only be preempted by higher pri-
ority tasks that do not use any global resources.

The maximum LBL that is incurred to a task τi ∈ TPk under the CP
spin-lock approach is denoted as BLCP

i .

BLCP
i = BL

i . (9)

where BL
i is calculated according to Lemma 5.

The maximum LBG that is incurred to a task τi ∈ TPk under the
CP spin-lock approach is denoted as BGCP

i and is upper bounded as
follows:

BGCP
i = max

∀ j,q:ρ j<ρi∧τi,τ j∈TPk
∧Rq∈R S G

j

(
Cs j,q +

{
spinPk ,q if ρi ≤ rcG

Pk

0 otherwise

)
.

(10)

The maximum total pi-blocking incurred to a task τi ∈ TPk is calcu-
lated as follows, ([1], Theorem 3):

The total pi-blocking (local blocking) that is incurred to a task τi
under the CP spin-lock approach is denoted as BCP

i and is calcu-
lated as follows:

BCP
i =

{
BLCP

i +BGCP
i if ρi > rcG

Pk
+1.

max(BLCP
i ,BGCP

i) if ρi ≤ rcG
Pk
+1.

(11)

Under CP compared to the HP, the highest priority tasks that do not
use any (global) resources, can have a smaller worst-case response
time. However, CP and HP are incomparable in general, since one
can outperform the other for tasks with different priorities [1].

4.5 Worst case response time
Worst case response time for a task τi is denoted by WRi and is
calculated as follows:

WRi = Ći +Bi + ∑
∀ρ j>ρi

τi,τ j∈TPk

d(WRi)/TjeĆ j,
(12)

where Bi is the maximum blocking duration incurred to a task τi on
a processor Pk. Under different spin-lock approaches the related Bi
term is used, e.g., under the HP spin-lock approach BHP

i is used for
Bi.

Note that for spin-lock priority levels where ρ
spin
Pk
≥ rcG

Pk
the delay

imposed by a higher priority task τ j due to resource waiting time
which should have been added up to WRi in RHS of (12) [3, 16, 9]
is equal to zero. This waiting time has already been considered in
the execution time of the task τ j (Ć j) (5).

5. TIGHTER ANALYSIS FOR CP
In this section first with a simple example, we show that the analy-
sis given in [1] is pessimistic and later we provide a tighter analysis
for CP approach by providing Lemmas 8 and 9 for such analysis.

τi Csi,l Csi,g

τ1 5 3
τ2 8 2
τ3 4 -
τ4 x -

Table 1: Example 1: Resource access by tasks of TPk .

Consider a task set TPk = {τ4,τ3,τ2,τ1}. Let R L
Pk
= {R`} and R G

Pk
=

{Rg}.

In this case, under CP spin-lock approach, the spin-priority level
ρ

spin
Pk

= rcG
Pk
= 2. A job of τ4 can be blocked by:

• τ3 on R` and either τ2 or τ1 on Rg, or

• either τ2 or τ1 on R`.

The worst-case depends on the length of the critical sections, i.e.

BCP
4 = max(Cs3,`+max(Cs2,g,Cs1,g),max(Cs2,`,Cs1,`)). (13)

In example 1, we find

B4 = max(4+max(2,3),max(8,5)) = 8. (14)

In this case, according to (11) BCP
4 = BLCP

4 +BGCP
4 = 8+ 3 = 11.

This latter value is pessimistic which motivates us to present tighter
bounds under the CP approach.

LEMMA 7. A task τi can experience at most one pi-blocking
from any lower priority task τ j with priority ρ j ≤ rcG

Pk
where ρ

spin
Pk
≥

rcG
Pk

.

PROOF. First we prove that any lower priority task τ j cannot
issue its resource request after τi arrives. To prove this we assume
two scenarios: (i) ρi ≤ rcG

Pk
, and (ii) ρi > rcG

Pk
. The first case is

proved according to Lemma 1. The only chance that, in the second
case, a lower priority task τ j can issue a request after τi arrives, is
if τi’s priority changes to a lower priority level (while its waiting
for a global resource) due to a spin-lock approach. However, by
definition, τi does not use any global resource (recall Definition 3).
Therefore τi’ priority is not changed by any spin-lock approach.
Thus, τi preempts any lower priority task when it arrives. As a
result in both cases, a lower priority task can only issue a request
before the higher priority task arrives.

Now let us assume two scenarios, (1) τ j requests a global resource,
and (2) τ j requests a local resource. In the first scenario, τ j can
incur blocking to τi if either τ j’s requested resource is remotely
held and it spins with a priority higher than the priority of τi or
it locks the resource and is executing non-preemptively within its
critical section when τi arrives. Obviously, if τ j is executing non-
preemptively, no other lower priority task can run so that it can
issue another request. Similarly, if τ j is spinning with ρ

spin
Pk
≥ rcG

Pk
,

no task with priority equal to or lower than rcG
Pk

can preempt τ j so
that it can issue more requests.

In the second scenario, let us assume τ j issues a request on a local
resource. In order that τ j can cause LBL to τi, the ceiling of the
local resource that τ j requests should be equal to or higher than ρi

5

(recall Definition 2). With such assumption, no other lower prior-
ity task than that of τi can preempt τ j before completion to be able
to issue more requests. Further, according to Lemma 3, a task τi
can experience at most one LBL from any lower priority task. This
implies that τi can be blocked by only one request of a lower pri-
ority task τ j (either on a global resource or a local resource). This
finishes the proof.

LEMMA 8. A task τi where ρi ≤ rcG
Pk
+1 can experience at most

one pi-blocking from any lower priority task τ j if ρ j ≤ rcG
Pk

, where

ρ
spin
Pk
≥ rcG

Pk
.

PROOF. For a task τ j with priority lower than that of τi, ρ j < ρi.
Since ρi ≤ rcG

Pk
+ 1, then ρ j ≤ rcG

Pk
. Thus, according to Lemma 7,

τi may experience at most one blocking from any lower priority
task.

LEMMA 9. A task τi with priority rcG
Pk
+1 < ρi ≤ rcLG

Pk
can ex-

perience at most two pi-blocking if ρ
spin
Pk
≥ rcG

Pk
: one LBL from any

lower priority task τm, where ρm > ρ
spin
Pk

and one LBG from any

lower priority task τ j, where ρ j ≤ ρ
spin
Pk

.

PROOF. If rcG
Pk
+ 1 < ρi ≤ rcLG

Pk
then task τi does not use any

global resource (recall Definition 3). Therefore after it arrives its
priority never changes (e.g. to a lower priority). Thus, it cannot
be preempted by a lower priority task. Hence, τ j can only issue a
request before τi arrives.

According to Lemma 7, τi can experience at most one pi-blocking
from a lower priority task τ j with priority ρ j ≤ rcG

Pk
. If τ j issues a

request on a local resource, according to Lemma 3, τi cannot ex-
perience any more LBL from any other lower priority task τm with
priority ρm > rcG

Pk
. According to Lemma 7, τ j may request a global

resource before τi arrives, and spins. Under this scenario, a lower
priority task τm with priority ρm > ρ

spin
Pk

can preempt τ j during its

spinning (with priority ρ
spin
Pk

). If τm preempts τ j while spinning and
issues a request on a local resource with ceiling higher than ρi just
before τi arrives, it will delay τi at the time of arrival. Moreover, ac-
cording to Lemma 3, τm can issue one request on a local resource,
only. Under this scenario, when τ j is granted its global resource
(thus executes non-preemptively, Rule 4) it can further delay τi. As
a result, τi can experience at most two pi-blocking, due to LBG and
LBL blocking under such a scenario.

LEMMA 10. A task τi can experience at most one pi-blocking if
ρi > rcLG

Pk
using a spin-lock approach where ρ

spin
Pk
≥ rcG

Pk
. Moreover,

this blocking is due to LBG blocking.

PROOF. A task τi, by definition, does not use any local resource
if ρi > rcLG

Pk
(recall Definition 4). For the same reason, no task with

priority higher than that of τi also use any local resource. As a
result, τi cannot experience any LBL blocking. On the other hand,
according to Lemma 6, τi can experience at most one LBG from its
lower priority tasks. This finishes the proof.

LEMMA 11. The maximum LBL blocking duration incurred to
a task τi by a lower priority task τ j on the same processor is de-
noted as BL

i, j and is calculated as follows.

BL
i, j = max

∀l:Rl∈R S L
j

∧ρ j<ρi≤ceilPk (Rl)

{Cs j,l}. (15)

PROOF. It is directly inferred from SRP specification [4].

LEMMA 12. The maximum LBG blocking duration incurred to
a task τi by a lower priority task τ j, on the same processor, using a
spin-lock approach where ρ

spin
Pk
≥ rcG

Pk
is denoted as BG

i, j(ρ
spin
Pk

) and
is calculated as follows.

BG
i, j(ρ

spin
Pk

) = max
∀q:Rq∈R S G

j
∧ρ j<ρi

(
Cs j,q +

{
spinPk ,q if ρi ≤ ρ

spin
Pk

0 otherwise

)
,

(16)
where spinPk ,q is calculated according to (3).

PROOF. When a task τ j holds a global resource, according to
Rule 4 it becomes non-preemptive on the processor, and therefore
may block a higher priority task τi. The maximum blocking that
a lower priority task τ j can incur to τi is caused through its maxi-
mum global critical section. Hence, max

∀q:Rq∈R S G
j

∧ρ j<ρi

{Cs j,q} presents the

maximum blocking that a lower priority task τ j can cause to task
τi, when τ j executes within the critical section. However, under
the worst-case scenario, when τ j issues its request for a global re-
source, the resource might be remotely held by another task on
another processor, thus τ j spins until it acquires the resource. As a
result, τi may in the worst case experience extra delay due to τ j’s
spin-time. However, if ρi > ρ

spin
Pk

, the spinning cannot preempt τi.
This scenario is formulated in (17).

LEMMA 13. The maximum LBG blocking duration incurred to
a task τi by a lower priority task τ j , on the same processor, under
the CP spin-lock approach is denoted as BGCP

i, j and is calculated as
follows.

BGCP
i, j = max

∀q:Rq∈R S G
j

∧ρ j<ρi

(
Cs j,q +

{
spinPk ,q if ρi ≤ rcG

Pk

0 otherwise

)
. (17)

where spinPk ,q is calculated according to (3).

PROOF. Follows immediately from Lemma 12 since ρ
spin
Pk

= rcG
Pk

.

LEMMA 14. The maximum LBG incurred to a task τi under the
CP spin-lock approach is denoted as BGCP

i and is upper bounded as
follows.

BGCP
i = max

∀ j:ρ j<ρi
∧τ j∈TPk

{BGCP
i, j }. (18)

PROOF. Follows immediately from Lemma 6 and Corollary 13.

Based on the aforementioned lemmas, we derive Theorem 1 as fol-
lows.

6

THEOREM 1. The worst-case blocking of a task τi ∈ TPk under
the CP spin-lock approach is denoted as BCP

i and is calculated as
follows.

BCP
i = max

(
max

∀ j:rcG
Pk
<ρ j

∧τ j∈TPk

{BL
i, j}+BGCP

i , max
∀ j:ρ j≤rcG

Pk
∧τ j∈TPk

{BL
i, j}

)
, (19)

where BL
i, j and BGCP

i are calculated according to (15) and (14).

PROOF. We assume three scenarios: (i) ρi ≤ rcG
Pk
+1, (ii) rcG

Pk
+

1 < ρi ≤ rcLG
Pk

, (iii) rcLG
Pk

< ρi. In the first scenario, any task τ j has
a priority ρ j < ρi ≤ rcG

Pk
+1, i.e., ρ j < rcG

Pk
+1. Therefore, the term

max
∀ j:rcG

Pk
<ρ j

∧τ j∈TPk

{BL
i, j}= 0 in (19). Thus, the result of (19) will be the max-

imum value of the maximum LBG or LBL incurred by any lower
priority task (calculated according to Lemmas 11 and 14). There-
fore, first case reflects the same blocking scenario as in Lemma 8.

In the second scenario, according to Lemma 9 τi may experience
at most two pi-blocking, one LBG incurred by a lower priority task
with priority lower than rcG

Pk
(under CP) and one LBL incurred by

a lower priority task with priority higher than rcG
Pk

. This is for-

mulated by the term A = max
∀ j:rcG

Pk
<ρ j

∧τ j∈TPk

BLCP
i, j +BGCP

i . Note that, the first

term in summation function in A is resulted based on Lemmas 5, 11.
The second term in summation function in A is calculated based on
Lemma 14. Moreover according to Lemma 7, τi may experience
at most one blocking (either LBL or LBG) incurred by any lower
priority task τ j with priority lower than rcG

Pk
. Such blocking is for-

mulated by the term B = max(max
∀ j:ρ j≤rcG

Pk
∧τ j∈TPk

BLCP
i, j ,BGCP

i), considering

Lemmas 5, 11 and 14. Moreover, according to Lemma 3, a task
τi can experience at most one LBL from any lower priority task.
Thus, the LBL term in A and B cannot happen together.

This results in the term C = max
(

max
∀ j:rcG

Pk
<ρ j

∧τ j∈TPk

{BLCP
i, j }+BGCP

i ,

max(max
∀ j:ρ j≤rcG

Pk
∧τ j∈TPk

BLCP
i, j ,BGCP

i)
)

. As it can be observed, BGCP
i is a simi-

lar term in both sides of maximum function in C. Now let us assume
two cases. (1) BGCP

i ≥ BLCP
i, j . Thus C = max(max

∀ j:rcG
Pk
<ρ j

∧τ j∈TPk

{BLCP
i, j }+

BGCP
i ,BGCP

i) = max
∀ j:rcG

Pk
<ρ j

∧τ j∈TPk

{BLCP
i, j }+BGCP

i , which is the first term in

(19). (2) let us assume BGCP
i < BLCP

i, j , then C will lead to (19). As
a result, (19) covers both (1) and (2) cases. This finishes the proof
for the scenario (ii).

In the third scenario where rcLG
Pk

< ρi, τi, by definition, does not
use any global resource (recall Definition 3), i.e., it cannot expe-
rience any LBL. Thus, (19) simplifies to BGCP

i which is the same
result inferred by Lemma 10. As it can be seen, all three possible
scenarios (i), (ii) and (iii) lead (19) to reflect the blocking results
from Lemmas 8, 9 and 10. This finishes the proof.

6. ĈP SPIN-LOCK APPROACH
In this section, we introduce a variant of CP which we denote as ĈP
and later in Section 7 we show that it dominates the HP approach.
Under this spinning approach, ρ

spin
Pk

= rcLG
Pk

where rcLG
Pk

is the high-
est priority level that any task use local or global resources (recall
Definition 4). Next, we elaborate the blocking terms that can be
introduced to a task under this spin-lock protocol.

LEMMA 15. The maximum LBL blocking duration incurred to
a task τi under the ĈP spin-lock approach is denoted as B

LĈP
i and

is calculated as follows.

B
LĈP
i = max

∀ j:ρ j<ρi∧ τi,τ j∈τPk

{BL
i, j}. (20)

PROOF. It is inferred from Lemmas 5 and 11.

LEMMA 16. The maximum LBG blocking duration incurred to
a task τi by a lower priority task τ j on the same processor under

the ĈP spin-lock approach is denoted as B
GĈP
i, j and is calculated as

follows.

B
GĈP
i, j = max

∀q:Rq∈R S G
j

∧ρ j<ρi

(
Cs j,q +

{
spinPk ,q if ρi ≤ rcLG

Pk

0 otherwise

)
, (21)

where spinPk ,q is calculated according to (3).

PROOF. Directly inferred from Lemma 16 since ρ
spin
Pk

= rcLG
Pk

under the ĈP approach.

LEMMA 17. The maximum LBG incurred to a task τi under the
ĈP spin-lock approach is denoted as B

GĈP
i and is upper bounded as

follows.

B
GĈP
i = max

∀ j:ρ j<ρi
∧τ j∈TPk

{BGĈP
i, j }. (22)

PROOF. Follows immediately from Lemmas 6 and 16.

THEOREM 2. The maximum total pi-blocking incurred to a task
τi ∈ TPk under ĈP approach is calculated as follows:

BĈP
i = max(B

LĈP
i ,B

GĈP
i). (23)

PROOF. Let assume two scenarios (i) ρi ≤ rcLG
Pk

, (ii) ρi > rcLG
Pk

.

Since under ĈP, ρ
spin
Pk

= rcLG
Pk

, under the first scenario, according
to Lemma 2, τi may experience at most one blocking. This block-
ing can be due to either LBL or LBG, which is formulated in (23).
In the second scenario, by definition, τi does not use any local re-
source, thus it cannot experience any LBL. However, it may still
experience LBG from a lower priority task. (23) reflects this sce-
nario as well. This finishes the proof.

Since under ĈP, ρ
spin
Pk

= rcLG
Pk
≥ rcG

Pk
, therefore according to Lemma 4

spinPk ,q and spini can be computed using (3) and (4), respectively.
Moreover, similar to HP and CP approaches, under ĈP spin-lock
approach, the execution time of tasks should be inflated by spin-
ning, as well. Thus, the actual execution time of tasks are calcu-
lated using (5).

7

7. COMPARING HP, CP AND ĈP
In this section we compare the HP, CP and ĈP approaches. In Sec-
tion 7.3, we show that ĈP dominates HP approach. Later in Sec-
tion 7.4, we show by means of two examples 1 and 2 that CP and
ĈP are incomparable (Definition 11). To facilitate the comparison
of CP, ĈP and HP approaches, first we derive a unified blocking
equation that can cover spin-lock approaches that use spin priority
levels from CP to HP, i.e., rcG

Pk
≤ ρ

spin
Pk
≤ ρmax

Pk
, in the following

section.

7.1 Unification of CP, ĈP and HP blocking terms
In this section, we derive general blocking terms where assigning
ρ

spin
Pk

equal to ρmax
Pk

, rcG
Pk

or rcLG
Pk

will result in the related blocking

terms under HP, CP and ĈP, respectively.

Bi(ρ
spin
Pk

) =max

(
max

∀ j:ρspin
Pk

<ρ j

∧τ j∈TPk

{BL
i, j}+BG

i (ρ
spin
Pk

), max
∀ j:ρ j≤ρ

spin
Pk

∧τ j∈TPk

{BL
i, j}

)
,

(24)
where, BL

i, j is calculated according to (15) and,

BG
i (ρ

spin
Pk

) = max
∀ j:ρ j<ρi∧τi,τ j∈TPk

{BG
i, j(ρ

spin
Pk

)}, (25)

where BG
i, j(ρ

spin
Pk

) is calculated according to (16).

LEMMA 18. The blocking term presented in (24) covers block-
ing scenarios under any spin-lock approach where rcG

Pk
≤ ρ

spin
Pk
≤

ρmax
Pk

.

PROOF. We assume three scenarios for a task τi: (i) ρi ≤ rcG
Pk
+

1, (ii) rcG
Pk
+1 < ρi ≤ rcLG

Pk
, (iii) ρi > rcLG

Pk
.

Under the first scenario, we prove that (24) leads to the same block-
ing results as in Lemma 8. Since ρ j < ρi ≤ rcG

Pk
+ 1 in the first

scenario, and ρ
spin
Pk
≥ rcG

Pk
, the result of the set ∀ j : ρ

spin
Pk

< ρ j in
the term max

∀ j:ρspin
Pk

<ρ j

∧τ j∈TPk

{BL
i, j} in (24) is equal to /0, which makes this term

equal to zero. Therefore, (24) is simplified to A = max
(

BG
i (ρ

spin
Pk

),

max
∀ j:ρ j≤ρ

spin
Pk

∧τ j∈TPk

{BL
i, j}
)

, which shows the maximum of one LBL and LBG

term. Now we show that, for any ρ
spin
Pk
≥ rcG

Pk
included in A, still

Lemma 8 is valid. This is proved, since under scenario (i) ρi ≤ rcG
Pk

,
thus, for any lower priority task τ j , ρi < rcG

Pk
is satisfied. Hence,

condition in Lemma 8 is valid for LBL term in A. For ρ
spin
Pk

)≤ rcG
Pk

,
the LBG term in (24) is calculated according to Lemma 12. As
a result, (24) reflects the blocking results from Lemma 8 which is
also valid for any spin-priority higher than rcG

Pk
.

Under the second scenario, we prove that the condition in (ii) re-
sults in (24). According to Lemma 9, τi may experience at most two
blocking, one LBL and one LBG from any lower priority task. This
results in B = max

∀ j:ρspin
Pk

<ρ j

∧τ j∈TPk

{BL
i, j}+BG

i (ρ
spin
Pk

). Moreover, according to

Lemma 7, τi may experience at most one pi-blocking from any
lower priority task, this is formulated by C =max(max

∀ j:ρspin
Pk

<ρ j

∧τ j∈TPk

{BLCP
i, j }+

BGCP
i ,max(max

∀ j:ρ j≤rcG
Pk

∧τ j∈TPk

BLCP
i, j ,BGCP

i)). Since rcG
Pk
≤ ρ

spin
Pk

, the outcome

set under the condition of ∀ j : ρ j ≤ rcG
Pk

in C stays unchanged if rcG
Pk

in this condition is substituted by such ρ
spin
Pk

. It is easy to see that

C, undeer both conditions of (1) BGCP
i ≥ BLCP

i, j , and (2) BGCP
i < BLCP

i, j
gives the same result as in (24).

Under scenario (iii), we prove that (24), gives similar results as in
Lemma 10. A task ρi > rcLG

Pk
, by definition does not use any local

resource (recall Definition 4). Thus, (24) is simplified to BG
i (ρ

spin
Pk

),
which is similar to the result derived by Lemma 10. This finishes
the proof.

In order to compare the CP and ĈP and HP spin-lock approaches,
we divide the available priority levels on a processor Pk into three
ranges and we compare the two approaches for tasks in these pri-
ority ranges separately. The priority ranges, also illustrated in Fig-
ure 1, are as follows: (A) ∀ρi | ρi > rcLG

Pk
∧τi ∈ TPk , (B) ∀ρi | rcG

Pk
<

ρi ≤ rcLG
Pk
∧ τi ∈ TPk and (C) ∀ρi | ρi ≤ rcG

Pk
∧ τi ∈ TPk .

𝑟𝑐𝑃𝑘
𝐺

𝑟𝑐𝑃𝑘
𝐿𝐺

C

B

A

priority level

ranges

Figure 1: Priority ranges

7.2 CP versus HP
We have shown in [1] that CP and HP approaches are incompara-
ble. In this section we specify the set of tasks on a processor Pk
that using either HP or CP spin-lock approaches for them leads to
similar blocking results. This facilitates the comparison of the two
approaches later in Section 9.

LEMMA 19. We assume two different spin-lock approaches 1

and 2 on Pk, with spin priority level as ρ
spinPk
1 and ρ

spinPk
2 , respec-

tively, where ρ
spinPk
1 ≤ ρ

spinPk
2 . For any task τi ∈ TPk , if ρi ≤ ρ

spinPk
1 ,

then using either spin-lock approaches 1 or 2 will lead to similar
worst case blocking results, which is upper bounded as follows for
τi.

Bi = max

(
max

∀q:Rq∈R S G
j

∧ρ j<ρi

(Cs j,q + spinPk ,q), max
∀ j:ρ j≤ρi
∧τ j∈TPk

{BL
i, j}

)
. (26)

where spinPk ,q and BL
i, j are calculated according to (3) and (15),

respectively.

8

PROOF. It is inferred from (24) considering: (i) the common

result of the sets ∀ j : ρ j ≤ ρ
spinPk
1 and ∀ j : ρ j ≤ ρ

spinPk
2 under spin-

lock approaches 1 and 2, respectively, is similar to ∀ j : ρ j < ρi

when ρiρ
spinPk
1 , (ii) the output result of the sets ∀ j : ρ j > ρ

spinPk
2 and

∀ j : ρ j > ρ
spinPk
1 under spin-lock approaches 1 and 2, respectively,

is equal to /0, since ρ j < ρi ≤ ρ
spinPk
1 ≤ ρ

spinPk
2 , and (iii) the fact that

the condition ρi ≤ ρ
spinPk in (16) is satisfied under both spin-lock

approaches.

COROLLARY 1. For any task τi ∈ TPk , if ρi ≤ rcG
Pk

, (i.e., range
C in Figure 1) then using either CP or HP will lead to similar worst
case blocking results as in (26).

PROOF. It is directly inferred from Lemma 19.

7.3 ĈP versus HP
In the following, we show that ĈP dominates HP and all the spin
lock approaches in between. Moreover, we specify the set of tasks
on a processor Pk that using either HP or ĈP spin-lock approaches
for them leads to similar blocking results which eases the compar-
ison of the two approaches later in Section 9.

COROLLARY 2. For any task τi ∈ TPk if ρi ≤ rcLG
Pk

, (ranges B

and C in Figure 1) then using either ĈP or HP will lead to similar
worst case blocking results as in (26).

PROOF. It is directly inferred from Lemma 19.

LEMMA 20. We assume two different spin-lock approaches 1

and 2 on Pk, with spin priority level as ρ
spinPk
1 and ρ

spinPk
2 , respec-

tively, where ρ
spinPk
1 ≤ ρ

spinPk
2 , ρ

spinPk
1 ≥ rcG

Pk
and ρ

spinPk
2 ≥ rcLG

Pk
.

For any task τi ∈ TPk , if ρi > ρ
spinPk
2 , then using either spin-lock

approaches 1 or 2 will lead to similar worst case blocking results,
which is upper bounded as follows for τi.

Bi = max
∀q:Rq∈R S G

j

∧ρ j≤rcG
Pk

Cs j,q.
(27)

PROOF. It is inferred from (24) considering: (i) any task τi with

priority ρi > ρ
spinPk
2 ≥ rcLG

Pk
, by definition does not use any local

resource, thus, it does not experience any LBL from any lower pri-
ority task, (ii) the condition ρi ≤ ρ

spinPk in (16) is not satisfied under
both spin-lock approaches, and (iii) LBG can be incurred from any
task with priority lower than rcG

Pk
.

LEMMA 21. ĈP dominates and any spin-lock approach that
uses a spin priority level higher than the spin-lock priority used
by ĈP, including HP approach (Recall Definition 10).

PROOF. We assume a spin-lock approach A with spin-lock pri-

ority ρ
spinPk
A where ρ

spinPk
A > rcLG

Pk
. According to Definition 10, in

order to ĈP dominates such spin lock approach A, any task set that

is schedulable using A should also be schedulable using ĈP, how-
ever, there may exist tsk set that is schedulable using ĈP but not A.
Moreover, according to Lemmas 19 and 20, for any task τi with pri-

ority ρi ≤ rcLG
Pk

or ρi > ρ
spinPk
A , respectively, using either spin-lock

approaches lead to similar blocking results. Therefore, we assume

a task τi with priority rcLG
Pk

< ρi ≤ ρ
spinPk
A . According to Defini-

tion 4, such a task τi does not use any local (or global) resource.
Therefore, τi cannot experience any LBL. It can be seen from (24)
that τi will experience one LBG only. However, according to (16),
under A, τi will have an extra spinPk ,q term compared to ĈP, since
the condition ρi ≤ ρ

spin
Pk

is satisfied under A and not ĈP. Hence, the
maximum blocking term and accordingly the worst case response
time (12) under A is larger than under ĈP, WRA

i > WRĈP
i , where

WRA
i and WRĈP

i denoted the worst-case response times under A
and ĈP, respectively. Therefore, if τi is schedulable under A, i.e.,
WRA

i ≤ Di, it defiantly meets its deadline under ĈP, as well, i.e.,

WRĈP
i ≤Di. However, if τi is schedulable under ĈP, if Di =WRĈP

i ,
then WRA

i > Di and it misses its deadline under A. A can be any
spin-lock approach that uses a spin-priority higher than rcLG

Pk
, in-

cluding HP. This finishes the proof.

COROLLARY 3. If rcG
Pk
= rcLG

Pk
, then CP dominates HP.

PROOF. Follows immediately from Lemma 21.

7.4 ĈP versus CP
In the following, first we specify the set of tasks on a processor Pk
that using either CP or ĈP spin-lock approaches for them leads to
similar blocking results which simplifies the comparison of the two
approaches later in Section 9. Secondly, we show by means of two
Examples 1 and 2 that for a task in priority range B, the CP and ĈP
approaches are incomparable (Definition 11).

COROLLARY 4. If rcG
Pk
≤ rcLG

Pk
, for any task τi ∈ TPk if ρi ≤

rcG
Pk

, or ρi > rcLG
Pk

(ranges C and A in Figure 1) then using either

CP or ĈP will lead to similar worst case blocking results.

PROOF. It is directly inferred from Lemmas 19 and 20.

Next, we show by means of two Examples 1 and 2, that for a task
τi (τ4 in these examples) in priority range B, the CP and ĈP ap-
proaches are incomparable (Definition 11).

In Table 2, the specification of the task set used in the Examples 1, 2
and 3 (Example 3 will be explained later in Section 8), is shown.
Note that tasks τ3 and τ7 have two different critical section lengths
for local resource Rl and global resource Rg and consequently two
different C3 and C7 values in the examples. In Example 1, Cs3,l = 1
and C3 = 2 and in Examples 2 and 3 Cs3,l = 3 and C3 = 4. Cs7,g =
5.5 and C7 = 7 in the examples 1 and 3 and Cs7,g = 2.5 and C7 =
4 in the example 2. Note that, in the figures of three examples,
the priority levels 1 to 6 shows the priority levels of tasks τ1 to
τ6 on processor P1. The priority level 7 shows the highest priority
level on core P1 (Definition 1). Such priority level is not shown for
processor P2 since only one task exists on P2. Moreover, each task
executes on its own priority level unless the priority of the task is

9

Pk τi Ci Csi,l Csi,g

τ1 4 - 3
τ2 1 - 1

P1 τ3 2, 4, 4 1, 3, 3 -
τ4 3 - -
τ5 1 1 -
τ6 1 - -

P2 τ7 7, 4, 7 - 5.5, 2.5, 5.5

Table 2: Task set specification in Examples 1, 2 and 3

increased. In this case, we show the execution of the task on the
boosted priority level. E.g., task τ1, normally executes on priority
level 1, but when it spins with priority level 2 in Figure 2.(a), it
moves to priority level 2. When τ1 is granted to its resource later
at time 6, its priority is further boosted to higher than any normal
priority on P1 and its execution moves to priority level 7. Note
that, in all the three figures related to Examples 1, 2 and 3, the
task arrival and deadline shown in each priority level is related to
the task of that priority level. E.g, in Figure 2.(b), the deadline on
priority level 5 is related to the task τ5, which meets its deadline in
this figure.

EXAMPLE 1. Under the CP approach (see Figure 2.(a)), when
task τ1 requests Rg which is locked by task τ7 on P2, it spins with
priority level rcG

P1
= 2. Thus, task τ3 can preempt τ1 when it arrives

at time 2. Task τ4 cannot run when it arrives at time 3 since τ3 has
requested Rl with ceiling 5 slightly before time 3 (SRP rule). Thus,
τ4 has to wait until τ3 finishes its lcs at time 4. Even though τ4 is
further preempted by arrival of the higher priority task τ6 at time
5, and later by non-preemptive execution of τ1 (which is granted
to Rg) at time 6, it meets its deadline at time 11. As it can be
seen, under this approach, τ4 does not wait for spinning time of
τ1 on Rg. However, under the same scenario, if ĈP approach is
used (see Figure 2.(b)), τ4 cannot anymore run when it arrives (at
time 3) since under this approach, τ1 is spinning with priority level
rcLG

P1
= 5. As a result τ4 misses its deadline.

EXAMPLE 2. Under the CP spin-locking approach (see Fig-
ure 3.(a)), task τ1 requests the global resource Rg at time 1 that
is used by task τ7 on P2 , thus, spins with priority level rcG

P1
= 2.

Therefore, (similar to Figure 2.(a)), task τ3 can preempt it when it
arrives at time 2 and issues a request on the local resource Rl at
time 3. However, τ3 cannot immediately use Rl , since τ1 is granted
to Rg at time 3, therefore τ1 executes using Rg non-preemptively
(Rule 4). As soon as τ1 finishes its gcs part, first τ6 runs which its
execution was delayed from its arrival at 5 and then τ3 will start
the lcs part with priority level 5. The execution of τ4 which has
arrived at time 3 is delayed until time 10 where τ3 finishes its lcs
part. As a result, τ4 will miss its deadline at time 11 under this
scenario. Under the same scenario τ4 meets its deadline using ĈP
as can be seen in Figure 3.(b). The reason is that under ĈP, τ1 that
is blocked on Rg spins with priority level rcLG

P1
= 5 thus, does not

let τ3 to start running so that it can issue its local resource request.
As a result, τ4 will only experience LBG delay from τ1 and meets
its deadline.

Holding 𝑹𝒍:

Access to resource is granted :Task is arrived :

Resource is released :Request to resource :

Spinning :Holding 𝑹𝒈:

Deadline:

τ 4

τ 1

τ 4

1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 200 9 12

τ 1

τ 3

τ 7

τ 1

P₁

Original priority

3

2

1

4

P2

(a). CP

6

5
τ 3 τ 5

τ 2

D 4

τ 2

τ 6

7

τ 1

τ 4

1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 200 9 12

τ 1

τ 7

τ 1

P₁

Original priority

3

2

1

4

P2

(b). CP

6

5
τ 3τ 5

τ 2

D 4

τ 2

τ 6

7

τ 3

t

t

Figure 2: Example 1: The global resource Rg is used by tasks
τ1 and τ2 on P1 and τ7 on P2. Task τ3 and τ5 on P1 use the
local resource Rl . τ4 and τ6 do not use any resource. Case (a)
illustrates the CP spin-lock approach and case (b) the ĈP spin-
lock approach. Task τ4 misses its deadline under ĈP.

8. INTERMEDIATE SPIN-LOCK APPROACH
In Section 7, we showed that the two CP and ĈP spin-lock ap-
proaches are incomparable. In this section, we show by means of
an example (Example 3) that if CP and ĈP spin-lock approaches
cannot make a task set schedulable on a core, there may exist an in-
termediate spin-lock approach which can make the task set schedu-
lable. This intermediate spin-lock approach uses a priority level
between the two priority levels that are used by the CP and ĈP
approaches.

EXAMPLE 3. As illustrated in Figures 4.(a) and (b), task τ4
misses its deadline under both CP and ĈP spin-lock approaches.
In Figure 4.(a), τ4 misses its deadline due to the normal execution
of task τ6 in form of interference delay, and lcs (local critical sec-
tion i.e., the section of a task that uses local resource) and gcs of
tasks τ3 and τ1, respectively. In Figure 4.(b), τ4 misses its deadline
due to the spinning time of τ1 on Rg, the gcs of τ1 and interference
of τ6. It is shown in Figure 4.(c) that if ρ

spin
Pk

= 3, i.e., τ1 spins on
priority level 3 all tasks including task τ4 will meet their deadlines.
When task τ1 spins on priority level 3, task τ3 cannot start running,

10

Holding 𝑹𝒍:

Access to resource is granted :Task is arrived :

Resource is released :Request to resource :

Spinning :Holding 𝑹𝒈:

Deadline:

τ 4

τ 1

1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 200 9 12

τ 1

τ 3

τ 1

P₁

Original priority

3

2

1

4

P2

(a). CP

6

5
τ 3 τ 5

τ 2

D 4

τ 2

τ 6

τ 4

τ 7

7

τ 1

τ 4

1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 200 9 12

τ 1

τ 7

τ 1

P₁

Original priority

3

2

1

4

P2

(b). CP

6

5
τ 5

τ 2

D 4

τ 3

τ 2

τ 6

7

τ 3

t

t

Figure 3: Example 2: The global resource Rg is used by tasks
τ1 and τ2 on P1 and τ4 on P2. Task τ3 and τ5 on P1 use the
local resource Rl . τ4 and τ6 do not use any resource. Case (a)
illustrates the CP spin-lock approach and case (b) the ĈP spin-
lock approach. Task τ4 misses its deadline under CP.

which implies that it cannot issue its request on Rl and its delay
to τ4 is prevented similar to scenario under Figure 2.(a). On the
other hand, τ4 can preempt τ1’s spinning when it arrives at time
3. Therefore, τ4 does not have to wait for the waiting time of τ1
on Rg similar to the scenario in Figure 3.(b). τ4 only experiences
a delay from normal execution of τ6 (in form of interference) and
non-preemptable gcs execution of task τ1. Thus,τ4 finishes at time
10 before its deadline.

8.1 Key trade-off factors
In this section, we elaborate the factors that may cause longer de-
lays due to resource sharing under each ĈP and CP spin-lock ap-
proaches.

According to Corollary 4, for any task on a processor Pk that has a
priority within ranges A or C (Figure 1), using ĈP and CP leads to
similar results. However, as also shown in Examples 1 and 2, for
a task that has a priority in range B, using ĈP and CP may lead to
different results (task τ4 in Examples 1 and 2). Assuming a task

Holding 𝑹𝒍:

Access to resource is granted :Task is arrived :

Resource is released :Request to resource :

Spinning :Holding 𝑹𝒈:

Deadline:

τ 4

τ 1

1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 200 9 12

τ 1

τ 3

τ 7

τ 1

P₁

Original priority

3

2

1

4

P2

(a). CP

6

5
τ 3 τ 5

τ 2

D 4

τ 2

τ 6

τ 3

τ 4

7

τ 1

τ 4

1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 200 9 12

τ 1

τ 7

τ 1

P₁

Original priority

3

2

1

4

P2

(b). CP

6

5
τ 3τ 5

τ 2

D 4

τ 2

τ 6

7

τ 4

τ 3

τ 1

τ 4

1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 19 200 9 12

τ 1

τ 7

P₁

Original priority

3

2

1

4

P2

(c). 𝐶𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙

6

5
τ 5

τ 2

D 4

τ 2

τ 1

τ 6

τ 4

τ 3

7

τ 3

t

t

t

Figure 4: Example 3: The global resource Rg is used by tasks
τ1 and τ2 on P1 and τ7 on P2. Task τ3 and τ5 on P1 use the local
resource Rl . Tasks τ4 and τ6 do not use any resource. Case (a)
illustrates the CP spin-lock approach, case (b) illustrates the
ĈP spin-lock approach and case (c) illustrates an intermediate
spinning which uses a spin priority level between CP and ĈP
approaches. Task τ4 misses its deadline under both CP and
ĈP while it is schedulable under spin-lock protocol using an
intermediate spin-lock priority.

11

τi with a priority within range B, by looking at RHS of (24), we
can observe that if ρ

spin
Pk

= rcLG
Pk

(i.e. ĈP approach is used), the
term BL

i, j in the first argument of the maximum function will be
equal to zero. The reason is that, a task τ j where ρ j < ρi does not
exist such that the condition of this term (i.e. ρ

spin
Pk

= rcLG
Pk

< ρ j) is
satisfied, since in this range ρi ≤ rcLG

Pk
. However, this term is non-

zero under CP approach since the condition ρ
spin
Pk

= rcG
Pk
< ρ j < ρi

can be satisfied. In other words, under CP, there may exist a task
τ j (τ3 in Figure 2.(a)) with a lower priority than that of τi (τ4 in
Figure 2.(a)) that can cause LBL to τi due to requesting a local
resource Rl with ceiling higher than the priority of τi. This implies
that, using CP may cause an extra LBL term (the BL

i, j term in plus

function in (24)) besides the LBG term (BG
i (ρ

spin
Pk

) term in (24))

compared to using ĈP. This scenario can be seen in Figure 3 where
τ4 experiences LBL by τ3 and LBG by τ1 under CP whereas it
experiences only LBG by τ1 under ĈP. On the other hand, the
term BG

i (ρ
spin
Pk

) in (24) can be smaller for a task τi in range B using
CP, by looking at (16). In (16), if CP is used, spinPk ,q term is
zero, since ρi > rcG

Pk
(in range B). This is not the case under ĈP.

In other words, a task τi belonging to range B, have to wait for a
lower priority task’s waiting time for its requested resource under
ĈP but not under CP since ρi <≤ rcLG

Pk
for a task τi in range B. This

scenario can be seen in Figure 2 where τ4 is delayed by spinning
of τ1 (waiting time of τ1 for Rg) under the ĈP which is not the case
under CP.

Followed by the discussion above, a task τi may experience one ex-
tra LBL if CP is used, whereas it may experience longer LBG if ĈP
is used since it has to wait for the spinning time of a lower priority
task. These two parameters determine the trade-off factors of the
two approaches. One conclusion from this discussion is that if the
extra LBL is not incurred under CP, then using CP is dominant to
using ĈP since under ĈP a task may be delayed longer due to the
lower priority tasks spinning.

Example 3, showed that a spin-lock priority level between the pri-
ority levels used by CP and ĈP, (i.e., rcG

Pk
and rcLG

Pk
) may exist that

can make a task set schedulable where CP and ĈP cannot. To deter-
mine such spin-lock priority the priority levels between CP and ĈP
can be explored to find such spin-lock priority, if any. The com-
plexity of such a search is linear and equal to the number of the
tasks that has priority levels between rcG

Pk
and rcLG

Pk
.

9. EVALUATION
In this section we present the experimental results of comparing the
HP, CP and ĈP spin lock approaches. According to Corollaries 1, 2
and 4, it is enough to compare the worst case response time of tasks
in range B when comparing CP and ĈP, range A when comparing
ĈP and HP and range A∪B when comparing CP and HP spin-lock
approaches. In our experiments, we therefore only consider tasks in
the related range , effectively removing tasks that have similar re-
sults under the compared approaches. In our experiments we mea-
sure the improvement in worst case response time of tasks of one
approach compared to another. We use RT I(a,b)to denote the re-
sponse time improvement under approach a compared to approach

b. We denote RT Ii(a,b) for a task τi as (WRa
i−WRb

i)

max(WRa
i ,WRb

i)
×100, where

WRa
i and WRb

i denote the worst case response time of task τi under
approaches a and b, respectively. For a randomly generated task

set, we show the percentage of tasks as a function of RTI(a,b). We
show how different systems parameters such as number of proces-
sors in the platform, task set utilization, number of tasks in a task
set and local and global critical section lengths can affect the RT I
factor for tasks under different approaches.

9.1 Experimental Setup
In each experiment we randomly generate task sets for each pro-
cessor of the platform. A platform contains m processors , where
m is selected from the set {4, 8, 12, 16}. For each experiment
100 platforms are generated. The task set size is the same for each
processor and is selected from the range [10,100] with steps of 30.
The task set utilization is also the same for each processor and is se-
lected from the set {0.4, 0.6, 0.8, 1}. The UUnifast algorithm [5] is
used to generate the utilization of each task. The period of each task
is randomly generated from the range [10, 150] ms with a granular-
ity of 10 ms. The worst-case execution time of a task is calculated
based on Ci = UiTi. Deadlines of tasks are selected randomly ac-
cording to a uniform distribution in the range [Ci +α(Ti−Ci),Ti]
with α = 0.5 as the default [10].

The maximum number of accesses to local and global resources
for each task is 4. The local and global critical section lengths (lcs
and gcs) are generated according to Csq = βCi, where β is selected
from the set {0.1,0.2,0.3% }. The number of local resources per
processor as well as number of global resources per platform is set
to 3.

In our basic system configuration, the number of processors m = 4,
the task set utilization per core is 0.8, the number of tasks on each
processor is 20, and β = 0.2.

9.2 Results
As mentioned early in this section, we measure the improvement
of response time of tasks (RT I value) under one approach versus
another using bar charts. In all graphs presented in this section, the
distribution of the tasks for the measured RT I is shown. The X-
axis in the graphs represent the RT I value of one approach versus
the other and the Y-axis shows the percentage of the examined tasks
that have that improvement. Note that, values in the X-axis present
a non-continuous range. This means that a value xi in the X-axis
is a representative value for the range (xi−1, xi]. Both X-axis and
Y-axis are represented in percentage. A bar in a graph that presents
RT I(a,b) with xi as X value and yi as Y value shows that yi% of
tasks have an improvement in the range (xi−1%, xi%] in their re-
sponse times under approach a compared to approach b. Note that
a positive RT I value for a graph representing RT I(a,b), shows that
response times under approach a are larger compared to approach
b. Similarly a negative RT I value shows that response times are
smaller under approach a compared to approach b.
The results in Figures 5, 10 and 15 show the variation in distribu-
tion of tasks for the measured RT I values for different numbers of
processors in the generated multiprocessor platform. The results
shown in Figures 6, 11 and 16 shows the variation in distribution
of tasks for the measured RT I values for different numbers of tasks
per task set. The results shown in Figures 7, 12 and 17 show the
variation in distribution of tasks for the measured RT I values for
different task set utilizations. The results shown in Figures 8, 13
and 18 show the variation in distribution of tasks for the measured
RT I values for different length of local critical sections and Fig-
ures 9, 14 and 19 show the variation in distribution of tasks for the
measured RT I values versus changing the length of global critical
sections. Next we will consider the results in more detail.

12

0

10

20

30

40

50

60

70

80

90

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 %

4 Processor

8 Processor

12 Processor

16 Processor

RTI(CP, 𝐶𝑃)%

Figure 5: Distribution of tasks according to response time im-
provement under CP compared to ĈP for different numbers of
processors.

RTI(CP, 𝐶𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 %

10 Tasks

40 Tasks

70 Tasks

100 Tasks

Figure 6: Distribution of tasks according to response time im-
provement under CP compared to ĈP for different numbers of
tasks.

9.2.1 Evaluation results of CP versus ĈP
Figure 5 shows that increasing the number of processors in the plat-
form will lead to more tasks having larger improvements in their
response times under the CP approach compared to ĈP approach.
As it can be seen in the figure, when the number of processors is 4
in the platform, around 5% of tasks have 0 to 10 % improvement
in response time under ĈP compared to CP and for 8 processors
in the platform, less than 2% of tasks have between 0 to 10% im-
provement under ĈP compared to CP. For 12 and 16 processors,
the experiments show that the CP approach outperforms the ĈP ap-
proach. For example, it can be seen that for 16 number of proces-
sors, around 27% of the tasks have around 60% to 70% improve-
ment in the response time and around 5% of tasks have even 80%
improvement in the response time under CP compared to ĈP. This
observation can be confirmed by revisiting (24). The only term that
changes by changing the number of processors is BG

i (ρ
spin
Pk

) in (24)

where according to (16) the term will include spinPk ,q under ĈP and
not under CP. It can easily be concluded from (3) that spinPk ,q is
positively correlated to an increasing the number of processors, i.e.,
spinPk ,q cannot decrease by increasing the number of processors.
The same effect can also be seen in Figure 9, where by increasing
the global critical sections length, CP outperforms the ĈP. This is
due to the fact that by increasing the global critical sections length
spinPk ,q is increased so will BG

i (ρ
spin
Pk

) under the ĈP approach.

However, the graphs in Figures 6, 7 and 8 show a different effect
under the CP and ĈP approaches. In these experiments it is ob-

RTI(CP, 𝐶𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 %

0.4 Util.

0.6 Util.

0.8 Util.

1 Util.

Figure 7: Distribution of tasks according to response time im-
provement under CP compared to ĈP for different task set uti-
lizations.

RTI(CP, 𝐶𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30
P

er
ce

n
ta

ge
 o

f
ta

sk
s

o
f

ra
n

ge
 B

 %

lcs 10% C

lcs 20% C

lcs 30% C

lcs 40% C

Figure 8: Distribution of tasks according to response time im-
provement under CP compared to ĈP for different lcs lengths.

served that by increasing the task set utilization, the number of
tasks per task set and local critical section lengths the performance
of CP decreases compared to ĈP. Note that, by better performance
we mean higher improvement in terms of response time duration
which refers to shorter response times. The reason is that by in-
creasing the number of tasks on a processor, the number of tasks
in range B may increase as well, which can lead in an increase in
max∀ j:ρspin

Pk
<ρ j

∧τ j∈TPk

BL
i, j term in (24). The reason is that for a task τi, the

number of related lower priority (ρ j) tasks may increase and con-
tribute to this term). Note that, this term is zero under ĈP.

The same aforementioned effect, i.e., ĈP outperforms the CP, hap-
pens by also increasing the local critical section lengths due to an
increase in BL

i, j term. The same effect holds also when the task
set utilization are increased. By increasing the task set utilization
we directly increase the tasks execution times. Thus, indirectly the
critical section lengths are increased since, Csq = βCi.

The interesting observation when comparing CP versus ĈP, is that
we have both positive and negative RT I values confirms that CP
and ĈP are incomparable as also already shown by the examples in
Figures 2 and 3.

9.2.2 Evaluation results of CP versus HP
Figures 10, 11, 12, 13 and 14 show similar results as Figures 5, 6, 7, 8
and 9 for the same reasons as mentioned in Section 9.2.1. This
is due to the fact that HP behaves in a similar way towards CP

13

RTI(CP, 𝐶𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 %

gcs 10% C

gcs 20% C

gcs 30% C

gcs 40% C

Figure 9: Distribution of tasks according to response time im-
provement under CP compared to ĈP for different gcs lengths.

RTI(CP, 𝐻𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
g

A
B

 %

4 Processor

8 Processor

12 Processor

16 Processor

Figure 10: Distribution of tasks according to response time im-
provement under CP compared to HP for different numbers of
processors.

as ĈP does, since ρ
spin
Pk

is at higher priority level under HP com-

pared to CP similar as ĈP compared to CP. Thus the above dis-
cussions also hold. However, it can be seen that the distribution of
tasks is smoother when comparing CP and HP than when compar-
ing CP and ĈP. It is interesting to observe that some tasks have
improvements under the CP approach compared to HP which are
presented by negative RT I values in the graphs while some tasks
have improvement in their response times under the HP approach
compared to the CP approach which are presented by positive RT I
values in the related graphs. This confirms the claim in [1] of in-
comparability of CP and HP spin-lock approaches.

9.2.3 Evaluation results of ĈP versus HP
From Figure 15 it can be seen that by increasing the number of
processors the performance of HP compared to ĈP decreases. The
reason is that spinPk ,q increases for HP by increasing the number
of processors. Similarly, as can be seen in Figure 19, increasing the
global critical section length will also decrease the performance un-
der the HP approach. This is due to the fact that an increase in the
global critical section length also leads to an increase in spinPk ,q,
however the increase is less compared to when the number of pro-
cessors is increased. Figures 16, 17 and 18 show that changing the
number of tasks in the task set, the task set utilization or the local
critical section length does not cause a change in the performance.
The reason is that , as described in Lemma 2, using HP or ĈP ap-
proach will only make a difference for tasks in range A, and for a
task in this priority range, the term BL

i, j is zero. This is due to the
fact that tasks do not use any resource in this range. Thus chang-
ing the aforementioned parameters do not affect the performance

RTI(CP, 𝐻𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
B

 %

10 Tasks

40 Tasks

70 Tasks

100 Tasks

Figure 11: Distribution of tasks according to response time im-
provement under CP compared to HP for different numbers of
tasks.

RTI(CP, 𝐻𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30
P

er
ce

n
ta

ge
 o

f
ta

sk
s

o
f

ra
n

ge
 A

B
 %

0.4 Util.

0.6 Util.

0.8 Util.

1 Util.

Figure 12: Distribution of tasks according to response time im-
provement under CP compared to HP for different task set uti-
lizations.

of any of the approaches.

The interesting observation here is that there are no positive RTI
values in any of the graphs in this section. The reason has already
been mentioned in Lemma 21. Since ĈP dominates HP, response
times cannot be improved under the HP compared to ĈP.

10. CONCLUSION AND FUTURE WORK
In this paper, we investigated different alternatives of spin-lock
priorities for tasks on a multi-core platform with the aim to im-
prove the response times of a set of tasks on a core. We assumed a
fixed spin-lock priority per core and focused on spin-lock priorities
higher than or equal to the highest local ceiling of global resources
on a core. The spin-lock approaches corresponding with the bound-
aries of this range of priorities, denoted by CP (ceiling priority) and
HP (highest priority), respectively, are known to be incomparable
[1], i.e. neither approach dominates the other. We presented a new
spin-lock approach, called ĈP, with accompanying schedulability
analysis. ĈP is based on a spin-lock priority equal to the maximum
of the local ceilings of global and local resources. We proved by
means of both analysis and evaluation results that ĈP dominates
HP and showed that ĈP and CP are incomparable. To enable a
fair comparison between ĈP and CP, we improved on the exist-
ing schedulability analysis for CP and presented a unified analysis
blocking terms in the range of spin-lock priorities [CP, HP].

14

RTI(CP, 𝐻𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
B

 %

lcs 10% C

lcs 20% C

lcs 30% C

lcs 40% C

Figure 13: Distribution of tasks according to response time im-
provement under CP compared to HP for different lcs lengths.

RTI(CP, 𝐻𝑃)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
B

 %

gcs 10% C

gcs 20% C

gcs 30% C

gcs 40% C

Figure 14: Distribution of tasks according to response time im-
provement under CP compared to HP for different gcs lengths.

Finally, we showed that if a task set is unschedulable under both
CP and ĈP on a processor, there may exist a spin-lock approach
that uses a priority level in between the priorities used by CP and
ĈP which can make the task set schedulable. We showed that the
complexity of finding this spin-lock approach is linear and can be
a small value.

We have shown by means of experimental results that although the
ĈP and CP approaches are incomparable, under specific system
configurations tasks can obtain up to 70% improvement in their re-
sponse times under the CP approach compared to the ĈP spin-lock
approach. Similarly, under the CP spin-lock approach tasks can
gain up to 90% improvements in their response times compared to
the traditional HP approach, although it has been shown in [1] that
they are incomparable. It can be viewed from the evaluation results
that in general, more tasks can have shorter response times under
the CP spin-lock approach compared to HP and ĈP approaches.
Further, experimental results confirmed that ĈP dominates the HP
approach and showed up to 90% improvement in response time of
tasks under ĈP.

Towards optimizing the spin-lock priority for tasks, we would like
to look at the following steps: optimizing the spin-lock priority (i)
per processor, (ii) per task, (iii) per resource and (iv) per resource
access. In this paper we have focused on step (i) for a specific range
of priority levels where spinning happens at a priority level equal
to or higher than the highest local ceiling of the global resources
accessed on a processor. We leave the later steps as future work.

11. REFERENCES

RTI(𝐶𝑃,HP)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
 %

4 Processor

8 Processor

12 Processor

16 Processor

Figure 15: Distribution of tasks according to response time im-
provement under HP compared to ĈP for different numbers of
processors.

RTI(𝐶𝑃,HP)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
%

10 Tasks

40 Tasks

70 Tasks

100 Tasks

Figure 16: Distribution of tasks according to response time im-
provement under HP compared to ĈP for different numbers of
tasks.

[1] S. Afshar, M. Behnam, R. Bril, and T. Nolte. Flexible
spin-lock model for resource sharing in multiprocessor
real-time systems. In 9th International Symposium on
Industrial Embedded Systems (SIES).

[2] S. Afshar, N. M. Khalilzad, F. Nemati, and T. Nolte.
Resource sharing among prioritized real-time applications on
multiprocessors. In 6th International Workshop on
Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS), Dec. 2013.

[3] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings.
Hard real-time scheduling: The deadline-monotonic
approach. In IEEE Workshop on Real-Time Operating
Systems and Software, pages 133–137, 1991.

[4] T. Baker. Stack-based scheduling of real-time processes.
Journal of Real-Time Systems, 3(1):67–99, 1991.

[5] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154,
2005.

[6] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A
flexible real-time locking protocol for multiprocessors. In
13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, (RTCSA),
pages 47–56, Aug 2007.

[7] B. Brandenburg and J. Anderson. An implementation of the
PCP, SRP, D-PCP, M-PCP, and FMLP real-time
synchronization protocols in LITMUSRT . In 14th IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages

15

RTI(𝐶𝑃,HP)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
 %

0.4 Util.

0.6 Util.

0.8 Util.

1 Util.

Figure 17: Distribution of tasks according to response time im-
provement under HP compared to ĈP for different task set uti-
lizations.

RTI(𝐶𝑃,HP)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
 %

lcs 10% C

lcs 20% C

lcs 30% C

lcs 40% C

Figure 18: Distribution of tasks according to response time im-
provement under HP compared to ĈP for different lcs lengths.

185–194, Aug. 2008.
[8] B. Brandenburg and J. Anderson. Optimality results for

multiprocessor real-time locking. In 31st IEEE Real-Time
Systems Symposium (RTSS), pages 49–60, Dec. 2010.

[9] B. B. Brandenburg. Scheduling and Locking in
Multiprocessor Real-Time Operating Systems. PhD thesis,
The University of North Carolina at Chapel Hill, 2011.

[10] R. Davis and M. Bertogna. Optimal fixed priority scheduling
with deferred pre-emption. In 33rd IEEE Real-Time Systems
Symposium (RTSS), pages 39–50, Dec 2012.

[11] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Comput. Surv.,
43(4):35:1–35:44, Oct. 2011.

[12] D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor
bandwidth inheritance protocol. In 22nd Euromicro
Conference on Real-Time Systems (ECRTS), pages 90–99,
July 2010.

[13] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca. A comparison of MPCP and MSRP when
sharing resources in the Janus multiple-processor on a chip
platform. In 9th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS)., pages 189–198, May
2003.

[14] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip. In 22nd IEEE Real-Time Systems
Symposium (RTSS), pages 73–83, Dec 2001.

[15] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated
task scheduling, allocation and synchronization on

RTI(𝐶𝑃,HP)%

0

10

20

30

40

50

60

70

80

90

100

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
%

gcs 10% C

gcs 20% C

gcs 30% C

gcs 40% C

Figure 19: Distribution of tasks according to response time im-
provement under HP compared to ĈP for different gcs lengths.

multiprocessors. In 30th IEEE Real-Time Systems
Symposium, (RTSS), pages 469–478, Dec. 2009.

[16] L. Ming. Scheduling of the inter-dependent messages in
real-time communication. In International Workshop on
Real-Time Computing Systems and Applications, 1994.

[17] F. Nemati, M. Behnam, and T. Nolte.
Independently-developed real-time systems on multi-cores
with shared resources. In 23rd Euromicro Conference on
Real-Time Systems (ECRTS), pages 251–261, Jul. 2011.

[18] R. Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. In 10th International Conference
on Distributed Computing Systems (ICDCS)., pages
116–123, May 1990.

[19] R. Rajkumar. Synchronization in Real-Time Systems: A
Priority Inheritance Approach. Kluwer Academic
Publishers, Norwell, MA, USA, 1991.

[20] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time
synchronization protocols for multiprocessors. In Real-Time
Systems Symposium (RTSS), pages 259–269, Dec 1988.

[21] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: an approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, Sep 1990.

[22] A. Wieder and B. Brandenburg. On spin locks in AUTOSAR:
Blocking analysis of FIFO, unordered, and priority-ordered
spin locks. In 34th IEEE International Real-Time Systems
Symposium, (RTSS), pages 45–56, Dec 2013.

16

