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Abstract

This paper presents a runtime support to consolidate legacy together
with other real-time applications, running a single instance of a real-time
operating system (RTOS), and sharing system resources. In this context,
we resort to the hierarchical scheduling framework (HSF) to provide tem-
poral partitions for different applications, supporting their independent
development and real-time analysis, thus resulting on a predictable inte-
gration. In particular, the paper focuses on a constructive element, the
legacy server that allows executing code that is unaware of the temporal
partition within which it is deployed. Furthermore, we discuss the chal-
lenges that need to be addressed to execute a legacy application in an
HSF without modifications to the original code. We focus on the chal-
lenge of enabling sharing system resources, both hardware and software,
as typically found in most industrial software systems. We propose a novel
solution based on wrappers for the required RTOS system calls.

We implement our ideas in a concrete implementation on FreeRTOS
OS, taking advantage of a prior HSF implementation. The validation
is performed by a proof-of-concept case study that shows a successful
integration of a legacy application that uses shared resources in a system
that executes other applications.

1 Introduction

The trend of software reuse is observed in many industrial embedded software
applications, e.g. automotive, consumer electronics and avionics. The reuse of
legacy applications is an answer to many industrial challenges like development
cost, time to market, and increasing complexity. For instance, the new Boeing
787 ”Dreamliner” is a recent example with a significant proportion of reused
modules from another Boeing airplane (Adams, 2005a,b). Furthermore, many
industrial systems are developed in an evolutionary fashion, reusing applications
from previous versions or from related products. It means that applications are
reused and re-integrated in new environments.

1



Integration of real-time applications1 can be explained as the mechanical task
of wiring applications together (Crnkovic and Larsson, 2002). For real-time em-
bedded systems, integrating legacy real-time application with new applications
must achieve both (1) functional correctness and (2) satisfy extra-functional
timing properties. Temporal behaviour of real-time software applications poses
difficulties in their integration. Upon their integration, tasks of one application
affect the scheduling of tasks of other applications. This means that for an
embedded system with real-time constraints; an application that is found cor-
rect during unit testing may fail due to a change in temporal behaviour when
integrated in a system.

Virtualization is a resource-management technique to solve these problems
by partitioning the resources in a way that provides the illusion of a full resource
but with a fractional capacity (Gu and Zhao, 2012). Using virtualization, a
CPU resource is partitioned in several smaller virtual machines (VMs), each
running a separate operating system instance either without any modification,
e.g. KVM-based solutions (Cucinotta et al., 2011), or with modifications, e.g.
Xen (Dragovic et al., 2003). However, executing multiple operating systems is
frequently unfeasible and the performance overhead introduced by virtualiza-
tion/hypervisor layer is a big challenge for the resource constrained embedded
hardware nodes particularly 8-, 16- or 32-bit microcontrollers. Further, sys-
tem administration of virtualization can become a time-consuming task due to
complex configuration interactions between supposedly disjoint applications. A
comparatively lightweight technique to allow the partitioning of OS environ-
ment into multiple domains and to execute a separate real-time application in
each domain is OS virtualization. It has only one copy of OS kernel at run-
time shared among multiple applications, thus better suited for the resource
constrained embedded hardware. It is typically implemented using server-based
scheduling, also called Hierarchical Scheduling Framework (HSF) (Deng and Liu,
1997; Shin and Lee, 2003).

HSF offers an efficient mechanism (i) to provide predictable integration of ap-
plications by rendering temporal partitioning among applications (Nolte et al.,
2009), (ii) to support independent development and analysis of real-time ap-
plications (Shin and Lee, 2003), and (iii) to provide analysis of integrated ap-
plications at the system level (Shin and Lee, 2003; Abeni et al., 2009). These
advantages of HSF could provide an even better leverage for reusing real-time
legacy applications. However, most of the existing research focus is on providing
analysis tools and algorithms in order to enable predictable reusability of appli-
cations (Shin and Lee, 2003; Nolte et al., 2009). Similar approaches have been
proposed targeting specifically legacy applications, even if the timing character-
istics of the applications are not known in advance (Palopoli and Abeni, 2009).
Moreover, predictable reuse of legacy applications with HSF requires additional
runtime support which, to the best of our knowledge, has not been investigated
previously.

We provide an implementation support to execute the legacy application
in a server within a two-level HSF. Our method enforces the creation of a
legacy server, the creation of legacy tasks and their allocation to the legacy
server. Thus the legacy server encapsulates the legacy application and becomes

1A real-time application consists of a set of executable real-time tasks. Please note that
we focus only on the timing properties of the real-time applications.
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a container for a set of legacy tasks. The use of legacy server upholds the in-
dependent development of the legacy application from the rest of the system,
encapsulates internal temporal properties of the legacy application, and ensures
the predictable temporal behaviour of the system. To support resource sharing
among tasks of the same server (called local resource sharing) and among tasks
of different servers (called global resource sharing), we implement two resource
sharing protocols: Stack Resource Policy (SRP) (Baker, 1991), and Hierarchical
Stack Resource Policy (HSRP) (Davis and Burns, 2006; Behnam et al., 2010)
respectively.

For implementation, we choose our existing two-level HSF implementation
for the FreeRTOS operating system (Inam et al., 2011a). In this paper we
extend the existing implementation with the following contributions:

• Identification of new challenges and requirements for both the implemen-
tation of and for the information required from, the legacy applications
in order to include them (preferably without changes) in the hierarchical
framework.

• A runtime support for reusing legacy real-time applications. This entails:
(1) an implementation of a legacy server. (2) developing new wrappers for
the original OS APIs of operating system to support software and hard-
ware resource sharing among legacy and other applications. To the best
of our knowledge, it is the first work to identify the challenges and provide
implementation support to execute the legacy real-time application with
other application in HSF.

(3) implementations of resource sharing protocols. This implementation
was initially presented in our preliminary work (Inam et al., 2011b) and
is subsumed by this work.

• Experimental validation of the proposed solution and implementation. We
apply a case study to evaluate the implementation in terms of correctness
and runtime overhead. A legacy application that uses FreeRTOS resource
sharing APIs is executed within the legacy server to check (1) the auto-
matic creation of legacy tasks and their execution within the legacy server,
and (2) the correctness of wrappers. We also perform tests for HSRP
implementation and wrappers for a hardware resource, that is shared be-
tween a new task and a legacy task. And finally, we test and measure
the performance for our implementations for synchronization protocols at
both levels on an AVR-based 32-bit board EVK1100 (EVK1100). We also
compare overheads of the wrapper APIs against the original FreeRTOS
APIs.

Organisation: Challenges in executing the legacy application in an HSF are
described in Section 2. Section 3 provides our system model. Section 4 gives a
background on FreeRTOS and reviews the HSF implementation in FreeRTOS.
Section 5 overviews the resource sharing techniques for HSF. Sections 6 and 7
present our implementation of resource sharing and legacy support respectively.
Section 8 presents a case study of a legacy application, and Section 9 experi-
mentally evaluates the behavior of legacy application and resource sharing and
presents overhead measures. Section 10 describes related work. Section 11 con-
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cludes the paper and finally, lists of APIs and macros of the implementation are
given in the Appendix.

2 Challenges {and implementation issues} in ex-
ecuting legacy applications in an HSF

Integrating a legacy application, originally developed for full CPU access, in a
two-level hierarchical framework raises many challenges. Our goal is to make
minimum changes in the legacy application, changing old APIs calls with the
newly developed APIs for HSF is not feasible. The legacy application is already
tried-and-tested, and has been already deployed and executed, thus is more
reliable. Making changes in the code of legacy application is tedious, time
consuming, and error prone.

The first challenge is to create a legacy server itself and execute legacy tasks
inside. New APIs are required to create the legacy server, create legacy tasks
and assign legacy tasks to the server.

The second challenge is to execute the legacy application without modifying
it. The code of legacy application still calls the original APIs of the OS. However,
to execute the legacy application in the hierarchical environment, specifically
developed APIs for HSF should be called instead. For example, in FreeRTOS
the xTaskCreate system call is used for task creation, but the xServerTaskCreate

system call is used in HSF for tasks creation within a server.
A third challenge arises when the legacy application accesses a shared re-

source and uses synchronization primitives of the OS. Consider that a resource is
shared among tasks of a legacy application using OS synchronization primitives.
When the same code is executed in a legacy-server within a two-level HSF along
with other servers, the resource which is shared among tasks of the same server,
i.e. legacy-server, is considered as a local resource. It is important to create and
retain the resource within the server, and tasks of other servers should not be
allowed to access this resource. It is important to keep the temporal isolation
among servers in HSF. In addition, for the legacy application, resources that
might be shared with other applications are considered as global resources and
the HSRP-based resource access APIs should be used in this case. This adapta-
tion could also be done by changing the respective system calls invoked in the
legacy application to a convenient resource sharing protocol. However, changing
the original code is error-prone and time consuming. Moreover, changing the
synchronization protocol would change the semantics of the legacy application
(e.g. changing semantics of PIP to SRP) which is undesired.

To overcome these challenges and execute the legacy application in HSF
without modification, we develop wrappers around the original OS APIs. A
wrapper is a middleware that wraps the operating system APIs. Wrappers ex-
hibit the same interface as of the original APIs, but extend these with some
extra functionality to call the new system calls (Stevens et al., 2003). This
allows invoking the new system calls from within the legacy application with-
out changing the legacy code. The advantage of wrapping over conventional
redevelopment is that it requires less effort and lower development cost while
keeping the original code unchanged. Moreover, it retains the semantics of the
original operating system code.
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In addition, the choice of synchronization protocol to be used in HSF depends
on whether the legacy application is sharing resource with other applications
or not. If it is not, the original system calls should be used i.e., the legacy
application is exclusively using the processor resource. Otherwise, global syn-
chronization primitives should be used instead. To make the legacy application
general, this choice should be delayed until the deployment phase (similar to
the principle of opaque analysis presented in (van den Heuvel et al., 2011)).

3 System model

In this paper, we consider a two-level HSF using the periodic resource model (Shin
and Lee, 2003) in which a system S consists of a set of independently devel-
oped and analyzed subsystems Ss

2. The HSF can be viewed as a tree with
one parent node and many leaf nodes as illustrated in Figure 1. The parent
node is a global scheduler and leaf nodes are subsystems. Each subsystem Ss

consists of its own internal set of tasks that are scheduled by a local scheduler,
and is executed by a server. The global scheduler schedules the system and is
responsible for dispatching the servers according to their resource reservations.
The local scheduler of each subsystem then schedules its task set according to
a server-internal scheduling policy. The system contains a set of global shared
resources, shared among tasks of different subsystems, and each subsystem has
a set of local shared resources, shared among tasks of the same subsystem. In
the rest of this paper, we use the term subsystem and server interchangeably.

3.1 Subsystem model

Each subsystem Ss is specified by a timing interface Ss = 〈Ps, Qs, ps, Xs〉, where
Ps is the period for that server (Ps > 0), Qs is the capacity allocated periodically
to the server (0 < Qs ≤ Ps), and Xs is the maximum execution-time that any
subsystem-internal task may lock a global shared resource 0 < Xs ≤ Qs. Each
server Ss has a priority ps. The idle server has lowest priority i.e. 0 in the system.
At each instant during run-time, Bs represents a remaining budget, Bs ≤ Qs.
During execution of a subsystem, Bs is decremented by one at every time unit
until it depletes. When Bs = 0, the budget is depleted and Ss will be suspended
until its next period when Bs is replenished with Qs. It should be noted that
Xs is used for schedulability analysis only and our HSRP-implementation does
not depend on the availability of this attribute.

3.2 Task model

We consider a simple periodic task model represented by a set T of n number
of tasks. Each task τi is represented as τi = 〈Ti, Ci, ρi, cs〉, where Ti denotes the
period of task τi with worst-case execution time Ci where 0 < Ci ≤ Ti, ρi as its
priority, and cs is the set of critical section execution times of all resources that
the task accesses. For simplicity, we do not consider the case of nested resource
access in this paper. A task, τi has a higher priority than another task, τj , if
ρi > ρj . There can be 256 different task priorities, from lowest priority 1 (only

2In HSF terminology an application is also called a subsystem.
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Figure 1: Two-level Hierarchical Scheduling Framework

idle task has priority 0) to the highest 255. For simplicity, the deadline for each
task is equal to Ti.

3.3 Scheduling policy

We use fixed-priority preemptive scheduling (FPPS) at both global and local
levels of scheduling. FPPS is flexible and is the de-facto industrial standard for
task scheduling (OSEK Group). Our implementation supports shared priorities,
which are then handled in FIFO order (both in global and local scheduling).

3.4 The legacy model

Each legacy application consists of a legacy task set, and a set of resources
shared among those tasks. We assume that the legacy application is developed
for FreeRTOS operating system and the source code is available. In HSF, the
legacy application is now executed as a legacy server.

3.5 Summary of analytical framework

To perform real-time analysis techniques, a priori knowledge of tasks parameters
and server parameters is required, which are generally not known for legacy
applications. Given parameters of FreeRTOS tasks, a task’s period and priority
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are derived for the legacy application. Given interfaces of tasks, the server
interface can be derived using available technique (Palopoli and Abeni, 2009)
that not only identifies the execution requirements of unknown applications, but
can also be used to self-tune the scheduling parameters of legacy applications
by using feedback scheduling. However, the resource sharing among tasks is not
considered in that approach.

Given the system model, analytical frameworks exist to perform the schedu-
lability analysis that can be used to integrate the newly developed applications
for HSF and the legacy application together (Shin and Lee, 2003; Behnam et al.,
2010; Palopoli and Abeni, 2009). Since analysis framework has been established,
we complement it with practical implementation to allow it for practise. Note
that the focus of this work is on integration and implementation; we leave the
identification of blocking times for locked resources of legacy application as a
future work.

4 FreeRTOS and its HSF implementation

This section presents the background on FreeRTOS and its synchronization
primitives. Further it presents a brief overview of a HSF implementation in
FreeRTOS. The HSF implementation is already presented in (Inam et al., 2011a)
and is included here for the sake of completeness.

4.1 FreeRTOS and its synchronization primitives

FreeRTOS is a portable, open source (licensed under a modified GPL), mini real-
time operating system developed by Real Time Engineers Ltd (Barry, 2010). It
is ported to more than 20 hardware architectures ranging from 8-bit to 32-bit
micro-controllers, and supports many development tools. Its main advantages
are portability, scalability and simplicity. The core kernel is simple and small,
consisting of three or four (depends on the usage of coroutines) C files, with a
few assembler functions, resulting in a binary image between 4 to 9KB. Thus
it is suitable for resource constraint micro-controllers. FreeRTOS kernel sup-
ports preemptive, cooperative, and hybrid scheduling. Using FPPS, tasks with
the same priority are scheduled using the round-robin policy. It supports an
arbitrary number of tasks, with both static and dynamic (changed at run-time)
priorities, and 256 different priorities for tasks. Its scheduler runs at the rate of
one tick per milli-second by default. It implements a very efficient task context-
switch (i.e 10µs for the rate 1 milli-second).

FreeRTOS supports basic synchronization primitives like binary, counting
and recursive semaphore, and mutexes. The mutexes employ priority inheritance
protocol (PIP) (Sha et al., 1990), in which a lower priority task that is locking a
shared resource inherits the priorities of all tasks that have higher priority and
try to access the same resource. After returning the mutex, the task’s priority is
lowered back to its original priority. Priority inheritance mechanism minimizes
the priority inversion but it cannot cure deadlock.

FreeRTOS implements all the above mentioned synchronization primitives
using the message queues without buffering. The message queue structure xQueue

is initiated at the creation of a semaphore or mutex and message queue APIs
are called to handle synchronization among tasks. Each semaphore creates a
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separate queue to handle synchronization. xSemaphorehandle pointer points to a
queue structure xQueueHandle created for that semaphore.

4.2 HSF implementation in FreeRTOS

A two-level HSF implementation (Inam et al., 2011a) on FreeRTOS supports
idling periodic (Sha et al., 1986) and deferrable servers (Strosnider et al., 1995).
Idling periodic means that tasks in the server execute and use the server’s ca-
pacity until it is depleted. If the server has capacity but there is no task ready
then it simply idles away its budget until a task becomes ready or the budget
depletes. If a task arrives before the budget depletion, it will be served. De-
ferrable server means that tasks execute and use the servers capacity. If the
server has capacity left but there is no task ready then it suspends its execution
and preserves its remaining budget until its period ends. If a task arrives later
before the end of servers period, it will be served and consumes servers capacity
until the capacity depletes or the servers period ends. If the capacity is not used
till the period end, then it is lost. In case there is no task (of any server) ready
in the whole system, an idle server with an idle task will run instead.

To follow the periodic resource model (Shin and Lee, 2003), our servers
and tasks are activated periodically. Servers behave like periodic tasks, they
replenish their budget Qs every constant period Ps. Since FPPS is used at both
global and local scheduling levels, a higher priority server/task can preempt the
execution of lower priority servers/tasks respectively. A brief overview of the
implementation (Inam et al., 2011a) is given below:

4.2.1 Terminology

Terms used in the implementation are:
Active servers: Those servers whose remaining budget (Bs) is greater than
zero. They are in the ready-server list.
Inactive servers: Those servers whose budget has been depleted and waiting
for their next activation when their budget will be replenished. They are in the
release-server list.
Ready-server list: It is a priority queue containing all active servers, and is
arranged according to servers’ priorities.
Release-server list: It is a priority queue containing all inactive servers, and
is arranged according to servers’ activation times. It is used to keep track of the
replenishment of periodic servers.
Running server: The only server from the ready-server list that is currently
running. At every system tick, its remaining budget is decreased by one time
unit, until it exhausts.
Idle server: The lowest priority server that runs when no other server is active.
In the deferrable server, it runs when there is no ready task in the system. This
is useful for maintaining and testing the temporal separation among servers and
also useful in testing system behavior. This information is useful in detecting
over-reservations of server budgets and it can be used as feedback to resource
management.
Ready-task list: Each server maintains a separate ready-task list to keep track
of its ready tasks. Only one ready-task list will be active at any time in the
system: the ready list of the running server.
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Idle task: A lowest priority task existing in each server. It runs when its server
has budget remaining but none of its task are ready to execute (in the idling
server). In the deferrable server, the idle task of the idle server will run instead.

4.2.2 Data structures

The system maintains two lists: a ready-server list and a release-server list as
mentioned earlier. The details of the data structures of these two lists can be
found in (Inam et al., 2011a). The currently executing server in the system is
pointed by a running-server pointer (see Figure 4). At any time instance, only
the tasks of the currently running server execute.

Each server within the system contains the subSystem control block structure,
as depicted in Figure 2. It maintains two lists: a ready-task list and a delayed-
task list. The delayed-task list is the FreeRTOS list and is used to maintain the
tasks when they are not ready (either suspended or delayed) and waiting for
their activation.

. . .

SubSystem
Control Block

Period

Budget

Remaining Budget

Priority

currentTCB

Ready Task List

Delayed Task List

Task Control 
Block

FreeRTOS TCB

Local Server

Figure 2: Data structures to implement HSF in FreeRTOS

4.2.3 Hierarchical scheduler

The hierarchical scheduling is started by calling vTaskStartScheduler() API and
the tasks of the highest-priority ready server starts execution.
Tick-Interrupt handler: At each tick interrupt, the interrupt handler routine
performs the following functionality:

• The system tick is incremented.

• Check for the server’s activation events. The newly activated servers’
budgets are replenished to the maximum values and the servers are moved
to the ready-server list.

• The global scheduler is called to handle the server events like execution,
activation/replinishment, preemption of lower priority server, suspending
the server at budget depletion, etc.
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• The local scheduler is called to handle the task events like task execution,
activation, preemption of lower priority task, suspension, etc.

Global scheduler: The functionality of the global scheduler is as follows:

• At each tick interrupt, the global scheduler decrements the remaining
budget Bs of the running server by one and handles the budget expiration
event (i.e. at the budget depletion, the server is moved from the ready-
server list to the release-server list).

• Selects the highest priority ready server to execute and makes a server
context-switch if required. Either prvChooseNextIdlingServer() or prvChooseNextDeferrableServer()

is called to select idling or deferrable server, depending on the value of the
configGLOBAL SERVER MODE macro in the FreeRTOSConfig.h file.

• prvAdjustServerNextReadyTime(pxServer) is called to set up the next activation
time to activate the server periodically.

In idling periodic server, the prvChooseNextIdlingServer() function selects the
first node (with highest priority) from the ready-server list and makes it the cur-
rent running server. While in the case of a deferrable server, the prvChooseNextDeferrableServer()

function checks the ready-server list for the next ready server that has any task
ready to execute when the currently running server has no ready task even if
it’s budget is not exhausted. It also handles the situation when the server’s
remaining budget is greater than 0, but its period ends, in this case the server
is replenished with its full capacity.

The server context-switch is very light-weight, and consists only of changing
the running-server pointer from the currently executing server to the newly
running server. The ready-task list of the newly running server is activated and
all tasks of the list become ready for execution.
Local scheduler: The local scheduler is called from within the tick-interrupt
handler routine using an adopted kernel function vTaskSwitchContext(). It is the
original FreeRTOS scheduler with the following modification:

Instead of a single ready-task or delayed-task list (as in original FreeRTOS),
now the local scheduler accesses a separate ready-task and delayed-task list for
each server.

5 Resource sharing in HSF

We implement SRP (Baker, 1991) and HSRP (Davis and Burns, 2006; Behnam
et al., 2010) to access local and global shared resources respectively. Since
HSRP is an extension of SRP protocol, the SRP terms are extended to imple-
ment HSRP and some mechanisms must be implemented to prevent excessive
blocking. To use SRP in a hierarchical setup, terms are extended as follows:

• Preemption level (Priority): According to SRP, each task τi has a static
preemption level. Using FPPS, the task’s priority ρi is used to indicate
the preemption level. Similarly, for each subsystem Ss, its priority ps is
used as the preemption level.

10



• Resource ceiling: Each globally shared resource is associated with a global
ceiling for global scheduling. This global ceiling is the highest priority
of any subsystem whose task is accessing the global resource. Similarly
each locally shared resource also has a local ceiling for local scheduling.
This local ceiling is the highest priority of any task (within the subsystem)
using the resource.

• System and subsystem ceilings: System and subsystem ceilings are dy-
namic parameters that change during runtime and the scheduler needs
to be extended with the notion of these ceilings. The system ceiling is
equal to the currently locked highest global resource ceiling in the system,
while the subsystem ceiling is equal to the currently locked highest local
resource ceiling in the subsystem.

Following the rules of SRP, a task τi can preempt the currently executing
task within a subsystem only if τi has a priority higher than that of running task
and, at the same time, the priority of τi is greater than the current subsystem
ceiling.

Following the rules of HSRP, a task τi of a subsystem Si can preempt the
currently executing task of another subsystem Sj only if Si has a priority higher
than that of Sj and, at the same time, the priority of Si is greater than the cur-
rent system ceiling. Moreover, whilst a task τi of the subsystem Si is accessing
a global resource, no other task of the same subsystem can preempt τi.

The local and global schedulers are updated with the SRP and HSRP rules
respectively and the details are described in Section 6.

Now we explain two overrun mechanisms used by HSRP to handle bud-
get expiry during a critical section in the HSF. Consider a global scheduler
that schedules subsystems according to their periodic interfaces. The subsys-
tem budget is said to be expired at the point when one or more internal tasks
have executed a total of Qs time units within the subsystem period Ps. Once
the budget is expired, no new task within the same subsystem can initiate its
execution until the subsystem’s budget is replenished at the start of the next
subsystem period.

To prevent excessive priority inversion due to global resource lock, it is de-
sirable to prevent subsystem rescheduling during critical sections of global re-
sources. In this paper, we employ the overrun strategy to prevent such reschedul-
ing. According to the overrun concept, upon the budget expiration of a subsys-
tem while its task τi has still locked a global resource, the task τi is allowed to
continue (overrun) its execution until either it releases the locked resource or its
overrun time becomes equal to its subsystem budget. The extra time needed to
execute after the budget expiration is denoted as overrun time θ. We implement
two different overrun mechanisms (Behnam et al., 2010):

1. A basic overrun mechanism without payback denoted as BO : here no
further actions will be taken after the event of an overrun.

2. The overrun mechanism with payback, denoted as PO : when an overrun
happens, the subsystem Ss pays back this consumed amount of overrun in
its next execution instant, i.e., the subsystem’s budgetQs will be decreased
by θs i.e. (Qs − θs) for the subsystem’s execution instant following the
overrun (note that only the instant following the overrun is affected since
θs ≤ Qs).
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6 Support for resource sharing in HSF

Here we describe the design and implementation details of the resource sharing
in two-level HSF. SRP and HSRP are implemented for local and global resource
sharing respectively along with overrun mechanisms. The macro configGLOBAL SRP

in the configuration file is used to activate the resource sharing. The type of
overrun can be selected by setting the macro configOVERRUN PROTOCOL MODE to either
OVERRUN WITHOUT PAYBACK or OVERRUN PAYBACK.

6.1 Support for SRP

For local resource sharing, we implement SRP to avoid problems like priority
inversions and deadlocks.
The data structures for the local SRP: Each local resource is represented
by the structure localResource that stores the resource ceiling and the task that
currently holds the resource as shown in Figure 3. The locked resources are
stacked onto the localSRPList; the FreeRTOS list structure is used to implement
the SRP stack. The list is ordered according to the resource ceiling, and the
first element of the list has the highest resource ceiling, and represents the
SubSystemCeiling.

Local Scheduler with SRP-2011-04-18 

SubSystem Control 
Block 

Period 
Budget 
Remaining Budget 
Priority 
TaskNumInReadyQueue 
CurrentNumberOfTasks 
ReadyTime 
currentTCB 
Ready Task List 
Delayed Task List 
 
Local SRP List 
OverrunReadytimeOffset 
SubSystemCeiling 
GlobalResourceTakenNum 
PayBackBudget 

 

. . . 

Task Control 
Block 

Ready Time 
ReadyQueueFlag 
 
 
Local Server 

. . . 

LocalResource 

SRPListItem 
LocalCeiling 
OwnerTask 

Figure 3: Data structures to implement SRP in HSF-enabled FreeRTOS

The extended functionality of the local scheduler for SRP: The only
functionality we extended is the searching for the next ready task to execute.
Now the scheduler selects a task to execute if the task has the highest priority
among all the ready tasks and its priority is greater than the current SubSystem-

Ceiling, otherwise the task that has locked the highest (top) resource in the
localSRPList is selected to execute. The API list for the local SRP is provided
in the Appendix.
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6.2 Support for HSRP

HSRP is implemented to support global resource sharing among servers. The
details are as follows:
The data structures for the global HSRP: Each global resource is rep-
resented by the structure globalResource that stores the global-resource ceiling
and the server that currently holds the resource as shown in Figure 4. The
locked resources are stacked onto the globalHSRPList; the FreeRTOS list struc-
ture is used to implement the HSRP stack. The list is ordered according to the
resource ceiling, the first element of the list has the highest resource ceiling and
represents the SystemCeiling.

Global Scheduler HSRP – 2011-01-18 

2-Level Hierarchical 
Scheduling  System 

. . . 

. . . 
Running Server 

Ready Server List 

Release Server List 

HSRP List 

SystemCeiling 
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Local SRP List 
OverrunReadytimeOffset 
SubSystemCeiling 
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Figure 4: Data structures to implement HSRP

The extended functionality of the global scheduler for HSRP: To in-
corporate HSRP into the global scheduler, prvChooseNextIdlingServer() and prv-

ChooseNextDeferrableServer() macros are appended with the following functional-
ity: The global scheduler selects a server if the server has the highest priority
among all the ready servers and the server’s priority is greater than the current
SystemCeiling, otherwise the server that has locked the highest (top) resource in
the HSRPList is selected to execute. The API list for the global HSRP is provided
in Appendix.

6.3 Managing local and/or global system ceilings

To ensure the correct access of shared resources at both local and global levels,
the local and global ceilings should be updated properly upon the locking and
unlocking of those resources. This functionality is implemented at both local
and global levels within the SRP and HSRP APIs respectively, and is used to
lock and unlock the local and global resources.

When a task locks a local/global resource whose ceiling is higher than
the SubSystem/System Ceiling, the resource mutex is inserted as the first ele-
ment onto the localSRPList/HSRPList respectively. Moreover, the SubSystemCeiling
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/SystemCeiling is updated to the currently locked highest LocalCeiling /GlobalCeiling
of the resource mutex respectively, and the task/server becomes the owner of
the local/global resource accordingly. Each time a global resource is locked, the
GlobalResourceTakenNum is also incremented.

Similarly upon unlocking a local/global resource, that resource is simply re-
moved from the top of the localSRPList/HSRPList respectively. The SubSystemCeiling

/SystemCeiling is updated accordingly, and the owner of this resource is set to
NULL. For global resource, the GlobalResourceTakenNum is decremented.

6.4 Support for overrun protocols

To implement overrun mechanisms in order to prevent excessive priority inver-
sion, the server should continue its execution even if its budget depletes while
accessing a global shared resource; its currently executing task should not be
preempted and the server should not be switched out by any other higher pri-
ority server (whose priority is not greater than the SystemCeiling) until the task
releases the resource.

We have implemented two types of overrun mechanisms; (i) without payback
(BO) and (ii) with payback (PO). The implementation of BO is very simple,
the server simply executes and overruns its budget until it releases the shared
resource, and no further action is required. For PO, we need to measure the
overrun amount of time in order to pay it back at the server’s next activation.
The data for overrun mechanisms: The GlobalResourceTakenNum is used as
an overrun flag. As mentioned earlier, it is incremented and decremented at the
global resource locking and unlocking respectively. When its value is greater
than zero (means a task of the currently executing server has locked a global
resource), no other higher priority server (whose priority is not greater than the
SubSystemCeiling) can preempt this server, even if its budget depletes.

Two variables PayBackBudget and OverrunReadytimeOffset are added to the sub-
system structure in order to keep a record of the overrun amount to be deducted
from the next budget of the server as shown in Figure 4. The overrun time is
measured and stored in PayBackBudget.
The extended functionality of the global scheduler for overrun: A
new API prvOverrunAdjustServerNextReadyTime(*pxServer) is used to embed over-
run functionality into the global scheduler. For PO, the amount of overrun,
i.e. PayBackBudget θs is deducted from the server RemainingBudget Bs at the next
activation period of the server, i.e. Bs = Qs − θs.

7 Support for legacy application and wrappers

Here we describe the design and implementation details of the legacy server and
wrappers.

7.1 Creating the legacy server

To utilize the legacy support, a macro configHIERARCHICAL LEGACY must be set in
the configuration file FreeRTOSConfig.h. The user should rename the old main()

function, and remove the vTaskStartScheduler() API from the legacy code.
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The legacy application is executed in a separate legacy server. The user
provides the server parameters like period, budget, and priority for the legacy
server. The user also provides a function pointer to the legacy code (the old main
function that has been renamed). The xLegacyServerCreate(xPeriod, xBudget,

uxPriority, *pxLegacyServerHandle, *pfLegacyFunc) API is provided for this pur-
pose, where *pfLegacyFunc is a function pointer pointing to the old main function
of legacy application.

The legacy tasks are dynamically attached to the server. The xLegacyServerCreate()

function first creates a server by calling xServerCreate(xPeriod, xBudget, uxPriority,

*pxLegacyServerHandle) function. Second, it creates a highest priority private (hid-
den from the user) task called vLegacyTask(*pfLegacyFunc) within the legacy server
using the xServerTaskCreate( vLegacyTask, pcName, usStackDepth, (void *) pfLegacyFunc,

configMAX PRIORITIES - 1, NULL, *pxLegacyServerHandle) API.
vLegacyTask function executes only once and its main functionality is 1) ini-

tializing legacy code (execution of the old main function which creates the initial
set of tasks for the legacy application), 2) assigning legacy tasks to the legacy
server, and 3) destroying itself; as presented in the Figure 5. When the legacy
server is executed for the first time, all legacy tasks are created dynamically
within the currently running legacy server and start execution.

// Legacy task function

// function called from xLegacyServerCreate()

static void vLegacyTask (void * pfLF)

{
((pfLegacyFunc)pfLF)(); //Initializes legacy code

vTaskDelete(NULL); //Destroys itself

}

Figure 5: Pseudo-code for legacy task implementation

We have adopted the original FreeRTOS xTaskCreate function and developed
a wrapper to implement legacy support.

7.2 Wrapping FreeRTOS APIs

Our wrapper implementation consists of repackaging source code interfaces,
hence there is no need for modifying the legacy code as depicted in Figure 6.
The modified functionality is added as Extended API, while the original APIs
are kept intact as FreeRTOS APIs. The wrapper provides links to both APIs,
and depending on the configuration of configHIERARCHICAL LEGACY, either the mod-
ified code or the original FreeRTOS code is executed. This process facilitates
the execution of legacy application within the hierarchical environment without
making any major modification in the code.

Wrapping FreeRTOS APIs is done in three steps: first, wrappers are con-
structed, secondly, the original APIs are adapted, and thirdly, the interaction
between the wrapper and the legacy programs is tested. The wrappers descrip-
tions are provided in this section, while their testing is performed in Section 9.
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Figure 6: Wrappers implementation

7.2.1 Wrapper for the legacy task creation

A wrapper is provided for the xTaskCreate API, which redirects the task cre-
ation functionality to the xServerTaskCreate function by passing an additional
parameter of legacy server handle pxCurrentTCB->pxServer. This is used to create
legacy tasks within the currently executing legacy server, instead of executing
the original code of xTaskCreate function as shown in Figure 7.

// Wrapper function for xTaskCreate() API

xTaskCreate (pxTaskCode, pcName, usStackDepth,

*pParameters, uxPriority, *xTaskHandle, *pStackBuffer,

xMemoryRegion, xRegions)

{
#if (configHIERARCHICAL SCHEDULING == 1)

#if (configHIERARCHICAL LEGACY == 1)

return xServerTaskCreate (pxTaskCode,

pcName, usStackDepth, pvParameters, uxPriority,

pxCreatedTask, pxCurrentTCB->pxServer, puxStack

Buffer, xRegions);

#endif

return pdFALSE;

#endif

// original FreeRTOS code of xTaskGenericCreate

}

Figure 7: Pseudo-code of wrapper implementation for xTaskCreate API

7.2.2 Wrappers for resource sharing APIs

To handle synchronization among tasks of a legacy server in HSF and to meet the
third challenge, we support the existing FreeRTOS resource sharing APIs with
wrappers. We encapsulate each legacy shared resource within the legacy server
by attaching an owner server to it, as shown by the newly designed structure
xLegacyQueue in Figure 8. The pointer pvQueue points to the original FreeRTOS
structure xQueue. The definition of semaphore handle xQueueHandle is modified to
the new structure, as explained by the pseudo-code in Figure 9.

An example: To use the wrappers, no change is made in the code of legacy
application. For example xSemaphoreCreateMutex() is used to create a mutex,
which internally calls the xQueueCreate function. This function creates either
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Figure 8: Data structures to implement wrappers for FreeRTOS resource sharing
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#if (configHIERARCHICAL LEGACY == 1)

typedef xLegacyQueue *xQueueHandle

#else

typedef xQUEUE *xQueueHandle

#endif

Figure 9: Pseudo-code for the new definition of semaphore handle

xLegacyQueue or xQueue structure, and uses either wrapper code or the original
FreeRTOS code depending on the configuration of configHIERARCHICAL LEGACY.

7.2.3 Wrappers for Hardware drivers

A hardware device is accessed by using a hardware driver. The driver provides a
software interface to hardware device and it is hardware dependent. A hardware
device is usually considered as a global resource that can be shared among tasks
of any application. The newly developed applications for HSF can take advan-
tage of using our HSRP protocol implementation for global resource sharing,
but the legacy application is not using the newly developed HSRP APIs. Shar-
ing hardware resources among the legacy and the newly developed applications
is a challenge. One simple method is to add the HSRP protocol in the hardware
driver by developing wrappers for device drivers as shown in Figure 10.

The Extended API Call() in Figure 10 calls the modified code that uses
the HSRP protocol within it. USART (universal synchronous/asynchronous
receiver/transmitter) is a highly used driver in embedded systems to send and
receive data to and from the embedded device. As an example we present our
test results of using wrappers for USART in Section 9.2.4.

8 Case study: The legacy applications

In this section we present two legacy applications which are originally developed
as stand-alone applications. For both applications, we use the task set presented
in Table 1, except the resource sharing APIs which are different. The first legacy
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Figure 10: Wrappers implementation structure

application develops a system that endures a priority inversion problem where
a high priority task is delayed by the execution of a lower priority task which
is not sharing any resource. Second legacy application executes the same code
but uses the PIP protocol that solves the priority inversion problem.

The purpose of selecting such a legacy application is to evaluate the wrappers
that we have developed for the resource sharing APIs. These legacy applications
are very suitable for such an evaluation because they use different resource
sharing APIs (with and without PIP protocol). The intention is to preserve
the behavior of both applications, when executed within a two-level hierarchical
setup along with other applications.

8.1 The legacy applications’ design

Each legacy application contains three tasks TaskL, TaskM and TaskH with pri-
orities low, medium, and high respectively, as described in Table 1. Note that
a higher number in the priority row in Table 1 means a higher priority for the
task. A resource is shared between TaskL and TaskH. In Execution Time row
of Table 1, cs represents the execution time of the task within the critical sec-
tion and the other number shows task execution outside the critical section, e.g.
2cs+ 1 means first 2 time-units inside and then 1 time-unit outside the critical
section, (3+4cs means first 3 time-unit outside and then 4 time-units inside the
critical section). The time unit is given in system tick which is equal to 1ms in
our configuration.

Tasks TaskL TaskM TaskH

Priority 1 2 3
Period 120 120 120

Execution Time 2cs+ 1 6 3 + 4cs

Table 1: Legacy Tasks’ properties.
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8.2 The execution of legacy application in FreeRTOS

Both applications are executed as standalone applications on FreeRTOS using
an EVK1100 board. Figure 11 provides the pseudo-code of three tasks for both
applications. For the first application the shared resource is locked and unlocked
using binary semaphore (i.e. for lock resource R; and unlock resource R;

in Figure 11), while for the second application it is locked and unlocked using
mutex.

// TaskH function body

// High priority task sharing resource

while (1) {
execute for 1 tick;

vTaskDelay(1); //sleeps for 1 tick

execute for 2 ticks;

lock resource R; //bin. semaphore or mutex

execute for 4 ticks;

unlock resource R; //bin. semaphore or mutex

vTaskWaitforNextPeriod(120);

}

// TaskM function body

// Medium priority task not sharing resource

while (1) {
vTaskDelay(1);

execute for 6 ticks;

vTaskWaitforNextPeriod(120);

}

// TaskL function body

// Low priority task sharing resource

while (1) {
lock resource R; //bin. semaphore or mutex

execute for 2 ticks;

unlock resource R; //bin. semaphore or mutex

execute for 1 tick;

vTaskWaitforNextPeriod(120);

}

Figure 11: Pseudo-code of TaskH, TaskM, and TaskL used for both applications

Figure 12 shows the execution-traces of these tasks as two standalone appli-
cations. The left part of the figure demonstrates the execution of tasks using
FreeRTOS binary semaphore APIs and suffering from priority inversion. At tick
6, TaskH requests for the shared resource and gets blocked since TaskL is ac-
cessing the resource. At this point of time, the medium priority TaskM executes,
thus delaying the highest priority TaskH even it is not sharing any resource.

The right part of Figure 12 demonstrates the execution of a second Legacy
application with the same code but using mutex instead of semaphores. It is
obvious from Figure 12 (right part) that now the medium priority TaskM does
not delay the execution of TaskH, thereby the priority inversion problem has
been solved by using PIP protocol. Note that our goal is to demonstrate that
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Figure 12: The behaviour of both legacy applications: using binary semaphores
(left) and mutex (right)

the behaviour of legacy applications has been preserved when executed in a
server within a hierarchical setup and is shown in the next section.

9 Experimental evaluation - Results and analy-
sis

This section presents the evaluation of behavior and performance of our legacy
server, wrappers, and resource sharing protocols’(SRP, HSRP) implementations.
Overheads to execute the newly developed APIs and wrappers are also mea-
sured.

9.1 Experiment setup

All experiments are performed on an AVR-based 32-bit EVK1100 board (EVK1100).
The AVR32UC3A0512 micro-controller runs at the frequency of 12MHz. The HSF-
enabled FreeRTOS is executed on the micro-controller using FPPS policy at
both levels for idling periodic servers. The scheduler resolution (system tick) is
set to 1ms (milli seconds).

Four servers are created to perform the behaviour testing. A legacy server
named as LegacyS is created to execute the legacy application. Two servers S1
and S2 are used in the system. Additionally, an Idle server is generated in the
system with the lowest priority of all the other servers, i.e. 0, containing an idle
task in it. All the other servers in the system have the priority higher than 0.
Note that higher number means higher priority for both servers and tasks. The
priorities, periods and budgets for these servers are given in Table 2.

Our implementation supports both idling periodic and deferrable servers,
however, in this paper we present results with only idling periodic servers. An
idle task per server is also generated automatically with the lowest priority.
It runs when its server has budget remaining but none of its task is ready to
execute.
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Server S1 S2 LegacyS

Priority 2 3 1
Period 40 20 60
Budget 15 5 10

Table 2: Servers used to test system behavior.

9.2 Behaviour testing

The purpose of these tests is to study:

1. the creation, behaviour, and correctness of the legacy server and the legacy
tasks.

2. the correct behaviour of wrappers for FreeRTOS resource sharing APIs,
i.e. semaphores, mutexes, etc.

3. the behaviour of global resource sharing using the HSRP protocol:

(a) between two new servers.

(b) between the legacy server and a new server.

Tasks NT1 NT2 NT3 TaskL TaskM TaskH

Server S1 S1 S2 LegacyS LegacyS LegacyS

Priority 1 2 1 1 2 3
Period 40 30 60 120 120 120

Execution Time 3 3cs1 + 1 2 + 5cs1 2cs2 + 1 6 3 + 4cs2

Table 3: Tasks properties and their assignment to servers.

Four experiments are performed to test different behaviours of the imple-
mentation. First, the legacy application using FreeRTOS semaphore APIs is
realized within the legacy server and is exercised to test the functionality of
the legacy server. Second, the legacy application using FreeRTOS mutex APIs
is realized within the legacy server and the results are compared with the first
experiment to validate the correctness of the wrappers for FreeRTOS resource
sharing APIs. Third, the global resource sharing between newly developed ap-
plications is tested, and finally in the forth experiment, the global resource
sharing between the legacy and the new applications is tested using the HSRP
protocol.

All experiment are executed on the micro-controller and the execution traces
are visualized using the Grasp tool (Holenderski et al., 2013). The experimental
results are presented in the form of visualization of execution-traces in Fig-
ures 13, 14 and 15. In these traces, the horizontal axis represents the time in
ms, starting from 0. In the server’s visualization, numbers along the vertical axis
are the server’s capacity, the diagonal line represents server execution while the
horizontal line represents either the waiting time for the next activation (when
budget has depleted) or the waiting time for its turn to execute (when some
other server is executing). Since these are idling periodic servers, all the servers
in the system execute until their budget is depleted. If no task is ready then
the idle task of that server executes till its budget is depleted.
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9.2.1 Testing the execution of legacy application in a hierarchical
setup

To test the execution of legacy application along with other servers in the sys-
tem, the first legacy application that endures priority inversion is executed with
the previously described servers in Table 2. Task properties and their assign-
ments to the servers are given in Table 3.

Figure 13 visualizes the execution of legacy application within the legacy
server along with other servers in the system. The vLegacyTask is created
within LegacyS. It executes at the start of the server only once (at time 25 in
Figure 13), and creates all other legacy tasks (i.e. TaskL, TaskM, TaskH, and
an idle task), assigns them to LegacyS and destroys itself. From time 30, the
legacy tasks start execution until the server depletes at time 35. The tasks start
their execution again, when the server is replenished with its full budget at its
next activation period.

Hence, by using the legacy server and a private vLegacyTask, the legacy
tasks are automatically created and executed within LegacyS along with other
servers in a hierarchical setup.

9.2.2 Testing wrappers for FreeRTOS APIs by executing legacy tasks
within the legacy server

Here the main focus is to test the behaviour of newly developed wrappers for
FreeRTOS APIs.

To perform this test, the first and second legacy applications using FreeR-
TOS semaphores and mutex APIs respectively are executed. Servers and tasks
properties are provided in Table 2 and Table 3 respectively. The execution of
both applications exhibit priority inversion problems with binary semaphore and
its solution with mutex is visualized and presented in Figure 13 and Figure 14
respectively.

Tasks NT1 NT2 NT3 LT1 LT2

Server S1 S1 S2 LegacyS LegacyS

Priority 1 2 1 1 2
Period 40 30 60 120 120
WCET 4 5 2 + 5cs1 4cs1 + 4 5

Table 4: Tasks properties and their assignment to servers.

TaskL and TaskH of both applications share a resource, which now becomes a
local resource in the hierarchical setup as it is shared among tasks of the legacy
server only. The wrappers are executed instead of the original semaphore and
mutex APIs for resource sharing and the critical section is specified by cs2.
From Figure 13 it is obvious that the legacy application suffers from priority
inversion, as the TaskH’s execution is delayed by the TaskM’s execution which
is not sharing any resource.

The solution of priority inversion using mutex APIs in TaskL and TaskH

is demonstrated in Figure 14. Since the mutex implements PIP within them;
therefore, the priority inversion problem is solved now. As obvious from the
figure that TaskM executes after TaskH’s completion.

22



This test depicts that the FreeRTOS APIs are kept intact. It also mani-
fests that the legacy application retains its original semantics while executing
wrappers for these APIs in a hierarchical environment. Moreover, the legacy
server does not overrun to prevent excessive blocking in both figures since it is
not accessing a global shared resource and is not executing newly implemented
HSRP protocol.

9.2.3 Testing the global resource sharing between new servers

In this section we test the behaviour of HSRP and overrun in the case of global
resource sharing in the HSF implementation. We consider the same servers
and tasks as used in the previous tests and which are provided in Tables 2
and 3 respectively. The trace of execution is visualized in Figure 13. Two tasks
NT2 and NT3, belonging to servers S1 and S2 respectively, are sharing a global
resource. The overrun with the payback mechanism is assumed.

In Figure 13, S2 depletes its budget at time 5, but continues to execute in its
critical section until it unlocks the global resource at time 7, hence delaying the
execution of S1 by 2ms. In case of an overrun with payback, the overrun time is
deducted from the budget at the next server activation, as shown in Figure 13.
At time 20 the server S2 is replenished with a reduced budget, i.e 3. While in
case of an overrun without payback, the server will be always replenished with
its full budget.

9.2.4 Testing the modified hardware-driver APIs

The purpose of this experiment is to test the behaviour of HSRP in the case of
global resource sharing between a legacy task and a new task. We are testing the
modified hardware driver in which the resource is locked using HSRP. A legacy
task TaskL of the legacy server shares a global hardware resource USART with
a new task NT3 of server S2. Three servers, as described in Table 2, are used
in the system. Task properties and their assignments to the servers are given
in Table 4. The critical section for resource sharing is specified as cs1 and the
results are visualized in Figure 15. The visualization of the executions for budget
overrun without payback (BO) and with payback (PO) for idling periodic server
are presented in Figure 15(a) and Figure 15(b) respectively.

In case of budget overrun with payback, the overrun time is deducted from
the budget at the next server activation, as shown in Figure 15(b). Since HSRP
is used, the legacy server overruns at time 35, and later at time 60. The legacy
server is replenished with a reduced budget, while in case of an overrun without
payback the server is always replenished with its full budget as it is obvious from
Figure 15(a). It is observed that a hardware resource (USART) is successfully
shared among the legacy application and the newly developed HSF applications,
without making any modification to the legacy code.

9.3 Performance measures

We present the overhead measurements for the wrappers used in legacy ap-
plication and newly developed resource sharing APIs for shared resources. A
second hardware timer-unit for the micro-controller is initiated and started to
measure the performance. The APIs StartTimer() and EndTimer() are developed

23



to measure execution time of different functions. For each data point, a total
of 2000 values are measured. The minimum, maximum, and average of these
values are calculated and presented for all results. All data points are given in
micro-seconds (µs). The following overheads are measured:

1. The time required to run the wrappers in the hierarchical setup needed
to be measured and compared against the original FreeRTOS APIs to
calculate the overhead. The overhead measures for semaphore APIs are
given in Table5.

2. Similarly, the overhead of executing the modified hardware driver for US-
ART is measured and compared with the original driver. Additionally,
we have also tested the effect of passing a different number of characters
to the USART driver for printing. The overhead measures are given in
Table6.

3. We also report the performance measures of lock and unlock functions for
the newly developed APIs supporting SRP and HSRP protocols for shared
both global and local resources. The execution time of functions to lock
and unlock global and local resources is presented in Table 7.

Function OS Min. Max. Avg.
xSemaphoreTake() wrapper 22 32 28.47
xSemaphoreTake() FreeRTOS 21 32 26.32
xSemaphoreGive() wrapper 21 32 26.05
xSemaphoreGive() FreeRTOS 21 22 21.51

Table 5: The execution time (in micro-seconds µs) of for Semaphore.

Function Description Min. Max. Avg.

usart write line() with global resource sharing 43 54 52.49

usart write line() without resource sharing 0 11 9.94

Table 6: The execution time (in micro-seconds µs) of USART driver.

Function Min. Max. Avg.
vGlobalResourceLock 21 21 21
vGlobalResourceUnlock 32 32 32
vLocalResourceLock 21 32 26.48

vLocalResourceUnlock 21 21 21

Table 7: The execution time (in micro-seconds µs) of newly developed global
and local lock and unlock function.

The overheads for the semaphore wrappers are very low and negligible, i.e.
approximately in average 2 µs for xSemaphoreTake() and 5 µs for xSemaphoreGive()

as it is obvious from Table 5. For the hardware driver, we measured the time
by passing no character to the USART to exactly measure the overhead as
compared by calling the driver API. The overhead is approximately 42.55 µs.
Additionally, the performance of the USART driver with a varying number of
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characters is also measured and the results reveal that the increase in the time
to execute the code is linear with the increase in the number of characters.

For the server overheads we have performed evaluations in (Inam et al.,
2011a) and the results reveal that the overhead measures are low.

10 Related work

10.1 Consolidating legacy applications

Different types of virtualization techniques are proposed to integrate and exe-
cute concurrently multiple applications (including the legacy applications) on
a same hardware node using several virtual machines (VMs) and a hypervi-
sor (Gu and Zhao, 2012). Examples are without modifying OS (Cucinotta
et al., 2010, 2011; M.Åsberg et al., 2012), or with modifying OS, e.g. Xen-
based solution (Cherkasova et al., 2007; Yu et al., 2010). We focus to execute
applications on resource constraint small microcontroller (a 32-bit board), thus
executing multiple operating systems is unfeasible and the performance over-
head introduced by virtualization/hypervisor layer is a big challenge for such
microcontrollers.

OS virtualization or HSF is more lightweight than other virtualizations
because of having only a single copy of OS, thus better suited for resource
constraint hardware. The hierarchical scheduling processor models guarantee
that applications are developed and analyzed independently in isolation and
are later integrated together by providing temporal isolation among applica-
tions (Almeida and Pedreiras, 2004; Feng and Mok, 2002; Davis and Burns,
2005; Shin and Lee, 2003; Abeni et al., 2009). These advantages make HSF
suitable for integrating and executing legacy applications (developed to use the
full CPU-access) with other applications (developed to execute in hierarchical
setup). However, it requires a priori knowledge of legacy application’s timing
requirements which has been addressed for independent tasks by (Palopoli and
Abeni, 2009).

A lot work has been done from the HSF implementation perspective (Sae-
wong and Rajkumar, 2001; Buttazzo and Gai, 2006; Kim et al., 2000; Behnam
et al., 2008; Holenderski et al., 2012) on Linux/RK, open source ERIKA Enter-
prise kernel, SPIRIT-µKernel, VxWorks, µC/OS-II respectively.Although the
reuse of legacy application is proposed by the hierarchical scheduling theoreti-
cal work, all mentioned implementations have not proposed special support for
facilitating the reuse of real-time legacy application which is the main focus of
this paper. To the best of our knowledge, our work is the first to identify chal-
lenges and implementation issues and to support a practical implementation for
legacy code execution within a server in HSF. No other HSF implementation has
investigated on this issue before. Next, we present an overview of the existing
synchronization protocols and their implementations in HSF.

10.2 Synchronization protocols

10.2.1 Resource sharing for simple single-level scheduling

Here we describe synchronization protocols used to share resources among tasks
in a single-level scheduling systems. Priority inheritance protocol (PIP) (Sha
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et al., 1990) was developed to solve the priority inversion problem but it does
not solve the chained blocking and deadlock problems. Sha et al. proposed the
priority ceiling protocol (PCP) (Sha et al., 1990) to solve these problems. A
slightly different alternative to PCP is the immediate inheritance protocol (IIP).
In IIP, the locking task raises its priority to the ceiling priority of the resource,
when it locks a resource as compared to the PCP where the locking task raises
its priority when another task tries to lock the same resource. Baker presented
the stack resource policy (SRP) (Baker, 1991) that supports dynamic priority
scheduling policies. For fixed-priority scheduling, SRP has the same behavior
as IIP. SRP reduces the number of context-switches and the resource holding
time as compared to PCP. Like most real-time operating systems, FreeRTOS
only support an FPPS scheduler with PIP protocol for resource sharing. We
implement SRP for local-level resource sharing in HSF.

10.2.2 Resource sharing for two-level hierarchical scheduling

To perform independent analysis for applications integration, information about
tasks accessing which global shared resources should be known. In a two-level
hierarchical scheduling, the resource sharing of a global resource requires to
consider the priority inversion at both levels of hierarchy, i.e. between applica-
tions at the global level and between tasks within the application at the local
level. Multiple synchronization protocols based on SRP (Baker, 1991) have
been proposed to accommodate such resource sharing. Fisher et al. proposed
Bounded delay Resource Open Environment (BROE) protocol (Fisher et al.,
2007; Bertogna et al., 2009) for global resource sharing under EDF scheduling.
Hierarchical Stack Resource Policy (HSRP) (Davis and Burns, 2006) uses the
overrun mechanism to deal with the subsystem budget expiration within the
critical section and uses two mechanisms (with pay back and without payback)
to deal with the overrun. Subsystem Integration and Resource Allocation Policy
(SIRAP) (Behnam et al., 2007) uses the skipping mechanism to avoid the prob-
lem of application budget expiration within the critical section. While Rollback
Resource Policy (RRP) (Åsberg et al., 2013) uses the rollback approach if the
budget expires between the critical section. All HSRP, SIRAP, and RRP as-
sume FPPS. The original HSRP (Davis and Burns, 2006) does not support the
independent application development for its analysis. Behnam et al. (Behnam
et al., 2010) extended the analysis for the independent development of appli-
cations. In this paper we use HSRP (Behnam et al., 2010) for global resource
sharing and implement both forms of the overrun mechanism.

Asberg et al. (Åsberg et al., 2010) implemented overrun and skipping tech-
niques at top of their FPPS HSF implementation for VxWorks and compared the
two resource-sharing techniques. Van den Heuvel et al. extended the µC/OS-II
HSF implementation with resource sharing support (van den Heuvel et al., 2012)
by implementing SIRAP and HSRP (with and without payback). They mea-
sured and compared the system overheads of both primitives. More recently,
Asberg et al. (Åsberg et al., 2013) implemented and evaluated RRP against
HSRP (with and without payback) and SIRAP, and examined that RRP is
better in average-case response-times than both protocols.

Unlike (Åsberg et al., 2010; van den Heuvel et al., 2012) and (Åsberg et al.,
2013) which implement SIRAP, HSRP, and RRP and comparing protocols
against each other, we implement HSRP only. We do not consider SIRAP
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because of its implementation complexity, i.e., worst case execution times of
critical sections should be provided during runtime. In addition, we neither
consider BROE due to its limitation in supporting FPPS. Our main focus is
to enable the reusability of the legacy application and at keeping the semantics
of the application intact rather than evaluating different synchronization proto-
cols. To achieve our goals, we keep all FreeRTOS original APIs intact and call
the ones that need to be changed through wrappers implementation.

We aim at efficiency in terms of processor overheads and simplicity in our
design with the consideration of minimal modifications in underlying FreeRTOS
kernel. Like (Holenderski et al., 2012; Behnam et al., 2008) our implementa-
tion limits the interference of inactive servers on system level by deferring the
handling of their local events until those servers become active.

11 Conclusions and future work

This paper presented the integration and execution of legacy real-time applica-
tion along with the newly developed real-time applications. The focus was to
present a solution that pertains the semantics and real-time scheduling proper-
ties of old and new applications before and after their integration. We proposed
to use the hierarchical scheduling approach (HSF) for this purpose and have
demonstrated the suitability of HSF to execute legacy real-time applications in
a predictable manner along with other applications. We have identified chal-
lenges to execute the legacy application in an HSF setup. Furthermore, we have
also described the challenges and implementation issues of enabling resource
sharing among the legacy and other applications to make the solution more
applicable.

We have presented a runtime support for creating a legacy server and ex-
ecuting the real-time legacy tasks within the server. For resource sharing, we
implemented SRP and HSRP protocols for local and global resource sharing re-
spectively. Moreover, to achieve the challenge of resource sharing among legacy
and other applications, we have presented the solution by implementing wrap-
pers for the FreeRTOS APIs.

We have conducted a number of experiments in order to validate the correct-
ness and the efficiency of the proposed solution. We have run our experiments
on the EVK1100 board with a 32-bit AVR32UC3A0512 micro-controller. The
collected results from the experiments show a smooth execution of legacy tasks
integrated with other applications with minimum changes in the code of the
legacy tasks. In addition, we could observe, from the experiments, the cor-
rect temporal behavior of applications that use our solution when they share
software/hardware global/local resources. Finally, the results reveal that the
runtime overheads of the proposed solution (including server, wrappers and
APIs) are rather low. It is done without making any major modification to
the legacy code. We have evaluated the implementation of the newly developed
APIs for resource sharing (i.e. SRP and HSRP protocols) and for the wrappers.
The results reveal that overhead of our implemented functionality is low.

In the future we plan to extend our solution for multicore architectures.
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Appendix
A synopsis of the application program interface of HSF implementation is

presented below. The names of these API and macros are self-explanatory.
The newly added user API and macro are the following:

1. signed portBASE TYPE xLegacyServerCreate(xPeriod, xBudget, uxPriority, *pxLegacyServerHandle,

*pfLegacyFunc);

The user API to implement the local SPR and the global HSPR are the following:

1. xLocalResourcehandle xLocalResourceCreate(uxCeiling)

2. void vLocalResourceDestroy(xLocalResourcehandle)

3. void vLocalResourceLock(xLocalResourcehandle)

4. void vLocalResourceUnLock(xLocalResourcehandle)

5. xGlobalResourcehandle xGlobalResourceCreate (uxCeiling)

6. void vGlobalResourceDestroy(xGlobalResourcehandle)

7. void vGlobalResourceLock(xGlobalResourcehandle)

8. void vGlobalResourceUnLock(xGlobalResourcehandle)

The new APIs to implement legacy server are the following:

1. signed portBASE TYPE xLegacyServerCreate(xPeriod, xBudget, uxPriority, *pxLegacyServerHandle,

*pfLegacyFunc);

2. signed portBASE TYPE xServerCreate(xPeriod, xBudget, uxPriority, *pxLegacyServerHandle);

3. static void vLegacyTask(*pfLegacyFunc);

4. #define xServerTaskCreate( vLegacyTask, pcName, usStackDepth, (void *) pfLegacyFunc,

configMAX PRIORITIES - 1, pxCreatedTask, *pxLegacyServerHandle ) xServerTaskGenericCreate(

(vLegacyTask), (pcName), (usStackDepth), ((void *) pfLegacyFunc), (configMAX PRIORITIES

- 1), (pxCreatedTask), (*pxLegacyServerHandle), ( NULL ), ( NULL ))

Adopted FreeRTOS APIs for wrappers

1. xSemphoreCreateBinary

2. xSemaphoreTake
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3. xSemaphoreGive

4. vSemaphoreCreateMutex

5. xSemCreateRecursiveMutex

6. xSemaphoreTakeRecursive

7. xSemaphoreGiveRecursive

8. xSemaphoreCreateCounting

9. xQueueHandle xQueueCreate(unsigned portBASE TYPE uxQueueLength, unsigned portBASE TYPE

uxItemSize)

10. xQueueHandle xQueueCreateMutex(void)

11. portBASE TYPE xQueueGiveMutexRecursive(xQueueHandle pxMutex)

12. portBASE TYPE xQueueTakeMutexRecursive(xQueueHandle pxMutex, portTickType xBlockTime)

13. xQueueHandle xQueueCreateCountingSemaphore(unsigned portBASE TYPE uxCountValue,

unsigned portBASE TYPE uxInitialCount)

14. signed portBASE TYPE xQueueGenericSend(xQueueHandle pxQueue, const void * const

pvItemToQueue, portTickType xTicksToWait, portBASE TYPE xCopyPosition)

15. signed portBASE TYPE xQueueGenericSendFromISR(xQueueHandle pxQueue, const void

* const pvItemToQueue, signed portBASE TYPE *pxHigherPriorityTaskWoken, portBASE TYPE

xCopyPosition)

16. signed portBASE TYPE xQueueGenericReceive(xQueueHandle pxQueue, void * const

pvBuffer, portTickType xTicksToWait, portBASE TYPE xJustPeeking)

17. signed portBASE TYPE xQueueReceiveFromISR(xQueueHandle pxQueue, void * const

pvBuffer, signed portBASE TYPE *pxTaskWoken)

Adopted FreeRTOS Private function

1. signed portBASE TYPE uxQueueMessagesWaiting(const xQueueHandle pxQueue)

2. void vQueueDelete(xQueueHandle pxQueue)

3. static void prvUnlockQueue(xQueueHandle pxQueue)

4. static signed portBASE TYPE prvIsQueueEmpty(const xQueueHandle pxQueue)

5. signed portBASE TYPE xQueueIsQueueEmptyFromISR(const xQueueHandle pxQueue)

6. static signed portBASE TYPE prvIsQueueFull(const xQueueHandle pxQueue)

7. signed portBASE TYPE xQueueIsQueueFullFromISR(const xQueueHandle pxQueue)

Adopted Hardware driver user APIs 1. void vTaskPriorityInherit(xTaskHandle *

const pxMutexHolder)

The newly added private functions and macros are as follows:

1. portTickType xServerGetRemainingBudget( void );
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2. static void prvRemoveGlobalResourceFromList(tskTCB *pxTaskToDelete);

3. static void prvRemoveLocalResourceFromList(tskTCB *pxTaskToDelete);

We adopted the following user APIs to incorporate HSF implementation.
The original semantics of these API is kept and used when the user run the
original FreeRTOS by setting configHIERARCHICAL SCHEDULING macro to 0.

1. OLD void vTaskStartScheduler( void );

and adopted private functions and macros:

1. OLD void vTaskSwitchContext( void );

33



Figure 13: The trace for the execution of legacy application within a legacy
server using binary semaphores
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Figure 14: Trace showing the legacy server execution using mutex
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(a) Trace of budget overrun without

payback (BO)

(b) Trace of budget overrun with pay-

back (PO)

Figure 15: Testing the behaviour of HSRP and budget overrun between the
legacy application and a new server
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