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Abstract
Program slicing identifies the program parts that may affect certain
properties of the program, such as the outcomes of conditions af-
fecting the program flow. Ottenstein’s Program Dependence Graph
(PDG) based algorithm is the state-of-practice for static slicing to-
day: it is well-suited in applications where many slices are com-
puted, since the cost of building the PDG then can be amortized
over the slices. But there are applications that require few slices of a
given program, and where computing all the dependencies may be
unnecessary. We present a light-weight interprocedural algorithm
for backward static slicing where the data dependence analysis is
done using a variant of the Strongly Live Variables (SLV) analysis.
This allows us to avoid building the Data Dependence Graph, and
to slice program statements “on-the-fly” during the SLV analysis
which is potentially faster for computing few slices. Furthermore
we use an abstract interpretation-based value analysis to extend our
slicing algorithm to slice low-level code, where data dependencies
are not evident due to dynamically calculated addresses. Our al-
gorithm computes slices as sets of Control Flow Graph nodes: we
show how to adapt existing techniques to generate executable slices
that correspond to semantically correct code, where jump state-
ments have been inserted at appropriate places. We have imple-
mented our slicing algorithms, and made an experimental evalua-
tion comparing them with the standard PDG-based algorithm for
a number of example programs. We obtain the same accuracy as
for PDG-based slicing, sometimes with substantial improvements
in performance.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.2.6 [Software En-
gineering]: Programming Environments

Keywords Static backward slicing; Unstructured control flow;
Data flow equations; Computational complexity; Strongly live vari-
able; Abstract Interpretation

1. Introduction
Program slicing refers to a collection of techniques to identify
which parts in a program may affect a so called “slicing criterion”
that expresses certain properties of a program. The slicing criterion
may be, for instance, the possible values of some program variables
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in some program points. The result of the slicing is usually a new
program, formed by extracting certain statements from the original
code. Program slicing was first considered by Weiser [44] in the
context of debugging. Other applications of slicing have emerged
since then, including program comprehension [20], integration [9],
testing [5, 16], parallelization of sequential code [45], software
maintenance [15], compiler optimization [30] and many more.

Slicing comes in different dimensions. Static slicing computes
a safe overapproximation of the code that might affect, or be af-
fected by the slicing criterion, whereas dynamic slicing consid-
ers the statements that will affect (or be affected by) the criterion
in different runs. Intraprocedural slicing is performed on a single
nonrecursive procedure whereas interprocedural slicing considers
multiple procedures possibly containing multiple call sites. Syntax-
preserving slices are the subset of the original program statements
whereas amorphous slicing transforms program code. Backward
slicing computes the code-segment that affects the slicing criterion
whereas forward slicing computes the code-segment that is affected
by the slicing criterion.

Today, state of the practice in static slicing are algorithms based
on the Program Dependence Graph (PDG) [14, 23, 35]. These
algorithms first build the PDG for the whole program, and then
compute the slices by a simple linear-time graph traversal. This
is good for applications like program understanding, where many
slices may be taken using different slicing criteria, since then the
cost of building the PDG can be amortized over the different slices
taken.

However, there are applications that require to compute only
few slices. An example is Worst-Case Execution Time (WCET)
analysis [47], where supporting analyses to constrain the WCET
program flow can benefit greatly from slicing the analysed program
with respect to the conditions, thus removing the parts of the pro-
gram that surely cannot affect the control flow [13, 31, 40]. For
such applications it can be advantageous to compute dependencies
on the fly, for the parts of the program that actually produce the
slice, rather than for the whole program.

In this paper we present such an algorithm for static backward
slicing. We start with an intraprocedural analysis, which is sub-
sequently extended to an interprocedural analysis. These analyses
work for a high-level view of memory that consists of distinct pro-
gram variables. Next we extend the analyses to slice code with a
low-level view of memory, where reads and writes are made to ad-
dresses that may be dynamically computed rather than to program
variables of given type and size. This is interesting for applications
such as the aforementioned WCET analysis, which often is per-
formed on linked binaries. Finally we show how to generate exe-
cutable slices from our computed slices, which are sets of Control-
Flow Graph (CFG) nodes. These executable slices can be directly
translated into executable (or compilable) textual code.

This paper makes the following contributions:
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1. An interprocedural slicing algorithm is developed for high-
level code based on the Relevant Strongly Live Variables (SLV)
dataflow analysis on the CFG representation of the input pro-
gram. This analysis is a modification of standard SLV analysis,
where the generated SLVs carry a dependency relation with the
slicing criterion. This algorithm slices program statements on
the fly during the analysis of SLVs.

2. We show how to adapt the SLV-based slicing algorithm to
slice code with a low-level memory model, by augmenting it
with an abstract interpretation-based value analysis that is used
to determine addresses for memory accesses in the dataflow
analysis.

3. We show how to convert the slices into executable slices, which
can be directly translated into textual code with the same se-
mantics as the original, CFG-based slices.

4. We have implemented the SLV-based algorithm and the stan-
dard PDG-based slicing algorithm in the WCET analysis tool
SWEET [1, 32], and we have performed a comparative evalua-
tion on a number of example programs. The evaluation shows
that our algorithm computes the same slices as the PDG-based
algorithm, sometimes with a significantly lower execution time.

The rest of this paper is organized as follows. Section 2 reviews
some basic theory of data flow analysis, and introduces some nota-
tions used in the rest of the paper. Section 3 presents the SLV-based
intraprocedural slicing algorithm and discusses its complexity. Sec-
tion 4 extends the intraprocedural slicing algorithm to interproce-
dural slicing. In Section 5 we show how the SLV-based slicing can
be extended to slice low-level code, and produce executable slices.
Experimental results are given in Section 6, Section 7 gives an ac-
count for related work, and Section 8 concludes the paper.

2. Preliminaries
We now introduce some standard concepts and notation for com-
pleteness and clarity. A control-flow graph (CFG) [34] is defined
as a directed graph (N,F low) where the nodes in N are labeled
either with conditions, assignments, a special label start, or ditto
stop, and Flow ⊆ N × N is a relation describing the possible
flows of execution in the graph. Each CFG contains a unique start
node and a unique stop node. The start node has no predecessors,
and the stop node no successors. An assignment node has exactly
one successor, and a condition node has exactly two successors (la-
beled true and false, respectively).

We will sometimes write [c]n for a node n labelled with the
condition c, and [x := a]n for a node n labelled with the assign-
ment x := a. This notation makes it easier to define the data flow
equations in Sections 2.1 and 3.1.

Conditions, and right-hand sides in assignments, are expres-
sions. We assume that expressions have no side-effects, and that
they are simple expressions built from program variables, con-
stants, operators and primitive functions (not user-defined). For
simplicity we do not allow pointers and operations on such: all the
analyses presented here can however be extended to deal with them.
We assume that program variables are unaliased, i.e., an assignment
to the program variable x can not affect the value of another pro-
gram variable y 6= x. For an expression e, FV (e) denotes the set
of program variables that appear in e.

Note that we label the nodes by single statements, whereas in
compiler literature the nodes often are considered to represent basic
blocks. This is for two reasons: first, we want to perform the slicing
on statements rather than basic blocks, and similarly it is easier
to define data flow analyses and other static program analyses by
equations over statements.

call proc

ret proc

Caller Procedure

call assign

ret assign

proc entry

...

proc exit

Called Procedure

Figure 1: Relations among node types at call site in the CFG

For procedure calls, our CFG representation is based on [34]
with some extensions. Some new kinds of nodes are introduced for
representing procedure calls and entries: proc entry and proc exit
nodes correspond to procedure entry and procedure exit. Without
loss of generality, we assume that procedure parameters can be di-
vided into a set of input and a set of output parameters where out-
put parameters may be updated by the procedure. A procedure call
is then represented by four types of nodes in the CFG: call proc
nodes represent the procedure calls, call assign nodes represent the
assignments of actual input parameters to formal input parameters,
ret assign nodes represent the assignments of formal output param-
eters to the actual output parameters, and ret proc nodes represent
returns from procedure calls.

There are some rules how procedure call nodes can appear.
call proc nodes and call assign nodes always come in pairs, where
the call assign node is the unique successor to the call proc and
vice versa. The relation is similar for ret assign and ret proc
nodes, but the order is reversed. The (unique) successor of a
call assign node must be a proc entry node, and every predeces-
sor of a proc entry node must be a call assign node. Similarly
the unique predecessor to a ret assign node must be a proc exit
node, and every successor of a proc exit node must be a ret assign
node. call proc and ret proc nodes belong to the CFG of the caller,
proc entry and proc exit nodes belong to the CFG of the callee,
and the call assign and ret assign nodes are special nodes which
may contain variables (in assignment expressions) that are scoped
in both caller and callee procedures. See Fig. 1 and 2 for examples.

Postdominators [36] play an important role in slicing. A node
n in a CFG is said to postdominate a node n0 if and only if every
path from n0 to the stop node goes through n. There are many algo-
rithms to compute postdominators, as well as postdominator trees
which can be used to efficiently represent sets of postdominators
for different nodes. Postdominator relations are used to determine
control dependencies, see Section 2.2.

2.1 Data Flow Analysis
An important part of slicing is to compute data dependencies. A
data flow analysis [34] is often used for this purpose. Data flow
analyses are usually defined over CFGs in the following way. For
each node n in the CFG, the analyses compute sets Sentry(n) and
Sexit(n) which are present before and after the node, respectively.
The sets represent some kind of data flow information. Depending
on the direction of the data flow computed, an analysis is a forward
or backward analysis. The sets are related through equations. We
restrict our attention to bit vector analyses: for a backward bit-
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void main() {
int f=1,s=0,sp;
while(f=<50){
add(f,s,sp);
s=sp;
add(f,2,sp);
f=sp;
sp=0;

}
print(s);
}

void add(int x,
int y, int z) {

int t=x+y;
z=t;
t=0;
}

0:start

1:f = 1

2:s = 0

3:f ≤ 50

4:call add

5:ret add

6:s = sp

7:call add

8:ret add

9:f = sp

10:sp = 0

11:x = f, y = s

12:sp = z

13:x = f, y = 2

14:sp = z

20:print(s)

21:stop

15:add entry

16:t = x+ y

17:z = t

18:t = 0

19:add exit

true

false

start

f ≤ 50

call add

x = f, y = 2

f = 1 s = 0 print(s)

s = spret add

sp = z

call add

x = f, y = s

ret add

sp = z

add entry

z = tt = x+ yadd exit t = 0

f = sp sp = 0

Figure 2: CFG and CDG of the Running Example

vevtor analysis, the form of the equations is as follows:

Sexit(stop) = Sinit

Sentry(stop) = Sexit(stop)
Sentry(start) = Sexit(start)
Sentry(n) = (Sexit(n) \ kill(n)) ∪ gen(n),

where n 6∈ {start, stop}
Sexit(n) =

⋃
n′∈succ(n) Sentry(n

′),

where n 6∈ {start, stop}

(1)

(The equations for forward bit vector analyses are similar, see [34].)
Here, succ(n) is the set of immediate successors to n in the
CFG, and Sinit is some set describing the data flow information
that is present at the exit of the program. The equations defining
Sentry(n) have the form Sentry(n) = fn(Sexit(n)), where fn
is the transfer function of node n. Data flow analyses are further
divided into may and must analyses. We will only deal with may
analyses here: (1) is valid for these.

A classical data flow analysis is Reaching Definitions (RD).
It is a forward may analysis which computes sets of pairs (x, n),
where x is a program variable and n is a node in the CFG. If (x, n)
belongs to the set associated with node p then the value of x that
was assigned at n may still reside in x at p, and then there is a
possible data flow from n to p.

RD can be used to compute def-use pairs of variable assign-
ments and possible uses. The def-use pairs for a program constitute
its Data Dependence Graph, which is used in PDG-based slicing:
see Section 2.2.

(1) yields a system of 2 · |N | equations, where the unknowns
are the sets Sentry(n) and Sexit(n) for the different nodes n in
the CFG. The classical way to solve the system is by fixed-point
iteration: all unknown sets are initialized to ∅, and then the system
of equations is iterated until no more sets change. The underlying
theory of complete lattices [34] ensures that this procedure con-
verges, and always yields the least (most precise) solution. There is
a generic worklist (or work set) algorithm to perform fixed-point
iteration [34] that handles both forward and backward analyses.
It computes an array S of sets, indexed by the nodes in the CFG
(N,F low), where each element S[n] equals Sentry(n) for forward
analyses, and Sexit(n) for backward analyses.

The number of fixed-point iterations can be at most h · |N |,
where h is the height of the lattice iterated over and |N | is the

number of nodes in the CFG. For dataflow analysis, h equals the
size of the largest possible set of data flow information. Thus the
maximal execution time is O(t ·h · |N |), where t is an upper bound
for the time needed to perform one fixed-point iteration.

2.2 PDG-based Slicing
The standard algorithms for static backward slicing use the Pro-
gram Dependence Graph (PDG) [14, 23, 35]. The PDG is the union
of two graphs, whose nodes are the same as those in the CFG:
the Data Dependence Graph (DDG) and the Control Dependence
Graph (CDG). The DDG is usually computed using the aforemen-
tioned RD dataflow analysis. The CDG has edges from conditions
to CFG nodes, where there is an edge from condition c to node n if
the outcome of c possibly can affect whether n is executed or not
(i.e., n is control dependent on c). This can be formalised through
postdominators: we say that n is control dependent on c if there is a
path from c to n in the CFG and if n does not postdominate c. The
CDG can be computed efficiently using postdominator trees. Fig. 2
shows the CFG and CDG for a given example program.

Once the PDG is built, the backward slicing can be performed
by a simple graph search for the nodes in the PDG that are back-
ward reachable from the slicing criterion. This operation is linear
in the number of nodes and edges of PDG that are part of the sliced
code, and can thus be performed quickly for different slicing crite-
ria.

3. An Intraprocedural Slicing Based on Relevant
SLV Analysis

As mentioned in the introduction, we do not want to compute
all the data dependencies before the slicing. Rather we want to
discover the relevant data dependencies on demand during slicing.
In the following, we describe the Relevant Strongly Live Variables
analysis which allows us to perform slicing concurrently with the
data dependence analysis.

3.1 The Relevant Strongly Live Variables Analysis
The Strongly Live Variables (SLV) analysis (Exercise 2.4 in [34]) is
an alternative data flow analysis for computing data dependencies.
Given some sets of variables in some different program points, rep-
resenting “uses” of these variables (like being written to some out-
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put device), it computes for each program point a set of “strongly
live variables” whose values in that program point might (transi-
tively) reach a use of some variable. It is a backward may analysis,
with kill, gen and Sinit sets defined as follows:

Sinit = ∅
kill([x := a]n) = {x}
gen([x := a]n) = FV (a)

kill([c]n) = ∅
gen([c]n) = FV (c)

(2)

The transfer functions for SLV analysis are set up according to (1),
however with the following modification (for n being an assign-
ment or a condition):

Sentry(n) =


(Sexit(n) \ kill(n)) ∪ gen(n),

if kill(n) ⊆ Sexit(n)

Sexit(n), otherwise
(3)

The above defines the “standard” SLV analysis, as known from
the literature. It is based on the following assumptions on variable
uses:

• variables are not used at the end of a program,
• variables in conditions are always used, and
• variables are not used in any other program points.

For slicing, a slicing criterion corresponds to a set of variable uses.
To allow for a more flexible specification of slicing criteria, not
necessarily adhering to the assumptions on variable uses above, we
introduce Relevant SLVs defined as follows:

Definition 3.1 (Relevant Strongly Live Variables). The Relevant
Strongly Live Variables at any program point are those strongly
live variables on which the variables at the slicing criterion have
data dependency.

So, relevant SLVs are a kind of SLVs that can affect some slicing
criterion through data dependencies. They are defined through the
following, modified equations. Let the slicing criterion be specified
by a (possibly empty) set Scrit(n) for each node n in the CFG. The
kill, gen and Sinit sets for Relevant SLV analysis are then defined
according to (2) with the following modifications:

Sinit = Scrit(stop)
gen([x := a]n) = FV (a) ∪ Scrit(n)
gen([c]n) = Scrit(n), c is a condition

(4)

The second case in (3) is modified accordingly:

Sentry(n) = Sexit(n) ∪ Scrit(n), if kill(n) 6⊆ Sexit(n) (5)

For brevity we will refer to Relevant SLVs as SLVs below.

3.2 A Worklist Algorithm for Slicing on the Fly
In each program point, the relevant strongly live variables are the
ones that can carry a dependence to some slicing criterion. Thus,
for an assignment x := a, if x is strongly live at exit then there
is a possible data dependence from the assignment to some slicing
criterion, and it can be immediately put into the slice. We call this
“slicing on-the-fly” as it slices during the SLV analysis, in contrast
to data dependence analysis with RD where an explicit data de-
pendence graph has to be built first. We now describe an algorithm
to perform static backward slicing based on slicing on-the-fly. The
slicing algorithm in Fig. 3 computes data dependencies according
to the Relevant SLVs defined in Section 3.1, it traces control de-
pendencies, and it performs slicing-on-the-fly. It is an adaptation of
the generic worklist algorithm for data flow analysis [34] modified
in the following way:

Algorithm 1: SLV Slicing(N,F,C, Scrit, 〈fn|n ∈ N〉)

/* Initialization */

1 W := ∅ ;
2 Nslice := ∅;
3 forall n ∈ N do
4 S[n] := Scrit[n];
5 if Scrit[n] 6= ∅ then
6 Nslice := Nslice ∪ {n};
7 forall n′ where (n, n′) ∈ F do

W := W ∪ {(n, n′, CFG)};
8 forall n′ where (n′, n) ∈ C do

W := W ∪ {(n, n′, CDG)};
9 end

10 endfor
/* Iteration */

11 while W 6= ∅ do
12 (n, n′, T ) := Select(W ) /* Pick new element

from W */;
13 W := W \ {(n, n′, T )};
14 if T = CFG ∧ fn(S[n]) 6⊆ S[n′] then /* S[n′] has

changed: add new work item to W */
15 if n′ is an assignment x := a and x ∈ fn(S[n])

then
16 Nslice := Nslice ∪ {n′};
17 forall n′′ where (n′′, n′) ∈ C do

W := W ∪ {(n′, n′′, CDG)};
18 end
19 S[n′] := S[n′] ∪ fn(S[n]) ;
20 forall n′′ where (n′, n′′) ∈ F do

W := W ∪ (n′, n′′, CFG);
21 end
22 if T = CDG then /* The edge is a control

dependence */
23 S[n′] := S[n′] ∪ FV (c(n′)) ;
24 if S[n′] 6= S[n′] \ FV (c(n′)) orn′ 6∈ Nslice then

/* to avoid potential infinite loop */
25 Nslice := Nslice ∪ {n′};
26 forall n′′ where (n′, n′′) ∈ F do

W := W ∪ (n′, n′′, CFG);
27 forall n′′ where (n′′, n′) ∈ C do

W := W ∪ {(n′, n′′, CDG)};
28 end
29 end
30 end

/* Finalization */

31 return Nslice

Figure 3: Slicing-on-the-fly with SLV analysis
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• The worklist W holds two types of edges, which are tagged
to keep them apart: (n, n′, CFG) for edges in the CFG, and
(n, n′, CDG) for edges in the CDG.
• The algorithm uses the explicit CDG C to perform slicing due

to control dependencies. F is the set of reversed edges Flow−1.
• A set Nslice of sliced CFG nodes is maintained by the algo-

rithm.
• A node [x := a]n is included in the slice whenever x ∈ S[n].

This takes care of slicing due to data dependencies.
• If n is included in the slice, and if (n′, n) ∈ C (where n′

is a conditional node with condition c), then n′ is included
in the slice as well, FV (c) is added to S[n′], for each edge
(n′′, n′) ∈ C, (n′, n′′) is added to the worklist W , and if S[n′]
changes then all edges (n′, n′′) ∈ F are added to the worklist
as well.
• The array S is initialized to an array Scrit containing the slic-

ing criteria (sets of variables in certain program points). Fur-
thermore, Nslice is initialized to the set of nodes n where
Scrit[n] 6= ∅.
• For any node n, the transfer function fn is defined according to

(4) and (5).

In Algorithm 1 select(W ) picks non-deterministically an element
from W , and for any conditional nodes n in the CFG c(n) denotes
the condition of n.

Each SLV set can contain at most v elements, where v is the
number of variables in the program. Thus, the total size of the SLV
sets is O(|N | · v), where |N | is the number of nodes in the CFG.
The height of the lattice is also v and thus the time to do fixed-
point iteration for the standard SLV analysis is O(t · |N | · v) where
t is an upper bound to the time required to perform one fixed-point
iteration. The complexity for Algorithm 1 is essentially the same,
since the termination criterion for the worklist iteration is the same
as well as the lattice of SLV sets. The factor t will of course change,
but its order should be the same as for the original SLV analysis
since the same set operations are used.

3.3 Slicing on the Fly With Respect to all Conditions
As mentioned in Section 1, in the flow analysis phase of WCET
analysis it is often interesting to slice with respect to all the condi-
tions in the program. In the SLV slicing algorithm, the slicing crite-
rion will thus consist of all conditions in the program plus their sets
of variables. As the conditions thus are contained in the slice from
the beginning, the control dependencies can be disregarded. This is
since the sole function of computing the control dependencies is to
determine which conditions to include in the slice: thus, if all con-
ditions are already included, the control dependencies will have no
use and the CDG need not even be generated.

Algorithm 1 can be simplified accordingly, by removing lines
8, 17 and 22-29. Also the worklist elements will not have to be
tagged as CFG or CDG edges as no CDG is needed. This is close
to the original SLV algorithm as described in Section 3.1. The
worst-case complexity will be the same as for the general SLV
slicing algorithm, but the real execution time can be expected to be
lower since the handling of the CDG is eliminated. As mentioned
the CDG does not even have to be generated, which eliminates
another phase in the slicing. This results in an algorithm that works
directly on the CFG and does not require any other additional data
structures than the worklist and the SLV sets.

4. Interprocedural Slicing
Any interprocedural slicing technique needs to deal with two prob-
lems. The first one is how to handle context-sensitivity: a very

context-sensitive slicing will be precise but can be time-consuming,
whereas a less context-sensitive approach will be faster but less
precise. The second problem is how to precisely trace the depen-
dencies between the input and output arguments of procedure calls.
This is non-trivial since procedure calls may be arbitrarily nested
and program variables might be aliased.

For PDG-based slicing, a solution has been developed where the
PDG is extended into the System Dependence Graph (SDG) that
captures also the interprocedural dependencies [23]. The SDG al-
lows to handle both the context-sensitivity and the tracing of depen-
dencies [23, 38]. As we avoid building the PDG (and thus also the
SDG), we have developed a solution where these problems instead
are handled on-the-fly. Our solution is context-sensitive and works
for programs without (direct or indirect) recursive procedures. This
may yield a costly algorithm: however, it turns out that we can mit-
igate this problem in a manner that is similar to how it is handled in
the SDG-based algorithm. Note that even though our method works
for non-recursive procedures, it is possible to extend it to handle
recursive procedures as well by using some of the optimizations
discussed in Section 4.1.

It is worth noting that Weiser’s interprocedural slicing algo-
rithm [42, 44], which is not SDG-based and has some similarities
with our algorithm, does not handle these two problems and thus is
less precise.

As mentioned in Section 2, a call site is represented by four dis-
tinct nodes in our CFGs: a call proc, a call assign , a ret assign ,
and a ret proc node. The call site nodes are connected to a
proc entry and proc exit node representing the entry and exit
of the called procedure.

Some control dependencies are added in the interprocedural
case. Every node in the CFG of a procedure P including the
proc exit node is control dependent on its proc entry node. So,
if any node in P is sliced then its proc entry node is sliced as
well. The call proc and the ret proc nodes correspond to the same
program statement, and the call assign and the ret assign nodes
correspond to the assignments of actual arguments into formal
arguments. So, the call assign and the ret assign nodes in a
procedure call are control dependent on the call proc and the
ret proc nodes respectively. Moreover, the ret assign node is
control dependent on the corresponding proc exit node. Note that
the sole purpose of these control dependencies is to include some
relevant call site nodes into the slice. When a procedure containing
procedure calls is being sliced by computing the SLV sets for each
of its nodes, as soon as any ret proc node is reached during the
backward traversal of the CFG the slicing of the current procedure
is postponed, and instead slicing continues to the called procedure
(with some exceptions described later in this section). The called
procedure is then sliced with respect to the SLV set obtained at the
proc exit node from the caller. This SLV set can be considered
as the slicing criterion for the called procedure. Once the called
procedure has been sliced, the slicing continues at the original call
site.

Example 4.1. Let us consider the CFG in Fig. 2. Suppose the
SLV analysis reaches node 15 (the add entry node). Now the next
visited node can be (i) node 11 corresponding to the first call site of
procedure add, or (ii) node 13 corresponding to the second call site
of the same procedure. If node 15 is reached from node 12 during
the SLV analysis then the SLV analysis should continue to node 11,
otherwise node 13.

We solve the calling-context problem by introducing a unique
ghost variable gn into the set S[n] for the ret assign node n in
each call site. The transfer functions for the call site nodes are
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defined as follows.

Sentry(n)=



Sexit(n) n : T⋃
i
Sexit (n)|xi→FV (ei)

∪{gn} n : ret assign⋃
i
Sexit (n)|xi→FV (ei)

\{grasgn(n)} n : call assign

Sexit (n)∩[vars(proc(n)) ∪GV ] n : proc exit

Sexit (n)∪[Sexit (retp(n))\ n : call proc

kill(rasgn(n))]
(6)

Here, n : X represents that node n is of type X , T can be
ret proc or proc entry , and proc(n) is the procedure contain-
ing the node n, vars(P ) returns the set of variables in the scope
of procedure P , retp(n) and rasgn(n) return the ret proc and
ret assign nodes respectively of the corresponding node n belong-
ing to the same call site, gn is the unique ghost variable for the call
site containing the ret assign node n, and GV is the set of all ghost
variables. Furthermore we define

Sexit(n)|xi→FV (ei)=

{
Sexit (n)\{xi}∪FV (ei) ifxi ∈ Sexit (n)

Sexit (n) otherwise

The call assign and ret assign nodes contain lists of concurrent
assignments x1 = e1, . . . , xm = em for some variables xi and ex-
pressions ei. As mentioned in Section 2, the call assign node con-
tains the assignments of actual input parameters into the formal in-
put parameters, and the ret assign node includes the assignments
of formal output parameters into the actual output parameters.

Now suppose n1, . . . , nk are the call assign nodes correspond-
ing to k call sites calling any procedure P in the input program.
The proc entry node n0 of procedure P is the successor node of
each ni. If the SLV analysis described in Section 3 reaches node
n0, the worklist will be updated by W = W ∪ {(n, nj , CFG)}
where gj ∈ S[nj ] ∩GV represents the ghost variable correspond-
ing to the call site j. That means the previous slicing of the caller
procedure of P is resumed at call site j that has been postponed
before. However, if S[nj ] ∩ GV = ∅, it means that the slicing of
the current procedure is not invoked by any of its callers. Since
all the caller procedures are backward reachable from the current
procedure, they should be sliced as well. In such case, the worklist
should be updated by W = W ∪ {(n, ni, CFG) | 1 ≤ i ≤ k}.
These conditions can be included in line 20 of Algorithm 1.

Note that introducing the ghost variable in each call site makes
the interprocedural data flow analysis very context sensitive. Dif-
ferent call patterns generate distinguishing sequences of ghost
variables representing call strings obtained from the correspond-
ing proc entry nodes. Since every call site has a distinguishing
ret assign node, introducing a unique ghost variable at this node
distinguishes calls from different call sites. Moreover, since we do
not allow recursion, if the Select function in Algorithm 1 picks
the most recent element from the worklist, it does not merge data
flow from different call sites. This is because even though ghost
variables are inserted into the ret assign nodes, they are discarded
from the call assign nodes. So, (6) merges contexts where relevant
but splits contexts where appropriate.

4.1 Avoiding Unnecessary Multi-Pass Analysis of Procedures
If a procedure is called several times from multiple call sites, it
may be required to slice a procedure more than once possibly with
different slicing criteria. Here, the slicing criterion for a procedure
corresponds to the SLV set of the proc exit node in the CFG of
the called procedure. If the proc exit node of any procedure obtains
a slicing criterion during the SLV analysis and it has been sliced
before with the same slicing criterion, then the called procedure
does not need to be analyzed again for slicing. Instead, the SLV
set in the corresponding proc entry node of the called procedure
can be reused to continue the slicing in the caller procedure. This

essentially requires that we save the SLV set at the proc exit and
proc entry node of each procedure. If the newly generated slicing
criterion is a superset of the previously generated slicing criterion,
the previous analysis results can be reused in the extended analysis
of the called procedure. This will reduce the negative impact of the
context-sensitivity on the performance of the slicing.

Suppose procedure P is already sliced with criterion C1. If
it needs to be sliced again with criterion C2 such that C2 ⊃
C1, then intuitively, it is enough to slice P with the criterion
(C2\C1). This may reduce the running time of the slicing, as a
smaller slicing criterion on average should yield faster convergence
of the fixed-point iteration in Algorithm 1. The intuition behind
this optimization is as follows. Suppose a CFG node of the form
[x := e]n is sliced during slicing the procedure P with the slicing
criterion C2. Then either x ∈ C2, or x ∈ S[n′] and n′ already
belongs to the slice of P . If x ∈ C2, then either x ∈ C1 or
x ∈ (C2\C1) and hence node n should be sliced during slicing the
procedure P with criterion either C1 or (C2 \C1). However, when
x ∈ S[n′] for some node n′ already in the slice during slicing
with criterion C2, it can be proven inductively that n′ belongs
to the sliced set of P when it is sliced either with C1 or with
(C2 \ C1). This intuition suggests that if slicing P generates the
SLV set SC1 [k] and SC2\C1

[k] when slicing P with criterion C1

and C2\C1 at the proc entry node k of P , then the SLV set
(SC1 [k] ∪ SC2\C1

[k]) should be generated at k when P is sliced
with criterion C2. We leave a formal proof of this intuition as future
work.

If C2 ⊆ C1 then P does not need to be sliced again at all,
which definitely saves slicing time. But in order to continue slicing
the caller of P without slicing P again, the call proc node at the
call site must obtain the right SLV set. This requires to keep the
data dependence relation from the output parameters to the input
parameters of the already analyzed procedure. During the update of
any SLV set Sentry(n) for any node n by the transfer function (3),
we update the dependence relation HP , from procedure variables
to procedure output parameters of P , which is initially empty. For
any node n, suppose kill(n) ⊆ Sexit(n). Then for all v ∈ gen(n),
we update first HP [v] and then HP [t] as follows:

HP [v]= HP [v] ∪ {x | x ∈ kill(n), x ∈ out(proc(n))}∪
{x | x ∈ HP [t], t ∈ kill(n), t 6∈ out(proc(n))}

HP [t] = ∅ for all t ∈ kill(n), t 6∈ out(proc(n))
(7)

where out(P ) is the set of output arguments of P . Moreover, any
set S[n] for the conditional node [c]n is updated due to the control
dependency edge (n, n′) in the CDG where node n′ is already in
the slice. In such case, for all v ∈ FV (c(n)), we update HP [v] as
follows:
HP [v]= HP [v] ∪ {x | x ∈ Sexit(n

′), x ∈ out(proc(n′))}∪
{x | x ∈ HP [t], t ∈ Sexit(n

′), t 6∈ out(proc(n′))}
(8)

Note that HP keeps all the data and control dependences from
procedure variables to formal output parameters. In order to obtain
the dependences from formal output parameters to formal input pa-
rameters, we need an inverse relation. For any v ∈ out(proc(nk))
at the proc entry node nk, the inverse data dependence relation
H−1[v] is obtained according to the following equation

H−1
P [v] = {x | v ∈ HP [y], x ∈ rec(HP [y])}

where rec(HP [y]) is defined as follows

rec(HP [y]) =

{
y if y ∈ in(proc(nk))

rec(HP [z]) if y 6∈ in(proc(nk)), y ∈ HP [z]

where in(P ) is the set of input arguments of procedure P .
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Theorem 1. If the SLV analysis of procedure P with the slicing
criterion C generates the SLV set S in the proc entry node nk

(i.e. S = Sentry(nk)), then S = {w | w ∈ H−1
P [v], v ∈ C}

Proof. “⇒”: Suppose x ∈ S. x can be included into S due to
(1) data, or (2) control dependences. Case (1): there exists a CFG
node [t = e]n of P where x ∈ FV (e), there exists a path from
nk to n in the CFG of P and there is no node in between nk

and n in such path which defines x. That means t ∈ kill(n),
x ∈ gen(n) and kill(n) ⊆ Sexit(n) for which x is added to S
by the transfer function. Also x ∈ in(P ) as it is not defined before
its first use. If t ∈ C, t ∈ HP [x] and x ∈ H−1

P [t] as C contains only
formal output variables. If t 6∈ C, suppose t1 ∈ HP [x] for some
variable t1. Then we have a sequence of updates of HP on variables
t1, t2, . . . , tj = t at different iterations of the fixpoint computation
such that t1 ∈ C, and ti ∈ HP [ti+1] for all 1 ≤ i ≤ j − 1. This
implies that x ∈ H−1[t1]. Case (2): there exists a path from nk to
some conditional node [c]n such that x ∈ FV (c(n)) and x is not
defined by any node in this path. Otherwise it would not be the case
that x ∈ S. Then according to equation (8), t ∈ HP [x] for some
t ∈ out(P ). According to the construction of HP in equations (7
and 8), any t ∈ out(P ) can be included in HP if t ∈ Sexit(n

′) for
some node n′. Since C = Sexit(n

′′) where n′′ is the proc exit
node of P , any t ∈ out(P ) and t ∈ Sexit(n

′) is possible only if
t ∈ C = Sexit(n

′′) is propagated backward to Sexit(n
′) by the

iterations in Algorithm 1. So, t ∈ C, and x ∈ H−1
P [t].

“⇐”: Suppose w ∈ H−1
P [v], v ∈ C. This implies that v ∈

out(P ), w ∈ in(P ), and v ∈ HP [w]. Case (1): according to
the construction of HP in (7), there exists a node n in the CFG
of P such that kill(n) ⊆ Sexit(n), w ∈ gen(n), and either (1)
v ∈ kill(n) or (2) v ∈ HP [t] for some t ∈ kill(n). In any case, w
is added to Sentry(n) by the transfer function. Case (2): according
to the construction of HP in (8), there exists a conditional node
[c]n such that w ∈ FV (c(n)) and hence w ∈ Sentry(n). We can
assume without loss of generality that there exists a path from nk

to n in the CFG of P . If w 6∈ kill(n′) or kill(n′) 6⊆ Sexit(n
′) for

any node n′ in the path from nk to n, w ∈ Sentry(n) implies that
w ∈ Sentry(nk) = S. However, if w ∈ kill(n′) and kill(n′) ⊆
Sexit(n

′), we argue that node n′ does not exist with this condition.
Let’s assume that node n′ have the assignment w = e. For any
l ∈ FV (e)1, w 6∈ HP [l] as w ∈ in(P ). So, according to equation
7, HP [w] is copied into HP [l], v ∈ HP [w] implies v ∈ HP [l],
and then HP [w] is reset to empty set. As v 6∈ HP [w] anymore due
to this reset, v 6∈ HP [w] at the proc entry node nk which is a
contradiction. So, no such node n′ exists such that w ∈ kill(n′)
and kill(n′) ⊆ Sexit(n

′).

Consider the situation where we slice procedure P first with
slicing criterion C, and then with C′ such that C′ ⊆ C. As noted
above, in this situation P does not need to be sliced again for C′ as
the slice will be contained in the slice obtained for C. However, the
SLV set S for the proc entry node of P must still be generated.
Assume that H−1

P was computed when slicing P with respect to
C. According to Theorem 1, S can then be computed directly from
H−1

P as {w | w ∈ H−1
P [v], v ∈ C′}. Thus, the SLV dataflow

analysis need not be applied to P anew.
Further improvements of efficiency in slicing are possible by

delaying the slicing of any called procedure. Suppose a procedure
P receives multiple requests for slicing with the slicing criteria
C1, . . . , Ck. Then instead of slicing P k times, it is possible to slice
P just once by combining all the slicing criteria C =

⋃
1≤i≤k Ci.

1 We are ignoring the case that FV (e) = ∅ for any input parameter w
before its first use as this is unusual and it will complicate the proof and the
definition of HP , however it is doable.

This will yield the same slice as slicing with the different Ci. Let
H−1 is generated when slicing with respect to C. Then, similarly,
Theorem 1 allows us to compute the SLV sets for the respective
proc entry nodes for the slicing criteria Ci directly from H−1.
The handling of the worklist in Algorithm 1 can be tuned to create
opportunities for this optimization.

Example 4.2. Consider the program in Fig. 2. Assume that we
wish to slice it on the statement “print(s)”. This statement corre-
sponds to node 20 in the CFG and the slicing criterion is {s}.
The CFG is traversed backwards, the sequence of visited nodes
are 3, 10, 9, 8, 14, 19, and the SLV sets are S[3] = S[10] =
S[9] = S[8] = {s}, S[14] = S[19] = {g2} where g2 is the
ghost variable at the second call site of procedure add. At node
19, the slicing criterion for procedure add is basically empty as
g2 6∈ vars(add), and slicing this procedure can be stopped. The
proc call node at this call site is node 7 and S[7] = {s} accord-
ing to (6). Next, traversing the CFG, the generated SLV sets are
S[6] = S[5] = {sp}, S[12] = {z, g1}, S[19] = {z, g1} and the
slice set is Nslice = {6, 3} where g1 corresponds to the first call
site of procedure add. Node 6 is sliced due to data dependency and
as it is control dependent on node 3, 3 is also sliced. During slic-
ing the procedure add, the SLV sets are S[18] = {z, g1}, S[17] =
{t, g1}, S[16] = S[15] = {x, y, g1}, Hadd[x] = Hadd[y] = {z},
H−1

add[z] = {x, y}, and Nslice = {6, 3, 5, 12, 17, 16, 15, 19}.
g1 ∈ S[15] implies that the next visited node will be 11. This
procedure continues until a fixpoint is reached. Note that proce-
dure add does not need to be sliced again, instead when the control
reaches node 19 and z ∈ S[19] implies that S[15] will include x
and y as H−1

add[z] = {x, y}. The fixpoint is reached in 2 iterations
for this program and the sliced program contains all nodes except
nodes 10, 18, and 21.

5. Slicing Low-level Code
The SLV-based slicing algorithm presented so far relies on a high-
level model of memory. The data dependence analyses, whether
separate or integrated with the slicing, are based on program vari-
ables that are distinct and non-overlapping: an assignment to a vari-
able x can thus not affect the value of any other variable y 6= x.
Even if pointers to program variables are introduced, as long as
this assumption holds it is well-known how to modify the data de-
pendence analyses to cope with the possible aliasing that ensues.

However, for low-level code the memory model is different.
Here a memory access is typically done to a numerical address,
accessing a certain number of bits. Both the addresses and the
sizes of accesses may vary dynamically (an example of the latter
is block transfer instructions, where whole memory blocks are
copied). Thus, it is not entirely straightforward to decide whether
two memory accesses may overlap or not. Here we will sketch a
way to analyze memory references to decide this. As the data flow
analyses under consideration are may analyses, we are interested in
approaches that can safely decide when accesses can not overlap: if
they surely don’t, then they cannot carry a data dependence. On the
other hand, if there is a possible overlap then we will assume that
there is a possible data dependence. This will yield a safe analysis
where all data dependencies surely are included in the result.

5.1 The Memory Model
We will assume the memory model of the language ALF [17,
19], which is the language analyzed by the WCET analysis tool
SWEET [1, 32]. ALF is designed to be able to faithfully represent
both high- and low-level code, and its memory model,which is sim-
ilar to the monolithic memory model [37], is chosen accordingly.
Memory in ALF is organized into frames. Each frame is a separate
memory area. An ALF address consists of a so-called “frameref”,
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which can be seen as a symbolic base pointer to the frame, and a nu-
merical offset. This memory model is close to the one for unlinked
code, where base addresses are not yet resolved. It is assumed that
memory accesses to different frames never overlap, whereas ac-
cesses to the same frame may do. This memory model supports
both the high- and low-level view. If a high-level language is trans-
lated to ALF, then distinct variables are preferably mapped to sin-
gle, distinct frames with the same number of bits as the variables
they represent. For low-level code larger memory areas might be
mapped to frames: e.g., for executable binaries, the data memory
may be modeled by a single frame. Memory accesses in ALF use
an address as above, and a specified size. Thus an access can be
represented by a triple (f, o, s), where f is a symbolic frameref, o
is an offset (non-negative, in bits) and s is a size (same). The se-
mantics is that the bits o to o + s − 1 are accessed in frame f .
Two memory accesses (f, o, s) and (f ′, o′, s′) will thus overlap iff
f = f ′, and [o, o+ s− 1] ∩ [o′, o′ + s′ − 1] 6= ∅.

5.2 Abstract Domains
Data flow analysis on ALF code must be based on memory ac-
cess triples rather than program variables. Also, to decide def-use
chains, possible overlap of triples must be considered rather than
program variables. Thus, the data flow analysis should be preceded
by a value analysis that yields safe overapproximations to the mem-
ory access triples (f, o, s). Such analyses are standard, and can be
developed within the framework of abstract interpretation [12, 34].
The set of possible triples T for a memory access in the code will
then be approximated by an “abstract triple” T# in an abstract do-
main, where T# represents a set of triples that surely contains T .

The scenario described above is somewhat simplified. Since not
only addresses depend on values, but also values may depend on
addresses, it is in general not possible to first perform a value anal-
ysis and then an address analysis. Thus, the address and value anal-
yses have to be combined into a joint analysis where approximated
addresses and values are computed concurrently. What is needed
is a combined abstract domain for these where the analysis can be
carried out by a fixed-point iteration using standard methods.

If F is the set of framerefs in the program under analysis, and
Int is the domain of integer intervals, then two possible abstract
domains for memory access triples are P(F) × Int × Int and
P(F × Int × Int). The first domain represents set of triples by
“abstract triples” (F, Io, Is) where F is a set of framerefs, and Io
and Is are intervals surely containing the possible offsets and sizes,
respectively. The second domain represents set of triples by finite
set of abstract triples {(f1, Io1, Is1), · · · , (fn, Ion, Isn)} where
f1, · · · , fn are frame-refs and Iok, Isk are intervals surely contain-
ing the possible offsets and sizes for the accesses to frame fk. The
second domain allows for more precise representations than the
first, but is also potentially more costly. Both abstract domains are
standard within abstract interpretation, and it is well-known how
to implement value analyses that compute abstract values in these
domains for different memory accesses in a program.

5.3 Abstract Operations
If abstract values are computed for memory accesses by a value
analysis, safe tests for overlaps will look as follows. With the do-
mainP(F)×Int×Int, (F, [lo, uo], [ls, us]) and (F ′, [l′o, u

′
o], [l

′
s, u
′
s])

represent possibly overlapping accesses if F ∩ F ′ 6= ∅, and
[lo, uo + us − 1]∩ [l′o, u′o + u′s − 1] 6= ∅. For P(F× Int× Int),
{(f1, [lo1, uo1], [ls1, us1]), · · · , (fn, [lom, uom], [lsm, usm])} and
{(f ′1, [l′o1, u′o1], [l′s1, u′s1]), · · · , (f ′n, [l′on, u′on], [l′sn, u′sn])} repre-
sent possibly overlapping accesses if there exists i, j such that
fi = f ′j , and [loi, uoi + usi − 1] ∩ [l′oj , u

′
oj + u′sj − 1] 6= ∅.

These overlap tests can be used when checking for possible data
dependencies in the PDG-based slicing.

if M1 \M2 M1 ∪M2 M1 ∩M2

f1 6= f2 {M1} {M1,M2} ∅
(lo2>sup1∨lo1>sup2) {M1} {M1,M2} ∅

∧ f1 = f2
lo1 ≤ lo2 ≤ sup1 ∧ {M3} {M4} {M7}

sup2 ≥ sup1 ∧ f1 = f2
lo1 ≤ lo2 ≤ sup1 ∧ {M3,M5} {M4} {M2}

sup1 ≥ sup2 ∧ f1 = f2
lo2 ≤ lo1 ≤ sup2 ∧ {M5} {M6} {M8}
sup2 ≤ sup1 ∧ f1 = f2
lo2 ≤ lo1 ≤ sup2 ∧ ∅ {M6} {M1}
sup1 ≤ sup2 ∧ f1 = f2

Table 1: Abstract operations of two memory accesses M1 ≡
(f1, [lo1, uo1], [ls1, us1]) and M2 ≡ (f2, [lo2, uo2], [ls2, us2]).
Let

(i)M3 ≡ (f1, [lo1, lo1], [lo2−lo1, lo2−lo1])
(ii)M4 ≡ (f1, [lo1,max(supmax−smax+1, lo1)], [smin, smax])
(iii)M5 ≡ (f1, [sup2 + 1, sup2 + 1], [supmax−sup2, supmax−sup2])
(iv)M6 ≡ (f1, [lo2,max(supmax−smax+1, lo2)], [smin, smax])
(vi)M7 ≡ (f1, [lomax , lomax ], [supmin−lomax , supmin−lomax ])
(vii)M8 ≡ (f1, [lo1, lo1], [sup2−lo1, sup2−lo1])

where sup1=uo1+us1−1, sup2=uo2+us2−1, lomax=max(lo1, lo2)
supmin=min(sup1, sup2), supmax=max(sup1, sup2), smin=
min(ls1, ls2), and smax=max(us1, us2)

Set operations for the abstract domains above can be built on
top of the operations on F × Int × Int that are defined in Table 1.
For instance, if S1, S2 ∈ P(F × Int × Int) then S1 \ S2 =⋃

M2∈S2

⋃
M1∈S1

M1 \M2. Other set operations can be computed
accordingly. However, for P(F)× Int× Int, the conditions f1 =
f2 and f1 6= f2 should be replaced by F1 ∩F2 6= ∅ and F1 ∩F2 =
∅, respectively, in the definitions in Table 1.

5.4 Producing Executable Slices
Low-level code often contains jump or goto statements. The SLV-
based slicing algorithm introduced in the previous sections does
not include these statements in the slice, as it is based on a CFG
model where the nodes are conditions and assignments, and jumps
are implicitly represented as edges. Also if explicit goto nodes are
present in the CFG they will typically not be included by a data-
dependence based slicing, since they do not perform any reads or
writes.

If gotos are not properly included, then that might change the
semantics of the slice. Informally the semantics of the slice should
be such that the same values are computed for the variables in the
slicing criterion, at the respective program points, as in the original
program. So, for instance, if the slicing criterion is within a loop
then the loop structure will typically have to be preserved even if
most of the loop is sliced away.

An example is shown in Fig. 4a, where the slicing criterion is
the variable x at L3 and the boxed statements constitute the slice.
In this example, the slicing criterion is located within a loop where
x is incremented for each iteration. In the computed slice the loop
structure is removed, and x will only be incremented once. This
is clearly not the original semantics for the slicing criterion. To
restore this semantics, the statements goto L1 and goto L3 must
be included to form the loop structure anew.

Fig. 4b gives another example, with slicing criterion x at L2.
Here the order of executing the statements can be garbled if the
proper goto statements are not preserved in the slice. In the original
program x will be incremented if c is true and decremented if
c is false, but if no gotos are included then x will always be
incremented.
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L1: if(c) goto L3;

else { y := y+1;
goto L2;}

L2: update(c); goto L1;

L3: x := x+1;

if(P) goto L1;

(a)

if(c) goto L1;

y:=-1 ;

goto L2;

L1: y:=1 ;

L2: x:=x+y

(b)

Figure 4: Illustrating the importance of preserving (a) loop struc-
ture, and (b) flow order in the sliced program

Thus, in order to preserve the loop structure and the flow order
in the sliced program, it is important to include the relevant goto
statements and (when relevant) their associated control predicates.
Also, at the same time we would like to keep the sliced program
minimal. In particular, our assumption is that it is sufficient to
include the following nodes from the CFG of the given program
into the sliced program that preserves the loop structure and flow
order:

• We include all strongly live goto nodes according to the defini-
tion 5.3 below
• We include all control structures that become live due to

strongly live goto nodes.

In order to define strongly live goto nodes, we borrow the
concept of lexical successor tree.

Definition 5.1 (Lexical Successor Tree [2]). Two statements s and
s′ in the program code constitute a parent node and its immediate
successor node respectively in the lexical successor tree if during
the execution of the program, whenever control reaches s′, then
replacing s′ by skip yields a program flow to s.

Note that in the presence of unstructured code, the CFG rep-
resentation loses the information of whether two statements in the
program code are consecutive or not. We can retrieve such informa-
tion by using the lexical successor tree which can be constructed in
a purely syntax directed manner [2]. Given a set of nodes S in the
lexical successor tree T , two nodes n1, nk are immediate succes-
sors with respect to S if there is a path n1, n2, · · · , nk in T and
S ∩ {n2, · · · , nk−1} = ∅, and we say that (n1, nk) ∈ TS . If
(n1, nk) 6∈ TS , we say that n1, nk are non-lexically adjacent.

Given the CFG (N,F low) and the set of nodes S ⊆ N that
does not include any goto nodes, an edge is considered live accord-
ing to the following definition.

Definition 5.2 (Live Edges [21]). Given a set of nodes S in the
CFG (N,F low), an edge from a branch node b ∈ N to its non-
syntactic successor (e.g. the first statement in the else block of an
if-then-else) is live only if b ∈ S. All other CFG edges are always
live.

A goto node g is considered strongly live with respect to the
given set S according to the following definition.

Definition 5.3 (Strongly Live Goto Node). A goto node g ∈ N
becomes live with respect to S, if (1) there exists a node in S that
is reachable from g by traversing live edges containing at least one
non-lexically adjacent edge, and (2a) g is reachable from any node
in S by traversing live edges or (2b) g is the descendant of a node
reachable via live edges that does not have any lexical predecessor.

The PDG based slicing algorithm can be adapted according to
the ‘Strong, syntax-preserving, Ottenstein-more” slicing algorithm

in [21] in order to preserve the termination behaviour and flow-
order. Our SLV-based slicing Algorithm 1 can be extended to pro-
duce similar slices as follows:

1. First, two boolean variables Live[n] and NonLex [n] is main-
tained for each node n in the CFG. These two variables rep-
resent whether the node n is reachable and non-lexically adja-
cent by at least one edge respectively from any node in S by
traversing backward live edges. Initially, Live[n] = yes for all
n ∈ Nslice and no otherwise, and NonLex [n] = no for all n in
the CFG. An auxiliary workset W ′ is also maintained which is
initially empty and the iteration of algorithm 1 terminates when
W ∪ W ′ = ∅. A lexical successor tree T is maintained that
contains all the successor relations.

2. Next, for each node n in the CFG, a set G[n] is maintained
which contains the potential goto nodes to be included in the
slice if n is included in the slice as it meets the condition (2a)
of Definition 5.3. Initially all G[n] are empty.

3. During the iteration of the algorithm, for any (n, n′, CFG) ∈
W , Live[n′] is updated according to the following equation:

Live[n′] =

 yes if Live[n] = yes ∧ (n, n′) ∈ F
is live w.r.t Nslice

no otherwise

NonLex [n′] is updated as follows:

NonLex [n′] =

 yes if (NonLex [n] = yes ∨ (n′, n)
6∈ TNslice) ∧ n′ 6∈ Nslice

no otherwise

4. For any (n, n′, CFG) ∈ W , if Live[n′] ∧ NonLex [n′] =
yes and n′ is a goto node, it is a potential goto node to be
included in the slice as it meets the condition (1) of definition
5.3. So, we update G[n′] = G[n′] ∪ G[n] ∪ {n}. If n′ is
not a control-predicate and (n, n′) ∈ F is live w.r.t Nslice,
G[n′] = G[n′] ∪ G[n]; G[n′] is unchanged in all other cases.
If Live[n′] ∧ NonLex [n′] = no, W ′ is updated by W ′ =
W ′ ∪ {(n, n′, CFG)}.

5. During the iteration of Algorithm 1, if n ∈ Nslice and G[n]
is not empty, add all the goto nodes in G[n] to the slice as it
meets condition (2a) of definition 5.3. Any conditional node
n is also included in the slice if G[n] is not empty and there
exists n′ ∈ G[n] which is already included in the slice as the
conditional structure controls a live goto node included in the
slice.

6. At the end of the iteration, check for any node n such that G[n]
is not empty and it does not have any lexical predecessor node.
Add n and all n′ ∈ G[n] into the slice (as condition (2b) of
definition on 5.3 is satisfied).

In order to prove the correctness (as defined in [29]) of the above
sketch, it needs to be proved that (i) Definition 5.3 of strongly live
goto nodes has semantic effect (Definition 0 in [29]) on Nslice , and
(ii) any goto node other than the strongly live goto nodes in the
program does not have any semantic effect on Nslice . Intuitively,
any strongly live goto node with respect to Nslice causes program
flow to a node in Nslice and thus have a semantic effect on Nslice

if it is removed from the sliced program. Furthermore, removing
lexically adjacent strongly live goto nodes keep Nslice minimal. We
leave the proof of correctness of the above sketch as future work.

6. Experimental Evaluation
We have implemented the the SLV-based and the PDG-based slic-
ing in SWEET, and run them on a number of benchmark programs
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PBV PPDG PSLV

Benchmarks NCFG NBV TBV NPDG TPDG NSLV TSLV

loop 39 26 2 26 67 26 35
expint∗ 139 59 0 51 1 51 1
cnt 145 55 0 21 0 21 0
bmp 161 105 3 40 4 40 4
edn∗ 639 455 1 56 4 56 3
edn2 1391 1300 19 24 39 24 14
fir 1569 800 1 48 6 48 5
nsichneu 1860 5 6 4 19 4 4
esab mod 2349 817 2 802 57 802 54
bmp2 3725 3273 348 41 306 41 16
arrayloop 12044 12029 14 33 33 33 27

Table 2: Comparison among three slicing algorithms. N represents
number of nodes, and T represents time measured in seconds.
Examples marked with ∗ are generated from ARM7 binaries.

obtained mostly from the Mälardalen WCET benchmark suite [18].
The original benchmark programs are written in C, and have been
transformed into ALF for subsequent analysis by SWEET. In or-
der to evaluate the effectiveness of our analysis for low-level code
we have first compiled some benchmarks into ARM7 binaries (ob-
tained by the GCC ARM7 compiler version 4.6.1), and translated
the resulting binaries into ALF. Other benchmarks have been ma-
nipulated in order to make the memory model more low-level, by
putting several variables into the same struct or array. Since the
ALF translator that we have used then generates a single frame for
them, the data dependence analysis will have to decide offsets and
sizes of memory accesses to resolve the dependencies as described
in Section 5.3. All experiments have been performed on a 1.7 GHz
Intel Core i7 processor with 8GB RAM.

The current implementation of the SLV-based slicing algorithm
is interprocedural, and several of the benchmark codes contain
function calls. However, none of the optimization described in Sec-
tion 4.1 are implemented in the current version. The data depen-
dency analysis is based on abstract operations over the interval
domain as described in Section 5. So, each element in the SLV
sets as well as the gen and kill sets contains the memory access
triples (f, o, s) where o and s are intervals. Two versions of the
PDG-based slicing have been implemented in SWEET. They dif-
fer in the RD analysis for computing the data dependencies: both
use bit vectors to represent the RD sets, but the first implementation
only distinguishes frames whereas the second also considers offsets
and possible overlaps within frames as described in Section 5.3.
The first version is thus less precise but faster, whereas the second
should compute the same slices as our SLV-based algorithm. The
control dependencies are computed using post-dominators. All the
analyses use Steensgard’s points-to analysis [41] for checking pos-
sible memory aliasing between frames. No further optimizations
are implemented in any of the slicing algorithms, and none of them
implement the generation of executable code (the computed slices
are sets of nodes in the CFG).

Table 2 compares the results of the three slicing algorithms: the
PDG-based slicing algorithm that operates on frame level, PBV ,
the PDG-based slicing that also considers offsets and possible over-
laps within frames, PPDG, and the SLV-based slicing algorithm,
PSLV . The slicing criteria have in all runs been either the loop con-
ditions or the conditional statements. These are typically the slic-
ing criteria used when slicing is performed in the context of WCET
analysis [13, 40], which is our primary client application of slicing.
Note that the optimizations described in Section 3.3 have not been
applied even though we used loop conditions or conditional state-

ments as slicing criterion. So, our experimental results should not
be biased to this kind of slicing criterion.

The algorithms have been run on the example programs several
times, with the same slicing criteria, and the running times have
been averaged and rounded afterwards. NCFG is the number of
nodes in the CFG of the analysed ALF program. NBV , NPDG and
NSLV stand for the number of nodes in the sliced programs ob-
tained from the PBV , PPDG, and PSLV slicing algorithms respec-
tively. TBV , TPDG, and TSLV are the running times, measured
in seconds, of the corresponding algorithms. Note that there is a
small variation in the number of nodes in the slices obtained for
PSLV and PPDG. This is due to the fact that the slices computed
by PSLV consist of CFG nodes whereas those computed by PPDG

consist of PDG nodes. The call site nodes in the CFG and PDG
in SWEET have slightly different representations, which yields the
difference. When this discrepancy is compensated for, the number
of nodes in the slices are the same for the two algorithms for all
benchmarks and the slices indeed represent the same code in all
cases, as expected. It is the “cleaned” number of nodes that is given
in Table 2.

It can be observed from the above table that NBV ≥ NPDG

and NBV ≥ NSLV for all benchmark programs. This illustrates
that PBV is much less precise than PSLV for slicing the low-level
code. Sometimes, this loss of precision by the PBV algorithm is
very significant compared to the other two algorithms. For example,
in the edn2 benchmark, the number of nodes in the slice computed
by PBV is 1391 compared to 24 nodes by PSLV . This result is
obvious as PBV is loosing a lot of precision in computing the
SDG. This is due to the fact that if a statement writes in a frame
and another statement reads from the same frame but from another
location, PBV considers that they are data dependent which is not
necessarily the case.

Regarding the execution time of the slicing algorithms, TSLV ≤
TPDG in all examples. Thus, PSLV is faster than PPDG for com-
puting a single slice for these benchmark codes. This is because the
construction of the SDG in PPDG is slower compared to running
a single SLV analysis. For small examples, the timing difference is
not significant. However, for large examples like bmp2 the differ-
ence in execution time is large: for instance, PSLV takes 16 sec-
onds whereas PPDG takes approximately 5 minutes for the bmp2
program. This indicates that PSLV scales better than PPDG when
computing single slices.

PBV is faster than PPDG or PSLV in almost all examples as
it does not require the value analysis to resolve data dependencies
within frames. But this speed advantage comes at the cost of seri-
ously deteriorated precision in the computed slices.

7. Related Work
Since the seminal work of Weiser [44, 46], there has been much
work on different kinds of program slicing. Different approaches
to slicing include static [35, 44, 46], quasi-static [43], condi-
tioned [10], dynamic [28], and amorphous [20] slicing, of which
static slicing techniques are the ones that are most comparable to
our approaches. Solving the dataflow equations, the reachability
problem in a dependence graph, and using information-flow rela-
tions are the most dominant static slicing approaches found in the
literature. Our SLV-based slicing technique is similar to the ap-
proach of Weiser [22, 44, 46] and Lyle [33]. The computational
complexity of Weiser’s approach for the intraprocedural slicing is
O(v × |(N + Flow)|) [42] which is higher than our intraproce-
dural SLV-based slicing algorithm. Our contemporary work [27]
also uses the SLV analysis to do slicing on the fly, but it is based
on a different way to solve the data flow equations that works on
well-structured intraprocedural code.
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Ottenstein and Ottenstein [35] proposed that program slicing
can be viewed as a reachability problem on the program depen-
dence graph. Following this work, reachability-based slicing tech-
niques that work on PDGs or variants of them have been used by
many researchers [6, 23–25, 39]. The emphasis of these works have
been on properties such as precision, complexity, applicability, and
scalability. All these approaches compute all the dependencies of
the given program before the slicing, which is good when the same
code is sliced many times (since the cost for computing the depen-
dencies then can be amortized over the slices). There have been
several empirical studies and survey papers [7, 8, 42, 48] that com-
pare the reachability-based slicing techniques. Unstructured pro-
gram slicing was considered by Ball and Horwitz [4], Choi and
Ferrante [11], Agrawal [2], Kumar and Horwitz [29]: all these tech-
niques are based on the PDG or its variants. The approaches of
Lyle [33], Gallagher and Lyle [15], and Jiang et al. [26] are based
on solving dataflow equations, and the solutions are either conser-
vative or incorrect. We are not aware of many efforts for slicing
low-level code except CodeSurfer/x86 [3]. CodeSurfer/x86 imple-
ments the PDG-based slicing on x86 executables, and data depen-
dencies among memory accesses are computed using a value-set
analysis (“VSA”) which is based on congruences and intervals. Our
approach to slicing of low-level code uses a simpler value analysis
(intervals) but attempts to use information about the ALF frames
to increase the precision. This is somewhat comparable to using
debug information from a compiler.

8. Conclusion and Future Work
Program slicing extracts the program parts that can possibly affect
certain slicing criteria. In this paper, we have developed a light-
weight interprocedural slicing technique that performs better when
few slices of a given program are required. We perform slicing
on-the-fly during a variant of the SLV data flow analysis on the
CFG representation, and thus we avoid computing an explicit data
dependence graph. Our slicing technique handles low-level code
using abstract interpretation based value analysis, and we also show
how it can be extended to produce executable slices. Comparing
our approach with PDG based slicing, we obtain exactly the same
accuracy as in PDG-based slicing on a set of benchmark codes and
our algorithm is at least as fast, and sometimes much faster, than the
PDG-based algorithm on this set of benchmark codes. Our results
indicate that our algorithm scales better since we obtain the largest
speedups for larger benchmark codes.

Future works include implementing all the features of SLV-
based slicing that have been described here, and make an empir-
ical evaluation in order to compare our approach with other slic-
ing approaches over a set of larger programs. We would like to
know about the program patterns for which the SLV-based slicing
performs better. For example, when slicing the same code many
times, with different slicing criteria then we would like to know the
break-even point where SLV-based slicing gets worse than PDG-
based slicing. We would also like to implement various optimiza-
tion techniques in order to improve the performance of SLV-based
slicing. For example, the performance of the slicing can most likely
be improved by a judicious choice of iteration order [34].
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