
Cost Optimisation in Certification

of Software Product Lines

Ricardo J. Rodrı́guez
Babel Group, DLSIIS, ETSINF

Universidad Politécnica de Madrid

Research Institute of Applied Sciences in Cybersecurity

University of León, Spain

Email: rj.rodriguez@unileon.es

Sasikumar Punnekkat
School of Innovation, Design and Engineering

Mälardalen University, 721 23 Västerås, Sweden

Email: sasikumar.punnekkat@mdh.se

Abstract—Safety-critical systems (such as those in automotive,
avionics, railway domains), where a failure can result in accidents
with fatal consequences, need to certify their products as per
domain-specific safety standards. Safety certification is not only
time consuming but also consumes the project budget. Adopting
a reuse oriented development and certification paradigm can be
highly beneficial in such systems. Though there had been several
research efforts on cost models in the context of software reuse
as well as software product lines, none of them have addressed
the certification related costs.

In this paper, we present a cost model for software product
lines, which incorporates certification costs as well. We first pro-
pose a mathematical model to represent a Software Product Line
and then present an approach to compute, using optimisation
theory, the set of artifacts that compose a new product assuring
an expected level of confidence (that is, a certain Safety Integrity
Level) at an optimised cost level. The proposed approach can help
developers and software project managers in making efficient
design decisions in relation to the choice of the components for
a new product variant development as part of a product line.

Keywords—software product lines, cost model,safety certifica-
tion, certification costs, integer programming

I. INTRODUCTION

Software Product Line Engineering (SPLE) is becoming
a widely adopted approach to develop software-intensive sys-
tems using platforms and mass customisation [1]. A platform
(also called core asset base) defines a collection of artifacts
that can be reused across a company portfolio. The differences
between product platforms are usually expressed in terms of
features, where a set of features are seen as the specification
of a product variant, i.e., a particular member of the product
line. One of the benefits of SPLE is the reuse of software
components as much as possible, thus saving production costs.
This is specially important in industrial domains such as au-
tomotive industry, where software has become the key enabler
for innovations [2]. For instance, the software development
costs were estimated to reach 13% of the production cost of
a vehicle in 2010 [2].

An SPLE approach can also be adopted in safety-critical
systems, where a failure can result in accidents with fatal
consequences [3]–[5]. Furthermore, engineers developing these
systems (industrial, automotive or avionics domains, among
others) need to perform safety certification of their products
before they are used, produced or sold. Safety certification

process is not only time consuming but also substantially
increases the overall development cost [6]. However, the
adoption of SPLE for safety-critical systems can rise several
challenges [7], and cost optimisation might be considered as a
non-essential issue in advance. Reuse of the already developed
software components together with the reuse of the associated
parts of the safety evidences and argument fragments in the
construction of a new safety case is considered as a potential
approach for cost savings and is being addressed by several
EU-funded projects such as SafeCer [8].

In this paper, we introduce a cost model for Software
Product Lines that addresses the certification aspects as well.
Specifically, we propose a mathematical model to represent
a Software Product Line as well as a heuristic strategy to
compute, using optimisation theory, the platform members that
compose a new product variant assuring an expected level of
confidence (that is, a certain Safety Integrity Level (SIL) [9]).
This approach can help to make efficient design decisions in
relation to the choice of the components for a new product
variant development as part of a product line.

The main contributions in this paper are: 1) a mathematical
model for represnting a software product line, 2) an extended
cost model for Software Product Lines that takes certification
into account, based on the cost model given in [10], and
3) an approach to compute, using optimisation theory, the
set of artifacts for a given product portfolio that compose a
new product variant with an expected confidence level at a
minimum cost.

The outline of this paper is as follows. Section II reviews
related works. Section III introduces a cost model that accounts
for certification, taking as basis the model given in [10],
and a formal definition of a Software Product Line (SPL).
Then, Section IV proposes a heuristic strategy to minimise
the cost of creating a new product variant in a given SPL
using optimisation theory, and evaluates its performance under
different scenarios. Section V concludes the paper and briefly
states the future work.

II. RELATED WORK

Software reuse allows to improve the software quality at a
lower cost. A wide review of cost models for software reuse
and reusability can be found in [11], [12]. Software cost esti-
mation models are mainly categorised in three categories [13]:

Expert judgment models, that consider experience and knowl-
edge of one or more experts; algorithmic (or parametric)
models, which use input parameters to cost estimation; and
machine learning approaches, which approximate accurately
cost generalising the obtained knowledge and dynamically
adjusting to the conditions under study.

In this work, we focus on parametric cost models, such as
SLIM [14], [15], COCOMO-II [16], FPA [17] or SEEM-SEM
(System Evaluation and Estimation of Resources - Software
Estimation Model). They normally rely on a wide range of
project attributes to estimate project costs, such as the develop-
ment effort, complexity, or experience, among others. Namely,
COCOMO-II [16] is an open model that states an equation
involving development for reuse, multistage development, risk
plans and team cohesion [18]. However, certification issue
is not considered. Similarly, other non-open model such as
SLIM [14], [15] considers several parameters, as the one
commented before, but lacks certification aspects. Any of the
above cost models could easily add certification issue as one
more factor into its cost estimation equation. However, they
finally estimate the effort, schedule and costs of a software
project in an algorithmical way, but without considering the
best suitable options to minimise cost.

Other cost estimation models have been also proposed in
Software Product Lines [10], [19], although safety certification
is neither considered. It is worth mentioning the above models
do not consider certification cost issues as they were not
initially planned for safety-critical systems. In theory, they
could also be extended to contemplate these issues. In this
paper, we revise the latter model provided by Bockle et al. and
refine it by taking product variant certification into account.

Regarding optimisation in SPL, it is worth mentioning
the work by Oleachea et al. [20] where a tool based on
Alloy language is presented that performs exact, discrete multi-
objective optimization in the context of variability models.
To the best of our knowledge, no prior works deal with
cost optimisation in cost estimation models for SPL. In this
paper, we also provide an algorithm to optimise the cost of
adding a new product to a company portfolio considering also
certification issues.

III. A COST MODEL FOR CERTIFICATION

In this section, we firstly define an SPL in a formal way,
which will be later used to mathematically express the cost
optimisation problem in an SPL, and then refine the Bockle et
al.’s cost model [10] for a family of n products in a Software
Product Line (SPL) by considering safety certification.

A. Software Product Line Definition

Definition 1: A Software Product Line (SPL) is a tuple
S = 〈X ,P ,F ,R, E ,D〉, where:

• X = {x1, x2 . . . , xn} is the set of components in the
SPL;

• P = {p1, p2 . . . , pm} is the set of product variants in
the SPL;

• F = {f1, f2 . . . , fu} is the set of features available in
the SPL;

• R : P × F → {0, 1} relates the set of features
provided by a product.

• E : F×X → {0, 1} relates the set of components that
provide a feature. That is, all components that has a
value of 1 for a given feature f are interchangeable,
i.e. x, x′ ∈ X , E(f, x) = E(f, x′) = 1 means that we
can pick either x or x′ to provide the feature f .

• D : X × X → {0, 1} defines the dependencies
among the components. Note that when a component
xi depends of some other xj , then xj (or its depen-
dencies) cannot depend of other component xk such
that D(xi, xk) = 1. Otherwise, a cyclic dependency
will arise.

For convenience, in the sequel we denote R, E ,D, in
matrix form, i.e., R ∈ {0, 1}|P|×|F|, E ∈ {0, 1}|F|×|X |,D ∈
{0, 1}|X |×|X |.

B. A Certification Cost Model

The Bockle et al.’s cost model [10] states the cost of
establishing an SPL with n product variants in an organization
as:

C = Corg + Ccab +

n
∑

i=1

(Cunique(pi) + Creuse(pi)) (1)

where Corg is the cost to an organization for adopting the
software product line approach for its set of products; Ccab is
the cost to develop a core asset base to support the product line
being adopted; Cunique is the cost to develop unique software
for a new artifact pi; and Creuse is the cost to reuse a core
asset pi.

A safety-critical system typically has a set of mandatory
safety requirements that needs to be fulfilled to assure a certain
level of safety. Safety requirements are usually specified by
industrial standards, such as IEC 61508 [9], ISO 26262 [21]
or DO-178C [22] in the industrial equipment, road vehicles
or avionics domains, respectively. A system is said to be
safety-certified (or just certified) when it fulfils the safety
requirements enforced by a safety-related standard.

Consider a company where an SPL has been adopted and
develops a set of products for safety-critical systems that needs
to be certified. Note that certification of a product pi, composed
by a set of components {x1, . . . , xm}, implies the certification
of each one of its components xi, 1 ≤ i ≤ m. In safety-critical
systems, the safety standards typically specifies multiple levels
of safety performance for a safety related function, which are
termed as Safety Integrity Level (SIL) [9]. Though different
standards name them by numbers or alphabets etc, we could as
well assume them to be a non-zero integer and are attributable
to a component that implements the concerned safety function.
The SIL specifies a target level of risk reduction, and in a
safety-critical system forces the minimum SIL required by its
components (or product variants) and sub-components. That
is, a component xi that depends of a set of other components
and has a SIL of 2 enforces all dependent components to have
a SIL level greater than or equal to 2.

Therefore, Definition (1) of an SPL can then be redefined
in the context of safety-critical systems by considering the
initial SIL of each component, i.e., by adding a vector I to
previous definition, where I : X → [1, SILmax] is a vector
that assigns a SIL to each component in the SPL, and SILmax

is the maximum achievable SIL in the system. Unfortunately,
certification process does not come at zero cost. A product
variant pi that is initially certified (Ccert) can also needs to
be re-certified in a different context, which of course adds an
extra cost (Crecert). Thus, we define a function cost Crecert :
X ×I → c, c ∈ R

+
≥0, that assigns a cost c ≥ 0 of re-certifying

to a given safety integrity level s for a component x, and
a cost Cother : X → c, c ∈ R

+
>0, that considers the other

cost of a component, such as cost of reuse and cost of unique
development. If a component xi cannot achieve a certain s
SIL, its cost of re-certification to that level is set to zero, i.e.
Crecert(xi, s) = 0. Considering all this, Equation (1) can be
refined as follows:

C′ = Corg + Ccab +
∑

p′∈P′

Ccert(p
′)+

n
∑

i=1

(Cunique(pi) + Creuse(pi) + Crecert(pi, s
′))

(2)

where P ′ ⊆ P is the set of products that needs to be initially
certified to a given SIL, and Crecert(pi, s

′) is the cost of re-
certification of a product pi to an s′ level.

The recertification cost Crecert(pi, s
′) of a product pi

to a s′ level is indeed equal to the cost of recertification
of each component that composes the product pi, and
its subcomponents, to s′ level, i.e. Crecert(pi, s

′) =

∑

x∈X ′

i

Crecert(x, s
′) +

∑

∀x′∈D(x,x′)=1

Crecert(x
′, s′)

, where

X ′
i = {x|x ∈ X ∧ f ∈ F ,R(pi, f) = 1 ⇒ E(f, x) = 1} for a

given pi.

In the sequel, we develop a heuristic strategy to solve, in a
given scenario and considering the terms of Equation (2), the
best set of components that minimises the cost of developing
a new product variant in an SPL.

IV. A COST OPTIMISATION PROBLEM FOR

CERTIFICATION

Algorithm 1 shows our heuristic strategy to minimise the
cost of adding a new product variant to an SPL. As input,
it needs the SPL S, as previously defined in Section III, the
vector I that assigns a SIL level to each current component, the
cost functions Cother and Crecert, the expected SIL of the new
product variant SILnew and the set of features F ′ ⊆ F that
must be provided by such a new product variant. As output, it
provides the set of eligible components Z that minimise the
cost. Note that Z can be empty, which means that with the
current configuration there is no possible solution.

Step 1 computes the number of components that can be
recertified as the non-null elements contained in Crecert. Steps
2 – 5 properly initialise the variables used by the heuristic
algorithm, such as a copy of matrix D, X , I and the vector

Figure 1. Component dependencies (and SIL) and features of the hypothetical
example.

of costs C′, which is later used as optimization function.Steps
6 – 12 iterates for each component x in the SPL S that can
be certified to a level s, and it has not yet been processed.
First, a temporary path is created by recursively iterating over
the dependencies of x until all non-dependent components are
reached, checking whether subcomponents can reach an SIL
≥ s. Otherwise, the path is not valid. Recall that a component
xi that depends of a set of other components enforces all its
dependencies to have an SIL greater than or equal to the level
of xi. When such a path is possible, these updated components
are added to the set of components X ′, setting its SIL level
properly and marking the tuples (x, s) as processed (step 8).
The costs of re-certifying these new components are summed
up to the cost of each old component x (step 9). Lastly, steps 10
and 11 set the features provided by the new components as the
old components, and the same with component dependencies.
After that, step 13 adjusts the diagonal elements of D′ for
each component as the negated sum of dependencies, i.e.

∀x ∈ D′, D′(x, x) = −
∑

x′ 6=x

D′(x, x′). Step 14 computes the

set of components A that minimises the cost as solution of
the BIP problem (3). The first constraint relates the set of
features that must be provided by the selected components. The
second constraint relates the component dependencies, while
the third constraint assures that the selected components have
a SIL greater than the given one as input parameter. The last
constraint restricts the values of components to binary values
(that is, selected or not selected). Finally, the set of selected
components is created (step 15).

Let us remark that the BIP problem (3) enables to compute
a solution under two different scenarios: Either for adding
a new product variant, or either for re-certifying an existing
product variant in the SPL to a higher SIL. In both scenarios,
the selected components that minimise the cost are computed
by solving the BIP problem (3).

We illustrate the applicability of Algorithm 1 by an hypo-
thetical example under both scenarios. Consider a small com-

Input: S = 〈X ,P ,F ,R, E ,D〉, I, Cother, Crecert, SILnew,F
′

Output: Z

1 Get the number of elements n that can be re-certified as the number of non-null elements of Crecert
2 Create a matrix D′ = 0|X |+n,|X |+n, and ∀x, x′ ∈ X ,D′(x, x′) = D(x, x′)
3 Create a vector X ′ = X
4 Create a vector I ′ = 0|X |+n, and ∀x ∈ X , I ′(x) = I(x)
5 Create a vector C′ = {0}n, and ∀x ∈ X , C′(x) = Cother(x)
6 foreach (x, s) ∈ Crecert, Crecert(x, s) 6= 0 and (x, s) not yet processed do
7 Create a temporary path P ′ by recursively iterating over the dependencies of x until all components without

dependencies are reached, checking whether subcomponents can reach a SIL ≥ s
8 When such a path is possible, add these new components to X ′, and set its SIL level properly marking each (x, s) as

processed
9 Add the cost of re-certifying each one of these components x′ to s level, i.e. C′(x′) = C′(x) + Crecert(x, s)

10 Set the features provided by each one of these upgraded components as the not upgraded components
11 Set the dependencies of each one of these upgraded components as the not upgraded components
12 end
13 For each component, set the diagonal elements of D′ equal to the number of dependent elements, i.e.

∀x ∈ X ′, D′(x, x) = −
∑

x′ 6=x

D′(x, x′).

14 Compute A as solution to the following Binary Integer Programming problem:

A = minimize C′ · X ′⊤

subject to E · X ′⊤ = 1

D′ · X ′⊤ ≥ 0

(E · I ′) · X ′⊤ ≥ 1 · SILnew

x ∈ {0, 1}, ∀x ∈ X ′

(3)

where E ′ ⊆ E , ∀f ∈ F ′, E ′(f, :) = E(f, :)
15 Create the set of selected components Z = {x ∈ X ′,A(x) = 1}

Algorithm 1: A strategy to minimise the cost of a new product variant in an SPL.

pany in the road vehicle domain that builds vehicle equipments
(such as seat belt fasteners, buckles, or airbags) and where an
SPL has been recently adopted. Assume that this SPL has a
total of |X | = 10 components. For the sake of simplicity, let
us focus in one product, e.g. an airbag equipment. Suppose
that in accordance with a new safety state legislation, a new
airbag equipment must be built, with a Safety Integrity Level
(SIL) of 3. Let the airbag equipment be composed of three
features, i.e., R = {1, 1, 1}, and F = {f1, f2, f3}, and the

matrix E =

(

1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0

)

, that is, f1

is provided either by x1 or x3, f2 is only provided by x2 and
f3 is either provided by x4 or x7 components.

The dependencies in such an SPL between a component xi

and xj , textually represented as xi → xj , are the following:
x1 → x4;x2 → x8;x3 → x6;x4 → x5;x5 → {x8, x9};x6 →
x7, x8, x10. Figure 1 (left-hand side) shows the component
dependencies, with its SIL, and features of this hypothetical
example.

Lastly, let us suppose that the initial SIL
level is I = {3, 3, 2, 3, 3, 2, 2, 3, 3, 3}, and the
cost of reuse and the cost of unique development
for the components is Cother = {$1500, $1000,
$1000, $1200, $1200, $900, $750, $1500, $1350, $1000}.

Let us firstly consider the first scenario, where given the
SPL S and the rest of input parameters as described above, re-

certification is not possible. Suppose first a desired SIL in the
new product variant as the minimum, i.e., SILnew = 1. The
solution provided by Algorithm 1 is {x2, x3, x6, x7, x8, x10},
having a cost of $6150. Thus, functionality f1 is provided
by x3, f2 by x2 and f3 by x7. The rest of components
appear by dependencies among them. Suppose now that the
desired SIL level is SILnew = 3. In such a case, the
solution is {x1, x2, x4, x5, x8, x9} with a cost of $7750, being
the functionalities f1, f2 and f3 provided by x1, x2 and x4,
respectively.

Let us now consider the second scenario, where re-
certification is possible. In the above scenario description, we
have the chance to recertificate x3, x6, x7 components upto
SIL 3 at the same cost (for the sake of simplicity), i.e.,
C(x3, 3) = C(x6, 3) = C(x7, 3) = 200. The new components
certified to SIL 3 are termed as x′

3, x
′
6, x

′
7. Figure 1 (right-

hand side) shows these new components and its relationships
with the others. As it can be seen, a temporary path has
been properly achieved, and then such new components are
considered as valid. In the second scenario, the solution
provided by Algorithm 1 is {x2, x

′
3, x

′
6, x

′
7, x8, x10}, having

a cost of $6750. Thus, functionality f1 is provided by x′
3, the

old component x3 re-certified to 3 SIL, f2 by x2 and f3 by
x′
7, the old component x7 re-certified to 3 SIL. As before, the

other components appear by dependencies among them.

A. Performance Evaluation

Herein, we evaluate the performance of Algorithm 1 in
complex scenarios. Our main goal is to evaluate how the BIP
problem (3) performs in relation to the number of components
and the number of features.

A random generator of SPLs have been developed, follow-
ing the definition given in Section III-A. Both generator and
the Algorithm (1) have been implemented on MATLAB [23],
and experiments have been run in a machine with a 2GHz Intel
Core i7 processor and 8GB 1600MHz DDR3 RAM. MATLAB
uses a linear programming (LP)-based branch-and-bound algo-
rithm to solve binary integer programming problems. Recall
that integer programming is known to be NP-complete [24].

We have performed a sensitivity analysis of execution time
varying the number of features between 100 and 3000, with a
step of 100, and the number of components in the SPL between
100 and 500, with a step of 50. The number of components
implementing the same feature and the number of component
dependencies have been randomly selected between 1 and 10,
and between 1 and 20, respectively. We have measured a
total of 100 computations of the Algorithm 1 for each pair
of number of features and number of components, and then
computed the average execution time.

Figure 2 plots the average execution time (in seconds) of
the Algorithm 1 varying the number of components and the
number of features. The results show that for small number of
components, and independently of the number of features, the
execution time is relatively near to 0. However, the average
execution time rapidly increases with respect to the number
of components, reaching its maximum at the extreme point
(500 components with 3000 features). It can be seen that
the execution time of the BIP problem (3) clearly has a
strong dependence on the number of components, almost
independently on the number of features.

The results also show that execution time is relatively
small (less than 0.5 seconds in the experiments). Thus, our
approach can handle complex scenarios with a large number of
components with a good performance, being its running time
negligible compared to the time needed to gather the data. We
aim at developing a tool for making the gathering of data from
the user (i.e. description of an SPL) easier and more intuitive,
as well as providing the feedback in a more human-readable
way.

V. CONCLUSIONS

A Software Product Line (SPL) defines a set of artifacts
that can be reused across a company portfolio. The reuse of
software products allows to save production cost to companies.
An SPL approach can also be adopted in safety-critical systems
(such as those in automotive, avionics or railway domains) that
must also comply with safety standards. This safety certifica-
tion process is not only time consuming but also has expensive
production costs. In this paper, we introduce a cost model
for SPLs that addresses the certification aspects. Besides, we
also formally define an SPL and propose a heuristic strategy
that makes use of optimisation theory (i.e., a Binary Integer
Programming problem) to computes the set of artifacts in an
SPL that conforms a new product variant at an optimised

cost and assures a certain level of confidence (normally called
Safety Integrity Level, SIL).

Our cost model proposal takes certification cost of products
into account, unlike other cost models that can be found in
the literature. Our heuristic strategy offers a good trade-off
between accuracy and time complexity, and helps to make
efficient design decisions during development process in an
SPL for safety-critical systems. We have evaluated the per-
formance of our optimisation algorithm for cost optimisation
in a randomly generated SPL varying the number of features
and components, and results show that our approach is able to
converge in a reasonable time for large SPL systems, and the
execution time is clearly depending on the number of variables
to be optimised (i.e., the number of components). In fact,
execution time is negligible compared to the time needed to
gather the data in the formal definition that we propose.

To overcome the latter issue, as future work we aim at
developing a tool to collect data, solve the problem and report
an understandable feedback to the final users. We also aim
at evaluating our approach with real industrial case studies,
and at extending our proposal by eliminating the independence
assumption on SIL.

ACKNOWLEDGMENTS

This work was partially supported by ARTEMIS Joint Un-
dertaking nSafeCer Project under grant agreement no. 295373,
by the SSF funded Synopsis Project, and by the Spanish
National Institute of Information Technologies (INTECO) ac-
cordingly to the rule 19 of the Digital Confidence Plan (Digital
Agency of Spain) and the University of León under the
contract X43. Part of this work was done while Dr. Rodrı́guez
was a visiting researcher at Mälardalen University, Västerås
(Sweden).

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. Linden, Software Product Line Engineer-

ing: Foundations, Principles and Techniques. Springer, 2005.

[2] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of Software in Dis-
tributed Embedded Automotive Systems,” in Proceedings of the 4th
ACM International Conference on Embedded Software (EMSOFT).
New York, NY, USA: ACM, 2004, pp. 203–210.

[3] H. Koziolek, T. Goldschmidt, T. de Gooijer, D. Domis, and S. Sehest-
edt, “Experiences from Identifying Software Reuse Opportunities by
Domain Analysis,” in Proceedings of the 17th International Software

Product Line Conference (SPLC). New York, NY, USA: ACM, 2013,
pp. 208–217.

[4] C. Dumitrescu, R. Mazo, C. Salinesi, and A. Dauron, “Bridging the
Gap Between Product Lines and Systems Engineering: An Experience
in Variability Management for Automotive Model Based Systems
Engineering,” in Proceedings of the 17th International Software Product

Line Conference (SPLC). New York, NY, USA: ACM, 2013, pp. 254–
263.

[5] M. Schulze, J. Mauersberger, and D. Beuche, “Functional Safety and
Variability: Can It Be Brought Together?” in Proceedings of the 17th

International Software Product Line Conference (SPLC). New York,
NY, USA: ACM, 2013, pp. 236–243.

[6] S. Baumgart, J. Froberg, and S. Punnekkat, “Towards Efficient
Functional Safety Certification of Construction Machinery Using a
Component-Based Approach,” in 3rd International Workshop on Prod-
uct Line Approaches in Software Engineering (PLEASE), June 2012,
pp. 1–4.

100 150 200 250 300 350 400 450 500

100
500

1000
1500

2000
2500

3000
0

0.5

1

No. componentsNo. features

T
im

e
(s

ec
o
n
d
s)

Figure 2. Average execution time of the Algorithm (1) w.r.t. the number of features and components.

[7] M. Becker, S. Kemmann, and K. C. Shashidhar, “Integrating Software
Safety and Product Line Engineering using Formal Methods: Challenges
and Opportunities,” in Workshop Proceedings of the 14th International

Conference on Software Product Lines (SPLC). Lancaster University,
2010, pp. 129–136.

[8] SafeCer, “Safety Certification of Software-Intensive Systems with
Reusable Components, EU-Artemis JU funded project,” http://www.
safecer.eu.

[9] IEC 61508: Functional safety of electrical/electronic/programmable

electronic safety-related systems, International Electrotechnical Comis-
sion Std., 2010.

[10] G. Bockle, P. Clements, J. D. McGregor, D. Muthig, and K. Schmid,
“Calculating ROI for Software Product Lines,” IEEE Software, vol. 21,
no. 3, pp. 23–31, May 2004.

[11] W. Frakes and C. Terry, “Software Reuse: Metrics and Models,” ACM
Comput. Surv., vol. 28, no. 2, pp. 415–435, June 1996.

[12] A. Mili, S. Chmiel, R. Gottumukkala, and L. Zhang, “An Integrated
Cost Model for Software Reuse,” in International Conference on
Software Engineering, 2000, pp. 157–166.

[13] E. Papatheocharous, H. Papadopoulos, and A. S. Andreou, “Feature
Subset Selection for Software Cost Modelling and Estimation,” CoRR,
vol. abs/1210.1161, 2012.

[14] L. Putnam, “A General Empirical Solution to the Macro Software Sizing
and Estimating Problem,” IEEE Transactions on Software Engineering,
vol. SE-4, no. 4, pp. 345–361, July 1978.

[15] L. Putnam and W. Myers, Measures For Excellence: Reliable Software
On Time, Within Budget, ser. Yourdon Press Computing Series. Your-
don Press, 1992.

[16] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and

R. Selby, “Cost models for future software life cycle processes:
COCOMO 2.0,” Annals of Software Engineering, vol. 1, no. 1, pp.
57–94, 1995.

[17] A. Albrecht and J. E. Gaffney, “Software Function, Source Lines
of Code, and Development Effort Prediction: A Software Science
Validation,” IEEE Transactions on Software Engineering, vol. SE-9,
no. 6, pp. 639–648, November 1983.

[18] I. Sommerville, Software Engineering: Seventh Edition. Pearson
Education, 2004.

[19] B. Boehm, A. Brown, R. Madachy, and Y. Yang, “A Software Product
Line Life Cycle Cost Estimation Model,” in Proceedings of the Interna-
tional Symposium on Empirical Software Engineering (ISESE), August
2004, pp. 156–164.

[20] R. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside, “Modelling
and Multi-objective Optimization of Quality Attributes in Variability-
rich Software,” in Proceedings of the Fourth International Workshop

on Nonfunctional System Properties in Domain Specific Modeling
Languages (NFPinDSML). New York, NY, USA: ACM, 2012, pp.
2:1–2:6.

[21] ISO 26262: Road vehicles – Functional safety, International Organiza-
tion for Standardization Std., 2011.

[22] RTCA DO-178C. Software Considerations in Airborne Systems and

Equipment Certification, Radio Technical Commission for Aeronautics
Std., 2012.

[23] The MathWorks, “Matlab, http://www.mathworks.com/,” 2010, version
R2010a.

[24] R. Karp, “Reducibility among Combinatorial Problems,” in Complexity

of Computer Computations, ser. The IBM Research Symposia Series.
Springer US, 1972, pp. 85–103.

http://www.safecer.eu
http://www.safecer.eu
http://www.mathworks.com/

