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Abstract

This dissertation presents techniques to achieve predictable execution of coarse-
grained software components and for preservation of temporal properties of
components during their integration and reuse.

The dissertation presents a novel concept runnable virtual node (RVN)
which interaction with the environment is bounded both by a functional and
a temporal interface, and the validity of its internal temporal behaviour is pre-
served when integrated with other components or when reused in a new envi-
ronment. The realization of RVN exploits techniques for hierarchical schedul-
ing to achieve temporal isolation, and the principles from component-based
software-engineering to achieve functional isolation. The proof-of-concept
case studies executed on a micro-controller demonstrate the preserving of real-
time properties within software components for predictable integration and
reusability in a new environment, in both hierarchical scheduling and RVN
contexts.

Further, a multi-resource server (MRS) is proposed and implemented to en-
able predictable execution when composing multiple real-time components on
a COTS multicore platform. MRS uses resource reservation for both CPU-
bandwidth and memory-bus bandwidth to bound the interferences between
tasks running on the same core, as well as, between tasks running on different
cores. The later could, without MRS, interfere with each other due to con-
tention on a shared memory-bus and memory. The results indicated that MRS
can be used to “encapsulate” legacy systems and to give them enough resources
to fulfill their purpose. In the dissertation, the compositional schedulability
analysis for MRS is also provided and an experimental study is performed to
bring insight on the correlation between the server budgets.

We believe that the proposed approaches enable a faster software integra-
tion and support legacy reuse and that this work transcend the boundaries of
software engineering and real-time systems.

i





Populärvetenskaplig
Sammanfattning
Användningen av programvaror växer dag för dag i inbyggda datorsystem i tex
bilar, flygplan, maskiner, och hushållsprodukter. De vanliga inbäddade pro-
gramen ska ge korrekta resultat inom strikta tidsgränser och kallas realtidspro-
gram. Eftersom funktionaliteten och storleken hos inbyggd programvara ökar,
och flera realtidsprogram integreras och distribueras på en enda hårdvaruplatt-
form, så måste dessa programvaror dela på tillgänglig resurser. Denna delning
av resurser gör det extra svårt att hinna ge resultaten inom korrekt tid, och
när flera progam integreras så blir svarstiderna oftast oförutsägbara. I denna
avhandling presenterar vi lösningar på problemet med förutsägbar integration
av realtidsprogramvara på både traditionella (sk single-core) och moderna (sk
multicore) plattformar.

För enkelkärninga plattformar, föreslår vi ett nytt koncept, en körbar virtuell
nod (RVN) som kan bevara tidsegenskaper hos program när det integreras med
andra program eller när återanvändas i en ny miljö. Vår realisering av RVN
utnyttjar den senaste tekniken för hierarkisk schemaläggning för att uppnå tid-
sisolering mellan program. Fallstudier (proof- of-concept) visar bevarande av
tidsegenskaper under både integration och under återanvändning i en ny miljö.

På flerkärniga plattformar, delas även andra än hårdvaruresurser mellan
flera program som tex finns delat minne och delad minnesbuss. Vi utökar den
hierarkiska schemaläggning för att göra den lämplig för flerkärniga plattformar
genom att föreslå och genomföra en nytt koncept, som kallas Multi- Resource
Server (MRS) . Den delar upp tillgång till både CPU-tid och minnesbandbredd
så att varje program får sina nödvändiga resurser. MRS ger tidsisolering mellan
program som körs på samma kärna, liksom mellan program som körs på olika
kärnor. De senare skulle, utan MRS, störa varandra på grund av begränsad
åtkomst till det delade minne. Vi visar i en fallstudie (proof-of-concept) att
MRS är också lämplig för att migrera gamla befintliga program till multicores.
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Nolte, Mikael Sjödin. In the 20th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), IEEE, April, 2014.

1The included articles have been reformatted to comply with the PhD dissertation layout.

ix



x

Paper E Worst Case Delay Analysis of a DRAM Memory Request for COTS
Multicore Architectures. Rafia Inam, Moris Behnam, Mikael Sjödin. In
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Server. Rafia Inam, Mikael Sjödin. 2nd International Workshop on Vir-
tualization for Real-Time Embedded Systems (VtRES’14), Barcelona,
Spain, September 2014.

8. Performance Preservation using Servers for Predictable Execution and
Integration. Rafia Inam. 38th Annual International Computers, Software
and Applications Conference (COMPSAC’14), Västerås, Sweden, July
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Sjödin. In 22nd Euromicro Conference on Real-Time Systems (ECRTS’
10) WiP Session, Pages 17-20, Brussels, Belgium, July, 2010.

17. A* Algorithm for Graphics Processors. Rafia Inam, Daniel Cederman,
Philippas Tsigas. In 3rd Swedish Workshop on Multi-core Computing
(MCC’10), Gothenburg, Sweden, 2010.

Technical reports
18. Worst Case Delay Analysis of a DRAM Memory Request for COTS Mul-

ticore Architectures - A technical report. Rafia Inam, Moris Behnam,
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Chapter 1

Introduction

In embedded real-time systems, a clear trend in increasing size and complexity
of embedded software has been observed during the last decades [1]. For ex-
ample, a modern car contains thousands of software functions corresponding
to nearly 100 million lines of code running on around 70 to 100 embedded pro-
cessors [2]. To battle this trend, modern software-development technologies
are being adapted by the real-time industry.

One such technology is Component-Based Software Engineering (CBSE),
where the system is divided into a set of interconnected components. In this
dissertation, a component is defined as a consistent set of concurrent time-
constrained tasks each performing a specific functionality. These individual
components are typically first developed and tested in isolation, and later in-
tegrated to create a complete software for the system [1]. Integration of real-
time components can be explained as the mechanism of wiring components
together [1]. Thus integration of real-time components is one approach to ad-
dress the main challenges of increased development cost, time to market, and
increased complexity of software.

Reuse of legacy code is another approach to meet these challenges. Many
industrial systems are developed in an evolutionary fashion, reusing compo-
nents from previous versions or from related products [1]. For example, the
new Boeing 787 ”Dreamliner” is a recent example with a significant propor-
tion of reused code from another Boeing airplane [3, 4]. Further, the advent
of low cost and high performance hardware platforms have made it possible to
integrate multiple complex real-time components on a single hardware node. It
means that software components are reused and re-integrated in new environ-
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4 Chapter 1. Introduction

ments.
For real-time systems, the timing requirements should be guaranteed dur-

ing integration and reuse of the components which creates new challenges. The
focus of this dissertation is on the schedulability of tasks, i.e., meeting their
deadlines, as the main timing requirement. Predictability refers to the possibil-
ity to guarantee presence or absence of certain properties. Thus, a component’s
timing behaviour is called predictable during its integration and reuse, as long
as the schedulability of tasks that have been validated during its development
phase is guaranteed when multiple components are integrated together.

The aim of this dissertation is to investigate and propose techniques for
predictable integration and execution of software components with real-time
requirements. This dissertation also examines the impact of shared hardware
resources of multicore platforms on the predictability of real-time software and
presents solutions for it.

1.1 Proposal

In this dissertation, we propose a Runnable Virtual Node (RVN) concept, which
is an execution-platform component that preserves functional as well as tempo-
ral properties of the software executed within it [5]. It is intended for coarse-
grained components for single node deployment and with potential internal
multitasking. In order to realize this concept, first a Hierarchical Scheduling
Framework (HSF) technique [6, 7] is implemented and tested on a target plat-
form (a microcontroller in our case), and later it is embedded within the RVN
component. HSF is a known technique in real-time community that partitions
the CPU resource among components and provides temporal isolation among
the partitions. Thereby, RVN exploits the benefits of both, CBSE and HSF. It
achieves advantages of encapsulating the temporal properties of real-time com-
ponents and components’ reusability from CBSE [1]; and predictable integra-
tion of components by rendering temporal partitioning among components [8]
and independent development and analysis of components from hierarchical
scheduling [7, 9, 10] approaches.

On multicore hardware platform, predictability could not be attained by
simply partitioning the CPU resource due to multiple shared hardware re-
sources like caches, memory-bus and memory. Thus, the traditional hierar-
chical scheduling with only CPU partitioning is not enough to use [11]. In
this dissertation, we also propose a novel server-based technique called Multi-
Resource Server (MRS) that partitions two resources, CPU and memory-bus
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bandwidth, in order to support more predictable execution and reuse of real-
time components on multicore platform. For hard real-time systems, we also
present schedulability analysis of MRS.

1.2 Background
This section presents the background technologies used in our work. We pro-
vide an introduction of the hierarchical scheduling framework. It is followed by
an overview of the ProCom component technology, used to realize the runnable
virtual node concept.

1.2.1 Hierarchical scheduling framework

A hierarchical scheduling framework [6, 7] can be considered as a system con-
sisting of a set of components or subsystems (executed as servers). A two-level
HSF can be viewed as a tree with one parent node and many leaf nodes as illus-
trated in Figure 1.1. The parent node is a global scheduler and leaf nodes are
subsystems. Each subsystem consists of its own internal set of tasks that are
scheduled by a local scheduler. The global scheduler schedules the system and
is responsible for dispatching the servers according to their allocated resource
reservations. The local scheduler then schedules its task set according to its
internal scheduling policy.

HSF supports CPU time sharing among components and isolates compo-
nents’ functionality from each other e.g., temporal fault containment, compo-
sitional verification, and unit testing. Further as each subsystem has its own
local scheduler, after satisfying the temporal constraints, the temporal prop-
erties are saved within each subsystem. Later, a global scheduler is used to
combine all the subsystems together without violating the temporal constraints
that are already analyzed and stored in them. Thus, using HSF, components
can be developed and analyzed in isolation from each other.

In the two-level HSF, the mutually exclusive resources can be shared among
tasks of the same subsystem (or intra-subsystem), normally referred as local
shared resource. The resources can also be shared among tasks of different
subsystems (or inter-subsystem) called global shared resources as shown in
Figure 1.1. Different synchronization protocols are required to share resources
at local and global levels, for example, Stack Resource Policy (SRP) [12] can
be used at local level, and at global level, Hierarchical Stack Resource Policy
(HSRP) [13] can be used.
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Resource Sharing in HSF
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Figure 1.1: Two-level Hierarchical Scheduling Framework using Resource
Sharing.

Throughout the dissertation, the terms application, subsystem or server re-
fer to a real-time component or a component-based real-time embedded ap-
plication. Further, the terms HSF and server-based scheduling are used inter-
changeably.

1.2.2 ProCom component model
Component-based software engineering and Model-Based Engineering (MBE)
are two emerging approaches to develop embedded control systems, e.g., trains,
airplanes, cars, industrial robots, etc. The ProCom component technology
combines both CBSE and MBE techniques for the development of the system
parts, hence also exploits the advantages of both. It takes advantages of en-
capsulation, reusability, and reduced testing from CBSE. From MBE, it makes
use of automated code generation and performing analysis at an earlier stage
of development. In addition, ProCom achieves additional benefits of combin-
ing both approaches (like flexible reuse, support for mixed maturity, reuse and
efficiency tradeoff) [14].

The ProCom component model can be described in two distinct realms:
the modeling and the runnable realms as shown in Figure 1.2. In Modeling
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Figure 1.2: An overview of the deployment modelling formalisms and synthe-
sis artefacts.

realm, the models are made using CBSE and MBE while in runnable realm,
the synthesis of runnable entities is done from the model entities. Both realms
are explained as follows:

The modeling realm

Modeling in ProCom is done by four discrete but related formalisms as shown
in Figure 1.2. The first two formalisms relate to the system functionality mod-
eling while the later two represent the deployment modeling of the system.
Functionality of the system is modeled by the ProSave and ProSys components
at different levels of granularity. The basic functionality (data and control) of a
simple component is captured in ProSave component level, which is passive in
nature. At the second formalism level, many ProSave components are mapped
to make a complete subsystem called ProSys that is active in nature. Both
ProSave and ProSys allow composite components. For details on ProSave and
ProSys, including the motivation for separating the two, see [15, 16].

The deployment modeling is used to capture the deployment related design
decisions and then mapping the system to run on the physical platform. Many
ProSys components can be mapped together on a virtual node (many-to-one
mapping) together with a resource budget required by those components. After
that many virtual nodes could be mapped on a physical node i.e., an ECU
(Electronic Control Unit). The relationship is again many-to-one. Details about
the deployment modeling are provided in [14].
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The runnable realm

At the runnable realm, runnable objects are synthesized from the ProCom
model entities. The primitive ProSave components are represented as a sim-
ple C language source code in runnable form. From this C code, the ProSys
runnables are generated which contain the collection of operating system tasks.
Runnable virtual nodes implement the local scheduler and contain the tasks in
a server. Hence a runnable virtual node actually encapsulates the set of tasks,
resource allocations, and a real-time scheduler within a server in a two-level
hierarchical scheduling framework. Final binary image is generated by con-
necting different virtual nodes together with a global scheduler and using the
middleware to provide intra-communications among the virtual node executa-
bles.

Deployment and synthesis activities

Rather than deploying a whole system in one big step, the deployment of the
ProCom components on the physical platform is done in the following two
steps:

• First the ProSys subsystems are deployed on an intermediate node called
virtual node. The allocation of ProSys subsystems to the virtual nodes
is many-to-one relationship. The additional information that is added at
this step is the resource budgets (CPU allocation).

• The virtual nodes are then deployed on the physical nodes. The relation-
ship is again many-to-one, which means that more than one virtual node
can be deployed to one physical node.

This two-steps deployment process allows not only the detailed analysis in
isolation from the other components to be deployed on the same physical node,
but once checked for correctness, it also preserves its temporal properties for
further reuse of this virtual node as an independent component.

The PROGRESS Integrated Development Environment (PRIDE) tool [17]
supports the automatic synthesis of the components at different levels [18]. At
the ProSave level, the XML descriptions of the components is the input and the
C files are generated containing the basic functionality. At the second level,
ProSys components are assigned to the tasks to generate ProSys runnables.
Since the tasks at this level are independent of the execution platform, there-
fore, the only attribute assigned at this stage is the period for each task; which
they get from the clock frequency that is triggering the specific component.
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Other task attributes like priority are dependent on the underlying platform,
hence assigned during later stages of the synthesis. A clock defines the pe-
riodic triggering of components with a specified frequency. Components are
allocated to a task when (i) the components are triggered by the same event, (ii)
when the components have precedence relation among them to be preserved.
More details on RVN can be found in [19, 5, 20] and in Section 8.

1.3 Dissertation outline
The dissertation is organized in two distinctive parts. Part-I gives a summary of
the performed research. Chapter 1 presents a brief introduction and describes
background of the research. Chapter 2 describes the research problem, the
main research goal and research challenges used as guidelines to perform the
research, and introduces the research method we used. Chapter 3 describes our
technical contributions and recapitulates the research challenges. Chapter 4
concludes the thesis by summarizing the contributions and outlining the future
work. Finally, Chapter 5 provides a short description and authors’ contributions
of the papers included in this dissertation.

Part-II includes four peer-reviewed scientific papers and two technical re-
ports contributing to the research results. The papers are published and pre-
sented in international conferences, workshops and international journals. Both
technical reports are based on peer-reviewed and published papers, and are now
extended for journal/conference publishing (see Chapters 7 and 11 for details).
The papers are presented in Chapters 6, 8 - 10.





Chapter 2

Research overview

2.1 Research problem and challenges

Integration of real-time applications (also referred to as components [7]) can
be explained as the mechanical task of wiring components together [1]. For
real-time embedded systems, the components and components integration must
satisfy (1) functional requirements and (2) extra-functional requirements (e.g.
satisfying timing requirements). Temporal behavior of real-time components
poses big challenges in their integration. When multiple components are de-
ployed on the same hardware node, the timing behavior of each one of them
is typically altered in unpredictable ways. This means that a component that
is found correct during its unit testing may fail, due to a change in temporal
behavior, when integrated in a system. Even if a new component is still operat-
ing correctly in the system, the integration could cause a previously integrated
(and correctly operating) component to fail. Similarly, the temporal behavior
of a component is altered if the component is reused in a new system. Since
also this alteration is unpredictable, a previously correct component may fail
when reused. Further the reuse of a component is restricted because it is very
difficult to know beforehand if the component will be schedulable in a new
system. For real-time embedded systems, methodologies and techniques are
required to provide temporal isolation so that the timing requirements could be
guaranteed during components’ integration and reuse.

11
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2.1.1 Predictable execution, integration and reuse of real-
time components

One promising technique for integrating complex real-time components on a
unicore processor to overcome above mentioned deficiencies is the hierarchical
scheduling framework in which the components are executed as servers with
specified budgets and periods [6, 7]. It partitions CPU time among compo-
nents. It supplies an efficient mechanism (i) to provide predictable integration
of components by rendering temporal partitioning among components [8], (ii)
to support independent development and analysis of real-time components [7],
and (iii) to provide the analysis of integrated components at the system level [7].
HSF has been proposed to develop complex real-time systems by enabling tem-
poral isolation and predictable integration of software-functions [21].

However, integrating HSF within a component-based software technology
for embedded real-time systems raises challenges of preserving the timing
properties within software components to use these properties during compo-
nents’ integration and execution on unicore hardware platform. It includes the
challenges of enriching a component model with hierarchical scheduling, i.e.,
allocating timing resources and a real-time scheduler to a software component
and executing the component as server in the HSF. Another challenge during
component integration is to provide reliable communication among various
components of a target system. This communication should also be predictable
in case of real-time components and should not affect the schedulability of
tasks.

2.1.2 Predictability on COTS multicore platforms

Using Commercial-Off-The-Shelf (COTS) multicore platforms for real-time
applications presents more challenges. One such challenge is to achieve and
maintain predictable execution of concurrent tasks that compete for both CPU-
and memory-bus bandwidth resources. On unicore platforms, the server-based
scheduling approach successfully bounds the interference between the applica-
tions running on the same core [22, 23, 7]. However, this approach is limited
in provisioning of the CPU resource only and does not take care of the activi-
ties that are located on different cores and can still interfere with others in an
unpredictable manner. In multi-core platforms, concurrent tasks allocated to
the same core interfere with each other by competing for CPU-bandwidth (we
call this local interference), and concurrent tasks allocated to different cores
interfere by competing for memory-bus bandwidth and shared memory (we
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call this global interference). A main source of such an unpredictable negative
impact is the contention for shared physical resources like cache, memory-bus
and memory.

In existing commercial hardware, there are currently no mechanisms that
allow a core to protect itself from global interference if another core starts steal-
ing its memory bandwidth or pollutes its cache lines. For performance-critical
real-time systems, overcoming these problem is paramount. Thus the memory-
bus bandwidth should also be considered to guarantee predictable performance
of real-time applications that are located in different cores for multicore plat-
forms, especially when migrating/reusing software from a unicore to a mul-
ticore architecture. Hence, there is a need to develop software technologies
to track, and eventually police, the consumed memory-bandwidth in order to
increase predictable software execution on a multi-core platform.

While the incorporation of memory-bus resource into server-based schedul-
ing increases the predictable execution of real-time applications on different
cores, the shared memory still hinders the predictability and is another chal-
lenge that we have addressed in this dissertation. The scheduling alone (i.e.,
controlling the allocation of resources over time) is not enough to achieve com-
plete timing isolation. Dynamic RAM (DRAM) is another resource shared
among all cores, and can have a tangible effect on timing requirements of
tasks executing in different servers in different cores. There is a strong need to
investigate about implementing some DRAM-partitioning techniques (like in
[24]) or bounding DRAM accesses using some static analysis technique (like
in [25, 26]) for COTS multicore platforms.

Further, the analysis for the memory-aware server-based scheduling ap-
proach is another challenge that is targeted in this dissertation.

2.2 Research methodology

This research work has been carried out following the deductive method [27].
The main activities are as follows:

1. Identification of the research problem from current trends from real-time
and component-based communities and definition of the research goal.
This activity included study of the current state-of-the-art literature, at-
tending courses/seminars related to the topic, and inspirations from in-
dustry.
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3.  Refine Research-
Problem into 
Research challenge 

3.1  Propose a 
Solution 

3.2 Solve the Problem 
(Implementation / 
Mathematical Eq.) 

3.3 Validate Solution 
(Experiments / case studies 
/ Mathematical Proofs) 

2. Divide/subdivide 
Research Problem 

1. Identify Research 
Problem 

Figure 2.1: Deductive Method of Research.

2. Dividing or sub-dividing the research problem into smaller and easily
manageable problems.

3. Refining the smaller problem to a research setting and defining further
research guiding challenges.

3.1 Study of the current state-of-the-art based on guiding challenges
and proposing a solution.

3.2 Solving the problem (by implementing a prototype and/or by pro-
viding mathematical proofs/analysis) and presenting the research
results.

3.3 Illustration and validation of the research results. This is done by
performing case studies and/or synthetic experimental evaluations
on the implementation,.

In this work, a single overarching goal is identified at step 1, which is di-
vided into smaller research challenges, and solved one at a time using steps
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in 3. These steps (3.1 - 3.3) are performed for each of the guiding challenges
unless the desired results for the overall goal are achieved, as described in
Figure 2.1. The research performed to meet the guiding challenges of step 3
resulted in one or more research publications.

2.3 Research goal and refined research challenges
The main goal of this dissertation is:

To provide methods that maintain real-time properties of run-time
components during their integration with other components and
their reuse in a new environment.

The research goal is refined and formulated into the following research chal-
lenges which we have used as a guideline for our research:

C1 Achieving predictability during real-time components’ integration and
reuse. It is further subdivided into two challenges:

C1.1 Developing runtime mechanisms to preserve the temporal require-
ments within real-time components.

C1.2 Developing runtime mechanisms to facilitate legacy code migra-
tion in new environment.

C2 Integrating hierarchical scheduling approach within CBSE to improve
today’s embedded system development by reusing preserved temporal
properties.

C3 Adapting traditional server-based scheduling to be suitable to multicore
platforms.

C4 Providing an analysis framework for the new server-based scheduling
from C3.

By addressing these challenges, we aim to develop approaches that enable
predictable software integration and support legacy reuse.





Chapter 3

Technical contributions

3.1 Contributions
The main contributions of the dissertation are as follows:

Contribution 1. Implementation of HSF and legacy server for unicore
platform
This contribution addresses challenges C1.1 and C1.2. We provide a two-
level hierarchical scheduling support for FreeRTOS operating system with the
consideration of minimal modifications in FreeRTOS kernel [28]. We extend
FreeRTOS scheduler for idling periodic [29] and deferrable [30] servers using
fixed-priority preemptive scheduling at both global and local levels. Further, to
support resource sharing among arbitrary tasks that execute in arbitrary compo-
nents, we implement Stack Resource Policy (SRP) [12] and Hierarchical Stack
Resource Policy (HSRP) [13].

To address challenge C1.2 of migrating legacy systems in an HSF-setup,
HSF-implementation needs adaptations to fit with legacy systems requirements.
The examples of such are adapting the original OS API with the HSF-API, and
the sharing both hardware and software resources of the system among legacy
and other components. We enhance the implementation with a legacy server
which executes the legacy code by doing minimum modifications in it. Sim-
ply using synchronization protocols at both levels of HSF does not resolve the
resource sharing problem, when a legacy server is executed, which still calls
old operating system API for resource sharing. One strategy is to change the
legacy code with the newly developed synchronization API for HSF. However,

17
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this is tedious, time consuming, and error prone. We provide wrappers for the
old API as an alternative strategy. The advantage of wrapping over conven-
tional redevelopment is the low cost. Additionally it keeps the semantics of the
original operating system code unchanged. This contribution is presented in
Papers A and B.

Contribution 2. The RVN concept
To address challenges C1 and C2 in CBSE context, we present the concept
of a Runnable Virtual Node (RVN) by integrating HSF into component tech-
nology to provide temporal isolations among components, which eventually
leads to predictable integration of components. An RVN exhibits the function-
ality of a software-component (or a set of integrated components) combined
with allocated timing resources and a local real-time scheduler, thus the RVN
executes as a server in the HSF. It introduces an intermediate level between
the functional entities and the physical nodes. Thereby it leads to a two-level
deployment process instead of a single big-stepped deployment. At the first
level of deployment, the functional properties (functionality of components)
are combined and preserved with their extra-functional properties (timing re-
quirement) in the virtual nodes. In this way it encapsulates the behaviour with
respect to timing and resource usage and becomes a reusable executable com-
ponent in addition to the design-time components. It is followed by the second
level of deployment where multiple virtual nodes are deployed on the physical
node (target hardware) along with a global scheduler.

In addition, we implement a server-based communication strategy which
executes communication code in a separate server. This strategy incorporates
the maintainability and flexibility to change the communication code without
affecting the timing requirements of RVNs. We have evaluated the end-to-end
delay analysis for the server-based strategy with a more direct communica-
tion strategy for efficiency and reusability properties of RVNs. Hence using
RVNs and server-based inter-RVN communication, complex real-time systems
can be developed as a set of well defined reusable components encapsulating
functional and timing properties.

The work is based on the ProCom component-technology [16] running on
the HSF implementation on FreeRTOS [31]. However, we believe that our con-
cept is also applicable to commercial component technologies like AADL and
AUTOSAR [5]. This contribution is presented in Paper C.
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Contribution 3. Presentation and realization of MRS
This contribution addresses challenges C1 and C3, and targets statically parti-
tioned multi-core real-time systems. For these systems we present the Multi-
Resource Server (MRS) technology that schedules the resources: CPU and
memory-bus bandwidth. In statically partitioned multi-core systems, concur-
rent tasks allocated to the same core suffer from local interference while con-
current tasks allocated to different cores interfere due to global interference of
the shared hardware resources. A first step is to estimate the amount of con-
sumed memory-bandwidth for each application. Such estimates can then be
used to track down bottlenecks, provide better partitioning among cores, and
ultimately be used to arbitrate and police accesses to memory-bus.

MRS enables more predictable execution of real-time applications on multi-
core platforms through resource reservation approaches in the context of CPU
bandwidth reservation and memory-bandwidth reservation. The MRS provides
temporal isolation both between tasks running on the same core, as well as,
between tasks running on different cores. The latter could, without MRS, in-
terfere with each other due to contention on a shared memory bus.

We implement MRS as a user-space library for Linux running on COTS
multicore hardware. We demonstrate that MRS can be used to preserve the
functionality of a legacy application when it is executed on a single core while
another core executes tasks with adverse memory behavior. We demonstrate
for a synthetic task-set, how the MRS can be used to isolate tasks from each
other, to prevent adverse behavior of some tasks to negatively impact other
tasks. Paper D describes this contribution in detail.

Contribution 4. Case studies for proof-of-concept
In this contribution we validate our solutions of challenges C1, C2, and C3.
Although synthetic experiments confirm the viability of the approaches, case
studies validate the practicality of the approaches.

We validate our HSF implementation for legacy server to demonstrate the
ease of using legacy server and wrappers. We execute two legacy FreeR-
TOS applications as an example case study which are originally developed
and executed as stand-alone application for the FreeRTOS operating system
on a micro-controller using EVK1100 board. We test these applications in
a two-level hierarchical setup along with other applications. Our motivating
case study is simple, but exercises the execution-time properties and evaluates
the creation, behaviour, viability of the legacy server and the legacy tasks. It
also evaluates the behaviour of wrappers for FreeRTOS API, resource sharing
among legacy tasks and tasks of the new applications, and finally the behaviour
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of HSRP protocols. This part of the contribution is presented in Paper B.
As virtual node is an integrated concept within the ProCom component

model [16], we implemented an example case study in the PRIDE tool [17]
that supports the development of systems using ProCom components running
on the HSF implementation on FreeRTOS [31]. We use ProCom components
for development of a cruise controller (CC) and an adaptive cruise controller
(ACC) for automotive applications. The proof-of-concept case study demon-
strates the temporal-fault containment within an RVN as well as the reuse
of RVNs in new environment thereby facilitating predictable integration. We
also evaluate the end-to-end delay analysis for the server-based strategy with
a more direct communication strategy for efficiency and reusability properties
of RVNs. We have developed an analysis tool End-to-End Latency Analyzer
for ProCom (EELAP) [32, 33] to automate the computations of worst case re-
sponse times of tasks and calculations of different end-to-end latency semantics
for multi-rate server-based ProCom components. This part of the contribution
is presented in Paper C.

For MRS, we demonstrate that the MRS can be used to “encapsulate”
legacy systems and to give them enough resources to fulfill their purpose in
Paper D. In our case study a legacy media-player is integrated with several
resource-hungry tasks running on a different core. We show that without MRS
the media-player starts to drop frames due to the interference from other tasks;
while introduction of MRS alleviates this problem.

Contribution 5. Presenting compositional analysis for MRS
In addition to previously mentioned sources of interference, tasks can also ex-
perience interference due to the timing constraints of shared memory.

In this contribution we address challenge C4, and we describe the prob-
lem of achieving composability of independently developed real-time subsys-
tems to be executed on a multi-core platform. First, we evaluate existing work
for achieving real-time predictability on multi-cores and illustrate their lacking
with respect to composability. Second, we extend traditional compositional
analysis for the multi-resource server. The multi-resource servers are useful
to provide partitioning, composability and predictability in both hard and soft
real-time systems. In this contribution we outline a theoretical framework to
provide hard real-time guarantees for tasks executing inside a multi-resource
server. We present a local schedulability analysis technique to assess the com-
posability of subsystems containing hard real-time tasks. Using the compo-
sitional analysis technique, the system schedulability is checked by compos-
ing the subsystems interfaces which abstracts the resource demand of subsys-
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tems [7]. As previously described, tasks can also experience interference due
to the timing constraints of the shared DRAM and the variable access time of
DRAM. We present a worst case delay analysis of DRAM memory requests
for COTS multicore architectures and incorporate this into the schedulability
analysis for multi-resource servers. This contribution is presented in Papers E
and F.

Note that a system consisting of a set of components (subsystems) is said to
be composable w.r.t. some properties, if properties that have been established
during the development of each component in isolation do not change when the
components are integrated [34]. As mentioned before, we focus on the schedu-
lability of tasks as the main timing property, thus a system is composable if
the schedulability of tasks that have been validated during the development of
each component is guaranteed when the components are integrated.

3.2 Challenges recapitulated

In this section we discuss: to what extent the research results and included
papers meet the challenges presented in Section 2.3. We also comment on the
validity of our results.

Challenge C1 has a broad scope and is realized through multiple imple-
mentations and papers. First, HSF support in FreeRTOS is described in Paper
B and Paper C. Second, the realization of RVN is described in Paper C, and
third, the MRS implementation is presented in Paper D.

3.2.1 HSF implementation

To address C1.1 challenge, we support FreeRTOS with hierarchical schedul-
ing in Paper A. To develop an efficient HSF implementation with less over-
head and to get better utilization of the system, a number of design consid-
erations are made as explained in Section 6.4.6 and are addressed in Section
6.5.3. Experimental evaluation of the implementation for temporal isolation
and faults containment (i.e., temporal errors are contained within the faulty
component only and their effects are not propagated to the other components
in the system) proves the hypothesis of predictable integration. Experiments
are performed considering heavy-load and over-load situations for viability and
efficiency. Moreover, overheads of hierarchical scheduling (i.e., tick handler,
global scheduler, and task context-switch) are measured, see Section 6.6.2. The
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results reveal that the design decisions made lead to an efficient implementa-
tion.

Paper B addresses C1.2 challenge of migrating a legacy system in an HSF-
setup. The presented approach is validated using a proof-of-concept case study
that shows a successful integration of a legacy system (i.e., originally devel-
oped to execute as a stand-alone FreeRTOS application) along with the newly
developed components (i.e., developed for HSF).
Validity: We test and validate the implementation by experimental results.
Since other existing HSF implementations for unicore platforms use Linux,
VxWorks, or µC/OS-II (using simulator for results), our results are difficult
to compare to them. We infer the efficiency of our results on the design de-
cisions and on the implementation done. In this work we have not tried to
evaluate/compare different HSF implementations or different resource sharing
protocols for HSF. For that reason we have implemented only two-level fixed-
priority scheduling and one global resource locking protocol (HSRP). Another
limitation is the execution of an example case study (instead of a larger indus-
trial one). The case study is also limited to the FreeRTOS, since implemen-
tations of the proposed solutions are done for FreeRTOS operating system.
Although the proposed solutions to integrate legacy system in HSF-setup are
generic and can be implemented in any OS.

3.2.2 RVN and its realization
Paper C presents a proof-of-concept for the realization of our idea of RVN in
the ProCom component model. It addresses C1.1, C1.2 and C2 by performing
a case study and visualizing the execution traces. We test the system for fault
containments, predictability in component’s integration and reuse of compo-
nents. In the experiments, the task set of each RVN is executed within a server
using the specified resources and is scheduled by a local scheduler. The ex-
perimental results manifest that as long as the allocated budgets to servers (at
the modeling level) are provided, the timing properties are guaranteed at the
execution. All these properties contribute to the predictability of RVNs. The
increased predictability during component’s integration further results in mak-
ing the RVNs a reusable entity, as presented in results in Section 8.9.
Validity: We explain how to integrate RVN in only three component mod-
els [5]. We cannot claim that the idea of virtual node is applicable in general.
We realize our idea in only ProCom component model. Another limitation is
the execution of a simple case study (instead of a larger industrial one) due to
the immaturity of the PRIDE tool.
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3.2.3 MRS and its realization
Paper D addresses challenges C1 and C3 by implementing MRS which parti-
tions CPU and memory-bus resources on multicore platforms. The experimen-
tal results reveal the MRS’s suitability to execute applications in a predictable
manner on a multi-core platform by limiting interference between applications
running on different cores. The case study reveals that MRS is also suitable to
migrate the legacy unicore code on multicore platform.
Validity: The results demonstrate that scheduling alone (i.e., controlling the
allocation of resources over time) is not enough to achieve complete timing
isolation. To achieve complete isolation on multicores, the space contention
should also be controlled. Space contention arises due to the shared caches
and memory [11]. The MRS should be adapted with space partitioning (i.e.,
partitioning of cache and memory) to control space contention. The underlying
framework of MRS, ExSched framework [35, 36], includes some overheads by
itself, in spite of the advantage of providing a kernel modification free solution.
A kernel modification could have better performance.

3.2.4 Compositional analysis of the MRS
Challenge C4 is addressed in Papers E and F by presenting the analysis of the
newly developed MRS. The analysis presented in Paper E safely bounds the
memory contention for DDR DRAM memory controller that are commonly
used in COTS multicore architectures and is used in the analysis of MRS.
An experimental study is performed to investigate the correlation between the
server budgets and the impact of different server periods on server-budgets.
Validity: The DRAM analysis is provided for COTS memory controllers con-
sidering only one rank and a single channel. Modern architectures are coming
with multiple channels. We consider that the core stalls until the cache-line is
fetched from memory. If multiple queues are present, then multiple commands
can be handled, depending upon the availability of free space in the queue.
We have explored the source of pessimism in our analysis which we intend to
remove from the analysis in future.





Chapter 4

Conclusions and future work

This chapter concludes contributions of this dissertation and discusses future
research directions.

4.1 Summary

In this dissertation, we have focused on preserving temporal properties of real-
time software components during their integration and reuse. We have de-
veloped methods to integrate hierarchical scheduling within CBSE and have
applied this technique to execute software components as servers within a two-
level hierarchical scheduling framework (HSF). Moreover, we have adapted
hierarchical scheduling for COTS multicore platforms on which the schedul-
ing of real-time tasks is inherently unpredictable due to contention for shared
physical resources.

We have implemented a two-level HSF in an open source real-time oper-
ating system, FreeRTOS, to support temporal isolation among real-time com-
ponents. We have focused on being consistent with the underlying operating
system by doing minimal changes and have kept the original FreeRTOS API se-
mantics. We have enhanced the implementation by including a legacy server to
execute a legacy code within a server. It includes adapting the original OS API
with the HSF-API, and the sharing both hardware and software resources of the
system among legacy and other components. We have tested our implementa-
tions and performed experimental evaluations on EVK1100 AVR based 32-bit
micro-controller. Our results show a successful migration of the legacy system
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in an HSF-setup. The experimental validations of the implementations using
heavy-load and over-load situations reveal temporal isolation among compo-
nents. We have also measured overheads of executing hierarchical scheduler.

We have presented a novel executable component, Runnable Virtual Node
(RVN) to address the challenges of preserving internal temporal requirements
within components during their integration and reuse. The realization of RVN
embeds the hierarchical scheduling technique within the software component
using a two-level deployment process, thereby attaining temporal and func-
tional isolation. Hence using runnable virtual nodes, a complex embedded sys-
tem can be developed as a set of well-defined reusable components encapsulat-
ing both functional and timing properties. The proof-of-concept case studies
executed on a micro-controller demonstrate the preserving of real-time proper-
ties within software components for predictable integration and reusability of
legacy code, in both hierarchical scheduling and RVN contexts. Our work is
based on the ProCom component-technology executing our HSF implementa-
tion on FreeRTOS. However, we believe that the concept is also applicable to
commercial component technologies like AADL and AUTOSAR.

We have moved a significant step ahead towards expanding the resource
reservation concept for COTS multicore platform on which the scheduling of
real-time tasks is inherently unpredictable due to the contention for multiple
shared physical resources [11]. It resulted in proposing and implementation
of a novel type of server, called Multi-Resource Server (MRS) which controls
the access to both CPU and memory-bus bandwidth resources in composing
multiple real-time components on a multicore platform. The MRS provides
temporal isolation both between tasks running on the same core, as well as,
between tasks running on different cores. The results indicated that the MRS
is suitable to migrate unicore legacy applications and to execute the legacy ap-
plication with enough resources. Further, we have provided the compositional
schedulability analysis for MRS to make it suitable for hard real-time systems.
We have also performed experiments to study different properties of the newly
developed MRS. It includes a correlation between the server budgets and the
impact of different server periods on server-budgets.

4.2 Future research directions

In this section, we discuss future research directions that build on the research
performed in this dissertation.

We see a big potential with RVN and the future development of it. Start-
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ing from general issues, we have realized our RVN concept in the ProCom
component model using the PROGRESS Integrated Development Environment
(PRIDE) tool by means of a proof-of-concept case study. The PRIDE tool is
evolving and the automatic synthesis part is not fully mature. It could be in-
teresting to do research on this part and then conduct a larger industrial case
study on it. We believe that our concept is applicable also to commercial com-
ponent technologies like AADL, AUTOSAR [5], and to realize the concept in
these component technologies would be interesting and useful for the industry.
Further, RVN concept can be extended for multicore platforms. It requires ex-
tensions at modeling realm by allocating the memory-bus bandwidth of each
RVN, and executing the MRS implementation at executable realm. Another
possible extension is to support virtual communication-busses using server-
based scheduling techniques e.g., CAN [37] and Ethernet [38] in PRIDE tool.
This will allow development, integration and reuse of distributed components
using a set of virtual nodes and buses.

With respect to the MRS, we have only focused on access contention that
results in temporal interference. Considering space contention /space interfer-
ence issues in the implementation could be another interesting direction [11].
Space contention mainly arises at Last-Level Cache (LLC) and main memory
(Dynamic RAM (DRAM)).

To achieve cache space isolation, one proposal could be a software-based
implementation of cache partitioning through physical page allocation (also
called OS-based cache coloring) [39, 40, 41, 42] and its integration with MRS
running on the multicore platform. Cache-partitioning techniques divide the
large shared physically-indexed cache into smaller private caches, and then
allows allocating partitions of caches to components. Another method could be
to bound caches by some static analysis technique [43, 44] and to incorporate
the cache analysis into MRS analysis.

To achieve memory isolation, a software-based DRAM bank partitioning
approach for MRS could be implemented, to control the memory contention
and interference problems without any hardware modification to memory con-
trollers. Some DRAM partitioning approaches to partition the banks among
tasks (or cores) has been implemented [45, 41, 24].

We have explored the source of pessimism in the analysis of MRS and,
in future, research could be done to remove some pessimism from the analy-
sis. Another future direction is to find an algorithm to calculate the optimum
budgets for both resources of the MRS and to find a smart online algorithms
to assign the unused capacity of one resource to another server to improve
the overall average response times. Another interesting direction could be to
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make the hierarchical scheduling adaptive in nature by implementing mode
switches into the hierarchical scheduling. We have started from adapting the
CPU time [46, 47] for unicore platforms, and next step would be to adapt it for
multicore platform by including memory issues.

Further possibilities to be investigated in future are specific for each paper
and are presented in respective papers.



Chapter 5

Overview of dissertation

This chapter summarize the included papers, my personal contribution to these,
and the most important assumptions and limitations of our results.

5.1 Summary of papers
A short description and contribution of the papers and reports included in this
dissertation is given here. For each paper there is also an account of my per-
sonal contribution.

Technical reports included in this dissertation are all based on extension of
peer-reviewed papers. For these contributions, we describe these extension and
the relation to the original published papers.

Paper A. “Support for hierarchical scheduling in FreeRTOS”
Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Syed Mohammed Hussein Ash-
jaei, Sara Afshar. In Proceedings of the 16th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA’ 11). IEEE Industrial
Electronics Society, Toulouse, France, September, 2011. Awarded scholar-
ship by IEEE Industrial Electronic Society as best student paper.

Short Summary: This paper presents the implementation of hierarchical schedul-
ing framework on an open source real-time operating system FreeRTOS to
support the temporal isolation of a number of real-time components (or appli-
cations) on a single processor. The goal is to achieve predictable integration
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and reusability of independently developed components or tasks. It presents
the initial results of the HSF implementation by running it on an AVR 32-bit
board EVK1100.

The paper addresses the fixed-priority preemptive scheduling at both global
and local scheduling levels. It describes the detailed design of HSF with the
emphasis of doing minimal changes to the underlying FreeRTOS kernel and
keeping its API intact. Finally it provides (and compares) the results for the
performance measures of periodic and deferrable servers with respect to the
overhead of the implementation.

Personal contribution: I am the initiator and author to all parts in this paper.
I have contributed in the design of HSF implementation and have designed all
the test cases and have performed the experiments. I supervised two students
who were responsible for the implementation part.

Paper B. “Support for legacy real-time applications in an HSF-
enabled FreeRTOS”
Rafia Inam, Moris Behnam, Mikael Sjödin. MRTC report ISSN 1404-3041
ISRN MDH-MRTC-295/2014-1-SE, Mälardalen University, November, 2014.
Submitted to the Journal of systems Architecture (JSA), 2014.

Short Summary: This paper presents runtime support to consolidate legacy
and new real-time applications, running a single instance of a real-time oper-
ating system (RTOS), and sharing system resources. In this context, we lever-
age a hierarchical scheduling framework (HSF) to provide temporal partitions
for different applications, supporting their independent development and real-
time analysis. These temporal partitions paves way for predictable integration.
In particular, the paper focuses on a constructive element, we call the legacy
server, that allows executing code that is unaware of the temporal partition
within which it is deployed. Furthermore, we discuss the challenges that need
to be addressed to execute a legacy application in an HSF without modifications
to the original code. We focus on the challenge of enabling sharing system re-
sources, both hardware and software, as typically found in most embedded
software-systems. We propose a novel solution based on wrappers for RTOS
system calls.

We implement our ideas in a concrete implementation on FreeRTOS, tak-
ing advantage of a prior HSF implementation. The validation is performed by
a proof-of-concept case study that shows successful integration of a legacy ap-
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plication that uses shared resources in a system that executes other applications.

Personal contribution: I was the initiator and the main author of this paper.
All co-authors have contributed with valuable discussions and reviews.

Extended version: The paper included in this dissertation extends our previ-
ous work that has been published as a full paper in the 7th International Work-
shop on Operating Systems Platforms for Embedded Real-Time Applications,
which provided resource sharing protocols’ implementation for HSF [48]. To
be precise, the work in paper B completes the legacy system’s consolidation
with other real-time components in an HSF environment by developing new
wrappers for the original API of operating system and performing detailed ex-
perimental validations.

Paper C. “Predictable integration and reuse of executable real-
time components”
Rafia Inam, Jan Carlson, Mikael Sjödin, Jiřı́ Kunčar. In the Journal of Systems
and Software (JSS), Vol 91, pages 147-162, May, 2014.

Short Summary: We present the concept of runnable virtual node (RVN) as
a means to achieve predictable integration and reuse of executable real-time
components in embedded systems. A runnable virtual node is a coarse-grained
software component that provides functional and temporal isolation with re-
spect to its environment. Its interaction with the environment is bounded both
by a functional and a temporal interface, and the validity of its internal temporal
behaviour is preserved when integrated with other components or when reused
in a new environment. Our realization of RVN exploits the latest techniques for
hierarchical scheduling to achieve temporal isolation, and the principles from
component-based software-engineering to achieve functional isolation. It uses
a two-level deployment process, i.e. deploying functional entities to RVNs and
then deploying RVNs to physical nodes, and thus also gives development ben-
efits with respect to composability, system integration, testing, and validation.
In addition, we have implemented a server-based inter-RVN communication
strategy to not only support the predictable integration and reuse properties of
RVNs by keeping the communication code in a separate server, but also in-
creasing the maintainability and flexibility to change the communication code
without affecting the timing properties of RVNs. We have applied our approach
to a case study, implemented in the ProCom component technology executing
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on top of a FreeRTOS-based hierarchical scheduling framework and present
the results as a proof-of-concept.

Personal contribution: I am the initiator and principal author to all parts in this
paper. Jiřı́ was responsible of integrating HSF code into PRIDE tool. I have
contributed in the design and execution of the case study on the target platform
using AVR Studio and performed all the tests and experiments. Jiřı́ developed
the EELAP tool to compute the end-to-end latencies of both communication
strategies [33]. All coauthors have contributed with valuable discussions and
reviews.

Paper D. “The Multi-Resource Server for predictable execu-
tion on multicore platforms”
Rafia Inam, Nesredin Mahmud, Moris Behnam, Thomas Nolte, Mikael Sjödin.
20th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS’14), pages 1-10, April, 2014.

Short Summary: In this paper we present an implementation and demonstra-
tion of the Multi-Resource Server (MRS) which enables predictable execution
of real-time applications on multi-core platforms. The MRS provides tempo-
ral isolation both between tasks running on the same core, as well as, between
tasks running on different cores. The latter could, without MRS, interfere with
each other due to contention on a shared memory bus. We demonstrate that
MRS can be used to encapsulate legacy systems and to give them enough re-
sources to fulfill their purpose. In our case study a legacy media-player is inte-
grated with several resource-hungry tasks running at a different core. We show
that without MRS the media-player starts to drop frames due to the interference
from other tasks; while introduction of MRS alleviates this problem. Another
part of our demonstration shows how traditional periodic real-time tasks can
be kept schedulable even when tasks with high memory-demand are added to
the system.

Personal contribution: I am the main driver and author to all parts in this paper.
I have contributed in the design of MRS implementation on ExSched platform,
design of the case study and synthetic experiments. Nesredin was responsible
for implementing multicore functionality of the MRS and for executing it on
the target platform. All other coauthors have contributed with valuable discus-
sions and reviews.
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Paper E. “Worst case delay analysis of a DRAM memory re-
quest for COTS multicore architectures”

Rafia Inam, Moris Behnam, Mikael Sjödin. Seventh Swedish Workshop on
Multicore Computing (MCC’14), November, 2014.

Short Summary: Dynamic RAM (DRAM) is a source of memory contention
and interference problems on commercial of the shelf (COTS) multicore ar-
chitectures. Due to its variable access time, it can greatly influence the task’s
WCET and can lead to unpredictability. In this paper, we provide a worst case
delay analysis for a DRAM memory request to safely bound memory con-
tention on multicore architectures. We derive a worst-case service time for a
single memory request and then combine it with the per-request memory inter-
ference that can be generated by the tasks executing on same or different cores
in order to generate the delay bound.

Personal contribution: I am the initiator and author to all parts in this paper.
All other coauthors have contributed with valuable discussions and reviews.

Paper F. “Compositional analysis for the Multi-Resource Server
– a technical report”

Rafia Inam, Moris Behnam, Thomas Nolte, Mikael Sjödin. MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-283/2014-1-SE, Mälardalen University,
September, 2014. Submitted for conference publication.

Short Summary: The Multi-Resource Server (MRS) technique has been pro-
posed to enable predictable execution of memory intensive real-time applica-
tions on COTS multi-core platforms. It uses resource reservation approaches
in the context of CPU-bandwidth and memory-bus bandwidth reservations to
bound the interferences between the applications running on the same core
as well as between the applications running on different cores. In this pa-
per we present a complete compositional schedulability analysis for the Multi-
Resource Server technique. Based on the proposed analysis, we further provide
an experimental study that investigates the behaviour of the MRS and identifies
the factors that contribute mostly on the overall system performance.

Personal contribution: I am the main driver and author to this paper. Moris
has contributed with the local schedulability analysis section of the prelimi-
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nary work [49]. All the coauthors have contributed with valuable discussions
and reviews.

Extended version: This paper extends our previous work that is published the
journal ACM SIGBED Review, special issue on 5th Workshop on Composi-
tional Theory and Technology for Real-Time Embedded Systems, Vol 10, nr 3,
Oct, 2013. [49]. We update the local analysis and present a complete and com-
posable global schedulability analysis for both resources (CPU- and memory-
bus bandwidth) of the MRS. Further, we provide a study that investigates the
behavior of the MRS and brings insight on how these both resources relate to
each other. The preliminary work [49] described the initial local schedulabil-
ity analysis of MRS and did not address the global schedulability analysis and
lacked an investigation study.

5.2 Delimitations of the research
The research presented in this dissertation has been done under some assump-
tions and restrictions. This section reiterates some of the most important as-
sumptions and limitations of our research.

Real-time systems:
Most articles included in this dissertation assume hard real-time systems.
The paper D is an exception which is developed using a Linux-based
common framework ExSched [35]. We relax the assumption to the level
of soft real-time systems in this particular work.

Components model:
Although we have focused on ProCom, the general ideas regarding com-
ponent based software engineering is applicable to other component mod-
els (such as AADL and AUTOSAR)

Components:
We have worked on software components at the executable-level for the
unicore platform only.

Multicore architecture:
For papers D, we execute results on a multicore architecture, an Intel core
duo processor. The hardware is not commonly used in hard real-time
systems and has unpredictable behavior coming from hardware function-
ality in caches, frequency scaling, prefetching instructions etc. For our
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results, we have disabled the options of frequency scaling, prefetching
instructions, and we have cleared the cache before executing the results.
Despite this, the caches and memory are still shared, therefore, we as-
sume the level of soft real-time systems in this particular work.

Scheduling algorithm:
We assume fixed-priority preemptive scheduling at both levels of hierar-
chies in HSF.

Partitioning:
Our work includes time partitioning only, i.e., CPU and memory-bus par-
titioning. On multicore architectures, the space partitioning (i.e., cache
and memory partitioning) is also needed to provide complete isolation.

HSF implementation on FreeRTOS:
In this work, we have not focused to evaluate/compare different HSF
implementations.

Resource sharing:
We have implemented one global resource locking protocol i.e., HSRP
on unicore platform. Comparing different resource locking protocols is
not the main focus of this work. Resource sharing on multicore platforms
is not considered.

Case studies:
Another limitation is the execution of case studies only for the proof-of-
concept purpose (instead of a larger industrial one).
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Ashjaei, Sara Afshar
In Proceedings of the 16th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA 11), pages 1-10, IEEE Industrial
Electronics Society, Toulouse, France, September, 2011.
Awarded scholarship by IEEE Industrial Electronic Society as best stu-
dent paper.

47



Abstract

This paper presents the implementation of a Hierarchical Scheduling Frame-
work (HSF) on an open source real-time operating system (FreeRTOS) to sup-
port the temporal isolation between a number of applications, on a single pro-
cessor. The goal is to achieve predictable integration and reusability of inde-
pendently developed components or applications. We present the initial results
of the HSF implementation by running it on an AVR 32-bit board EVK1100.

The paper addresses the fixed-priority preemptive scheduling at both global
and local scheduling levels. It describes the detailed design of HSF with the
emphasis of doing minimal changes to the underlying FreeRTOS kernel and
keeping its API intact. Finally it provides (and compares) the results for the
performance measures of idling and deferrable servers with respect to the over-
head of the implementation.

keywords: Hierarchical scheduling, Real-time open systems, Hierarchical sch-
eduling framework, Fixed-priority scheduling.
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6.1 Introduction
In real-time embedded systems, the components and component integration
must satisfy both (1) functional correctness and (2) extra-functional correct-
ness, such as satisfying timing properties. Temporal behavior of real-time
components poses more difficulties in their integration. The scheduling anal-
ysis [1, 2] can be used to solve some of these problems, however these tech-
niques only allow very simple models; typically simple timing attributes such
as period and deadline are used. In addition, for large-scale real-time embed-
ded systems, methodologies and techniques are required to provide not only
spatial isolation but also temporal isolation so that the run-time timing proper-
ties could be guaranteed.

The Hierarchical Scheduling Framework (HSF) [3] is a promising tech-
nique for integrating complex real-time components on a single processor to
overcome these deficiencies. It supplies an efficient mechanism to provide
temporal partitioning among components and supports independent develop-
ment and analysis of real-time systems. In HSF, the CPU is partitioned into a
number of subsystems. Each subsystem contains a set of tasks which typically
would implement an application or a set of components. Each task is mapped
to a subsystem that contains a local scheduler to schedule the internal tasks of
the subsystem. Each subsystem can use a different scheduling policy, and is
scheduled by a global (system-level) scheduler.

We have chosen FreeRTOS [4] (a portable open source real-time scheduler)
to implement hierarchical scheduling framework. Its main properties like open
source, small footprint, scalable, extensive support for different hardware ar-
chitectures, and easily extendable and maintainable, makes it a perfect choice
to be used within the PROGRESS project [5].

6.1.1 Contributions
The main contributions of this paper are as follows:

• We have provided a two-level hierarchical scheduling support for FreeR-
TOS. We provide the support for a fixed-priority preemptive global sched-
uler used to schedule the servers and the support for idling and deferrable
servers, using fixed-priority preemptive scheduling.

• We describe the detailed design of our implementation with the consid-
erations of doing minimal changes in FreeRTOS kernel and keeping the
original API semantics.
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• We have evaluated the performance measures for periodic and deferrable
servers on an AVR 32-bit board EVK1100 [6]. We also measure the
overhead of the implementation, like tick handler, server context-switch
and task context-switch.

6.1.2 The Hierarchical Scheduling Framework
A two-level HSF [7] can be viewed as a tree with one parent node (global
scheduler) and many leaf nodes (local schedulers) as illustrated in Figure 6.1.
A leaf node contains its own internal set of tasks that are scheduled by a local
(subsystem-level) scheduler. The parent node is a global scheduler and is re-
sponsible for dispatching the servers according to their bandwidth reservation.
A major benefit of HSF is that subsystems can be developed and analyzed in
isolation from each other [8]. As each subsystem has its own local scheduler,
after satisfying the temporal constraints of the subsystem, the temporal prop-
erties are saved within each subsystem. Later, the global scheduler is used
to combine all the subsystems together without violating the temporal con-
straints that are already analyzed and stored in them. Accordingly we can say
that the HSF provides partitioning of the CPU between different servers. Thus,
server-functionality can be isolated from each other for, e.g., fault containment,
compositional verification, validation and certification, and unit testing.
Outline: Section 6.2 presents the related work on hierarchical scheduler and
its implementations. In section 6.3 we provide our system model. Section
6.4 gives an overview of FreeRTOS and the requirements to be incorporated
into our design of HSF. We explain the implementation details of fixed-priority
servers and hierarchical scheduler in section 6.5. In section 6.6 we test the be-
havior and evaluate the performance of our implementation, and in section 6.7
we conclude the paper. We provide the API of our implementation in Appendix
6.8.

6.2 Related work

6.2.1 Hierarchical Scheduling
HSF has attained a substantial importance since introduced in 1990 by Deng
and Liu [3]. Numerous studies has been performed for the schedulability anal-
ysis of HSFs [9, 10] and processor models [11, 12, 13, 8] for independent
subsystems. The main focus of this research has been on the schedulability
analysis and not much work has been done to implement these theories.
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Hierarchical Scheduling Framework
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Figure 6.1: Two-level Hierarchical Scheduling Framework

6.2.2 Implementations of hierarchical scheduling framework
Saewong and Rajkumar [14] implemented and analyzed HSF in CMU’s Linux/
RK with deferrable and sporadic servers using hierarchical deadline monotonic
scheduling.

Buttazzo and Gai [15] present an HSF implementation based on Implicit
Circular Timer Overflow Handler (ICTOH) using EDF scheduling for an open
source RTOS, ERIKA Enterprise kernel.

A micro kernel called SPIRIT-µKernel is proposed by Kim et al. [7] based
on two-level hierarchical scheduling. They also demonstrate the concept, by
porting two different application level RTOS, VxWorks and eCos, on top of
the SPIRIT-µKernel. The main focus is on providing a software platform for
strongly partitioned real-time systems and lowering the overheads of kernel.
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It uses an offline scheduler at global level and the fixed-priority scheduling at
local level to schedule the partitions and tasks respectively.

Behnam et al. [16] present an implementation of a two-level HSF in a com-
mercial operating system VxWorks with the emphasis on not modifying the
underlying kernel. The implementation supports both FPS and EDF at both
global and local level of scheduling and a one-shot timer is used to trigger
schedulers. The work presented in this paper is different from that of [16]. Our
implementation aims at efficiency while modifying the kernel with the consid-
eration of being consistent with the FreeRTOS API.

More recently, Holenderski et al. [17] implemented a two-level fixed pri-
ority HSF in µC/OS-II, a commercial real-time operating system. This im-
plementation is based on Relative Timed Event Queues (RELTEQ) [18] and
virtual timers [19] and stopwatch queues on the top of RELTEQ to trigger
timed events. They incorporated RELTEQ queues, virtual timers, and stop-
watch queues within the operating system kernel and provided interfaces for
it. Their HSF implementation uses these interfaces. Our implementation is
different from that of [17] in the sense that we only extend the functionality of
the operating system by providing support for HSF, and not changing or mod-
ifying the data structures used by the underlying kernel. We aim at efficiency,
simplicity in design, and understandability and keeping the FreeRTOS origi-
nal API intact. Also our queue management is very efficient and simple that
eventually reduces the overhead.

6.3 System model
In this paper, we consider a two-level hierarchical scheduling framework, in
which a global scheduler schedules a system S that consists of a set of inde-
pendently developed subsystems Ss, where each subsystem Ss consists of a
local scheduler along with a set of tasks.

6.3.1 Subsystem model

Our subsystem model conforms to the periodic processor resource model pro-
posed by Shin and Lee [8]. Each subsystem Ss, also called server, is specified
by a subsystem timing interface Ss(Ps, Qs), where Ps is the period for that
subsystem (Ps > 0), and Qs is the capacity allocated periodically to the sub-
system (0 < Qs ≤ Ps). At any point in time, Bs represents the remaining
budget during the runtime of subsystem. During execution of a subsystem, Bs
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is decremented by one at every time unit until it depletes. IfBs = 0, the budget
is depleted and Ss will be suspended until its next period where Bs is replen-
ished with Qs. Each server Ss has a unique priority ps. There are 8 different
subsystem priorities (from lowest priority 1 to the highest 7). Only idle server
has priority 0. In the rest of this paper, we use the term subsystem and server
interchangeably.

6.3.2 Task model
In the current implementation, we use a very simple task model, where each
task τi is characterized only by its priority ρi. A task, τi has a higher priority
than another task, τj , if ρi > ρj . There can be 256 different task priorities,
from lowest priority 1 (only idle task has priority 0) to the highest 255.

The local-level resource sharing among tasks of the same subsystem uses
the FreeRTOS resource sharing methods. For the global-level resource sharing
user should use some traditional waitfree [20] technique.

6.3.3 Scheduling policy
We use a fixed-priority scheduling, FPS, at both the global and the local levels.
FPS is the native scheduling of FreeRTOS, and also the predominant schedul-
ing policy used in embedded systems industry. We use the First In First Out,
FIFO, mechanism to schedule servers and tasks under FPS when they have
equal priorities.

6.4 FreeRTOS

6.4.1 Background
FreeRTOS is a portable, open source (licensed under a modified GPL), mini
real-time operating system developed by Real Time Engineers Ltd. It is ported
to 23 hardware architectures ranging from 8-bit to 32-bit micro-controllers,
and supports many development tools. Its main advantages are portability,
scalability and simplicity. The core kernel is simple and small, consisting of
three or four (depends on the usage of coroutines) C files with a few assembler
functions, with a binary image between 4 to 9KB.

Since most of the source code is in C language, it is readable, portable,
and easily expandable and maintainable. Features like ease of use and under-
standability makes it very popular. More than 77, 500 official downloads in



54 Paper A

2009 [21], and the survey result performed by professional engineers in 2010
puts the FreeRTOS at the top for the question ”which kernel are you consider-
ing using this year” [22] showing its increasing popularity.

The FreeRTOS kernel supports preemptive, cooperative, and hybrid schedu-
ling. In the fixed-priority preemptive scheduling, tasks with the same priority
are scheduled using the Round-Robin (RR) policy. It supports any number of
tasks and very efficient context-switching. FreeRTOS supports both static and
dynamic (changed at run-time) priorities of the tasks. It has binary, counting
and recursive semaphores and the mutexes for resource protection and syn-
chronization, and queues for message passing among tasks. Its scheduler runs
at the rate of one tick per milli-second by default, but it can be changed to
any other value easily by setting the value of configTICK RATE HZ in the
FreeRTOSConfig.h file.

We have extended FreeRTOS with a two-level hierarchical scheduling frame-
work. The implementation is made under consideration of not changing the un-
derlying operating system kernel unless vital and keeping the semantics of the
original API. Hence the hierarchical scheduling of tasks is implemented with
intention of doing as few modifications to the FreeRTOS kernel as possible.

6.4.2 Support for FIFO mechanism for local scheduling

Like many other real-time operating systems, FreeRTOS uses round robin
scheduling for tasks with equal priorities. FreeRTOS uses listGET OWNER
OF NEXT ENTRY macro to get the next task from the list to execute them in
RR fashion. We change it to the FIFO policy to schedule tasks at local-level.
We use listGET OWNER OF HEAD ENTRY macro to execute the current
task until its completion. At global-level the servers are also scheduled using
the FIFO policy.

6.4.3 Support for servers

In this paper we implement the idling periodic [23] and deferrable servers [24].
We need periodic activation of local servers to follow the periodic resource
model [8]. To implement periodic activation of local servers our servers behave
like periodic tasks, i.e. they replenish their budget Qs every constant period
Ps. A higher priority server can preempt and the execution of lower priority
servers.
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Support for idling periodic server

In the idling periodic server, the tasks execute and use the server’s capacity
until it is depleted. If server has the capacity but there is no task ready then it
simply idles away its budget until a task becomes ready or the budget depletes.
If a task arrives before the budget depletion, it will be served. One idle task per
server is used to run when no other task is ready.

Support for deferrable server

In the deferrable server, the tasks execute and use the server’s capacity until
it is depleted. If the server has capacity left but there is no task ready then it
suspends its execution and preserves its remaining budget until its period ends.
If a task arrives later before the end of server’s period, it will be served and
consumes server’s capacity until the capacity depletes or the server’s period
ends. If the capacity is not used till the period end, then it is lost. In case there
is no task (of any server) ready in the whole system, an idle server with an idle
task will run instead.

Support for idle server

When there is no other server in the system to execute, then an idle server will
run. It has the lowest priority of all the other servers, i.e. 0. It contains only an
idle task to execute.

6.4.4 System interfaces
We have designed the API with the consideration of being consistent in struc-
ture and naming with the original API of FreeRTOS.

Server interface

A server is created using the function vServerCreate(period, budget,
priority, *serverHandle). A macro is used to specify the server type
as idling periodic or deferrable server in the config file.

Task interface

A task is created and assigned to the specific server by using the function
xServerTaskCreate(). In addition to the usual task parameters passed to
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create a task in FreeRTOS, a handle to the server serverHandle is passed to
this function to register the newly created task to its parent server. The original
FreeRTOS API to create the task cannot be used in HSF.

6.4.5 Terminology

The following terms are used in this paper:

• Active servers: Those servers whose remaining budget (Bs) is greater
than zero. They are in the ready-server list.

• Inactive servers: Those servers whose budget has been depleted and
waiting for their next activation when their budget will be replenished.
They are in the release-server list.

• Ready-server list: A priority queue containing all the active servers.

• Release-server list: A priority queue containing all the inactive servers.
It keeps track of system event: replenishment of periodic servers.

• Running server: The only server from the ready-server list that is cur-
rently running. At every system tick, its remaining budget is decreased
by one time unit, until it exhausts.

• Idle server: The lowest priority server that runs when no other server
is active. In the deferrable server, it runs when there is no ready task in
the system. This is useful for maintaining and testing the temporal sep-
aration among servers and also useful in testing system behavior. This
information is useful in detecting over-reservations of server budgets and
can be used as feedback to resource management.

• Ready-task list: Each subsystem maintains a separate ready-task list to
keep track of its ready tasks. Only one ready-task list will be active at
any time in the system: the ready list of the running server.

• Idle task: A lowest priority task existing in each server. It runs when its
server has budget remaining but none of its task are ready to execute (in
idling server). In deferrable server, the idle task of idle server will run
instead.
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6.4.6 Design considerations

Here we present the challenges and goals of a HSF implementation that our
implementation on FreeRTOS should satisfy:

1. The use of HSF and the original FreeRTOS operating system: User
should be able to make a choice for using the HSF or the original FreeR-
TOS scheduler.

2. Consistency with the FreeRTOS kernel and keeping its API intact:
To get minimal changes and better utilization of the system, it will be
good to match the design of the HSF implementation with the underlying
FreeRTOS operating system. This includes consistency from the naming
conventions to API, data structures and the coding style. To increase the
usability and understandability of HSF implementation for FreeRTOS
users, major changes should not be made in the underlying kernel.

3. Enforcement: Enforcing server preemption at budget depletion; its cur-
rently executing task (if any) must be preempted and the server should be
switched out. And similarly at budget replenishment, the server should
become active; if its priority is highest among all the active servers then
a server context-switch should be made and this server should execute.

4. Monitoring budget consumption: The budget consumption of servers
should be monitored to properly handle server budget depletion (the
tasks of the server should execute until its budget depletion).

5. The temporal isolation among servers must be guaranteed: When
one server is overloaded and its task miss the deadlines, it must not affect
the execution of other servers. Also when no task is active to consume
its server’s capacity; in the idling server this capacity should idle away
while in deferrable server it should be preserved.

6. Protecting against interference from inactive servers: The inactive
servers should not interfere in the execution of active servers.

7. Minimizing the overhead of server context-switch and tick handler:
For an efficient implementation, design considerations should be made
to reduce these overheads.
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6.5 Implementation
The user needs to set a macro configHIERARCHICAL SCHEDULING as
1 or 0 in the configuration file FreeRTOSConfig.h of the FreeRTOS to
start the hierarchical scheduler or the original FreeRTOS scheduler. The server
type can be set via macro configGLOBAL SERVER MODE in the configu-
ration file, which can be idling periodic or deferrable server. We are using
FPS with the FIFO (to break ties between equal priorities) at both levels. We
have changed the FreeRTOS RR policy to FIFO for the local schedulers, in
order to use HSF-analysis in future. Further RR is costly in terms of overhead
(increased number of context switches).

Each server has a server control block, subSCB, containing the server’s pa-
rameters and lists. The servers are created by calling the API xServerCreate()
that creates an idling or deferrable server depending on the server type macro
value, and do the server initializations which includes subSCB value’s ini-
tialization, and initialization of server lists. It also creates an idle task in that
server. An idle server with an idle task is also created to setup the system.
The scheduler is started by calling vTaskStartScheduler() (typically
at the end of the main() function), which is a non-returning function. De-
pending on the value of the configHIERARCHICAL SCHEDULING macro,
either the original FreeRTOS scheduler or the hierarchical scheduler will start
execution. vTaskStartScheduler() then initializes the system-time to
0 by setting up the timer in hardware.

6.5.1 System design

Here we describe the details of design, implementation, and functionality of
the two-level HSF in FreeRTOS.

The design of the scheduling hierarchy

The global scheduler maintains a running server pointer and two lists to sched-
ule servers: a ready-server list and a release-server list. A server can be either
in ready-server or release-server list at any time, and is implied as active or
inactive respectively. Only one server from the ready-server list runs at a time.
Running server: The running server is identified by a pointer. This server has
the highest priority among all the currently ready servers in the system.

At any time instance, only the tasks of the currently running server will run
according to the fixed-priority scheduling policy. When a server context-switch
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Figure 6.2: Data structures for active and inactive servers

occurs, the running server pointer is changed to the newly running server and
all the tasks of the new running server become ready for execution.

Ready-server list: contains all the servers that are active (whose remaining
budgets are greater than zero). This list is maintained as a double linked
list. The ListEnd node contains two pointers; ListEnd.previous and
ListEnd.next that point to the last node and first node of the list respec-
tively as shown in Figure 6.3. It is the FreeRTOS structure of list, and provides
a quick access to list elements, and very fast modifications of the list. It is
ordered by the priority of servers, the highest priority ready server is the first
node of the list.

. . .Server 1 Server 2 Server n ListEnd

Figure 6.3: The structure of ready-server and release-server lists

Release-server list: contains all the inactive servers whose budget has de-
pleted (their remaining budget is zero), and will be activated again at their next
activation periods. This list is maintained as a double linked list as shown in
Figure 6.3 and is ordered by the next replenishment time of servers, which is
the absolute time when the server will become active again.
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The design of the server

The local scheduler schedules the tasks that belong to a server in a fixed-
priority scheduling manner. Each server is specified by a server Control Block,
called subSCB, that contains all information needed by a server to run in the
hierarchical scheduling, i.e. the period, budget, remaining budget, priority and
the queues as presented in Figure 6.4.

Each server maintains a currently running task and two lists to schedule its
tasks: a ready-task list, and a delayed-task list. Ready task and delayed task
lists have the same structure as the FreeRTOS scheduler has. Delayed-task list
is the FreeRTOS list and is used by the tasks that are delayed because of the
FreeRTOS vTaskDelay or vTaskDelayUntil functions.

. . .

Server Control Block

Period

Budget

Remaining Budget

Priority

currentTCB

Ready Task List

Delayed Task List

Task Control 

Block

FreeRTOS TCB

Local Server

Figure 6.4: Data structures for ready and delayed tasks

Current running task: currentTCB is a FreeRTOS pointer that always
points to the currently running task in the system. This is the task with the
highest priority among all the currently ready tasks of the running server’s
ready task list.
Ready-task list: Each server maintains a separate ready-task list to keep
track of its ready tasks. Only one ready-task list will be active at any time in
the system: the ready list of the currently running server. When a server starts
executing, its ready-task list becomes active, and currentTCB points to the
highest priority task. This list is maintained in a similar way as FreeRTOS
ready list, because we do not want to make major changes in the underlying
operating system.
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A separate ready-task list for each server reduces the server context-switch
overhead, since the tasks swapping at every server context-switch is very costly.
Further it also keeps our implementation consistent with the FreeRTOS.

The ready task list is an array of circular double linked lists of the tasks.
The index of the array presents the priorities of tasks within a subsystem as
shown by the gray color in Figure 6.5. By default, FreeRTOS uses 8 different
priority levels for the tasks from lowest priority 1 (only idle task has priority
0) to the highest 7. (User can change it till the maximum 256 different task
priorities). The tasks of the same priority are placed as a double linked list at
the index of that particular priority. The last node of the double linked list at
each index is End pointer that points to the previous (the last node of the list)
and to the next (the first node of the list) as shown in the Figure 6.5.

For insertions the efficiency is O(1), and for searching it is O(n) in the
worst case, where n is the maximum allowed priority for tasks in the subsys-
tem.

. . .Task 1 Task 2 Task 3 Task n

Task 1 Task 2

. . .Task 1 Task 2 Task n

. 

. 

.

1

n-1

n-2

ListEnd

ListEnd

ListEnd

Figure 6.5: The structure of ready-task list

Tasks: We added a pointer to the task TCB, that points to its parent server con-
trol block to which this task belongs. This is the only addition done to the TCB
of FreeRTOS to adopt it to the two-level hierarchical scheduling framework.
Server context-switch: Since each subsystem has its own ready list for its
tasks, the server context switch is very light-weight. It is only the change of
a pointer, i.e. from the task list of the currently executing server to the ready-
task list of the newly running server. At this point, the ready-task list of the
newly running server is activated and all the tasks of the list become ready for
execution.
Task context-switch: We are using the FreeRTOS task context-switch which
is very fast and efficient as evaluated in Section 6.6.2. At this point, the ready-
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task list of the newly running server is activated and all the tasks of the list
become ready for execution.

6.5.2 System functionality
The functionality of the tick handler

The tick handler is executed at each system tick (1ms be default). At each tick
interrupt:

• The system tick is incremented.

• Check for the server activation events. Here the activation time of (one
or more) servers is checked and if it is equal to the system time then
the server is replenished with its maximum budget and is moved to the
ready-server list.

• The global scheduler is called to incorporate the server events.

• The local scheduler is called to incorporate the task events.

The functionality of the global scheduler

In a two-level hierarchical scheduling system, a global scheduler schedules the
servers (subsystems) in a similar fashion as the tasks are scheduled by a simple
scheduler. The global scheduler is called by the prvScheduleServers()
kernel function from within the tick-handler. The global scheduler performs
the following functionality:

• At each tick interrupt, the global scheduler decrements the remaining
budget Bs of the running server by one and handles budget expiration
event (i.e. at the budget depletion, the server is moved from the ready-
server list to the release-server list).

• Selects the highest priority ready server to run and makes a server context-
switch if required. prvChooseNextIdlingServer() or prvChoo
seNextDeferrableServer() is called to select idling or deferrable
server, depending on the configGLOBAL SERVER MODE macro. All
the events that occurred during inactive state of the server (tasks activa-
tions) are handled here.

• prvAdjustServerNextReadyTime(pxServer) is called to set
up the next activation time to activate the server periodically.
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In idling server, prvChooseNextIdlingServer() simply selects the
first node (with highest priority) from the ready-server list and makes it the cur-
rent running server. While in case of deferrable server, the prvChooseNext
DeferrableServer() function checks in the ready-server list for the next
ready server that has any task ready to execute even if the currently running
server has no ready task and its budget has not exhausted. It also handles the
situation when the server’s remaining budget is greater than 0, but its period
ends, in this case the server is replenished with its full capacity.

The functionality of the local scheduler

The local scheduler is called from within the tick interrupt using the adopted
FreeRTOS kernel function vTaskSwitchContext(). The local scheduler
is the original FreeRTOS scheduler with the following modifications:

• The round robin scheduling policy among equal priority tasks is changed
to FIFO policy.

• Instead of a single ready-task or delayed-task list (as in original FreeR-
TOS), now the local scheduler accesses a separate ready-task and delayed-
task list for each server.

6.5.3 Addressing design considerations
Here we address how we achieve the design requirements that are presented in
Section 6.4.6.

1. The use of HSF and the original FreeRTOS operating system: We
have kept all the original API of FreeRTOS, and the user can choose
to run either the original FreeRTOS operating system or the HSF by
just setting a macro configHIERARCHICAL SCHEDULING to 0 or 1
respectively in the configuration file.

2. Consistency with the FreeRTOS kernel and keeping its API intact:
We have kept consistency with the FreeRTOS from the naming conven-
tions to the data structures used in our implementations; for example
ready-task list, ready and release server lists. These lists are maintained
in a similar way as of FreeRTOS. We have kept the original seman-
tics of the API and the user can run the original FreeRTOS by setting
configHIERARCHICAL SCHEDULING macro to 0.



64 Paper A

3. Enforcement: At each tick interrupt, the remaining budget of the run-
ning server is checked and at budget depletion (remaining budget be-
comes 0), the server is moved from active (ready-server list) to the in-
active (release-server list) state. Moreover, release-server list is also
checked for the periodic activation of servers at each system tick and
at budget replenishment of any server, it is moved from inactive to active
state. Preemptive scheduling policy makes it possible.

4. Monitoring budget consumption: The remaining budget variable of
each server’s subSCB is used to monitor the consumption. At each
system tick, the remaining budget of the running server is decremented
by one, and when it exhausts the server is moved from active to the
inactive state.

5. The temporal isolation among servers must be guaranteed: We tested
the system and an idle task runs when there is no task ready to execute.
To test the temporal isolation among servers, we use an Idle server that
runs when no other server is active. It is used in testing the temporal
isolation among servers. Section 6.6.1 illustrates the temporal isolation.

6. Protecting against interference from inactive servers: The separation
of active and inactive servers in separate server queues prevents the in-
terference from inactive servers and also poses less overhead in handling
system tick interrupts.

7. Minimizing the overhead of server context-switch and tick handler:
A separate ready-task list for each subsystem reduces the task swapping
overhead to only the change of a pointer. Therefore, the server context-
switch is very light-weight. The access to such a structure of ready list is
fast and efficient especially in both inserting and searching for elements.
Further the tasks swapping at every server context-switch is very heavy
in such a structure.

6.6 Experimental evaluation
In this section, we present the evaluation of behavior and performance of our
HSF implementation. All measurements are performed on the target platform
EVK1100 [6]. The AVR32UC3A0512 micro-controller runs at the frequency
of 12MHz and its tick interrupt handler at 1ms.
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6.6.1 Behavior testing
In this section we perform two experiments to test the behavior our implemen-
tation. Two servers S1, and S2 are used in the system, plus an idle server is
created. The servers used to test the system are given in Table 6.1.

Server S1 S2
Priority 2 1
Period 20 40
Budget 10 15

Table 6.1: Servers used to test system behavior.

Test1: This test is performed to check the behavior of idling periodic and
deferrable servers by means of a trace of the execution. Task properties and
their assignments to the servers is given in Table 6.2. Note that higher number
means higher priority for both servers and tasks. The visualization of the exe-
cution for idling and deferrable servers is presented in Figure 6.6 and Figure 6.7
respectively.

Tasks T1 T2 T3
Servers S1 S1 S2
Priority 1 2 2
Period 20 15 60

Execution Time 4 2 10

Table 6.2: Tasks in both servers.

In the diagram, the horizontal axis represents the execution time starting
from 0. In the task’s visualization, the arrow represents task arrival, a gray
rectangle means task execution, a solid white rectangle represents either local
preemption by another task in the server or budget depletion, and a dashed
white rectangle means the global preemption. In the server’s visualization,
the numbers along the vertical axis are the server’s capacity, the diagonal line
represents the server execution while the horizontal line represents either the
waiting time for the next activation (when budget has depleted) or the waiting
for its turn to execute (when some other server is executing).

The difference in idling and deferrable servers is clear from these Figures.
In idling periodic servers, all the servers in the system executes till budget
depletion, if no task is ready then the idle task of that server executes till its
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Figure 6.6: Trace for idling periodic servers

budget depletion. While in deferrable servers, when no task is ready in the
server even if it has the capacity, the server will give the chance to another
server to execute and preserves its capacity. Thats why there is no idle task (of
S1 and S2) execution in deferrable servers as obvious from Figure 6.7. When
no task is ready to execute in the system, then idle task of idle server will
execute.
Test2: The purpose of this test is to evaluate the system behavior during the
overload situation and to test the temporal isolation among the servers. For
example, if one server is overloaded and its tasks miss deadlines, it must not
affect the behavior of other servers in the system.

The same example is executed to perform this test but with the increased
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Figure 6.7: Trace for deferrable servers

utilization of S1. The execution times of T1 and T2 are increased to 4 and 6
respectively, hence making the server S1 utilization greater than 1. Therefore
the low priority task T1 misses its deadlines as shown by solid black lines in
the Figure 6.8. S1 is never idling because it is overloaded. It is obvious from
Figure 6.8, that the overload of S1 does not effect the behavior of S2 even
though it has low priority.
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Figure 6.8: Trace showing temporal isolation among idling servers

6.6.2 Performance assessments
Here we present the results of the overhead measurements for the idling and
deferrable servers. The time required to run the global scheduler (to schedule
the server) is the first extra functionality needed to be measured; it includes
the overhead of server context-switch. The tick interrupt handler is the sec-
ond function to be measured; it encapsulated the global scheduler within it,
hence the overhead measurement for tick interrupt represents the sum of tick-
increasing time and global scheduler time. The third overhead needed to be
assessed is the task context-switch.

Two test scenarios are performed to evaluate the performance for both
idling and deferrable servers. For each measure, a total of 1000 values are
computed. The minimum, maximum, average and standard deviation on these
values are calculated and presented for both types of servers. All the values are
given in micro-seconds (µs).

Test scenario 1

For the first performance test, 3 servers, S1, S2, and S3 are created with a total
of 7 tasks. S1 contains 3 tasks while S2 and S3 has 2 tasks each. The measure-
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ments are extracted for task and server context-switches, global scheduler and
tick interrupt handler and are reported below.
Task context switch: The FreeRTOS context-switch is used for doing task-
level switching. We found it very efficient, consistent and light-weight, i.e.
10µs always as obvious from Table 6.3.

Server type Min. Max. Average St. Deviation
Idling 10 10 10 0

Deferrable 10 10 10 0

Table 6.3: The task context-switch measures for both servers.

Choosing next server: It is fetching the highest priority server (first node
from the server ready queue), and it is very fast for both types of servers as
given in Table 6.4. Note that the situations where there is no need to change
the server, it becomes 0 and this situation is excluded from these results.

Server type Min. Max. Average St. Deviation
Idling 10 10 10 0

Deferrable 10 32 14.06593 5.6222458

Table 6.4: The server context-switch measures for both servers.

The deferrable overhead is greater than idling server because of the in-
creased functionality, as explained in Section 6.5.2.
Global scheduler: The WCET of the global scheduler is dependent on the
number of events it handles. As explained in Section 6.5.2, the global scheduler
handles the server activation events and the events which has been postponed
during inactive time in this server, therefore, its execution time depends on
the number of events. The overhead measures for global scheduler function to
execute for both types of servers are given in Table 6.5.

Server type Min. Max. Average St. Deviation
Idling 10 53 12.33666 6.0853549

Deferrable 10 42 13.34865 7.5724052

Table 6.5: The global scheduler overhead measures for both servers.

Tick interrupt handler: It includes the functionality of global and local
schedulers. The WCET of the tick handler is dependent on the number of
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servers and tasks in the system. Note that the task context-switch time is ex-
cluded from this measurement.

Server type Min. Max. Average St. Deviation
Idling 32 74 37.96903 7.00257381

Deferrable 32 85 41.17582 10.9624383

Table 6.6: The tick interrupt overhead measures for both servers.

Again the deferrable overhead is greater than that of the idling server be-
cause of the increased functionality and increased number of server context-
switches at run-time.

Test Scenario 2

The experiments are run to check heavy system loads. The setup includes
10, 20, 30, and 40 servers in the system, each running a single task in it. We
cannot create more than 40 idling servers, and more than 30 deferrable servers
due to memory limitations on our hardware platform. For this test scenario
we only measured the overheads for the global scheduler and the tick interrupt
handler, because choosing next server is part of global scheduler and because
the time to execute task context-switch is not affected by the increase of number
of servers in the system.
Global scheduler: The values for idling and deferrable servers are presented
in Table 6.7 and 6.8 respectively.

Number of servers Min. Max. Average St. Deviation
10 10 21 10.0439 0.694309682
20 10 32 10.1538 1.467756006
30 10 32 10.3956 2.572807933
40 10 32 10.3186 2.258614766

Table 6.7: The global scheduler overhead measures for idling server.

The global scheduler’s overhead measures are dependent on the number of
events it handles as explained in Section 6.5.2. In this test scenario, there is
only one task per server, that reduces the number of events to be handled by
the global scheduler, therefore, the maximum overhead values in Table 6.7 are
less than from those of Table 6.5. The same reasoning stands for deferrable
server too.
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Number of servers Min. Max. Average St. Deviation
10 10 53 25.84 8.950729331
20 10 53 25.8434 11.90195638
30 10 53 27.15 9.956851354

Table 6.8: The global scheduler overhead measures for deferrable server.

Tick interrupt handler: The measured overheads for idling and deferrable
servers are reported in Table 6.9 and 6.10 respectively. These do not include
the task context-switch time.

Number of servers Min. Max. Average St. Deviation
10 53 96 64.57742 4.656420272
20 96 106 98.35764 4.246876974
30 128 138 132.2058 4.938988398
40 160 181 164.8022 5.986888605

Table 6.9: The tick interrupt overhead measures for idling servers.

From Tables 6.6, 6.9, 6.10 it is clear that the tick interrupt overhead in-
creases with the increase in the number of servers in the system.

Number of servers Min. Max. Average St. Deviation
10 106 128 126.2574 4.325860528
20 140 149 144.5446 4.522222357
30 172 181 178.7723 3.903539901

Table 6.10: The tick interrupt overhead measures for deferrable servers.

6.6.3 Summary of evaluation
We have evaluated our implementation on an actual real environment i.e. a
32-bit EVK1100 board hence our results are more valid than simulated results
like [17] where the simulation experiments are simulated for OpenRisc 1000
architecture and hence having a very precise environmental behavior. We have
evaluated the behavior and performance of our implementation for resource al-
location during heavy load, and overload situations, and found that it behaves
correctly and gives very consistent results.
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We have also evaluated the efficiency of our implementation, i.e. the effi-
ciency of task context-switch, global scheduler, and tick handler. Searching for
the highest priority server and task the efficiencies are O(1) and O(n) respec-
tively, where n is the maximum allowed priority for tasks in the subsystem.
For insertions, it is O(m) and O(1) for the server and task respectively, where
m is the number of servers in the system in the worst case. Our results for task
context-switch, and choosing scheduler conforms this efficiency as compared
to [17], where the efficiency is also dependent on dummy events in the REL-
TEQ queues. These dummy events are not related to the scheduler or tasks, but
to the RELTEQ queue management.

6.7 Conclusions
In this paper, we have implemented a two-level hierarchical scheduling support
in an open source real-time operating system, FreeRTOS, to support temporal
isolation among real-time components. We have implemented idling periodic
and deferrable servers using fixed-priority preemptive scheduling at both local
and global scheduling levels. We focused on being consistent with the underly-
ing operating system and doing minimal changes to get better utilization of the
system. We presented our design details of two-level HSF and kept the original
FreeRTOS API semantics.

We have tested our implementations and presented our experimental eval-
uations performed on EVK1100 AVR32UC3A0512 micro-controller. We have
checked it during heavy-load and over-load situations and have reported our
results. It is obvious from the results of the overhead measurements (of tick
handler, global scheduler, and task context-switch) that the design decisions
made and the implementation is very efficient.

In the future we plan to implement support for legacy code in our HSF
implementation for the FreeRTOS i.e. to map the FreeRTOS API to the new
API, so that the user can run her/his old code in a subsystem within the HSF.
We will implement the periodic task model and a lock-based synchronization
protocol [25] for global resource sharing among servers. We also want to im-
prove the current Priority Inheritance Protocol for local resource sharing of
FreeRTOS by implementing Stack Resource Protocol. And finally we want to
integrate this work within the virtual node concept [5].



6.8 Appendix 73

6.8 Appendix
A synopsis of the application program interface of HSF implementation is pre-
sented below. The names of these API and macros are self-explanatory.
The newly added user API and macro are the following:

1. signed portBASE TYPE xServerCreate(xPeriod, xBudget,
uxPriority, *pxCreatedServer);

2. signed portBASE TYPE xServerTaskGenericCreate( pxTaskCode,
pcName, usStackDepth, *pvParameters, uxPriority, *pxCreated-
Task, pxCreatedServer, *puxStackBuffer, xRegions ) PRIVILEGED-
FUNCTION;

3. #define xServerTaskCreate( pvTaskCode, pcName, usStackDepth,
pvParameters, uxPriority, pxCreatedTask, pxCreatedServer )
xServerTaskGenericCreate( (pvTaskCode), (pcName), (usStackDepth),
(pvParameters), (uxPriority), (pxCreatedTask), (pxCreatedServer),
( NULL ), ( NULL ))

4. portTickType xServerGetRemainingBudget( void );

The newly added private functions and macros are as follows:

1. #define prvAddServerToReadyQueue( pxSCB )

2. #define prvAddServerToReleaseQueue( pxSCB )

3. #define prvAddServerToOverflowReleaseQueue( pxSCB )

4. #define prvChooseNextDeferrableServer( void )

5. #define prvChooseNextIdlingServer( void )

6. static inline void prvAdjustServerNextReadyTime( *pxServer );

7. static void prvInitialiseServerTaskLists( *pxServer );

8. static void prvInitialiseGlobalLists(void);

9. static signed portBASE TYPE prxRegisterTasktoServer(* pxNewTCB,

*pxServer);

10. static signed portBASE TYPE prxServerInit(* pxNewSCB);

11. static signed portBASE TYPE xIdleServerCreate(void);

12. static void prvScheduleServers(void);

13. static void prvSwitchServersOverflowDelayQueue(* pxServerList);

14. static void prvCheckServersDelayQueue(* pxServerList);
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We adopted the following user APIs to incorporate HSF implementation.
The original semantics of these API is kept and used when the user run the orig-
inal FreeRTOS by setting configHIERARCHICAL SCHEDULING macro to
0.

1. signed portBASE TYPE xTaskGenericCreate( pxTaskCode, pcName,
usStackDepth, *pvParameters, uxPriority, *pxCreatedTask,

*puxStackBuffer, xRegions );

2. void vTaskStartScheduler( void );

3. void vTaskStartScheduler (void);

4. void vTaskDelay( xTicksToDelay );

5. void vTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement);

and adopted private functions and macros:

1. #define prvCheckDelayedTasks(pxServer)

2. #define prvAddTaskToReadyQueue( pxTCB )

3. void vTaskIncrementTick( void );

4. void vTaskSwitchContext( void );
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Abstract

This paper presents runtime support to consolidate legacy and new real-time
applications, running a single instance of a real-time operating system (RTOS),
and sharing system resources. In this context, we leverage a hierarchical schedul-
ing framework (HSF) to provide temporal partitions for different applications,
supporting their independent development and real-time analysis. These tem-
poral partitions paves way for predictable integration. In particular, the paper
focuses on a constructive element, we call the legacy server, that allows execut-
ing code that is unaware of the temporal partition within which it is deployed.
Furthermore, we discuss the challenges that need to be addressed to execute a
legacy application in an HSF without modifications to the original code. We fo-
cus on the challenge of enabling sharing system resources, both hardware and
software, as typically found in most embedded software-systems. We propose
a novel solution based on wrappers for RTOS system calls.

We implement our ideas in a concrete implementation on FreeRTOS, tak-
ing advantage of a prior HSF implementation. The validation is performed by
a proof-of-concept case study that shows successful integration of a legacy ap-
plication that uses shared resources in a system that executes other applications.

keywords: real-time systems, hierarchical scheduling, legacy application reuse,
applications integration.
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7.1 Introduction

The trend of software reuse is observed in many industrial embedded software
applications. The reuse of legacy applications is an answer to industrial chal-
lenges like development cost, time to market, and increasing complexity. For
instance, the new Boeing 787 ”Dreamliner” is a recent example with a signif-
icant proportion of reused modules from another Boeing airplane [1, 2]. Fur-
thermore, many industrial systems are developed in an evolutionary fashion,
reusing applications from previous versions or from related products. It means
that applications are reused and re-integrated in new environments.

Integration of real-time applications, defined as consistent sets of concur-
rent time-constrained tasks, can be explained as the mechanism of wiring ap-
plications together [3]. For real-time embedded systems, integrating legacy
and other real-time applications must achieve both (1) functional correctness
and (2) satisfy extra-functional properties, particularly timing properties. The
temporal behaviour of real-time software applications poses difficulties during
integration. Upon integration, tasks of one application affect the scheduling of
tasks of other applications. This means that for an embedded system with real-
time constraints; an application that is found correct during unit verification
may fail due to a change in temporal behaviour when integrated in a system.

Virtualization is a resource-management technique to mitigate these prob-
lems by partitioning the system resources, such as processor, memory or net-
work, in a way that provides the illusion of a full resource but with a fractional
capacity [4]. Using virtualization, a CPU resource is partitioned in several
smaller virtual machines (VMs), each running a separate operating system in-
stance either without any modification, e.g. KVM-based solutions [5], or with
modifications, e.g. Xen [6]. However, executing multiple operating systems
maybe undesired and the performance overhead introduced by virtualization is
a big challenge for resource constrained embedded hardware nodes particularly
smaller microcontrollers. Furthermore, system administration of virtualization
can become a time-consuming task due to complex configuration interactions
between supposedly disjoint applications. A comparatively lightweight tech-
nique to allow the partitioning of an OS environment into multiple temporal
partitions and to execute a separate real-time application in each partition is
OS virtualization. In this approach, only a single instance of an OS executes
in the system, supporting all applications, being better suited for the resource
constrained embedded hardware. OS virtualization is typically implemented
using server-based scheduling, which was generalized into the Hierarchical
Scheduling Framework (HSF) [7, 8].
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HSF offers an efficient mechanism (i) to provide predictable integration of
applications by rendering temporal partitioning among them [9], (ii) to support
independent development and analysis of real-time applications [8], and (iii)
to provide analysis of integrated applications at the system level [8, 10]. These
advantages of HSF could provide an even better leverage for reusing real-time
legacy applications. However, most of the existing research focus is on provid-
ing analysis tools and algorithms in order to enable predictable reusability of
applications [8, 9]. Similar approaches have been proposed targeting specifi-
cally legacy applications, even if the timing characteristics of the applications
are not known in advance [11]. However, predictable reuse of legacy applica-
tions with HSF requires additional runtime support which, to the best of our
knowledge, has not been investigated previously.

In this paper we provide an implementation support to execute legacy ap-
plications in servers within a two-level HSF. Our method is based on creating
a legacy server for each legacy application. Then, for each application, we
allocate its tasks to the respective server. Thus a legacy server encapsulates a
legacy application and becomes a container for a set of legacy tasks. The use
of legacy servers upholds the independent development of legacy applications
from the rest of the system, encapsulates internal temporal properties of the
legacy applications, and ensures the predictable temporal behaviour of the sys-
tem. To support resource sharing among tasks of the same server (called local
resource sharing) and among tasks of different servers (called global resource
sharing), we implement two resource sharing protocols: Stack Resource Policy
(SRP) [12], and Hierarchical Stack Resource Policy (HSRP) [13, 14] respec-
tively.

As target system we chose the FreeRTOS operating system for which we al-
ready have a two-levels HSF implementation for independent applications [15].
In this paper we extend existing research with the following contributions:

• Identification of the challenges involved in running legacy applications
(with no or minimal changes) in the hierarchical framework.

• A runtime support for reusing legacy real-time applications. This en-
tails: (1) an implementation of a legacy server. (2) the development of
new wrappers for the original OS API to support software and hardware
resource sharing among legacy and other applications. (3) implementa-
tions of resource sharing protocols. We presented a preliminary imple-
mentation in [16] which is subsumed by this work.

• Experimental validation of the proposed solution and its implementa-
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tion. We apply a case study to evaluate the implementation in terms of
correctness and runtime overhead. A legacy application that uses FreeR-
TOS resource sharing API is executed within a legacy server to check
(1) the automatic creation of legacy tasks and their execution within
the legacy server, and (2) the correctness of wrappers. We also per-
form tests for HSRP implementation and wrappers for a hardware re-
source, that is shared between an external task and a legacy task. And
finally, we test and measure the performance of our implementations for
synchronization protocols at both levels on an AVR-based 32-bit board
EVK1100 [17]. We also compare overheads of the wrapper against the
original FreeRTOS API.

To the best of our knowledge, this is the first work to identify the challenges
involved in executing a legacy application within an HSF and to provide an
implementation of the needed execution support.
Organization of the paper: Section 7.2 describes the challenges in exe-
cuting legacy applications in an HSF. Section 7.3 provides our system model.
Section 7.4 gives a background on FreeRTOS and reviews the HSF implemen-
tation in FreeRTOS. Section 7.5 overviews the resource sharing techniques for
HSF. Sections 7.6 and 7.7 present our implementation of resource sharing and
legacy support respectively. Section 7.8 presents a case study of a legacy ap-
plication, and Section 7.9 experimentally evaluates the behavior of a legacy
application that uses resource sharing and presents overhead measures. Sec-
tion 7.10 describes related work. Section 7.11 concludes the paper and finally,
an Appendix lists the API and macros of the implementation.

7.2 Challenges in executing legacy applications in
an HSF

Integrating a legacy application, originally developed for full CPU access, in a
two-level hierarchical framework raises many challenges. Our goal is to make
minimal changes in the legacy application, i.e., we exclude the possibility of
changing the application code to convert the original calls to the OS API in
calls to the HSF API. In fact, the legacy application is already tried-and-tested,
and has been already deployed and executed, thus is more reliable to leave
it as is. Moreover, making such changes in the legacy code is tedious, time
consuming, and error prone.

The first challenge is to create a legacy server itself and execute legacy
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tasks inside. A new API is required to create the legacy server, create legacy
tasks and assign legacy tasks to the server.

The second challenge is to execute the legacy application without modify-
ing it. The code of the legacy application still calls the original OS API. How-
ever, executing the legacy application in the hierarchical environment requires
the HSF API to be called instead. For example, in FreeRTOS the xTaskCreate

system call is used for task creation, but the xServerTaskCreate system call is
used in HSF for tasks creation within a server.

A third challenge arises when the legacy application accesses a shared re-
source and uses synchronization primitives of the OS. When the same code is
executed in a legacy-server within a two-level HSF along with other servers, the
resource which is shared among tasks of the same server, i.e. legacy-server, is
considered as a local resource. It is important to create and retain the resource
within the server, and tasks of other servers should not be allowed to access
this resource. This is a requirement for the temporal isolation among servers
in HSF. In addition, for the legacy application, resources that might be shared
with other applications are considered as global resources and the HSRP-based
resource access API should be used in this case. This adaptation could also be
done by changing the respective system calls embedded in the legacy code to
a convenient resource sharing protocol. However, changing the original code
is error-prone and time consuming. Moreover, changing the synchronization
protocol would change the semantics of the legacy application (e.g. changing
semantics of PIP to SRP) which is undesired.

In addition, the choice of synchronization protocol to be used in HSF de-
pends on whether the legacy application is sharing the resource with other ap-
plications or not. If it is not, the original system calls should be used i.e., the
legacy application is granted exclusive access the processor resource. Other-
wise, global synchronization primitives should be used instead. Again, to avoid
changing the legacy code, we keep its unawareness of whether a resource is lo-
cal or global and we delay this choice for deployment phase, relying on the
operating system knowledge.

To overcome these challenges and execute the legacy application in HSF
without modification, we develop wrappers around the original OS API. A
wrapper is a middleware that separates the original OS API from the actual
system calls code. Wrappers exhibit the same interface as of the original API,
but extend these with some extra functionality to call the new system calls [18].
This allows invoking the new system calls from within the legacy application
without changing the legacy code. The advantage of wrapping over conven-
tional redevelopment is that it requires less effort and lower development cost
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while keeping the original code unchanged. Moreover, it retains the semantics
of the original operating system code.

7.3 System model
In this paper, we consider a two-level HSF using the periodic resource model [8]
in which a system S consists of a set of independently developed and analyzed
subsystems Ss, each representing one application. The HSF can be viewed as
a tree with one parent node and many leaf nodes as illustrated in Figure 7.1.
The parent node is a global scheduler and leaf nodes are subsystems. Each
subsystem Ss consists of its own internal set of tasks that are scheduled by a
local scheduler, and is executed by a server. The global scheduler schedules
the system and is responsible for dispatching the servers according to their re-
source reservations. The local scheduler of each subsystem then schedules its
task set according to a server-internal scheduling policy. The system contains
a set of global shared resources, shared among tasks of different subsystems,
and each subsystem has a set of local shared resources, shared among tasks of
the same subsystem. In the rest of this paper, we use the term subsystem and
server interchangeably.

7.3.1 Subsystem model
Each subsystem Ss is specified by a timing interface Ss = 〈Ps, Qs, ps, Xs〉,
where Ps is the period for that server (Ps > 0), Qs is the capacity allocated
periodically to the server (0 < Qs ≤ Ps), and Xs is the maximum execution-
time that any subsystem-internal task may lock a global shared resource 0 <
Xs ≤ Qs. Each server Ss has a priority ps. The idle server has lowest priority
i.e. 0 in the system. At each instant during run-time,Bs represents a remaining
budget, Bs ≤ Qs. During execution of a subsystem, Bs is decremented by one
at every time unit until it depletes. When Bs = 0, the budget is depleted and
Ss will be suspended until its next period when Bs is replenished with Qs. It
should be noted thatXs is used for schedulability analysis only and our HSRP-
implementation does not depend on the availability of this attribute.

7.3.2 Task model
We consider a simple periodic task model represented by a set T of n number
of tasks. Each task τi is represented as τi = 〈Ti, Ci, ρi, cs〉, where Ti denotes
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Figure 7.1: Two-level Hierarchical Scheduling Framework

the period of task τi with worst-case execution time Ci where 0 < Ci ≤ Ti, ρi
as its priority, and cs is the set of critical section execution times of all resources
that the task accesses. For simplicity, we do not consider the case of nested
resource access in this paper. A task, τi has a higher priority than another task,
τj , if ρi > ρj . There can be 256 different task priorities, from lowest priority
1 (only idle task has priority 0) to the highest 255. For simplicity, the deadline
for each task is equal to Ti.

7.3.3 Scheduling policy
We use fixed-priority preemptive scheduling (FPPS) at both global and local
levels of scheduling. FPPS is flexible and is the de-facto industrial standard for
task scheduling [19]. Our implementation supports shared priorities, which are
then handled in FIFO order (both in global and local scheduling).
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7.3.4 The legacy model
Each legacy application consists of a legacy task set, and a set of resources
shared among those tasks. We assume that the legacy application is developed
for FreeRTOS operating system and the source code is available. In HSF, the
legacy application is now executed as a legacy server.

7.3.5 Summary of analytical framework
To perform real-time analysis techniques, a priori knowledge of tasks param-
eters and server parameters is required, which are generally not known for
legacy applications. Given parameters of FreeRTOS tasks, a task’s period and
priority are derived for the legacy application. Given interfaces of tasks, the
server interface can be derived using available technique [11] that not only
identifies the execution requirements of unknown applications, but can also
be used to self-tune the scheduling parameters of legacy applications by us-
ing feedback scheduling. However, the resource sharing among tasks is not
considered in that approach.

Given the system model, analytical frameworks exist to perform the schedu-
lability analysis that can be used to integrate the newly developed applications
for HSF and the legacy application together [8, 14, 11]. Since analysis frame-
work has been established, we complement it with practical implementation to
allow it for practise. Note that the focus of this work is on integration and im-
plementation; we leave the identification of blocking times for locked resources
of legacy application as a future work.

7.4 FreeRTOS and its HSF implementation
This section presents the background on FreeRTOS and its synchronization
primitives. Further it presents a brief overview of a HSF implementation in
FreeRTOS. The HSF implementation is already presented in [15] and is in-
cluded here for the sake of completeness.

7.4.1 FreeRTOS and its synchronization primitives
FreeRTOS is a portable, open source (licensed under a modified GPL), mini
real-time operating system developed by Real Time Engineers Ltd [20]. It
is ported to more than 20 hardware architectures ranging from 8-bit to 32-bit
micro-controllers, and supports many development tools. Its main advantages
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are portability, scalability and simplicity. The core kernel is simple and small,
consisting of three or four (depends on the usage of coroutines) C files, with a
few assembler functions, resulting in a binary image between 4 to 9KB. Thus
it is suitable for resource constraint micro-controllers. FreeRTOS kernel sup-
ports preemptive, cooperative, and hybrid scheduling. Using FPPS, tasks with
the same priority are scheduled using the round-robin policy. It supports an
arbitrary number of tasks, with both static and dynamic (changed at run-time)
priorities, and 256 different priorities for tasks. Its scheduler runs at the rate
of one tick per milli-second by default. It implements a very efficient task
context-switch (i.e 10µs for the rate 1 milli-second).

FreeRTOS supports basic synchronization primitives like binary, counting
and recursive semaphore, and mutexes. The mutexes employ priority inheri-
tance protocol (PIP) [21], in which a lower priority task that is locking a shared
resource inherits the priorities of all tasks that have higher priority and try to
access the same resource. After returning the mutex, the task’s priority is low-
ered back to its original priority. Priority inheritance mechanism minimizes the
priority inversion but it cannot cure deadlock.

FreeRTOS implements all the above mentioned synchronization primitives
using the message queues without buffering. The message queue structure
xQueue is initiated at the creation of a semaphore or mutex and message queue
API is called to handle synchronization among tasks. Each semaphore creates
a separate queue to handle synchronization. xSemaphorehandle pointer points
to a queue structure xQueueHandle created for that semaphore.

7.4.2 HSF implementation in FreeRTOS

A two-level HSF implementation on FreeRTOS [15] supports idling periodic
[22] and deferrable servers [23]. Idling periodic means that tasks in the server
execute and use the server’s capacity until it is depleted. If the server has
capacity but there is no task ready then it simply idles away its budget until a
task becomes ready or the budget depletes. If a task arrives before the budget
depletion, it will be served. Deferrable server means that tasks execute and
use the servers capacity. If the server has capacity left but there is no task
ready then it suspends its execution and preserves its remaining budget until its
period ends. If a task arrives later before the end of servers period, it will be
served and consumes servers capacity until the capacity depletes or the servers
period ends. If the capacity is not used till the period end, then it is lost. In
case there is no task (of any server) ready in the whole system, an idle server
with an idle task will run instead.
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To follow the periodic resource model [8], our servers and tasks are ac-
tivated periodically. Servers replenish their budget Qs every constant period
Ps. Since FPPS is used at both global and local scheduling levels, a higher
priority server/task can preempt the execution of lower priority servers/tasks
respectively. A brief overview of the implementation [15] is given below:

Terminology

Terms used in the implementation are:

Active servers: Those servers whose remaining budget (Bs) is greater than
zero. They are in the ready-server list.

Inactive servers: Those servers whose budget has been depleted and waiting
for their next activation when their budget will be replenished. They are in the
release-server list.

Ready-server list: It is a priority queue containing all active servers, and is
arranged according to servers’ priorities.

Release-server list: It is a priority queue containing all inactive servers, and is
arranged according to servers’ activation times. It is used to keep track of the
replenishment of periodic servers.

Running server: The only server from the ready-server list that is currently
running. At every system tick, its remaining budget is decreased by one time
unit, until it exhausts.

Idle server: The lowest priority server that runs when no other server is active.
In the deferrable server, it runs when there is no ready task in the system. This
is useful for maintaining and testing the temporal separation among servers and
also useful in testing system behavior. This information is useful in detecting
over-reservations of server budgets and it can be used as feedback to resource
management.

Ready-task list: Each server maintains a separate ready-task list to keep track
of its ready tasks. It is ordered according to the tasks’ priorities. Only one
ready-task list will be active at any time in the system: the ready list of the
running server.

Idle task: A lowest priority task existing in each server. It runs when its server
has budget remaining but none of its task are ready to execute (in the idling
server). In the deferrable server, the idle task of the idle server will run instead.
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Data structures

The system maintains two lists: a ready-server list and a release-server list as
mentioned earlier. The details of the data structures of these two lists can be
found in [15]. The currently executing server in the system is pointed by a
running-server pointer. At any time instance, only the tasks of the currently
running server can be executed.

Each server within the system contains the subSystem control block struc-
ture, as depicted in Figure 7.2. It maintains two lists: a ready-task list and a
delayed-task list. The delayed-task list is the FreeRTOS list and is used to
maintain the tasks when they are not ready (either suspended or delayed) and
waiting for their activation.

. . .

SubSystem
Control Block

Period

Budget

Remaining Budget

Priority

currentTCB

Ready Task List

Delayed Task List

Task Control 
Block

FreeRTOS TCB

Local Server

Figure 7.2: Data structures to implement HSF in FreeRTOS

Hierarchical scheduler

The hierarchical scheduling is started by calling vTaskStartScheduler() sys-
tem call and the tasks of the highest-priority ready server starts execution.
Tick-Interrupt handler: At each tick interrupt, the interrupt handler rou-
tine performs the following functionality:

• The system tick is incremented.

• Check for the server’s activation events. The newly activated servers’
budgets are replenished to the maximum values and the servers are moved
to the ready-server list.
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• The global scheduler is called to handle the server events like execution,
activation/replinishment, preemption of lower priority server, suspend-
ing the server at budget depletion, etc.

• The local scheduler is called to handle the task events like task execution,
activation, preemption of lower priority task, suspension, etc.

Global scheduler: The functionality of the global scheduler is as follows:

• At each tick interrupt, the global scheduler decrements the remaining
budgetBs of the running server by one and handles the budget expiration
event (i.e. at the budget depletion, the server is moved from the ready-
server list to the release-server list).

• Selects the highest priority ready server to execute and makes a server
context-switch if required. Either prvChooseNextIdlingServer() or
prvChooseNextDeferrableServer() is called to select idling or deferra-
ble server, depending on the value of the configGLOBAL SERVER MODE

macro in the FreeRTOSConfig.h file.

• prvAdjustServerNextReadyTime(pxServer) is called to set up the next
activation time to activate the server periodically.

In idling periodic server, the prvChooseNextIdlingServer() function se-
lects the first item (with highest priority) from the ready-server list and makes
it the current running server. While in the case of a deferrable server, the
prvChooseNextDeferrableServer() function checks the ready-server list for
the next ready server that has any task ready to execute when the currently
running server has no ready task even if it’s budget is not exhausted. It also
handles the situation when the server’s remaining budget is greater than 0, but
its period ends, in this case the server is replenished with its full capacity.

The server context-switch is very light-weight, and consists only of chang-
ing the running-server pointer from the currently executing server to the newly
running server. The ready-task list of the newly running server is activated and
all tasks of the list become ready for execution.
Local scheduler: The local scheduler is called from within the tick-interrupt
handler routine using an adopted kernel function vTaskSwitchContext(). It is
the original FreeRTOS scheduler with the following modification:

Instead of a single ready-task or delayed-task list (as in original FreeR-
TOS), now the local scheduler accesses a separate ready-task and delayed-task
list for each server.
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7.5 Resource sharing in HSF
We implement SRP [12] and HSRP [13, 14] to access local and global shared
resources respectively. Since HSRP is an extension of SRP protocol, the SRP
terms are extended to implement HSRP and some mechanisms must be im-
plemented to prevent excessive blocking. To use SRP in a hierarchical setup,
terms are extended as follows:

• Preemption level (Priority): According to SRP, each task τi has a static
preemption level. Using FPPS, the task’s priority ρi is used to indicate
the preemption level. Similarly, for each subsystem Ss, its priority ps is
used as the preemption level.

• Resource ceiling: Each globally shared resource is associated with a
global ceiling for global scheduling. This global ceiling is the highest
priority of any subsystem whose task is accessing the global resource.
Similarly each locally shared resource also has a local ceiling for local
scheduling. This local ceiling is the highest priority of any task (within
the subsystem) using the resource.

• System and subsystem ceilings: System and subsystem ceilings are dy-
namic parameters that change during runtime and the scheduler needs
to be extended with the notion of these ceilings. The system ceiling is
equal to the currently locked highest global resource ceiling in the sys-
tem, while the subsystem ceiling is equal to the currently locked highest
local resource ceiling in the subsystem.

Following the rules of SRP, a task τi can preempt the currently executing
task within a subsystem only if τi has a priority higher than that of running task
and, at the same time, the priority of τi is greater than the current subsystem
ceiling.

Following the rules of HSRP, a task τi of a subsystem Si can preempt the
currently executing task of another subsystem Sj only if Si has a priority higher
than that of Sj and, at the same time, the priority of Si is greater than the current
system ceiling. Moreover, whilst a task τi of the subsystem Si is accessing a
global resource, no other task of the same subsystem can preempt τi.

The local and global schedulers are updated with the SRP and HSRP rules
respectively and the details are described in Section 7.6.

Now we explain two overrun mechanisms used by HSRP to handle bud-
get expiry during a critical section in the HSF. Consider a global scheduler
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that schedules subsystems according to their periodic interfaces. The subsys-
tem budget is said to be expired at the point when one or more internal tasks
have executed a total of Qs time units within the subsystem period Ps. Once
the budget is expired, no new task within the same subsystem can initiate its
execution until the subsystem’s budget is replenished at the start of the next
subsystem period.

To prevent excessive priority inversion due to global resource lock, it is de-
sirable to prevent subsystem rescheduling during critical sections of global re-
sources. In this paper, we employ the overrun strategy to prevent such reschedul-
ing. According to the overrun concept, upon the budget expiration of a subsys-
tem while its task τi has still locked a global resource, the task τi is allowed to
continue (overrun) its execution until either it releases the locked resource or its
overrun time becomes equal to its subsystem budget. The extra time needed to
execute after the budget expiration is denoted as overrun time θ. We implement
two different overrun mechanisms [14]:

1. A basic overrun mechanism without payback denoted as BO: here no
further actions will be taken after the event of an overrun.

2. The overrun mechanism with payback, denoted as PO: when an overrun
happens, the subsystem Ss pays back this consumed amount of over-
run in its next execution instant, i.e., the subsystem’s budget Qs will be
decreased by θs i.e. (Qs − θs) for the subsystem’s execution instant fol-
lowing the overrun (note that only the instant following the overrun is
affected since θs ≤ Qs).

7.6 Support for resource sharing in HSF
Here we describe the design and implementation details of the resource shar-
ing in two-level HSF. SRP and HSRP are implemented for local and global
resource sharing respectively along with overrun mechanisms. The macro
configGLOBAL SRP in the configuration file is used to activate the resource shar-
ing. The type of overrun can be selected by setting the macro configOVERRUN

PROTOCOL MODE to either OVERRUN WITHOUT PAYBACK or OVERRUN PAYBACK.

7.6.1 Support for SRP
For local resource sharing, we implement SRP to avoid problems like priority
inversions and deadlocks.
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The data structures for the local SRP: Each local resource is represented by
the structure localResource that stores the resource ceiling and the task that
currently holds the resource as shown in Figure 7.3. The locked resources are
stacked onto the localSRPList; the FreeRTOS list structure is used to imple-
ment the SRP stack. The list is ordered according to the resource ceiling, and
the first element of the list has the highest resource ceiling, and represents the
SubSystemCeiling.
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Figure 7.3: Data structures to implement SRP in HSF-enabled FreeRTOS

The extended functionality of the local scheduler for SRP: The only func-
tionality we extended is the searching for the next ready task to execute. Now
the scheduler selects a task to execute if the task has the highest priority among
all the ready tasks and its priority is greater than the current SubSystemCeiling,
otherwise the task that has locked the highest (top) resource in the localSRPList
is selected to execute. The API list for the local SRP is provided in the Ap-
pendix.

7.6.2 Support for HSRP
HSRP is implemented to support global resource sharing among servers. The
details are as follows:
The data structures for the global HSRP: Each global resource is repre-
sented by the structure globalResource that stores the global-resource ceil-
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ing and the server that currently holds the resource as shown in Figure 7.4.
The locked resources are stacked onto the globalHSRPList; the FreeRTOS list
structure is used to implement the HSRP stack. The list is ordered according to
the resource ceiling, the first element of the list has the highest resource ceiling
and represents the SystemCeiling.
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Figure 7.4: Data structures to implement HSRP

The extended functionality of the global scheduler for HSRP: To incor-
porate HSRP into the global scheduler, prvChooseNextIdlingServer() and
prvChooseNextDeferrableServer() private system calls are appended with
the following functionality: The global scheduler selects a server if the server
has the highest priority among all the ready servers and the server’s priority is
greater than the current SystemCeiling, otherwise the server that has locked
the highest (top) resource in the HSRPList is selected to execute. The API list
for the global HSRP is provided in Appendix.

7.6.3 Managing local and/or global system ceilings
To ensure the correct access of shared resources at both local and global levels,
the local and global ceilings should be updated properly upon the locking and
unlocking of those resources. This functionality is implemented at both local
and global levels within the SRP and HSRP API respectively, and is used to
lock and unlock the local and global resources.
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When a task locks a local/global resource whose ceiling is higher than the
SubSystem/System Ceiling, the resource mutex is inserted as the first element
onto the localSRPList/HSRPList respectively. Moreover, the SubSystemCeil

ing /SystemCeiling is updated to the currently locked highest LocalCeiling /
GlobalCeiling of the resource mutex respectively, and the task/server be-
comes the owner of the local/global resource accordingly. Each time a global
resource is locked, the GlobalResourceTakenNum is also incremented.

Similarly upon unlocking a local/global resource, that resource is sim-
ply removed from the top of the localSRPList/HSRPList respectively. The
SubSystemCeiling /SystemCeiling is updated accordingly, and the owner of
this resource is set to NULL. For global resource, the GlobalResourceTakenNum
is decremented.

7.6.4 Support for overrun protocols
To implement overrun mechanisms in order to prevent excessive priority inver-
sion, the server should continue its execution even if its budget depletes while
accessing a global shared resource; its currently executing task should not be
preempted and the server should not be switched out by any other higher prior-
ity server (whose priority is not greater than the SystemCeiling) until the task
releases the resource.

We have implemented two types of overrun mechanisms; (i) without pay-
back (BO) and (ii) with payback (PO). The implementation of BO is very sim-
ple, the server simply executes and overruns its budget until it releases the
shared resource, and no further action is required. For PO, we need to mea-
sure the overrun amount of time in order to pay it back at the server’s next
activation.
The data for overrun mechanisms: The GlobalResourceTakenNum is used as
an overrun flag. As mentioned earlier, it is incremented and decremented at the
global resource locking and unlocking respectively. When its value is greater
than zero (means a task of the currently executing server has locked a global
resource), no other higher priority server (whose priority is not greater than
the SubSystemCeiling) can preempt this server, even if its budget depletes.

Two variables PayBackBudget and OverrunReadytimeOffset are added to
the subsystem structure in order to keep a record of the overrun amount to
be deducted from the next budget of the server as shown in Figure 7.4. The
overrun time is measured and stored in PayBackBudget.
The extended functionality of the global scheduler for overrun: A new
system call prvOverrunAdjustServerNextReadyTime(*pxServer) is used to
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embed overrun functionality into the global scheduler. For PO, the amount of
overrun, i.e. PayBackBudget θs is deducted from the server RemainingBudget
Bs at the next activation period of the server, i.e. Bs = Qs − θs.

7.7 Support for legacy application and wrappers

Here we describe the design and implementation details of the legacy server
and wrappers.

7.7.1 Creating the legacy server

To utilize the legacy support, a macro configHIERARCHICAL LEGACY must be
set in the configuration file FreeRTOSConfig.h. The user should rename the
old main() function, and remove any call to vTaskStartScheduler() from the
legacy code.

The legacy application is executed in a separate legacy server. The user
provides the server parameters like period, budget, and priority for the legacy
server. The user also provides a function pointer to the legacy code (the old
main function that has been renamed). The xLegacyServerCreate(xPeriod,

xBudget, uxPriority, *pxLegacyServerHandle, *pfLegacyFunc) system
call is provided for this purpose, where *pfLegacyFunc is a function pointer
pointing to the old main function of legacy application.

The legacy tasks are dynamically attached to the server. The xLegacyServer-
Create() function first creates a server by calling xServerCreate(xPeriod,

xBudget, uxPriority, *pxLegacyServerHandle) function. Second, it cre-
ates a highest priority private (hidden from the user) task called vLegacyTask

(*pfLegacyFunc) within the legacy server using the xServerTaskCreate (

vLegacyTask, pcName, usStackDepth, (void *) pfLegacyFunc, config

MAXPRIORITIES - 1, NULL, *pxLegacyServerHandle) system call.
vLegacyTask function executes only once and its main functionality is 1)

initializing legacy code (execution of the old main function which creates the
initial set of tasks for the legacy application), 2) assigning legacy tasks to the
legacy server, and 3) destroying itself; as presented in the Figure 7.5. When
the legacy server is executed for the first time, all legacy tasks are created
dynamically within the currently running legacy server and start execution.

We have adopted the original FreeRTOS xTaskCreate function and devel-
oped a wrapper to implement legacy support.
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// Legacy task function
// function called from xLegacyServerCreate()
static void vLegacyTask (void * pfLF)
{

((pfLegacyFunc)pfLF)(); //Initializes legacy code
vTaskDelete(NULL); //Destroys itself

}

Figure 7.5: Pseudo-code for legacy task implementation

7.7.2 Wrapping FreeRTOS API

Our wrapper implementation consists of repackaging source code interfaces,
hence there is no need for modifying the legacy code as depicted in Figure 7.6.
The modified functionality is added as Extended API, while the original API is
kept intact as FreeRTOS API. The wrapper provides links to both types of API,
and depending on the configuration of configHIERARCHICAL LEGACY, either the
modified code or the original FreeRTOS code is executed. This process facil-
itates the execution of legacy application within the hierarchical environment
without making any significant modification in the code.
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Figure 7.6: Wrappers implementation

Wrapping FreeRTOS API is done in three steps: first, wrappers are con-
structed, secondly, the original system calls are adapted, and thirdly, the inter-
action between the wrapper and the legacy programs is tested. The wrappers
descriptions are provided in this section, while their testing is performed in
Section 7.9.
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Wrapper for the legacy task creation

A wrapper is provided for the xTaskCreate system call, which redirects the
task creation functionality to the xServerTaskCreate function by passing an
additional parameter of legacy server handle pxCurrentTCB->pxServer. This
is used to create legacy tasks within the currently executing legacy server, in-
stead of executing the original code of xTaskCreate function as shown in Fig-
ure 7.7.

// Wrapper function for xTaskCreate() system call
xTaskCreate (pxTaskCode, pcName, usStackDepth,

*pParameters, uxPriority, *xTaskHandle, *pStackBuffer,
xMemoryRegion, xRegions)
{
#if (configHIERARCHICAL SCHEDULING == 1)

#if (configHIERARCHICAL LEGACY == 1)
return xServerTaskCreate (pxTaskCode,
pcName, usStackDepth, pvParameters, uxPriority,
pxCreatedTask, pxCurrentTCB->pxServer, puxStack
Buffer, xRegions);

#endif
return pdFALSE;

#endif
// original FreeRTOS code of xTaskGenericCreate
}

Figure 7.7: Pseudo-code of wrapper implementation for xTaskCreate API

Wrappers for resource sharing API

To handle synchronization among tasks of a legacy server in HSF and to meet
the third challenge, we support the existing FreeRTOS resource sharing API
with wrappers. We encapsulate each legacy shared resource within the legacy
server by attaching an owner server to it, as shown by the newly designed struc-
ture xLegacyQueue in Figure 7.8. The pointer pvQueue points to the original
FreeRTOS structure xQueue. The definition of semaphore handle xQueueHandle
is modified to the new structure, as explained by the pseudo-code in Figure 7.9.

An example: To use the wrappers, no change is made in the code of
legacy application. For example xSemaphoreCreateMutex() is used to cre-
ate a mutex, which internally calls the xQueueCreate function. This func-
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Figure 7.8: Data structures to implement wrappers for FreeRTOS resource
sharing API

#if (configHIERARCHICAL LEGACY == 1)
typedef xLegacyQueue *xQueueHandle

#else
typedef xQUEUE *xQueueHandle

#endif

Figure 7.9: Pseudo-code for the new definition of semaphore handle

tion creates either xLegacyQueue or xQueue structure, and uses either wrap-
per code or the original FreeRTOS code depending on the configuration of
configHIERARCHICAL LEGACY.

Wrappers for Hardware drivers

A hardware device is accessed by using a hardware driver. The driver pro-
vides a software interface to hardware device and it is hardware dependent. A
hardware device is usually considered as a global resource that can be shared
among tasks of any application. The newly developed applications for HSF
can take advantage of using our HSRP protocol implementation for global re-
source sharing, but the legacy application is not using the newly developed
HSRP API. Sharing hardware resources among the legacy and the newly de-
veloped applications is a challenge. One simple method is to add the HSRP
protocol in the hardware driver by developing wrappers for device drivers as
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shown in Figure 7.10.
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Figure 7.10: Wrappers implementation structure

The Call() function in the extended API in Figure 7.10 calls the
modified code that uses the HSRP protocol within it. USART (universal syn-
chronous/ asynchronous receiver/transmitter) is a highly used driver in embed-
ded systems to send and receive data to and from the embedded device. As
an example we present our test results of using wrappers for USART in Sec-
tion 7.9.2.

7.8 Case study: The legacy applications

In this section we present two legacy applications which are originally devel-
oped as stand-alone applications. For both applications, we use the task set
presented in Table 7.1, except the resource sharing API which is different. The
first legacy application develops a system that endures a priority inversion prob-
lem where a high priority task is delayed by the execution of a lower priority
task which is not sharing any resource. Second legacy application executes the
same code but uses the PIP protocol that solves the priority inversion problem.

The purpose of selecting such a legacy application is to evaluate the wrap-
pers that we have developed for the resource sharing. These legacy applications
are very suitable for such an evaluation because they use different resource
sharing API (with and without PIP protocol). The intention is to preserve the
behavior of both applications, when executed within a two-level hierarchical
setup along with other applications.
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7.8.1 The legacy applications’ design
Each legacy application contains three tasks TaskL, TaskM and TaskH with
priorities low, medium, and high respectively, as described in Table 7.1. Note
that a higher number in the priority row in Table 7.1 means a higher priority for
the task. A resource is shared between TaskL and TaskH. In Execution
Time row of Table 7.1, cs represents the execution time of the task within the
critical section and the other number shows task execution outside the critical
section, e.g. 2cs+1 means first 2 time-units inside and then 1 time-unit outside
the critical section, (3 + 4cs means first 3 time-unit outside and then 4 time-
units inside the critical section). The time unit is given in system tick which is
equal to 1ms in our configuration.

Tasks TaskL TaskM TaskH
Priority 1 2 3
Period 120 120 120

Execution Time 2cs+ 1 6 3 + 4cs

Table 7.1: Legacy Tasks’ properties.

7.8.2 The execution of legacy application in FreeRTOS
Both applications are executed as standalone applications on FreeRTOS using
an EVK1100 board. Figure 7.11 provides the pseudo-code of three tasks for
both applications. For the first application the shared resource is locked and un-
locked using binary semaphore (i.e. for lock resource R; and unlock
resource R; in Figure 7.11), while for the second application it is locked
and unlocked using mutex.

Figure 7.12 shows the execution-traces of these tasks as two standalone
applications. The left part of the figure demonstrates the execution of tasks us-
ing FreeRTOS binary semaphore API and suffering from priority inversion. At
tick 6, TaskH requests for the shared resource and gets blocked since TaskL
is accessing the resource. At this point of time, the medium priority TaskM
executes, thus delaying the highest priority TaskH even it is not sharing any
resource.

The right part of Figure 7.12 demonstrates the execution of a second Legacy
application with the same code but using mutex instead of semaphores. It is
obvious from Figure 7.12 (right part) that now the medium priority TaskM
does not delay the execution of TaskH, thereby the priority inversion problem
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// TaskH function body
// High priority task sharing resource
while (1) {

execute for 1 tick;
vTaskDelay(1); //sleeps for 1 tick
execute for 2 ticks;
lock resource R; //bin. semaphore or mutex

execute for 4 ticks;
unlock resource R; //bin. semaphore or mutex
vTaskWaitforNextPeriod(120);

}

// TaskM function body
// Medium priority task not sharing resource
while (1) {

vTaskDelay(1);
execute for 6 ticks;
vTaskWaitforNextPeriod(120);

}

// TaskL function body
// Low priority task sharing resource
while (1) {

lock resource R; //bin. semaphore or mutex
execute for 2 ticks;

unlock resource R; //bin. semaphore or mutex
execute for 1 tick;
vTaskWaitforNextPeriod(120);

}

Figure 7.11: Pseudo-code of TaskH, TaskM, and TaskL used for both applica-
tions

has been solved by using PIP protocol. Note that our goal is to demonstrate
that the behaviour of legacy applications has been preserved when executed in
a server within a hierarchical setup and is shown in the next section.
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Figure 7.12: The behaviour of both legacy applications: using binary
semaphores (left) and mutex (right)

7.9 Experimental evaluation - Results and analy-
sis

This section presents the evaluation of behavior and performance of our legacy
server, wrappers, and resource sharing protocols’(SRP, HSRP) implementa-
tions. Overheads to execute the newly developed API and wrappers are also
measured.

7.9.1 Experiment setup

All experiments are performed on an AVR-based 32-bit EVK1100 board [17].
The AVR32UC3A0512 micro-controller runs at the frequency of 12MHz. The
HSF-enabled FreeRTOS is executed on the micro-controller using FPPS policy
at both levels for idling periodic servers. The scheduler resolution (system tick)
is set to 1ms (milli seconds).

Four servers are created to perform the behaviour testing. A legacy server
named as LegacyS is created to execute the legacy application. Two servers
S1 and S2 are used in the system. Additionally, an Idle server is generated in
the system with the lowest priority of all the other servers, i.e. 0, containing an
idle task in it. All the other servers in the system have the priority higher than
0. Note that higher number means higher priority for both servers and tasks.
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The priorities, periods and budgets for these servers are given in Table 7.2.

Server S1 S2 LegacyS
Priority 2 3 1
Period 40 20 60
Budget 15 5 10

Table 7.2: Servers used to test system behavior.

Our implementation supports both idling periodic and deferrable servers,
however, in this paper we present results with only idling periodic servers. An
idle task per server is also generated automatically with the lowest priority.
It runs when its server has budget remaining but none of its task is ready to
execute.

7.9.2 Behaviour testing
The purpose of these tests is to study:

1. the creation, behaviour, and correctness of the legacy server and the
legacy tasks.

2. the correct behaviour of wrappers for FreeRTOS resource sharing API,
i.e. semaphores, mutexes, etc.

3. the behaviour of global resource sharing using the HSRP protocol:

(a) between two new servers.

(b) between the legacy server and a new server.

Tasks NT1 NT2 NT3 TaskL TaskM TaskH
Server S1 S1 S2 LegacyS LegacyS LegacyS

Priority 1 2 1 1 2 3

Period 40 30 60 120 120 120

Execution Time 3 3cs1 + 1 2 + 5cs1 2cs2 + 1 6 3 + 4cs2

Table 7.3: Tasks properties and their assignment to servers.

Four experiments are performed to test different behaviours of the imple-
mentation. First, the legacy application using FreeRTOS semaphore API is
realized within the legacy server and is exercised to test the functionality of
the legacy server. Second, the legacy application using FreeRTOS mutex API
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is realized within the legacy server and the results are compared with the first
experiment to validate the correctness of the wrappers for FreeRTOS resource
sharing API. Third, the global resource sharing between newly developed ap-
plications is tested, and finally in the forth experiment, the global resource
sharing between the legacy and the new applications is tested using the HSRP
protocol.

All experiment are executed on the micro-controller and the execution traces
are visualized using the Grasp tool [24]. The experimental results are presented
in the form of visualization of execution-traces in Figures 7.13, 7.14 and 7.15.
In these traces, the horizontal axis represents the time in ms, starting from 0.
In the server’s visualization, numbers along the vertical axis are the server’s
capacity, the diagonal line represents server execution while the horizontal line
represents either the waiting time for the next activation (when budget has de-
pleted) or the waiting time for its turn to execute (when some other server is
executing). Since these are idling periodic servers, all the servers in the system
execute until their budget is depleted. If no task is ready then the idle task of
that server executes till its budget is depleted.

Testing the execution of legacy application in a hierarchical setup

To test the execution of legacy application along with other servers in the sys-
tem, the first legacy application that endures priority inversion is executed with
the previously described servers in Table 7.2. Task properties and their assign-
ments to the servers are given in Table 7.3.

Figure 7.13 visualizes the execution of legacy application within the legacy
server along with other servers in the system. The vLegacyTask is created
within LegacyS. It executes at the start of the server only once (at time 25 in
Figure 7.13), and creates all other legacy tasks (i.e. TaskL, TaskM, TaskH,
and an idle task), assigns them to LegacyS and destroys itself. From time 30,
the legacy tasks start execution until the server depletes at time 35. The tasks
start their execution again, when the server is replenished with its full budget
at its next activation period.

Hence, by using the legacy server and a private vLegacyTask, the legacy
tasks are automatically created and executed within LegacyS along with other
servers in a hierarchical setup.
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Figure 7.13: The trace for the execution of legacy application within a legacy
server using binary semaphores

Testing wrappers for FreeRTOS API by executing legacy tasks within the
legacy server

Here the main focus is to test the behaviour of newly developed wrappers for
FreeRTOS API.
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Figure 7.14: Trace showing the legacy server execution using mutex

To perform this test, the first and second legacy applications using FreeR-
TOS semaphores and mutex API respectively are executed. Servers and tasks
properties are provided in Table 7.2 and Table 7.3 respectively. The execution
of both applications exhibit priority inversion problems with binary semaphore



7.9 Experimental evaluation - Results and analysis 109

and its solution with mutex is visualized and presented in Figure 7.13 and Fig-
ure 7.14 respectively.

Tasks NT1 NT2 NT3 LT1 LT2
Server S1 S1 S2 LegacyS LegacyS
Priority 1 2 1 1 2
Period 40 30 60 120 120
WCET 4 5 2 + 5cs1 4cs1 + 4 5

Table 7.4: Tasks properties and their assignment to servers.

TaskL and TaskH of both applications share a resource, which now be-
comes a local resource in the hierarchical setup as it is shared among tasks
of the legacy server only. The wrappers are executed instead of the original
semaphore and mutex API for resource sharing and the critical section is spec-
ified by cs2. From Figure 7.13 it is obvious that the legacy application suffers
from priority inversion, as the TaskH’s execution is delayed by the TaskM’s
execution which is not sharing any resource.

The solution of priority inversion using the mutex API in TaskL and
TaskH is demonstrated in Figure 7.14. Since the mutex implements PIP within
them; therefore, the priority inversion problem is solved now. As obvious from
the figure that TaskM executes after TaskH’s completion.

This test shows that the FreeRTOS API is kept intact. It also shows that
the legacy application retains its original semantics while executing wrappers
for the API system calls in a hierarchical environment. Moreover, the legacy
server does not overrun to prevent excessive blocking in both figures since it is
not accessing a global shared resource and is not executing newly implemented
HSRP protocol.

Testing the global resource sharing between new servers

In this section we test the behaviour of HSRP and overrun in the case of global
resource sharing in the HSF implementation. We consider the same servers
and tasks as used in the previous tests and which are provided in Tables 7.2
and 7.3 respectively. The trace of execution is visualized in Figure 7.13. Two
tasks NT2 and NT3, belonging to servers S1 and S2 respectively, are sharing
a global resource. The overrun with the payback mechanism is assumed.

In Figure 7.13, S2 depletes its budget at time 5, but continues to execute in
its critical section until it unlocks the global resource at time 7, hence delaying
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(a) Trace of budget overrun without payback
(BO)

(b) Trace of budget overrun with payback (PO)

Figure 7.15: Testing the behaviour of HSRP and budget overrun between the
legacy application and a new server

the execution of S1 by 2ms. In case of an overrun with payback, the overrun
time is deducted from the budget at the next server activation, as shown in
Figure 7.13. At time 20 the server S2 is replenished with a reduced budget,
i.e 3. While in case of an overrun without payback, the server will be always
replenished with its full budget.

Testing the modified hardware-driver API

The purpose of this experiment is to test the behaviour of HSRP in the case
of global resource sharing between a legacy task and a new task. We are test-
ing the modified hardware driver in which the resource is locked using HSRP.
A legacy task TaskL of the legacy server shares a global hardware resource
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USART with a new task NT3 of server S2. Three servers, as described in
Table 7.2, are used in the system. Task properties and their assignments to the
servers are given in Table 7.4. The critical section for resource sharing is speci-
fied as cs1 and the results are visualized in Figure 7.15. The visualization of the
executions for budget overrun without payback (BO) and with payback (PO)
for idling periodic server are presented in Figure 7.15(a) and Figure 7.15(b)
respectively.

In case of budget overrun with payback, the overrun time is deducted from
the budget at the next server activation, as shown in Figure 7.15(b). Since
HSRP is used, the legacy server overruns at time 35, and later at time 60. The
legacy server is replenished with a reduced budget, while in case of an overrun
without payback the server is always replenished with its full budget as it is
obvious from Figure 7.15(a). It is observed that a hardware resource (USART)
is successfully shared among the legacy application and the newly developed
HSF applications, without making any modification to the legacy code.

7.9.3 Performance measures
We present the overhead measurements for the wrappers used in legacy ap-
plication and newly developed resource sharing API for shared resources. A
second hardware timer-unit for the micro-controller is initiated and started to
measure the performance. The system calls StartTimer() and EndTimer()

are developed to measure execution time of different functions. For each data
point, a total of 2000 values are measured. The minimum, maximum, and aver-
age of these values are calculated and presented for all results. All data points
are given in micro-seconds (µs). The following overheads are measured:

1. The time required to run the wrappers in the hierarchical setup needed to
be measured and compared against the original FreeRTOS API to calcu-
late the overhead. The overhead measurements for the semaphore API
are given in Table7.5.

2. Similarly, the overhead of executing the modified hardware driver for
USART is measured and compared with the original driver. Addition-
ally, we have also tested the effect of passing a different number of char-
acters to the USART driver for printing. The overhead measures are
given in Table7.6.

3. We also report the performance measures of lock and unlock functions
for the newly developed API supporting SRP and HSRP protocols for
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shared both global and local resources. The execution time of functions
to lock and unlock global and local resources is presented in Table 7.7.

Function OS Min. Max. Avg.
xSemaphoreTake() wrapper 22 32 28.47
xSemaphoreTake() FreeRTOS 21 32 26.32
xSemaphoreGive() wrapper 21 32 26.05
xSemaphoreGive() FreeRTOS 21 22 21.51

Table 7.5: The execution time (in micro-seconds µs) of for Semaphore.

Function Description Min. Max. Avg.
usart write line() with global resource sharing 43 54 52.49

usart write line() without resource sharing 0 11 9.94

Table 7.6: The execution time (in micro-seconds µs) of USART driver.

Function Min. Max. Avg.
vGlobalResourceLock 21 21 21

vGlobalResourceUnlock 32 32 32
vLocalResourceLock 21 32 26.48

vLocalResourceUnlock 21 21 21

Table 7.7: The execution time (in micro-seconds µs) of newly developed global
and local lock and unlock function.

The overheads for the semaphore wrappers are very low and negligible, i.e.
approximately in average 2 µs for xSemaphoreTake() and 5 µs for xSemaphore
Give() as it is obvious from Table 7.5. For the hardware driver, we measured
the time by passing no character to the USART to exactly measure the overhead
as compared by using the driver API. The overhead is approximately 42.55 µs.
Additionally, the performance of the USART driver with a varying number of
characters is also measured and the results reveal that the increase in the time
to execute the code is linear with the increase in the number of characters.

For the server overheads we have performed evaluations in [15] and the
results reveal that the overhead measures are low.
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7.10 Related work

7.10.1 Consolidating legacy applications
Different types of virtualization techniques are proposed to integrate and exe-
cute concurrently multiple applications (including the legacy applications) on
a same hardware node using several virtual machines (VMs) and a hypervi-
sor [4]. Examples are without modifying OS [25, 5, 26], or with modifying
OS, e.g. Xen-based solution [27, 28]. We focus to execute applications on
resource constraint small microcontroller (a 32-bit board), thus executing mul-
tiple operating systems is unfeasible and the performance overhead introduced
by virtualization/hypervisor layer is a big challenge for such microcontrollers.

OS virtualization or HSF is more lightweight than other virtualizations
because of having only a single copy of OS, thus better suited for resource
constraint hardware. The hierarchical scheduling processor models guarantee
that applications are developed and analyzed independently in isolation and
are later integrated together by providing temporal isolation among applica-
tions [29, 30, 31, 8, 10]. These advantages make HSF suitable for integrating
and executing legacy applications (developed to use the full CPU-access) with
other applications (developed to execute in hierarchical setup). However, it re-
quires a priori knowledge of legacy application’s timing requirements which
has been addressed for independent tasks by [11].

A lot work has been done from the HSF implementation perspective [32,
33, 34, 35, 36] on Linux/RK, open source ERIKA Enterprise kernel, SPIRIT-
µKernel, VxWorks, µC/OS-II respectively.Although the reuse of legacy appli-
cation is proposed by the hierarchical scheduling theoretical work, all men-
tioned implementations have not proposed special support for facilitating the
reuse of real-time legacy application which is the main focus of this paper.
To the best of our knowledge, our work is the first to identify challenges and
implementation issues and to support a practical implementation for legacy
code execution within a server in HSF. No other HSF implementation has in-
vestigated on this issue before. Next, we present an overview of the existing
synchronization protocols and their implementations in HSF.

7.10.2 Synchronization protocols
Resource sharing for single-level scheduling

Here we describe synchronization protocols used to share resources among
tasks in a single-level scheduling systems. Priority inheritance protocol (PIP)
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[21] was developed to solve the priority inversion problem but it does not solve
the chained blocking and deadlock problems. Sha et al. proposed the prior-
ity ceiling protocol (PCP) [21] to solve these problems. A slightly different
alternative to PCP is the immediate inheritance protocol (IIP). In IIP, the lock-
ing task raises its priority to the ceiling priority of the resource, when it locks
a resource as compared to the PCP where the locking task raises its priority
when another task tries to lock the same resource. Baker presented the stack
resource policy (SRP) [12] that supports dynamic priority scheduling policies.
For fixed-priority scheduling, SRP has the same behavior as IIP. SRP reduces
the number of context-switches and the resource holding time as compared to
PCP. Like most real-time operating systems, FreeRTOS only support an FPPS
scheduler with PIP protocol for resource sharing. We implement SRP for local-
level resource sharing in HSF.

Resource sharing for two-level hierarchical scheduling

To perform independent analysis for applications integration, information about
tasks accessing which global shared resources should be known. In a two-level
hierarchical scheduling, the resource sharing of a global resource requires to
consider the priority inversion at both levels of hierarchy, i.e. between appli-
cations at the global level and between tasks within the application at the local
level. Multiple synchronization protocols based on SRP [12] have been pro-
posed to accommodate such resource sharing. Fisher et al. proposed Bounded
delay Resource Open Environment (BROE) protocol [37, 38] for global re-
source sharing under EDF scheduling. Hierarchical Stack Resource Policy
(HSRP) [13] uses the overrun mechanism to deal with the subsystem budget
expiration within the critical section and uses two mechanisms (with pay back
and without payback) to deal with the overrun. Subsystem Integration and Re-
source Allocation Policy (SIRAP) [39] uses the skipping mechanism to avoid
the problem of application budget expiration within the critical section. While
Rollback Resource Policy (RRP) [40] uses the rollback approach if the bud-
get expires between the critical section. All HSRP, SIRAP, and RRP assume
FPPS. The original HSRP [13] does not support the independent application
development for its analysis. Behnam et al. [14] extended the analysis for the
independent development of applications. In this paper we use HSRP [14] for
global resource sharing and implement both forms of the overrun mechanism.

Asberg et al. [41] implemented overrun and skipping techniques at top of
their FPPS HSF implementation for VxWorks and compared the two resource-
sharing techniques. Van den Heuvel et al. extended the µC/OS-II HSF im-
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plementation with resource sharing support [42] by implementing SIRAP and
HSRP (with and without payback). They measured and compared the system
overheads of both primitives. More recently, Asberg et al. [40] implemented
and evaluated RRP against HSRP (with and without payback) and SIRAP, and
examined that RRP is better in average-case response-times than both proto-
cols.

Unlike [41, 42] and [40] which implement SIRAP, HSRP, and RRP and
comparing protocols against each other, we implement HSRP only. We do not
consider SIRAP because of its implementation complexity, i.e., worst case exe-
cution times of critical sections should be provided during runtime. In addition,
we neither consider BROE due to its limitation in supporting FPPS. Our main
focus is to enable the reusability of the legacy application and at keeping the
semantics of the application intact rather than evaluating different synchroniza-
tion protocols. To achieve our goals, we keep all FreeRTOS original API intact
and call the ones that need to be changed through wrappers implementation.

We aim at efficiency in terms of processor overheads and simplicity in our
design with the consideration of minimal modifications in underlying FreeR-
TOS kernel. Like [36, 35] our implementation limits the interference of inac-
tive servers on system level by deferring the handling of their local events until
those servers become active.

7.11 Conclusions and future work

This paper presented the integration and execution of legacy real-time appli-
cation along with newly developed real-time applications. The focus was to
present a solution that pertains the semantics and real-time scheduling prop-
erties of old and new applications before and after their integration. We pro-
posed to use the hierarchical scheduling approach (HSF) for this purpose and
have demonstrated the suitability of HSF to execute legacy real-time applica-
tions in a predictable manner along with other applications. We have identified
challenges to execute the legacy application in an HSF setup. Furthermore,
we have also described the challenges and implementation issues of enabling
resource sharing among the legacy and other applications to make the solution
more applicable.

We have presented a runtime support for creating a legacy server and ex-
ecuting the real-time legacy tasks within the server. For resource sharing, we
implemented SRP and HSRP protocols for local and global resource sharing
respectively. Moreover, to achieve the challenge of resource sharing among
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legacy and other applications, we have presented the solution by implementing
wrappers for the FreeRTOS API.

We have conducted a number of experiments in order to validate the cor-
rectness and the efficiency of the proposed solution. We have run our ex-
periments on the EVK1100 board with a 32-bit AVR32UC3A0512 micro-
controller. The collected results from the experiments show a smooth execution
of legacy tasks integrated with other applications with minimum changes in the
code of the legacy tasks. In addition, we could observe, from the experiments,
the correct temporal behavior of applications that use our solution when they
share software/hardware global/local resources. Finally, the results reveal that
the runtime overheads of the proposed solution are rather low. It is done with-
out making any major modification to the legacy code. We have evaluated the
implementation of the newly developed API for resource sharing (i.e. SRP and
HSRP protocols) and for the wrappers. The results reveal that overhead of our
implemented functionality is low.

In the future we plan to extend our solution for multicore architectures,
using e.g. the MultiResource Server [43]. It would also be good to perform
industrial-scale validation with commercial legacy code.
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7.12 Appendix
A synopsis of the application program interface of HSF implementation is pre-
sented below. The names of these API and macros are self-explanatory.
The newly added user API and macro are the following:

1. signed portBASE TYPE xLegacyServerCreate(xPeriod, xBudget, ux-
Priority, *pxLegacyServerHandle, *pfLegacyFunc);

The user API to implement the local SPR and the global HSPR are the follow-
ing:

1. xLocalResourcehandle xLocalResourceCreate(uxCeiling)

2. void vLocalResourceDestroy(xLocalResourcehandle)

3. void vLocalResourceLock(xLocalResourcehandle)

4. void vLocalResourceUnLock(xLocalResourcehandle)

5. xGlobalResourcehandle xGlobalResourceCreate (uxCeiling)

6. void vGlobalResourceDestroy(xGlobalResourcehandle)

7. void vGlobalResourceLock(xGlobalResourcehandle)

8. void vGlobalResourceUnLock(xGlobalResourcehandle)

The new APIs to implement legacy server are the following:

1. signed portBASE TYPE xLegacyServerCreate(xPeriod, xBudget, ux-

Priority, *pxLegacyServerHandle, *pfLegacyFunc);

2. signed portBASE TYPE xServerCreate(xPeriod, xBudget, uxPriority,

*pxLegacyServerHandle);

3. static void vLegacyTask(*pfLegacyFunc);

4. #define xServerTaskCreate( vLegacyTask, pcName, usStackDepth,

(void *) pfLegacyFunc, configMAX PRIORITIES - 1, pxCreatedTask,

*pxLegacyServerHandle ) xServerTaskGenericCreate( (vLegacyTask),

(pcName), (usStackDepth), ((void *) pfLegacyFunc), (configMAX

PRIORITIES - 1), (pxCreatedTask), (*pxLegacyServerHandle), (

NULL ), ( NULL ))

Adopted FreeRTOS APIs for wrappers
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1. xSemphoreCreateBinary

2. xSemaphoreTake

3. xSemaphoreGive

4. vSemaphoreCreateMutex

5. xSemCreateRecursiveMutex

6. xSemaphoreTakeRecursive

7. xSemaphoreGiveRecursive

8. xSemaphoreCreateCounting

9. xQueueHandle xQueueCreate(unsigned portBASE TYPE uxQueueLength,

unsigned portBASE TYPE uxItemSize)

10. xQueueHandle xQueueCreateMutex(void)

11. portBASE TYPE xQueueGiveMutexRecursive(xQueueHandle pxMutex)

12. portBASE TYPE xQueueTakeMutexRecursive(xQueueHandle pxMutex, po-

rtTickType xBlockTime)

13. xQueueHandle xQueueCreateCountingSemaphore(unsigned portBASE-

TYPE uxCountValue, unsigned portBASE TYPE uxInitialCount)

14. signed portBASE TYPE xQueueGenericSend(xQueueHandle pxQueue, const

void * const pvItemToQueue, portTickType xTicksToWait, portBASE

TYPE xCopyPosition)

15. signed portBASE TYPE xQueueGenericSendFromISR(xQueueHandle px-

Queue, const void * const pvItemToQueue, signed portBASE TYPE

*pxHigherPriorityTaskWoken, portBASE TYPE xCopyPosition)

16. signed portBASE TYPE xQueueGenericReceive(xQueueHandle pxQueue,

void * const pvBuffer, portTickType xTicksToWait, portBASE TYPE

xJustPeeking)

17. signed portBASE TYPE xQueueReceiveFromISR(xQueueHandle pxQueue,

void * const pvBuffer, signed portBASE TYPE *pxTaskWoken)

Adopted FreeRTOS Private function
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1. signed portBASE TYPE uxQueueMessagesWaiting(const xQueueHandle

pxQueue)

2. void vQueueDelete(xQueueHandle pxQueue)

3. static void prvUnlockQueue(xQueueHandle pxQueue)

4. static signed portBASE TYPE prvIsQueueEmpty(const xQueueHandle

pxQueue)

5. signed portBASE TYPE xQueueIsQueueEmptyFromISR(const xQueueHandle

pxQueue)

6. static signed portBASE TYPE prvIsQueueFull(const xQueueHandle

pxQueue)

7. signed portBASE TYPE xQueueIsQueueFullFromISR(const xQueueHandle

pxQueue)

Adopted Hardware driver user APIs 1. void vTaskPriorityInherit(xTaskHandle

* const pxMutexHolder)

The newly added private functions and macros are as follows:

1. portTickType xServerGetRemainingBudget( void );

2. static void prvRemoveGlobalResourceFromList(tskTCB *pxTaskTo-
Delete);

3. static void prvRemoveLocalResourceFromList(tskTCB *pxTaskTo-
Delete);

We adopted the following user APIs to incorporate HSF implementation.
The original semantics of these API is kept and used when the user run the orig-
inal FreeRTOS by setting configHIERARCHICAL SCHEDULING macro to
0.

1. OLD void vTaskStartScheduler( void );

and adopted private functions and macros:

1. OLD void vTaskSwitchContext( void );
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Abstract

We present the concept of runnable virtual node (RVN) as a means to achieve
predictable integration and reuse of executable real-time components in em-
bedded systems. A runnable virtual node is a coarse-grained software compo-
nent that provides functional and temporal isolation with respect to its environ-
ment. Its interaction with the environment is bounded both by a functional and
a temporal interface, and the validity of its internal temporal behaviour is pre-
served when integrated with other components or when reused in a new envi-
ronment. Our realization of RVN exploits the latest techniques for hierarchical
scheduling to achieve temporal isolation, and the principles from component-
based software-engineering to achieve functional isolation. It uses a two-level
deployment process; i.e. deploying functional entities to RVNs and then de-
ploying RVNs to physical nodes, and thus also gives development benefits with
respect to composability, system integration, testing, and validation. In addi-
tion, we have implemented a server-based inter-RVN communication strategy
to not only support the predictable integration and reuse properties of RVNs
by keeping the communication code in a separate server, but also increasing
the maintainability and flexibility to change the communication code without
affecting the timing properties of RVNs. We have applied our approach to a
case study, implemented in the ProCom component technology executing on
top of a FreeRTOS-based hierarchical scheduling framework and present the
results as a proof-of-concept.

keywords: Real-time software components, component integration, compo-
nent reuse, hierarchical scheduling, delay analysis.
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8.1 Introduction

In this paper we target development of the large class of embedded systems
which is required to perform multiple simultaneous control-functions with real-
time requirements. From the development point of view, it often makes sense
to develop the different control-functions as separate software-components [1].
Typically, these components are first developed and tested in isolation, and
later integrated to form the final software for the system. Furthermore, many
industrial systems are developed in an evolutionary fashion, reusing compo-
nents from previous versions or from related products. It means that the reused
components are re-integrated in new environments.

Temporal behavior of real-time software components poses difficulties in
their integration. When multiple software components are deployed on the
same hardware node, the emerging timing behavior of each of the components
is typically unpredictable. For example, the temporal behaviour of two com-
ponents C1 and C2 and their tasks execution is depicted in Figure 8.1, where
the horizontal axis represents time, an arrow represents task arrival and a filled
rectangle shows task execution. The temporal behaviour of both components
is tested to be correct during unit testing and all tasks of both components meet
their deadlines when executed separately before integration as obvious from
Figure 8.1(a). However, upon their integration, tasks of one component affect
the scheduling of tasks of other components and as a result task C1T2 misses
its deadline at time 20 in Figure 8.1(b). This means that for an embedded sys-
tem with real-time constraints; a component that is found correct during unit
testing may fail due to a change in temporal behavior when integrated in a sys-
tem. Even if a new component is still operating correctly in the system, the
integration could cause a previously integrated (and correctly operating) com-
ponent to fail. Similarly, the temporal behavior of a component is altered if the
component is reused in a new system. Since this alteration is unpredictable as
well, a previously correct component may fail when reused.

In this paper we focus on the schedulability of tasks, i.e. meeting their
deadlines, as the main timing property. An RVN’s timing behaviour is pre-
dictable during its integration and reuse, as long as the schedulability of tasks
that have been validated during its development within a component is guaran-
teed when components are integrated together.

In the real-time community, Hierarchical Scheduling Framework (HSF) [2]
is known as a technique for solving this predictability problem by providing
temporal isolation between components. It supports CPU time sharing among
components or applications (means leveraging the CPU-time partitioning from
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(a) Tasks’ execution within separate compo-
nents

(b) Tasks’ execution after components’ inte-
gration

Figure 8.1: Schedulability problem during components’ integration.

task-level to the component-level by executing each component in a separate
server), hence isolating components’ functionality from each other for, e.g.,
temporal fault containment, compositional verification, and unit testing. HSF
has been proposed to develop complex real-time systems by enabling temporal
isolation and predictable integration of software-functions [3].

We address the challenges of preserving the timing properties within com-
ponents and to apply these properties during components’ integration. We pro-
pose the concept of a runnable virtual node (RVN), in which we integrate HSF
within a component technology for embedded real-time systems; to realize our
ideas of guaranteeing temporal properties of real-time components, their pre-
dictable integrations and reusability. An RVN represents the functionality of
software-component (or a set of integrated components) combined with allo-
cated timing resources and a real-time scheduler to be executed as a server in
the HSF. It introduces an intermediate level between the functional entities and
the physical nodes. Thereby it leads to a two-level deployment process instead
of a single big-stepped deployment; i.e. deploying functional entities to the
virtual nodes in a first-step, and then, deploying multiple virtual nodes to the
physical node (target hardware) in a second-step.

An important feature during component integration is to provide commu-
nication among various components of a target software system. This commu-
nication should also be predictable in case of real-time components and do not
affect the schedulability of tasks. We implement a communication strategy that
enables to execute the communication code independently from RVNs hence
making the RVNs integration predictable, since communication time will not
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affect the schedulability of RVNs’ tasks.
The main contributions of this paper are:

• We realize the concept of runnable virtual nodes for the ProCom com-
ponent technology [4] by exploiting the HSF implementation [5]. The
purpose is to make the integration of real-time components predictable,
and to ease the component’s reuse in the new systems.

• We introduce a two-level deployment process instead of a single big de-
ployment. The two-level process gives development benefits with re-
spect to composability, system integration, testing, validation and certi-
fication. Further it leverages the hierarchical scheduling to preserve the
validity of an RVN’s internal temporal behaviour when integrated with
other components or when reused in a new environment.

• We implement a communication strategy that supports the predictable
integration and reuse of runnable entities. We evaluate this strategy
against a direct strategy for efficiency and reusability aspects of RVN.
We develop an analysis tool End-to-End Latency Analyzer for ProCom
(EELAP) [6, 7] to compute the end-to-end latencies of both communica-
tion strategies / or to evaluate both communication strategies.

• We provide a case study as a proof-of-concept of our approach: we im-
plement it using the ProCom component technology and execute it on a
real hardware an AVR 32-bit microcontroller [8]. We demonstrate the
runnable virtual node’s properties with respect to temporal isolation and
reusability.

Once the RVN is assigned for timing properties, it will preserve these
properties without regard of other RVNs it is integrated with on the same
physical node. Our realization allows predictable coexistence of virtual nodes
that have been either constructed with different development methodologies
or constructed using the same development technology but having different
timing properties. E.g., a ProCom-RVN can co-exist with an RVN with legacy
FreeRTOS-tasks, or an RVN with hard real-time components that has been ver-
ified with formal methods can co-exist with an RVN with components without
real-time requirements and that has not undergone extensive validation.

The RVN discussed in this paper is the extension of our previous work on
the concept of virtual node in [9] and the initial implementation in [10]: both
papers are based on the idea of a real-time component that preserves its timing
properties when integrated with other components on a physical platform. The
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work described in this paper is the extension of the initial implementation of
the concept of the RVN component, and the synthesis of the final executables
with the emphasis on using a two-step deployment process. The previous work
of [9], on the other hand, focused on just the presentation of the general idea
of virtual node as a real-time component at a high level of abstraction and
described inclusion of virtual nodes within different components technologies
like AUTOSAR, AADL, and ProCom. It did not address the synthesis process
and lacked a practical implementation.

The previous work of [10] only presented the initial RVN implementation
for components integration, and the evaluation of predictable integration of
real-time components using a case study on cruise controller system and its ex-
ecution in ProCom component model on the AVR-based board EVK1100 [8].
In this paper we extend the implementation to incorporate the reuse of real-time
components along with their timing properties and discuss how the two-level
deployment helps accomplishing the predictable coexistence of real-time com-
ponents together and facilitate their reuse. We also evaluate the reuse property
of RVN by extending the previous case study with the new functionality of the
adaptive cruise controller system and presenting new test results to prove RVN
as an executable reusable entity.

Compared to [10], another significant extension in this paper is the imple-
mentation of an inter-RVN communication strategy that supports predictable
integration and reuse of RVNs. In addition we have also implemented the EE-
LAP analysis tool [6] and have evaluated the communication strategies using
the tool.

Outline: Section 8.2 gives an overview about the ProCom component tech-
nology on which our work is based. Section 8.3 describes the RVN concept
in details including its deployment process and how it embeds HSF within it.
Section 8.4 explains the communication strategies among RVNs, and details of
synthesis activities are given in Section 8.5. In Section 8.6, we explain how the
two-level deployment process preserves timing properties within RVNs. Sec-
tion 8.7 describes end-to-end delay analysis and explains end-to-end latency
calculations for inter-RVN communication strategies. Section 8.8 presents a
case-study in which RVNs are used for the ProCom technology. We present
the results of evaluations of (1) preserving timing properties during integra-
tion and reuse of RVNs, and (2) end-to-end latencies for both communication
strategies in Section 8.9. Section 8.10 presents related work on component-
based technologies, and finally, Section 8.11 concludes the article.
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8.2 The ProCom component technology
The ProCom component technology targets control-intensive embedded sys-
tems like software used in trains, airplanes, cars, and industrial robots, etc.
The ProCom component model [4] is specifically developed to address the
reuse of design artefacts (e.g., extra-functional properties, analysis results, and
behavioral models) as well as predictable integration and reuse of the exe-
cutable components [11]. The PROGRESS Integrated Development Environ-
ment (PRIDE) tool [12] supports modeling and automatic-synthesis of compo-
nents at different levels [13].

The ProCom component model can be described in two distinct realms: the
modeling and the executable realms as shown in Figure 8.2. In the Modeling
realm, the models are made using component-based and model-based develop-
ment while in the executable realm, the synthesis of runnable entities is done
from the model entities.

Figure 8.2: An overview of the modeling formalisms and synthesis artefacts.

8.2.1 The modeling realm
Modeling in ProCom is done by four discrete but related formalisms as shown
in Figure 8.2. The first two formalisms relate to the system functionality mod-
eling while the later two represent the deployment modeling of the system.
Functionality of the system is modeled by the ProSave and ProSys components
at different levels of granularity. The basic functionality (data and control) of a
simple component is captured in the ProSave component level (passive in na-
ture). At the second formalism level, many ProSave components are mapped
to make a complete subsystem called ProSys (active in nature) [4].
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The deployment modeling is used to capture the deployment related design
decisions and then mapping the system to run on the physical platform. Multi-
ple ProSys components can be mapped together on a virtual node together with
a resource budget required by those components. After that, many virtual nodes
could be mapped on a physical node. The relationship is again many-to-one.
This part represents all the physical nodes and their inter-communication [14].

8.2.2 The executable (or runnable) realm
This realm presents the synthesis of executables/runnables from the ProCom
model entities. The primitive ProSave components are represented as a sim-
ple C language source code in runnable form. From this C code, the ProSys
runnables are generated which contain a collection of operating system tasks.
RVNs implement the local scheduler and contain the tasks in a server (details
are given in Section 8.3.2). Final binaries are generated by connecting different
RVNs together with a global scheduler and using a middleware API to provide
communications among RVNs.

8.3 Runnable Virtual Node (RVN)
The previous section presented a general background of the ProCom compo-
nent model. This section focuses on the details of RVN. It explains the RVN
concept and its deployment mechanism in ProCom, the internal details of RVN
as a server using an HSF implementation in the FreeRTOS operating system in
Sections 8.3.1, 8.3.2 respectively.

8.3.1 The RVN concept and its deployment mechanism
A runnable virtual node is an execution platform concept that preserves func-
tional as well as temporal properties of the software executed within it [11]. It is
intended for coarse-grained components, for single node deployment, and with
potential internal multitasking. The idea is to encapsulate the timing properties
into reusable executable components to achieve predictable integrations and
reusability of those components along with increased maintainability, testabil-
ity, and extensibility.

In ProCom, a runnable virtual node is an integrated model concept. It
means that the virtual nodes exist both on the modeling and on the executable
levels as shown in Figure 8.2.
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The two-level deployment process is used to synthesize RVNs and final
executables, so the modeling hierarchy is also maintained at run-time by ex-
ecuting the tasks within each RVN, instead of flattening the whole system to
a single level of tasks. The two-level deployment process is depicted in Fig-
ure 8.3. It preserves the timing properties of each RVN and gives development
benefits with respect to composability, system integration, testing, validation,
and reuse. More on the timing properties of RVN is explained in Section 8.6.
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Figure 8.3: The two-level deployment process in ProCom component technol-
ogy.

From the modeling perspective, a virtual node (VN) is a container for a set
of integrated ProSys-components plus the execution resources (a budget and
period) required for these ProSys-components. The input and output ports of
those components are inherited by the virtual node during the first-step of de-
ployment. A physical node is modelled by integrating different VN together on
a single platform and defining communication among them during the second-
step of deployment.

In the executable form, an RVN is constructed by mapping the set of tasks
(synthesized from ProSys-runnables) to a server and assigning scheduling pa-
rameters (assignment of task-priorities) during the first-step of deployment.
It also adds an implementation of inter-RVN communication using message
channels to send messages among virtual nodes. The final binaries are gener-
ated for a hardware node during the second-step of deployment by connecting
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different RVNs together with a global scheduler, assigning server-priorities,
and using a middleware API for inter-RVN communications. The priorities of
virtual nodes cannot be assigned at the modeling level. The priorities of a com-
ponent are relative to other components in the system (we use fixed-priority
preemptive scheduling); hence components priority assignment is done during
the final step of integrating virtual nodes to physical nodes. All synthesis is
done by generating C-code, so the final step is compiling the generated code,
and linking all code with the operating system and middleware binaries.

8.3.2 The RVN-server
An RVN is implemented as a server within a two-level HFS (also called an
RVN-server), and includes a set of tasks, a resource allocation 〈Q,P 〉 (where
P is the server period andQ is the server budget (0 < Q ≤ P ),Q is the portion
of CPU time allocated periodically to the server), and a real-time scheduler as
shown in Figure 8.4. We follow the periodic resource model [15], our servers
and tasks are activated periodically. Servers behave like periodic tasks, they
replenish their budget Q every constant period P . In two-level hierarchical
scheduling, the CPU time is partitioned among a set of subsystems (or servers),
RVN-servers in our case. The RVN-servers are scheduled by a global (system-
level) scheduler. Each RVN-server contains its own internal set of tasks that
are scheduled by a local (subsystem-level) scheduler.
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Figure 8.4: An RVN-server within a two-level hierarchical scheduling.

The global scheduler schedules the servers according to their allocated
CPU resource, i.e. each server executes for a specified time (budget Q) dur-
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ing each period P. At the budget depletion, the server stops its execution and
waits for its next activation period when it replenishes with its full budget. The
local scheduler schedules tasks of a server only when the server is executing.
Its tasks cannot run while the server is not executing (either due to preemption
by a higher priority server, or waiting for its next activation period). Accord-
ingly we say that the HSF provides partitioning of the CPU between different
servers [2].

In our implementation, the RVN-server is executed in the two-level HSF
running on-top of FreeRTOS [16]. FreeRTOS is a portable open source real-
time kernel which is small and scalable, supports over 20 different hardware
architectures, and is easy to extend and maintain [17].

The official release of FreeRTOS only supports a single level fixed-priority
scheduling. We have, however, previously presented an implementation of
two-level HSF for FreeRTOS [5] with associated primitives for hard real-time
sharing of resources both within and between servers [18]. The two-level
HSF implementation supports two kinds of servers, idling periodic [19] and
deferrable servers [20]. In this paper we present our results with the idling
server. The implementation uses Fixed-Priority Preemptive Scheduling (FPPS)
for both global and local-level scheduling. For local resource-sharing (re-
sources shared among tasks within the same RVN-server) the Stack Resource
Policy (SRP) [21] is used, and for global resource-sharing (resources shared
among tasks of different RVN-servers) the Hierarchical Stack Resource Policy
(HSRP) [22] is implemented. The HSF supports CPU resource reservations
by associating a tuple 〈Q,P 〉 to each server. Given Q, P , and information on
resource holding times, the schedulability of a server and/or a whole system
can be calculated with the methods presented in [18].

The HSF gives the potential to (1) develop and analyze subsystems in iso-
lation from each other, (2) execute the server with a guaranteed temporal be-
haviour regardless of any other execution on the physical node as long as its
allocated CPU resource is provided, and (3) reuse the real-time properties of
subsystems along with their functional properties [23]. As each RVN-server
has its own local scheduler, after satisfying the temporal constraints, its non-
functional (timing) properties are preserved within each RVN-server along
with its functional properties when the RVN is integrated with other RVNs
on a physical node, or when it is reused in another context [11]. Later, a global
scheduler is used to schedule all the RVN-servers together according to their re-
source reservations without violating the temporal constraints that are already
analyzed and stored in the RVN-server. Hence as long as the CPU resource
allocation 〈Q,P 〉 is providedto an RVN-server, all tasks of the RVN-server



138 Paper C

will meet their deadlines, no matter with which other RVN-servers they are
integrated / executed with on the physical platform.

Thus using HSF, the functionality of different RVN-servers can be isolated
from each other for, e.g., fault containment, compositional verification, vali-
dation and certification, and unit testing. Further, these RVN-servers can be
reused in the new system reusing not only the functionality but also their tem-
poral properties.

8.4 Inter-RVN communication

This section discusses two different the inter-RVN communication mecha-
nisms when multiple RVNs are integrated together on a physical node.

As stated earlier, the RVN provides main benefits of predictable integra-
tion and increased reusability of executable real-time components. We focus
to develop such an inter-RVN communication that should facilitate integration
and reuse of the executable components. Additionally, it should also be fast
and predictable. To achieve these benefits, the inter-component or inter-RVN
communication is implemented independently from the underlying platform as
a middleware API by moving the information about system and communica-
tion outside the component code. Later the middleware interface functions are
integrated into the layered ProCom model [24].

Middleware API: The inter-RVN communication is a combination of data
and trigger ports and is based on messages. The middleware API is imple-
mented a-synchronously via message passing and the cyclic shared buffers,
where channels are used to distribute the messages to the other RVNs using a
defined set of connections. The communication is independent of the underly-
ing operating system (HSF implementation in our case). It includes the support
for transparent communication within RVNs mapped on the same hardware
node, called local-RVN communication, and among RVNs mapped on differ-
ent hardware nodes through a communication media or channel (e.g. CAN
bus), called distributed-RVN communication. The final executables are gener-
ated by resolving the local-RVN communication by mapping it to middleware
API, and synthesizing the distributed-RVN communication among hardware
nodes (if needed).

The middleware API is well-integrated with the layered deployment pro-
cess of the ProCom model. Currently it provides the local-RVN communica-
tion where the output and input message ports write and read the data respec-
tively. One-step shared cyclic buffers that can be accessed by multiple tasks,
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are added to these ports for reliable message delivery and efficient memory
usage. The main communication code (including data structures) is initial-
ized and two periodic tasks sender and message-port updater (or receiver) are
created for every physical node during the second-step of deployment. These
tasks are responsible to send and receive messages among RVNs respectively.
For the distributed-RVN communication, the only additional functionality to
be generated is a communication channel. (At this stage the PRIDE tool pro-
vides the distributed-RVN communication in the form of a TCP/IP connection
over Ethernet. A real-time distributed-RVN communication is not automati-
cally generated by the tool and has to be provided manually).

The inter-RVN communication could be realized in two different ways:
either integrating the middleware API directly into the communicating RVNs,
called Direct Communication, or using a server to embed the middleware tasks
in it, called a Server-based Communication. Both strategies are explained here.

8.4.1 Direct communication strategy

The simplest and straightforward method to provide communication among
RVNs is a direct communication strategy where RVNs can communicate di-
rectly with each other (i.e. RVN-to-RVN). Shared message queues which are
accessed via the SRP API [18] can be used for this purpose. An RVN can en-
capsulate the middleware API to send and receive the data and/or messages (see
Figure 8.5) at the first-step of deployment. It requires a separate configuration
of each RVN for each communication. The final binaries are generated from
RVNs along with the code for the communication mechanism used (local- or
distributed-RVN) at the final-step of deployment. The budget and period of the
communicating RVN includes both the timing requirements to execute RVN
code, and the timing requirements to execute the communication code (sender
and receiver tasks).

The direct communication is fast as compared to the server-based commu-
nication. However, it reduces the reusability of executable RVN components
since RVNs need to be configured for each system separately, depending on
that system’s communication requirements. Further, any change in the middle-
ware communication code will not only require a code-change in all RVNs but
will also affect the timing properties of all RVNs involved in that communica-
tion.



140 Paper C

Local-FOR Journal -121015 

 
 
 
    VN1 
 

 
 
 
    VN2 
 Model 

Executable  

Input message port 
 
Output message port 
 
Message channel 
 
Local-RVN / distributed-
RVN  communication 

Legend: 

 
 
 

          
T1 

. . . 

Local 
Scheduler  

Middle  
ware 
API 

RVN1 

Tn 

 
 
 

          
T1 

. . . 

Local 
Scheduler  

Middle  
ware 
API 

RVN2 

Tn 

Figure 8.5: Direct inter-RVN communication at modeling and executable lev-
els.

8.4.2 Server-based communication strategy

Since RVNs are implemented as servers within a two-level HSF, it makes sense
to embed the middleware API within a separate server called a system (also
called a communication) server. The main functionality of the server is to
send and receive messages among the RVNs, i.e. to copy the messages from
the sender port of one component to the receiver port of another component,
by executing the middleware API tasks within it. To achieve this purpose,
both communication tasks, sender and receiver, are assigned to the server as
shown in Figure 8.6. Hence using this strategy, the timing properties of the
communicating RVNs (RVN1 and RVN2 in Figure 8.6) become independent
of the communication code and the time to execute communication code.

Since inter-RVN communication is implemented as a server within a two-
level HSF, simple semaphores cannot be used to protect shared buffers. Thus
some synchronization protocols for hierarchical schedulers are required to ac-
cess the buffers in a safe manner. SRP and HSRP protocols are implemented
in the HSF implementation [18]. The shared buffers among the tasks of same
RVN and among tasks of different RVNs are arbitrated using SRP and HSRP
respectively. HSF leverages the communication among components with the
advantages of short and predictable global blocking, and predictable and well-
defined communication.

The server-based communication strategy is more complicated than the di-
rect strategy and has additional overhead of system server’s execution, how-
ever it proposes additional properties/advantages to incorporate/enhance the
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Figure 8.6: Server-based inter-RVN communication at modeling and exe-
cutable levels.

predictability of RVN during their integration and reuse. Main advantages of
the strategy are (1) increased reuse of RVN by keeping the communication
separated from the RVN code that increases maintainability and flexibility to
change the RVN without affecting the communication (2) predictability by ex-
ecuting the communication API in a server within the HSF implementation.
Moreover, it also increases (3) maintainability and flexibility to change the
communication code without affecting the timing properties of RVNs.

8.5 Synthesis activities
The automatic synthesis of ProCom components is done at different levels:

8.5.1 Synthesis of ProSave and ProSys runnables

The primitive ProSave components are implemented as C-functions. Synthesis
for the second level includes assigning ProSys components to a set of tasks
to generate ProSys runnables. Since the tasks at this level are independent of
the execution platform, the only task-attributes assigned at this stage are the
period for each periodic task (which is taken from the clock frequency that is
triggering the specific components in the task) and minimum inter-arrival time
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for each event-triggered task (which is taken from the model of the events) [13].

8.5.2 Synthesis of RVNs and final executables
Since a virtual node is functionally equivalent to a set of ProSys-components,
most of the synthesis work is done at the ProSys-level. For synthesizing the
RVN the main issue is to assign priorities to the tasks in order to meet tim-
ing constraints on components. In the PRIDE tool, the currently implemented
priority assignment is Rate Monotonic.

The final executables are generated by assigning priorities to the servers
executing RVNs, resolving the local-RVN communication by mapping it to
middleware API (which use the same middleware for communication that the
ProSys-components use within an RVN), and synthesizing the distributed-RVN
communication among hardware nodes (if needed). All synthesis is done by
generating C-code, so the final step is compiling the generated code, compil-
ing the behaviors of the ProSave components, and linking all code with the
operating system and middleware binaries.

8.5.3 Synthesis of server-based communication
We have implemented support for server-based inter-RVN communication within
the PRIDE tool. The communication or system server along with its tim-
ing properties is automatically generated for inter-RVN communications (if
needed), at the second-step of deployment. Both communication tasks (sender
and receiver) are assigned to the server and the server parameters (period, bud-
get, priority) are automatically generated. The system server has the highest
priority among all the servers in the system, with a very small budget to keep
the communication overhead as low as possible. Additionally there can be a
hardware-driver task in the server if needed.

8.5.4 Synthesis of idle server
An idle server is contained within the HSF implementation [5]. When there
is no other server in the system to execute, then the idle server will run. It
has the lowest priority of all the servers, i.e. 0. It contains only a single idle
task. This is useful for tracing the temporal separation among servers and also
useful in testing system behavior. Its presence is also useful in detecting over-
reservations of server budgets and can be used by the system to optimize the
resource usage.
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8.6 Predictability and reusability of RVNs
In this section we explain how the two-level deployment process to synthe-
size RVN-servers, and inter-RVN communication mechanism help in achiev-
ing predictable integration and increased reusability of RVNs.

As stated earlier, the RVN-server within the two-level HSF provides tem-
poral isolation, independent development and analysis, and preserves temporal
properties within the server, which leads to predictable integration. By pre-
dictable integration we mean that all servers and tasks meet their deadlines
as long as the allocated resources are provided to the server. Further, server-
based communication makes the RVNs independent of communication (code
and time to execute that code), since they do not know at design and execution
level about other RVNs they need to communicate with, thus increasing RVN’s
reusability in the new systems.

The two-level deployment process leverages the hierarchical scheduling to
preserve the validity of an RVN’s internal temporal behaviour when integrated
with other components or when reused in a new environment. During first-step
of deployment the timing properties of each RVN are validated and preserved
along with its functionality, and during the second-step of deployment RVNs
are integrated along with their preserved timing properties, as explained here:

8.6.1 The first step of deployment
In the modeling realm, a virtual node consists of a set of ProSys-components
with an added resource reservation 〈Q,P 〉. This resource reservation makes
it possible to start reasoning about the timing properties of different compo-
nents inside the virtual node (i.e. inside the top-level ProSys-components).
In the executable realm, the RVN is constructed by mapping the set of tasks
that have been synthesized from the integrated ProSys-components to a server
and assigning scheduling parameters (which in the current implementation
means assignment of task-priorities). Internal validity of the timing-constraints
of the RVN can then be assessed using, e.g., simulation, testing or a local
schedulability-analysis provided in [18]. In this manner, after configuration
the RVN-server preserves its timing properties.

8.6.2 The second step of deployment
In the executable realm, we create the final binary for a hardware node by map-
ping a set of RVNs to that node along with a global-level scheduler in HSF,
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resolving local-RVN communications (communication among RVNs mapped
on the same hardware node), and mapping distributed-RVN communications
(communication among RVNs mapped on different hardware nodes) with re-
mote RVNs to the communications media. At this point it is also necessary to
assign scheduling parameters in terms of server-priorities. To ensure that a fea-
sible priority assignment has been made, a global schedulability-analysis [18]
is performed.

It should be noted that the global schedulability-analysis is done using only
information about the allocations (〈Q,P 〉:s) of RVNs and their mutual global
resource-sharing. The extent of the global resource-sharing is known; since the
only source of global resource-sharing is the local-RVN communication which
has been automatically generated. Thus, our approach does not require to use
only RVNs that have been synthesized from ProCom-components (with well-
known and analyzable behavior). It is perfectly feasible to wrap any type of
component which can be represented as a set of tasks as an RVN and to inte-
grate it with pure ProCom-RVNs. The global scheduling-analysis will guaran-
tee that timing requirements within the RVNs are met at run-time and the HSF
will guarantee that execution resources are provided according to the reserva-
tion. Thus, for example, a legacy-component with an unanalyzable task-set
which has been tested and informally validated with a specific reservation, will
continue to work when integrated with other RVNs. Another example would be
when a, potentially, unreliable third party component should be integrated. By
wrapping such a component as an RVN, it is guaranteed that the component
does not interfere adversely by consuming more than its allocated execution
resource.

8.7 End-to-End delay analysis and its computa-
tion method

In embedded systems’ communication, the data may originate at one compo-
nent (e.g. a sensor) and passes through various other computational compo-
nents, before terminating at the final component (e.g. an actuator). Hence,
the data follows a chain of components (C1, C2, . . . , Cn), each potentially
having its own periodicity and timing properties. The total time taken by the
data/signal to traverse the complete chain is called end-to-end delay (also called
end-to-end latency) [25]. For an embedded system with real-time constraints,
the end-to-end timing behavior is not only dependent on the timing proper-
ties of its constituent components but also on the message-chains among those
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components. In a communication chain, different executable components (or
tasks) are activated at different periods. Such system is called a multi-rate sys-
tem and different end-to-end semantics for the multi-rate system are provided
in [26].

The communication strategies for ProCom technology reveal the multi-
rate systems. Since RVNs are implemented as servers in the ProCom, a sys-
tem comprising the communication chains among RVN-servers transposes to
a multi-rate server-based system.

For hard real-time systems, of course, Worst Case Response Time (WCRT)
(the largest possible response-time of any instance of the task) is a more inter-
esting metric than any other metric, however, it does not help us to evaluate a
multi-rate server-based systems. We need to compute end-to-end delay analy-
sis to evaluate both communication strategies. However, the end-to-end delay
analysis of [26] cannot be straightforwardly applied to the multi-rate server-
based ProCom components. The WCRT for the communicating tasks execut-
ing within the two-level hierarchy of servers should be first computed and then
provided as input to compute end-to-end latencies.

To describe the computation methods for WCRT and end-to-end latencies
for ProCom components, we first present an Example of communication chains
for direct and server-based communication strategies, and then we explain the
computations of WCRT and end-to-end latencies for the servers and tasks pre-
sented in the Example. In the end of this section, we provide a brief description
of the EELAP tool [6, 7].

8.7.1 An example

Consider a system with three RVN-servers, a sensor, a compute, and an actua-
tor as depicted in Figure 8.7. Each server has different timing properties given
in Table 8.1, and contain different task sets described in Table 8.2. The data
is generated at the task τ11 and sent to the task τ12 for computation, then the
computed data is sent to τ13. The task τ22 is not involved in the communica-
tion.

RVN-Server Sensor Compute Actuator
Period 25 40 10
Budget 10 4 2
Priority 3 2 1

Table 8.1: Timing properties of servers used to test system behavior.
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Tasks τ11 τ12 τ22 τ13
Server Sensor Compute Actuator
Period 40 80 120 20

Exe. Time 2 2 4 2
Priority 2 2 1 2

WCRT 32 74 116 18

Table 8.2: Timing properties of tasks in RVN-servers.

The communication chain for the direct strategy is τ11 → τ12 → τ13 as
obvious in Figure 8.7. For server-based strategy, the inclusion of an extra Sys-
tem server in the communication chain results in a longer chain τ11 → sender

→ receiver→ τ12 → sender→ receiver→ τ13 as given in Figure 8.8.
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Figure 8.7: A Communication Chain among RVN-servers for Direct Commu-
nication.
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8.7.2 Computing the Worst Case Response Times of tasks
A prerequisite to compute the end-to-end latency is that the WCRT of each
task in all RVNs. The computation of WCRT of tasks in RVN-servers is based
on the periodic resource model presented in [15]. The overheads of server
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executions on FreeRTOS operating system have been calculated and included
in the analysis presented in [18].

For a schedulable system, the WCRT for each task is calculated. The
WCRT for a task is the time t at which rbf and sbf functions intersect at
first and is calculated as follows:

∀τi, smallest t : 0 < t ≤ Di, rbf(i, t) = sbf(t), (8.1)

where sbf is the supply bound function, rbf(i, t) denotes the request bound
function. sbf computes the minimum possible CPU supply to a server Ss for
every time interval length t, and rbf(i, t) of a task τi computes the maximum
cumulative execution requests that could be generated from the time that τi is
released up to time t and is computed as:

rbf(i, t) = Ci + bi +
∑

τk∈HP(i)

⌈
t

Tk

⌉
· Ck, (8.2)

where HP(i) is the set of tasks with priorities higher than that of τi and bi is the
maximum local blocking.

The evaluation of sbf depends on the type of the overrun mechanism. In
this paper we present results using overrun without payback using the follow-
ing equations:

sbf(t) =

{
t− (k + 1)(Ps −Qs) if t ∈W (k)

(k − 1)Qs otherwise,
(8.3)

where k = max
(⌈(

t − (Ps − Qs)
)
/Ps
⌉
, 1
)

and W (k) denotes an interval
[(k + 1)Ps − 2Qs, (k + 1)Ps −Qs].

The WCRT for all tasks presented in the Example in Section 8.7.1 are cal-
culated using these formulas and presented in the last row of Table 8.2. All
these formulas are implemented in the EELAP tool [7].

8.7.3 Computing data path analysis or end-to-end latencies
The end-to-end latencies for the communication chain τ11 → τ12 → τ13 for
direct communication from Section 8.7.1 are computed and shown in the Fig-
ure 8.9. Since all RVNs are implemented on the same physical node, their
clocks/periods are synchronized. Hence the activation times of the tasks are
the same as of their periods. In Figure 8.9, the x-axis shows time line, the up-
ward blue arrow and downward red arrow represent the task’s activation and



148 Paper C

task’s WCRT respectively, and the filled gray rectangle shows the time interval
during which the task will be executed. The chain τ11 → τ12 → τ13 produces
multiple outputs corresponding to a single input. The input of τ11 at time 40
(see Figure 8.9) produces four outputs at times 178, 198, 218, and 238; the
first value at time 178 is new and presented by a bold arrow, while the follow-
ing three are duplicates of this value and shown as normal arrows. The dotted
arrow shows an overwritten value and is ignored.
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Figure 8.9: End-to-End latencies for the communication chain τ11 → τ12 →
τ13.

Four different end-to-end latency semantics are identified in [26]. The
most interesting ones are first-reaction and max-data-age (shown in Figure 8.9)
which are highly used in embedded systems; like first-reaction is used in body
electronics to find out how fast the response is, and max-data-age in control
engineering to calculate maximum delays. First-reaction (or first in first out
(FIFO)) is the time between the previous non-overwritten release of input task
(τ11 at time 40) and the first output of last task in the chain corresponding
to current non-overwritten release of input task (τ13 at time 258). It is the
longest allowed time to produce the new data. Max-data-age (or last in last out
(LILO)) is the time between the current non-overwritten release of input task
(τ11 at 120) and its corresponding last output of last task in the chain (τ13 at
318). It is the longest time during which the data is allowed to age and the new
data is produced after this time-limit.

The formulas and their corresponding algorithms to compute end-to-end
semantics are explained in a technical report [6].
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8.7.4 End-to-end latency analyzer for ProCom
We develop an analysis tool End-to-End Latency Analyzer for ProCom (EE-
LAP) [7] to automate the computations of WCRTs of tasks and different end-
to-end latency semantics for multi-rate server-based ProCom components. The
tool performs the local and the global schedulability tests, and for a schedulable
system it computes end-to-end latencies using the following two steps:

1. First it calculates the WCRTs of all tasks executing in a two-level hier-
archical scheduling framework by using methods/formulas provided in
Section 8.7.2,

2. And then it calculates different end-to-end latency semantics for the
given communication chains for both communication strategies using
algorithms/formulas provided in [33].

A technical report on the EELAP tool [33] presents the descriptions of
API’s of the tool, the formulas and their implementations in those API, and a
user guide. It provides algorithms used to compute local and global schedula-
bility condition, WCRTs for tasks, possible paths, path reachability, and differ-
ent end-to-end latency semantics.

8.8 Case Study: Cruise controller and adaptive
cruise controller

The PRIDE tool [12] supports the development of systems using ProCom com-
ponents and we have used it for development of a cruise controller (CC) and an
adaptive cruise controller (ACC) for automotive applications. Our motivating
case study is simple, but exercises the execution-time properties and evaluates
the integration and reusability of the run-time components.

The case study runs in two phases. First, the CC system is realized and
exercised to test the temporal isolation among run-time components. Its basic
functionality is to keep the vehicle at a constant speed. Then the ACC system
extends this functionality by keeping a constant distance to the vehicle in front
by autonomously adapting its speed to the speed of the preceding vehicle and
by providing emergency brakes to avoid collisions. To evaluate the reusability
of real-time components, the ACC system is realized by the reuse of some
RVNs from the CC system. In the remainder of this section we describe the
development of both applications.
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8.8.1 System design
The CC system is designed using two ProSys components: Cruise Controller
and Vehicle Controller. These ProSys components are deployed on two dif-
ferent virtual nodes Virtual Node CC and Virtual Node VC respec-
tively, as shown in Figure 8.10. To extend the functionality to the ACC sys-
tem, the Cruise Controller component is replaced with the Adaptive Cruise
Controller component and is mapped to the Virtual Node ACC, while the
Virtual Node VC is reused from the CC system (see Figure 8.10). These
virtual nodes communicate with each other through input and output message
ports.
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Figure 8.10: Deploying ProSys components on virtual nodes

Each virtual node is assigned a period and an execution budget to be exe-
cuted in a local server within a two-level hierarchical scheduling framework.
The periods and budgets for these virtual nodes are assigned at the modeling
level. The assignment of these values in the PRIDE tool is shown in Figure 8.11
and highlighted by circle. The detailed design of the ProSys components men-
tioned above is in turn shown in Figures 8.12, 8.13, and 8.14.

The Cruise Controller ProSys component contains three elements as shown
in Figure 8.12: an HMI Input to set the mode to on or off, and detecting the
speed or the manual braking signal respectively, a Control Unit to compare the
current speed with the desired speed and to send the signals to throttle or brake
output ports accordingly, and an HMI Output to communicate the status to
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Figure 8.11: The timing properties of the virtual node

the driver via the display. The Vehicle Controller ProSys component contains
seven elements as shown in Figure 8.13: two Calc Max Value components: to
choose the maximum (of throttle and input message port) speeds and maxi-
mum (of brake pedal and input message port) brakes, and to provide these val-
ues to Engine Controller and Brake Controller components respectively. The
Speedometer writes the current speed to the output port periodically.
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Figure 8.12: The Cruise Controller component
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Figure 8.13: The Vehicle Controller component

The Adaptive Cruise Controller ProSys component contains the following
elements in addition to the Cruise Controller’s elements: a Distance Sensor
component to evaluate the distance to a vehicle/obstacle in front of the vehicle,
a SpeedLimiter component to compute the vehicle’s desired speed relative to
the vehicle/object ahead as shown in Figure 8.14.
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Figure 8.14: The Adaptive Cruise Controller component
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8.8.2 Synthesis
As described in Section 8.5, the PRIDE tool automatically synthesizes code
from the ProCom models at different stages. It takes the models as input, and
generates all low-level platform independent code.

In the first step of the final synthesis/deployment process for the case study,
two RVNs are produced for both CC and ACC systems: one RVN for Virtual
Node CC or Virtual Node ACC and one for Virtual Node VC. These
generated nodes contain tasks definitions.

One task is synthesized for each clock in the ProSys components. For the
Cruise Controller component: CCT1 task including HMI Input and Control
Unit; and CCT2 task including HMI Output component. Three tasks are gen-
erated for the Vehicle Controller component: VCT1 task including Throttle
pedal, Calc Max Value, and Engine Controller; VCT2 task including Brake
pedal, Calc Max Value, and Brake Controller; and VCT3 task including the
Speedometer. Three tasks are generated for the Adaptive Cruise Controller
component: ACCT1 task including Distance Sensor, ACCT2 task including
HMI Input, Speed Limiter, and Control Unit; and ACCT3 task including HMI
Output component.
Generating final binaries: In the second step of the final synthesis/deployment
part, the priorities are assigned to the RVNs (also called servers now) and to
the tasks in them. Four servers are generated for both systems.

A System server is generated to provide communication among the RVNs.
It has the highest priority of all the other servers, i.e. 7 (there are 8 different
server priorities: from lowest priority 0 to the highest 7). The System server
contains two tasks: a Sender and a Receiver task; whose functionality is
to send and receive the data shared among RVNs respectively. An Idle server
is generated in the system with the lowest priority of all the other servers, i.e.
0, containing an idle task in it. All the other servers in the system have the
priority higher than 0.

Server CC ACC VC System
Priority 2 2 1 7
Period 40 40 60 20
Budget 10 10 15 4

Table 8.3: Servers used to test the CC and ACC systems behaviors.

The CC system contains two more servers in addition to System and
Idle server: a CC server and a VC server associated with Virtual Node
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CC and Virtual Node VC respectively. The ACC system also contains
four servers: an ACC server associated with its Virtual Node ACC, it
reuses the VC, System, and Idle servers from the CC system. The prior-
ities, periods and budgets for these servers are given in Table 8.3.

Our implementation supports both idling periodic and deferrable servers,
however, in this paper we are showing results with only idling periodic server.
All the servers in both examples are idling periodic means that the tasks in the
server execute and use the server’s capacity until it is depleted. If the server
has the capacity but there is no task ready then it simply idles away its budget
until a task becomes ready or the budget depletes. If a task arrives before the
budget depletion, it will be served. An idle task per server is also generated
that has the lowest priority and runs when its server has budget remaining but
none of its task is ready to execute. Task properties and their assignments to
the servers are given in Table 8.4.

Tasks CCT1 CCT2 ACCT1 ACCT2 ACCT3 VCT1 VCT2 VCT3 Sender Receiver
Server CC CC ACC ACC ACC V C V C V C SY STEM SY STEM

Priority 2 1 2 2 1 1 1 2 2 2

Period 40 60 40 40 60 60 60 40 20 20

Table 8.4: Tasks properties and their assignment to servers.

Once all the platform dependent user code is finalized, all RVNs that are
to be deployed on the same physical node are integrated with a real-time time
scheduler, the platform dependent final binaries are generated and downloaded
on a physical node. Currently the PRIDE tool is evolving and the automatic
synthesis part is not fully mature. Hence a few parts of these experiments were
synthesized manually, but it is not relevant for our experiments and does not
effect our results.

8.9 Evaluation and discussion
In this section we evaluate the timing properties of RVNs and the communica-
tion strategies.

8.9.1 Evaluating timing properties of RVN
For the evaluation in this section we use the servers and task-sets synthesized
in our case study in Section 8.8, and are summarized in Table 8.3 and Table 8.4.

We have performed the experimental evaluation on an AVR-based 32-bit
EVK1100 board [8]. The AVR32UC3A0512 micro-controller runs at the fre-
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quency of 12MHz and its tick interrupt handler at 1ms(milli seconds). The
FreeRTOS operating system with its HSF implementation is used on the micro-
controller using FPPS scheduling policy at both levels for idling periodic servers.
Its tick-handler runs at the rate of 1ms.

Our evaluation focuses mainly on the timing properties of the real-time
components during their integration and the reuse of the components in dif-
ferent systems. We tested the real-time components for: (i) temporal isolation
among the components that leads to (ii) the predictable integration and (iii) in-
creased reusability of the components. The final binaries for both systems are
executed on the micro-controller and the traces of executions are visualized.
The experimental results are presented in the form of visualization of servers
executions in Figures 8.15, 8.16, 8.17 and 8.18.

In these figures, the horizontal axis represents the execution time starting
from 0. In the task’s visualization, the arrow represents task arrival and a gray
rectangle means task execution. In the server’s visualization, the vertical axis
shows the server’s remaining capacity, the diagonal line represents the server
execution while the horizontal line represents either the waiting time for the
next activation (when budget has depleted) or the waiting for its turn to execute
(when some other server is executing). Since these are idling periodic servers,
all the servers in the system execute until their budgets are depleted, if no task
is ready then the idle task of that server executes till its budget is depleted1.

Testing temporal isolation and predictable integration

To test the temporal isolation among RVNs and their predictable integrations,
the CC system is synthesized with the previously described four servers and
task sets belonging to those servers. The servers executions (according to their
resource reservations) along with their task sets are presented in Figure 8.15
and Figure 8.16 [10].

Figure 8.15 demonstrates the system execution under the normal load sit-
uation. The system’s behavior is also tested during the overload situation to
test the temporal isolation among the RVNs. For example, if one server (RVN)
is overloaded and its tasks miss deadlines, it should not affect the behavior of
other servers(RVN) in the system.

The same example is executed to perform this test but with the increased
utilization of the CC server as shown in Figure 8.16. The execution times of
tasks CCT1 and CCT2 are increased by adding busy loops, hence making the

1Due to space reasons, we have not visualized the results for deferrable servers here. They are
presented in [5].



156 Paper C

Figure 8.15: The trace for servers in the CC system during normal load

CC server’s utilization greater than 1. Therefore the low priority task CCT2
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Figure 8.16: Trace showing temporal and fault isolations during overload situ-
ation



158 Paper C

misses its deadlines. CCT2 is preempted at time 14 because of the CC server’s
budget expiration, and starts it’s execution again when next time the server is
replenished. But at time 54 CCT2 is preempted again due to it’s server’s budget
expiration and will miss its deadline. Further, the CC is never idling because it
is overloaded (Idle task of CC server is not executed in Figure 8.16).

The overload in the CC server does not effect the behavior of any other
server in the system as obvious from Figure 8.16. The VC server has a lower
priority than the CC, but still it receives its allocated resources and its tasks
meet their deadlines. In this manner, RVNs exhibit a predictable timing be-
haviour that eases their integration. It also manifests that the temporal errors
are contained within the faulty RVN only and their effects are not propagated
to the other RVNs in the system.

Testing component’s reusability

The purpose of this experiment is to test the reusability of RVNs in a new
system. The ACC system is synthesized for this purpose. It also contains four
servers: the ACC server is synthesized with its task set while the other three
servers are reused from the CC system. The trace of execution is visualized
and presented in Figure 8.17.

Since the RVNs preserve their timing properties within them; therefore,
their behaviour should not be changed when integrated into a new system, as
long as their reserved resources are provided.

The task set for the ACC server is different from that of CC server. It is
clear from the Figure 8.17 that all the three reused servers sustain their timing
behaviour. For example, the VC server has a lower priority than ACC, still
it’s behaviour is not effected at all and remains similar to its behaviour in the
CC system. It confirms the predictable integration of real-time components on
one hand, and demonstrates their reusability on the other hand. We observed
the same results on testing the ACC server with changed timing properties, i.e.
period 50 and budget 14 as shown in Figure 8.18. As long as the allocated
budgets to servers (at the modeling level) are provided, the timing properties
are guaranteed at the execution. In Figure 8.18 we observe a change in the
response times of tasks of the low priority VC server due to the changed timing
behaviour of the high priority ACC server, but still all tasks of VC server meet
their deadlines.

Hence, by using RVN components and two-level deployment process, the
timing requirements are also encapsulated within the components along with
their functional requirements and the temporal partitioning is provided among
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Figure 8.17: Trace showing reusability of runnable virtual nodes in ACC sys-
tem



160 Paper C

Figure 8.18: Trace showing predictable integration and reusability of RVNs in
ACC system
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the components (using HSF), that results in the increased predictability dur-
ing component’s integration and making the runnable virtual nodes reusable
entities.

8.9.2 Evaluating communication strategies
For the evaluation in this section we use the EELAP tool to compute the end-to-
end latencies for both direct and server-based communication strategies. There
is a trade-off between both strategies: the direct strategy is fast but is more re-
stricted in the reuse of real-time components; on the other hand, server-based
strategy provides reusability, maintainability, and flexibility to change the com-
munication patterns but suffers from longer end-to-end delays. In our evalua-
tions, we mainly focus on 1) evaluating the increase in end-to-end latencies for
server-based strategy and 2) revealing different factors that affect these laten-
cies for server-based strategy, so that by restraining these factors the latencies
could be minimized.

Comparing end-to-end latencies for server-based and direct communica-
tions

We calculate different end-to-end latencies for the Example given in Section 8.7.1
and summarized in Table 8.1 and Table 8.2 for both direct (Figure 8.7) and
server-based (Figure 8.8) communication chains. The System server attributes
used for the calculation are period 12, budget 3, and priority 7,
and its tasks attributes are given in Table 8.5.

Tasks sender receiver
Period 20 20

Exe. Time 1 1
Priority 2 1

WCRT 19 20

Table 8.5: Timing properties of tasks in System servers.

The timing attributes of all servers and their tasks, and the communication
chain are input to the tool. For both communication strategies, the values for
first-reaction and data-age latencies are computed for a small chain τ11 → τ13
and a long chain τ11 → τ12 → τ13 and are provided in the Table 8.6. For
server-based strategy, the inclusion of an extra System server in the communi-
cation results in longer chains: small chain becomes τ11 → sender→ receiver



162 Paper C

→ τ13, and long chain becomes τ11 → sender→ receiver→ τ12 → sender

→ receiver→ τ13 therefore, the latencies for server-based strategy are longer
than that of direct strategy. In Table 8.6, the column Value provides the first-
reaction and data-age latencies’ values while the column Increase repre-
sents the percentage-increase in the end-to-end latencies for server-based strat-
egy as compared to that of direct strategy for both small and long chains. For
this particular example the increase is less than 30%.

Chain Strategy
First-reaction Data-age
Value Increase Value Increase

Small chain server-based 138
28.9%

108
27.8%direct 98 78

Long chain server-based 278
21.6%

258
23.2%direct 218 198

Table 8.6: Comparison between latencies for both communication strategies.
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Figure 8.19: Results of End-to-End latencies for different System server-
periods for small (left) and long (right) communication chains.

Revealing factors influencing end-to-End latencies in the server-based com-
munication

The first obvious factor causing an increase in end-to-end latencies is the inclu-
sion of an extra server. For longer chains we need to include the System server
in the communication chain more than once, for example τ1 → τ2 chain needs
one time inclusion, while τ1 → τ2 → τ3 chain needs two times inclusion of the
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System server. This factor cannot be restrained since the communication chain
cannot be reduced.

The second factor increasing the latencies is the period of System server
and its tasks. Longer period means that the server is activated after long time
hence increasing end-to-end communication latencies. Moreover, for longer
latencies, the data becomes very old which could cause invalidity of data. Thus
it is important to restrain this factor. This can be done by choosing suitable
periods for System server and its tasks.

To reveal suitable ranges of periods for System server and its tasks for the
server-based strategy, we have performed experiments using the EELAP tool.
The server-period length depends on its tasks periods and is usually half than
the task period [15]. Therefore, in these experiments, periods for sender and
receiver tasks are kept fixed and System server-period is kept variable for a
certain period range (the range at which the system is schedulable). The end-
to-end latencies are computed for the Example given in Section 8.7.1. The
sender and receiver tasks periods are set long i.e. 80 for both while their
execution times and priorities are the same as given in Table 8.5. The experi-
ments are done on a varying server-period range (i.e. from 6 to 42) as the sys-
tem is schedulable within this range only. The first-reaction and max-data-age
latencies are computed for a small chain (τ11 → sender→ receiver→ τ13
for server-based, τ11 → τ13 for direct) and a long chain (τ11 → sender→rec

eiver→ τ12 → sender→ receiver→ τ13 for server-based, and τ11 → τ12
→ τ13 for direct strategy).

The results for small and long chains are plotted as line graphs in Fig-
ure 8.19 on left and right sides respectively. In this figure, the server-period
increases from left to right along the horizontal axis, and the time is repre-
sented along the vertical axis. The graph shows that latencies for long chains
are increased as compared to the latencies of small chain for both communica-
tion strategies. The increase of latencies for the direct strategy is slightly less
than the increase for server-based strategy. The graph also reveals the effects
of longer System server-period on the latencies for the server-based strategy. It
is clear that (1) the increase in End-to-end latencies is linear; (2) the increase
in latencies is much higher when sender and receiver) tasks’ periods are
longer than the other tasks in the system. Hence it is better to keep the periods
of System server and its tasks as short as possible.

The server-based strategy provides the benefits of reusability, maintainabil-
ity and extendibility of real-time components with a slight overhead of com-
munication, and is a better strategy to use in systems where the reusability re-
quirement is high. These results manifest that the overhead of communication
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for the server-based strategy could be minimized by selecting shortest possible
periods for the System server and its tasks.

8.10 Related work
We describe some contemporary component-technologies available for embed-
ded systems focusing on the deployment, integration and reuse of components
and on the predictability in time-domain of the resulting systems.

8.10.1 Temporal isolation and predictable integration among
components

ARINC-653 is used as a platform to implement partitioning for avionics soft-
ware with emphasis on predictability and safety-critical issues [27]. It provides
fully deterministic top-level Time Division Multiple Access (TDMA) based
schedule. Some work has done to build a platform that combines component-
based software construction with hard real-time operating system services to
manage the challenge of increasing complexity of hard real-time systems by
employing reusable components and robust composition techniques. CORBA
Component Model (CCM) [28] is extended and combined with ARINC-653
to build a platform using Linux processes and POSIX threads [29]. Integrated
Modular Avionics (IMA) architecture also encourages the integration of soft-
ware functions and their reuse [30]. Our RVN concept can also be deployed in
one of the ARINC partitions.

All these models provide spatial and temporal partitioning between appli-
cations for fault containment, using a two-tier model like RVN. However, in
ARINC, the top-level uses only fixed temporal scheduling of software parti-
tions (TDMA slots are fixed for repetitive execution of major frames) whereas
in RVNs it is flexible; i.e. the RVN-server parameters can be changed as long
as the task set is schedulable. The reuse of ARINC partitions is also restricted
due to the fixed time slots, the partitions could be moved to other platforms
only if the TDMA slot matches exactly. RVNs have more freedom of reuse
because RVNs can be used with the changed timing properties (as long as the
task set is schedulable).

Architecture Analysis and Design Language (AADL) was developed as
an SAE Standard AS-5506 [31]. The Ocarina [32] tool suite facilitates the
design of AADL component models and their mapping on a hardware plat-
form, assessment of these models, automatic code generation, and deployment.
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Deployment in AADL is supported by a middleware API, (e.g. PolyORB or
PolyORB-HI for code generation in Ada or C respectively) [33]. A process
contains many tasks and is a self-contained runnable entity executable on a
hardware platform. Another type of runnable entity for AADL employs a hier-
archical scheduling concept in a partition, provides temporal isolation among
runnable entities and is supported by a tool suite POK [34], which is ARINC
compliant. Unlike ProCom, deployment in AADL is done in a single step to
directly execute the generated code on hardware, without any consideration of
executable component’s reusability.

Ptolemy architecture [35] provides temporal correct composition of model
elements from its associated modeling language by global system-synthesis.
For temporal predictability the whole system is synthesized together and exe-
cuted by a scheduler, which manages all the events expressing progression of
the Ptolemy-model. It lacks composition of run-time artefacts and requires a
special purpose execution engine to achieve temporal correctness. Inclusion of
legacy components which are not developed using Ptolomy-language is diffi-
cult and produces unpredictable behavior.

Time-Triggered Architecture [36] provides a concept where each compo-
nent is statically scheduled. Thus, integration of components causes minimal
modification to the timing behavior of each component. However, the static na-
ture limits the usability of the approach and poses large difficulties to achieve
high utilization of hardware resources. Also, integration of components with
conflicting schedules requires rescheduling.

8.10.2 Temporal reuse of components

AUTomotive Open System ARchitecture (AUTOSAR) [37] is an open standard
for automotive electronics architectures with the principal aim of the standard
is to master the growing complexity of automotive electronic and software ar-
chitectures. Its main disadvantage is the lack of clear and well-defined tim-
ing properties that further affect the execution semantics and real-time com-
ponents’ integration. It requires additional testing of timing properties when
components are reused. On the other hand, ProCom puts special focus on such
requirements right from the beginning of the component’s development until
the component’s deployment. TIMMO (TIMing MOdel) project provide tim-
ing model for AUTOSAR and is included in the version 4.0 of AUTOSAR
specification [38]. TADL (Timing Augmented Description Language) [39] is
used to express the timing requirements and timing constraints in all design
phases during the development of embedded software. TADL is extended to
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TADL2 in TIMMO-2-USE project [40], which not only refines the previous
TADL and updates the timing constraints but also provides new algorithms,
tools and a methodology to model advanced timing at different levels of ab-
straction in compliance with the AUTOSAR-based tool chain [38]. Deploy-
ment in AUTOSAR is a single-stepped process and the executables are gen-
erated directly from the components, unlike ProCom where the deployment is
performed in two steps, leveraging HSF to preserve internal temporal behavior
during integration and reuse.

The Rubus Component Model (RCM) [41] is similar to ProCom in many
aspects: like capturing the functionality at two-levels of component hierarchy;
managing different ports for control and data flows; graphical design tools, a
scheduler, and some plug-ins to perform analysis. Its main difference from
the ProCom technology is at the deployment and execution levels. In Rubus,
the required hardware components are explicitly modelled, and therefore, are
highly restricted in reuse, some metadata facilitate temporal reuse but do not
explicitly focus on it unlike the ProCom where the components are developed
independently from the hardware details and hardware specifics are taken care
at the last step of deployment facilitating temporal reuse of executable com-
ponents. Further, there is no notion of temporal/hierarchical partitioning in
Rubus. Thus, Rubus provides composition of model-elements but not of run-
time artefacts.

The Deployment and Configuration (D&C) of component-based distributed
applications [42] is standardized by the OMG to facilitate the deployment of
component-based applications onto target platform. It uses a Platform Indepen-
dent Model (PIM) for the model components, and a Platform Specific Model
(PSM) for the CORBA Component Model (CCM) [28]. The Real-time D&C
(RT-D&C) [43] is its extension to develop applications with real-time proper-
ties and provide a deployment plan. The metadata about the temporal behavior
of components is added to the specification at the Platform Independent Model
(PIM) level to facilitate the real-time analysis of the components. However, a
RT-planner configures the timing properties of real-time application after us-
ing the real-time analysis tools, which is different from the ProCom deploy-
ment where the timing properties are preserved within the executable RVNs.
Unlike RVN, in RT-D&C components, the timing properties are preserved and
reusable till the component’s development at PIM level not until the execution
level.
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8.11 Conclusions
This paper presents the executable component runnable virtual nodes (RVNs)
as a means to achieve predictable integration and reuse of software components
using a two-level deployment process for real-time software components. The
RVN is intended as a coarse-grained component for a single node deployment
with internal multitasking. The notion of two-level deployment process encap-
sulates the timing properties and uses the hierarchical scheduling framework
(HSF) within RVNs to preserve timing behaviour. The HSF provides temporal
separation and the ProCom component-model provides functions separation
between RVNs. Thus, our approach allows unit-testing and -analysis with re-
spect to both temporal- and functional-properties. These properties are then
preserved when the RVN is integrated with other components. Compared to
previous work [10], results have been extended by allowing these RVN prop-
erties to be reused in a new environment, thereby facilitating the development
of complex real-time systems.

In addition to [10], a server-based communication strategy is implemented
that supports predictable integration and reuse of the timing properties of RVNs
by keeping communication-code in a separate server. This strategy incor-
porates the maintainability and flexibility to change the communication code
without affecting the timing properties of RVNs. We have evaluated the end-to-
end delay analysis for the server-based strategy with a more direct communi-
cation strategy for efficiency and reusability properties of RVNs. Hence using
RVNs and server-based inter-RVN communication, complex real-time systems
can be developed as a set of well defined reusable components encapsulating
functional and timing properties.

Finally, an extended proof-of-concept case study demonstrates the temporal-
fault containment within an RVN as well as the reuse of RVNs in new envi-
ronment. The work is based on the ProCom component-technology running
on the HSF implementation on FreeRTOS and is executed on an AVR-based
EVK1100 board. However, we believe that our concept is applicable also to
commercial component technologies like AADL, AUTOSAR [9].

For future work, we plan to automate the code-generation for communica-
tion between physical nodes and support run-time migration of RVNs between
physical nodes. We also plan to support virtual communication-channels using
server-based scheduling techniques for e.g. CAN [44]. This will allow devel-
opment, integration and reuse of distributed components using a set of RVNs
and virtual buses.
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Lundbäck. The Rubus component model for resource constrained real-
time systems. In 3rd International Symposium on Industrial Embedded
Systems, 2008.

[42] Object Management Group. Deployment and Configuration of
component-based distributed applications specification, 2006. v4.0.

[43] P. L. Martinez, C. Cuevas, and J. M. Drake. RT-D&C: Deployment spec-
ification of real-time component-based applications. In 36th EUROMI-
CRO Conference on Software Engineering an dAdvanced Applications
(SEAA’10), pages 147–155, 2010.

[44] T. Nolte, M. Nolin, and H. Hansson. Real-time server-based communi-
cation for CAN. IEEE TIE, 1(3):192–201, April 2005.





Chapter 9

Paper D:
The Multi-Resource Server
for predictable execution on
multi-core platforms

Rafia Inam, Nesredin Mahmud, Moris Behnam, Thomas Nolte, Mikael Sjödin.
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Abstract

In this paper we present an implementation and demonstration of the Multi-
Resource Server (MRS) which enables predictable execution of real-time ap-
plications on multi-core platforms. The MRS provides temporal isolation both
between tasks running on the same core, as well as, between tasks running on
different cores. The latter could, without MRS, interfere with each other due
to contention on a shared memory bus.

We demonstrate that MRS can be used to ”encapsulate” legacy systems
and to give them enough resources to fulfill their purpose. In our case study a
legacy media-player is integrated with several resource-hungry tasks running
at a different core. We show that without MRS the media-player starts to drop
frames due to the interference from other tasks; while introduction of MRS
alleviates this problem. Another part of our demonstration shows how tradi-
tional periodic real-time tasks can be kept schedulable even when tasks with
high memory-demand are added to the system.
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9.1 Introduction

Using multi-cores for real-time applications presents many challenges. One
such challenge is to achieve and maintain predictable execution of concurrent
tasks that compete for both CPU- and memory-bandwidth resources. On uni-
core platforms, the server-based scheduling approach successfully bounds the
interference between the applications running [1, 2, 3]. However, this approach
is limited to provisioning of the CPU resource only and it does not take the
memory bandwidth problem into account, the latter problem often being inher-
ited from when migrating software from a single-core to a multi-core architec-
ture. In this paper we target statically partitioned multi-core real-time systems.
For these systems we present the Multi-Resource Server (MRS) technology
that schedules the two resources CPU- and memory-bandwidth, in order to
achieve a predictable execution of embedded real-time systems.

In statically partitioned multi-core systems, concurrent tasks allocated to
the same core interfere with each other by competing for CPU-bandwidth (we
call this local interference), and concurrent tasks allocated to different cores in-
terfere by competing for memory-bandwidth (we call this global interference).
In addition to these sources of interference, tasks can also experience both lo-
cal and global cache-pollution interference. If needed, e.g. for hard real-time
systems, cache pollution can be relieved by cache-partitioning techniques like
[4, 5], which are not within the scope of this paper. Thus, the implementation
of the MRS presented here is suitable for soft real-time systems. However,
if cache pollution can be avoided (e.g., by cache partitioning [5] or by dis-
abling caches, or bounding caches by some static analysis technique [6, 7]),
the schedulability analysis presented in [8] paves the way for using MRS also
in hard real-time systems.

Additionally, we practically demonstrate the capability of MRS to main-
tain a predictable execution of a legacy soft real-time application. We show
that MRS is not only useful when developing new systems; it is also useful to
encapsulate and protect legacy applications, e.g., when performing a migration
of applications from a single core to a multi-core platform. While our example
uses a single task, the MRS allows for a complete subsystem with a set of tasks
(and potentially its own scheduling algorithm) to be encapsulated in a server
and then share an allocation of CPU- and memory-bandwidth resources. This
is later demonstrated in a case-study using a synthetic setup.

We have presented the basic idea of the MRS approach in [8] where a the-
oretical analysis framework is provided to assess the composability of applica-
tions/subsystems. In this paper, we focus on the implementation of the server,
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and its evaluation using (1) a case study and (2) a synthetic experimental setup.
Partitioned scheduling is considered in which servers and tasks are statically
allocated to a specific core. The rationale for looking at statically partitioned
systems is due to our industrial partners’ preference.
The main contributions of this paper are:

• We present the first implementation of the MRS1. This implementation
is made as a user-space library for Linux running on COTS hardware.

• We demonstrate how the MRS can be used to preserve the functionality
of a legacy application when it is executed on a single core while another
core executes tasks with adverse memory behavior.

• We demonstrate for a synthetic task-set how the MRS can be used to
isolate tasks from each other to prevent adverse behavior of some tasks
to negatively impact other tasks.

• We measure the overhead of memory related parts of the MRS and we
conclude that it is low.

Paper Outline: Section 9.2 explains system model, followed by Section 9.3
that describes the MRS concept in details. A brief overview of the software
framework used to implement the MRS is presented in Section 9.4. Implemen-
tation details are covered in Section 9.5. Section 9.6 presents the evaluation
setup and Section 9.7 describes a case study using a soft real-time application.
Synthetic evaluations are performed and results are analyzed in Section 9.8.
Section 9.9 presents the related work, and finally, Section 9.10 concludes the
paper.

9.2 System model
In this section we present our target hardware platform, the system model that
we use, and the assumptions that we follow.

9.2.1 Architecture
In our work we assume the architecture to consist of a processor with a set of
identical cores that all have uniform access to the main memory. Each core has
a set of local resources; primarily a set of caches for instructions and data. The

1The MRS implementation is available as an open source project at http://www.idt.
mdh.se/˜MemSched/

http://www.idt.mdh.se/~MemSched/
http://www.idt.mdh.se/~MemSched/
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system has a set of resources that are shared amongst all cores; this will typ-
ically be the last-level cache, main-memory and the shared memory bus. Our
architecture is industrially relevant and is the first step towards more advanced
architectures.

We assume that a local cache miss is stalling, which means that whenever
there is a miss in a local cache the core is stalling until the cache-line is fetched
from memory. We focus on the shared memory bus and we assume that all
accesses to the shared memory and the last-level cache go through the same
bus, and that the bus serves one request at a time. It is worth noticing that
any single-core could easily generate enough memory traffic to saturate the
memory bus by executing memory intensive tasks.

9.2.2 Server model
Our scheduling model for the multi-core platform can be viewed as a set of
trees, with one parent node and many leaf nodes per core, as illustrated in
Figure 9.1. The parent node is a node scheduler and leaf nodes are the servers.
Each server has its own set of tasks that are scheduled by a local scheduler.
The node scheduler is responsible for dispatching the servers according to their
bandwidth reservations (which include both CPU- and memory-bandwidth).
The local scheduler then schedules its task set according to a server-internal
scheduling policy.

Each server Ss is allocated a budget for CPU- and memory-bandwidth ac-
cording to 〈Ps, Qs,Ms〉, where Ps is the period of the server, Qs is the amount
of CPU-time allocated to the server each period, and Ms is the number of al-
lowed memory requests in each period. The CPU-bandwidth of a server is thus
Qs/Ps and we assume that the total CPU-bandwidth for each core is not more
than 100%. Ms/Ps is the memory-bandwidth for Ss, and we assume that the
total memory-bandwidth allocated to servers on all cores is not more than what
can be served on the shared memory bus. Server parameters can be obtained
using analysis [8] or from domain expertise.

During run-time each server is associated with two dynamic attributes qs
and ms which represent the amount of available CPU- and memory-budgets
respectively. The implementation in this paper uses Fixed Priority Pre-emptive
Scheduling (FPPS) policy for both node scheduling and server scheduling.

We assume that each server is assigned to one core and that its associated
tasks will always execute only on that core i.e., we use the partitioned mul-
tiprocessor scheduling technique. The terms memory-bandwidth reservation
and memory reservation are used interchangeably in the rest of the paper.
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Figure 9.1: The multi-resource server model

9.2.3 Task model
We are considering a simple sporadic task model in which each task τi is rep-
resented as τi(Ti, Ci, Di) where Ti denotes the minimum inter-arrival time
of task τi with Worst-Case Execution Time WCETi and deadline Di, where
Di ≤ Ti. Each task τi has a fixed priority ρi. During the execution of tasks,
memory requests can be made arbitrary at any time which can cause cache
misses, i.e., the model of memory requests of each task is not known in ad-
vance.

9.3 The multi-resource server
The goal of the MRS is to provide temporal isolations through resource reserva-
tion approaches in the context of CPU bandwidth reservation [9] and memory
bandwidth reservation [10]. The following subsections explain the MRS server
and mechanisms used to manage memory budget of the server.

9.3.1 The MRS mechanism
We explain the MRS using the following rules:
Rule 1: The MRS server is of periodic type, i.e., it replenishes both CPU- and
memory-budgets to the maximum values periodically. At the beginning of each
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server period its dynamic attributes are set as qs = Qs,ms =Ms.
Rule 2: In each core, a node scheduler is responsible to schedule all ready
servers. A server is in the ready state if its remaining budgets are greater than
zero, i.e. qs > 0 and ms > 0. The scheduled server applies its associated local
scheduler to schedule its ready tasks.
Rule 3: The CPU resource that is used by a task will be decremented from its
associated server’s CPU dynamic attribute qs, i.e., if a task τi executes x time
units then qs = qs − x.
Rule 4: The number of memory requests issued by each task will be decre-
mented from its associated server memory dynamic attribute ms, i.e., if a task
τi issues y requests then ms = ms − y.
Rule 5: A server is in a suspended state if any of its CPU- or memory-budget
is depleted, i.e., if ms = 0 or qs = 0 then ms = qs = 0 and the server is
suspended until the next server period. Thus, if any of the budgets is depleted
then the other remaining budget will be discarded.
Rule 6: We use the idling periodic server strategy [11] for CPU reservation,
i.e., if the scheduled server has remaining budget but there is no task ready
then it simply idles away its budget until a task becomes ready or the budget
depletes.

Note that the MRS follows exactly the rules of the idling server type except
for the additional rules related to the memory requests. The memory part of
the server behaves like a deferrable server [12] where the capacity of the server
is consumed only whenever a memory request is made. The presented rules
guarantee that a server only consumes its given CPU budget which limits its
effect on the other server that share the same core. The rules also guarantee
that a server only consumes its give memory budget, which limits its effect on
servers that are located in different cores. In addition and due to the interaction
between the two different types of the budgets of the MRS server, the server
may overrun its CPU budget. This may happen when a task in a server issues
a memory request just before the CPU budget depletion. Since the core is
stalling until the memory request is served then the server suspension will be
delayed and an overrun can occur. The amount of overrun can be at most equal
to the time to serve one memory request. In this paper we ignore such overruns
since they are negligible compare to our clock resolution, but for hard real-time
analysis the overruns are considered in the analysis of the MRS server [8].

We explain the execution of a MRS using a simple example of a subsystem
that consists of five tasks τ1, ..., τ5 where tasks are ordered by their priorities
in a descendent order i.e. τ1 has the highest priority and τ5 has the lowest pri-
ority. Figure 9.2 shows a possible execution scenario of tasks inside a server
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Ss(Ps, Qs,Ms). At the first budget period, we assume that τ5 is the only ready
task and it issues a memory request and then waits until the request is served,
and after a very small time τ4 is released and it preempts the execution of τ5
when the request is served (during core stalling, no task is allowed to execute)
and it issues a memory request. Assume that Ms = 2, the memory budget
depletes when the request is served and the remaining CPU budget is dropped.
As a result the server execution will be suspended until the next budget period.
The tasks τ1 and τ2 are activated within the first budget period but cannot ex-
ecute due to the budget expiration of the server. These tasks will get a chance
to execute in the next period when the server will be replenished to its full
resources. In second budget period, the highest priority ready task τ1 executes.
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Figure 9.2: An example illustrating the execution of the MRS

The implementation of the periodic server types considering the CPU-
budget has been studied extensively (e.g. [13, 14]). However, the main chal-
lenge is to add the memory budget and to consider the interactions between
the two different types of budgets, more specifically Rule 4 and Rule 5. To
implement these additional rules related to the memory part we need to track
the memory requests issued by tasks within each server. We will explain this
in the following sections:

9.3.2 Determining the consumed memory budget (ms)
In many cases, a continuous determination and tracking of the consumed memory-
bandwidth is very difficult without using a dedicated external hardware that
monitors the memory bus. Since we target the use of standard hardware, we
use a software-based technique similar to what has been used in [10, 15].



9.4 Software framework 183

Most modern processors host a range of Performance Monitor Counters
(PMCs) which can be used to infer the amount of resources consumed and
are used to implement software-based memory throttling. These counters are
hardware registers attached with the processor and they contain measures of
various programmable events occurring in the processor. Different processor
architectures provide different sets of performance counters which makes de-
termination of the consumed memory budget ms more or less easy and accu-
rate.

9.3.3 Online monitoring and policing of ms

To provide continuous online monitoring of the consumed memory-bandwidth,
we need to continuously monitor counters and store their values. Performance
counters are usually programmable and they can be configured to generate an
interrupt at overflow, and hence they can be configured to count different types
of events. For any given CPU architecture, its usage depends on issues like
available events to count, number of available counters (often a small set of
counters are available to be programmed to count various events), and the char-
acteristics of the memory-bus.

In our work we implement servers that enforce/police the consumed band-
width. To perform enforcement, an accurate and non-intrusive estimate of
the bandwidth consumptions is very important. For policing purposes, using
alarms could potentially provide the most accurate approach for accounting
of the consumed bandwidth. One method could be to poll the performance
monitor counters at each memory-request generation to evaluate ms. Another
method could be to allow an application to generate at most y events before be-
ing policed by initializing the event accordingly (Rule 4), in this case an event
would be generated after y number of requests. This could obviously result in
a situation where ms < 0, which at a first glance would seem inappropriate
(or, for hard real-time systems, even dangerous).

9.4 Software framework
The Linux operating system has been selected to be used for the implementa-
tion of the multi-resource server approach. The ExSched [14] framework has
been used to support hard real-time behavior in Linux. Using this framework,
real-time schedulers are developed without the need to patch or modify the
main kernel itself. ExSched has been shown to suffer from some overheads.
However, for our implementation of a research prototype for realizing the MRS
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these overheads are acceptable and in our implementation we only focus on the
overheads generated by our new MRS functions, not the overhead incurred by
the ExSched framework itself.

The ExSched framework supports a user-space library and a loadable ker-
nel module to control the CPU scheduler without modifying the underlying
scheduler. The kernel module uses native Linux-kernel primitives and exports
them as a simplified interface. Different plug-ins are provided that schedule
tasks (user-space applications) using these interfaces. The flow of function
calls of user-space applications to the Linux kernel through the core module
are described in detail in [14]. New plug-ins can be developed by extending
the scheduling policies, for example two hierarchical scheduler plug-ins (for
fixed-priority scheduling and for EDF scheduling) and three multi-core sched-
uler plug-ins are presented in [14]. Since we use hierarchial scheduling for the
MRS, we explain below how a two-level fixed-priority hierarchial scheduler is
implemented in ExSched.

The uni-core hierarchical scheduler plug-in supports a two-level hierarchi-
cal scheduler and it schedules tasks within their servers [14]. All tasks are
initially migrated to core 0 and they are assigned to their specific servers at
system start using job init plugin. Tasks are executed periodically using
the rt wait for period API that internally calls the job complete plugin and
job release plugin interfaces. Two main interrupt-handler functions to han-
dle the server’s activation and depletion activities are server release handler

and server complete handler, respectively. They are triggered by server re-
lease and deplete events through timer activations. These functions release a
server (along with its tasks) with its full CPU-budget to execute and suspend
the server at its CPU-budget depletion (along with its tasks) respectively. A
server ready queue and a server release queue are implemented using bitmaps
(as Linux 2.6 native task ready-queue) to store the ready and depleted servers
respectively.

9.5 MRS implementation
The implementation details of the MRS in the context of partitioned multi-core
scheduling are presented here. The hierarchical scheduler implemented in the
ExSched framework manages the CPU-budget using FPPS at both levels of
scheduling [14]. We extend the hierarchical scheduler to support the memory-
budget and we extend it for multi-core platforms by implementing partitioned
scheduling.



9.5 MRS implementation 185

9.5.1 MRS design for partitioned HSF
Global structures: To implement a partitioned multi-core hierarchical sched-
uler, an SERVERS[] array of server struct type, and an per CPU[NR RT CPUS]

array of perCPU struct type are used in the system globally as depicted in
Figure 9.3. All other structures including timers and queues for servers are
maintained per core. The SERVERS[] array holds all servers in the system. The
only reason why the global variable SERVERS[] is maintained as an implemen-
tation choice is that a user API to create servers will be much easier and also
to preserve the API scheme used by ExSched.
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Figure 9.3: MRS design for partitioned HSF

perCPU struct structure: This structure contains core id, a timer and
two queues, a SERVER READY QUEUE and a SERVER RELEASE QUEUE, to schedule
servers on that core. Both server-queues are of bitmap extension type arrays
of pointers. The timer is used to activate the server events on that core2. A
server can be either in SERVER READY QUEUE or SERVER RELEASE QUEUE at any
time, and is implied as ready (Rule 2) or inactive (Rule 5) respectively. Only
one highest priority servers from the SERVER READY QUEUE executes at a time on
each core. The perCPU struct also contains an severs[NR OF SERVERS] array
that is used for mapping servers to a specific core, and it stores all servers’
IDs that are allocated to that core. This local severs array’s index is mapped
to the global SERVERS[] array’s index for a faster access of server parameters
during decisions making like comparing priority, updating remaining budget,
referring to period etc.
Server control block: This contains all information needed by an MRS server
in a server struct, i.e. the period (Ps), priority, budget (Qs), remaining

2More details on queues and timers can be found in code or in [14].



186 Paper D

budget (qs), budget expiration time and a task list that points to tasks be-
longing to the server as presented in Figure 9.3. To execute the server on a
particular core, the CPU id variable is added to the server struct. Further, the
mem budget (Ms) and remain mem budget (ms) variables are added to monitor
the memory-bandwidth consumption of MRS.
Server release and complete handlers: The two timer event handlers used
to control activation and deactivation of servers in the multi-core HSF are
server release handler() and server complete handler(), respectively.
These handlers are triggered when previously setup timer events expire due to
periodic activation, budget depletion or pre-emption by a higher priority server.
Multiple activities are performed in these handlers such as budget updating,
task enqueuing/dequeuing, new timer setup etc. More details can be found in
code.

9.5.2 Implementing memory throttling by configuring and
accessing counters

On multi-core processors each core usually contains its own set of hardware
performance counters making it possible to account for memory events happen-
ing on a given processor. We implement the performance counters by using the
perf event interface of the Linux kernel. We use this interface within our im-
plementation, and create and install performance counter events in the PMU3.
To account for the L2 misses incurred by a specific server, several reservation
schemes can be used, namely per-task or per-core assignment. Since multiple
servers execute on each core, the per-core assignment scheme does not suit our
problem. Therefore, we configure the counter for the per-task scheme, thereby
accounting for events for only those tasks that belong to the server. In order
to save and restore the counter registers upon a task context-switch, a struct

perf event * event structure is added to the task control block as shown in
Figure 9.3.

A memory-requests counting event is created using struct perf event

*init counter (task struct * task, int cpu) API. Since tasks are stati-
cally allocated to a specific core, the event is also bound with the task and the
core. It is configured to monitor hardware events (PERF TYPE HARDWARE) and
to measure the L2 misses (PERF COUNT HW CACHE MISSES) in the kernel space.
The counting event is created when a task calls its task run function at its
initialization and connects to its server.

3Performance Monitoring Unit (PMU) in the Intel architecture where performance counters are
implemented.
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9.5.3 Online monitoring and policing of the memory budget
For online monitoring of the memory-budget, the performance counter is con-
figured to cause an interrupt at an overflow. The sample period is set to
1 to call the overflow handler memory overflow handler() at each memory-
request. The memory budget of the event-generating tasks’ server is decre-
mented in the handler, i.e. ms−−; remain mem budget variable of each servers
server struct is used to monitor the consumption.

At memory-budget exhaustion (Rule 5), the memory server complete ha

ndler() is called to enforce the server depletion. This handler works in the
same manner as of server complete handler(), except that it is not an inter-
rupt handler itself, rather it is called from the interrupt handler. It sets up the
next activation time of the depleted server, it deactivates/dequeues the server
along with its task set, and it activates/enqueues the next highest priority server
with its tasks. If no server is ready at that time, then the idle tasks or other low
priority tasks of Linux will execute.

9.6 Evaluation setup
9.6.1 Hardware and software platforms
All experiments are performed on an Intel core 2 CPU 6700 with two cores
running at a frequency of 2.66 GHz having 32+32KB of local L1 instruction-
and data-cache, and sharing an L2 cache of size 4MB. The frequency scaling is
disabled to prevent the system from going into power-save modes and reducing
its clock-frequency.

We use Ubuntu 10.04.4 LTS with Linux kernel version 3.6.0-rt. The sched-
uler resolution (system tick) is set to 1ms. The standard C library is used for
programming and all programs are compiled using the gcc compiler.

9.6.2 The behavior of synthetic tasks
Two different synthetic task-types are used in the case study and in the synthetic
evaluations, namely normal task, and memory intensive task, their behavior is
described here:

The normal task generates a relatively low number of requests per server
period as compared to the memory intensive task. The task’s code iterates a
dynamic linked list consisting of a total of 140000 nodes (each node is of 8
bytes, and the size of the list is approx. 1MB) and it assigns an integer value
to the single data item of the list. The WCET of the task is dependent on the
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selected number of iterations. We measured that on our platform, traversing
140000 nodes once as a single task in the system takes approximately 1ms
to execute. For example if a task has an execution time of 2ms then it will
iterate the list 2 times, so that the normal task could iterate the list for a time
that is close enough to its WCET. In our investigation, the use of this dynamic
linked list generates a good amount of reads and writes to the memory. Some
accesses goes to the cache (due to good locality of consecutively allocated
memory blocks) but we also get a quite large amount of cache misses, resulting
in memory requests on the shared bus.

The memory intensive task generates a very high number of requests per
server period. The task iterates through the same kind of linked list as the nor-
mal task except that the number of nodes in the list is increased by 4 times.
Consequently, the list size (list size is slightly greater than 4MB) becomes
much bigger than the list size of a normal task. Further, the task is executed
continuously (i.e. it never goes idle waiting for a new period) within a server,
thus the task is only bounded by its server’s reservation and it will execute as
much as the server allows it to. Hence, this task will heavily affect other tasks’
execution in the system due to its unbounded execution time and a very high
memory-bandwidth usage.

9.7 Case study: Executing a legacy application
The purpose of this experiment is (1) to show that a legacy application that
works well when executed on one core may fail to deliver its service if ap-
plications on other cores consume too much resources, and (2) to show that
if applications resource utilization are bounded with the MRS, then we can
protect the legacy application and allow it to deliver its service.

We use a soft real-time legacy application: mplayer4, that decodes and
plays an audio/video file and it requires continuous access to memory to fetch
and process video frames. mplayer demands a high amount of memory band-
width to display the video at an acceptable rate. Further, the timing is important
for mplayer, otherwise it starts dropping video frames affecting the quality of
service. We execute mplayer as a task within a server on core 0 that is bounded
only by its server’s CPU reservation. On the other core, we execute synthetic
tasks within servers.

For the case study we have executed a high-definition HD video, i.e. a
trailer of Avatar ([H264] 1920x800 24bpp) of a total of 260 seconds dura-

4http://www.mplayerhq.hu
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Server Core Priority Period CPU-budget
mplayer 0 High 15 10
Server0 1 High 80 12
Server1 1 Low 80 12

Table 9.1: The servers’ specification for the case study.

tion. To assess the performance of the quality of service delivered by mplayer,
we use the number of dropped frames as our benchmark. The servers used
for the case study are presented in Table 9.1. The case study is performed in
three steps, presented below. In these steps, the servers’ priority, period, and
CPU-budget remain the same as given in Table 9.1, while the tasks’ behaviour
and the memory-budget vary in different experiments. Server and task period,
CPU-budget, and Worst Case Execution Time (WCET) values are presented in
ms, while the memory-budget is provided as a number of memory-requests.
Note that the memory-bandwidth usage can be easily calculated by multiply-
ing the number of memory requests to the cache-line size (64 bytes in our
platform). The details for these steps are presented here:

(1): We executed mplayer with our example video-file as a stand-alone
application on core 0 to find its normal execution behavior having all resources
available. We found that it drops 0% of the frames while playing the video at
a rate of 25fps. These measures are later compared when mplayer is executed
along with other MRSs in the system and the resources are shared among all
applications/subsystems.

(2): We inserted two MRSs on core 1, each executing two tasks as given
in Table 9.2. Note that a higher number means a higher priority for tasks.
Without memory reservation on MRSs, the mplayer dropped 1% of the frames
due to the global interference. However, mplayer executed with 0% dropped
frames when the MRSs on core 1 are throttled with a memory-budget of 1100.
Hence, using MRSs, mplayer can be executed with desired results, which was
not possible without MRS.

(3): We introduced heavier memory-traffic by executing two memory in-
tensive tasks, where each server on core 1 is executing one task. As mentioned
previously, both tasks execute continuously, bounded by their server’s CPU-
budgets respectively, and produce a heavy memory traffic.

Executing the system without memory reservation on MRSs produce a bad
effect due to a global interference on mplayer by dropping 5% of the frames.
This effect is significantly reduced by throttling two MRSs on core 1: with
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Task Server Priority Period WCET
Task1 Server0 98 160 10
Task2 Server0 97 160 14
Task3 Server1 98 200 8
Task4 Server1 97 200 8

Table 9.2: Tasks properties and their assignment to servers.

a memory-budget of 750 requests, the dropped frames decreased to 3%; and
with a memory-budget of 200, the dropped frames decreased to 0.3% (only 17
frames dropped from a total of 5013 frames). Hence, using MRSs, mplayer can
be executed with limited and acceptable effect on its performance, which was
not possible without MRS. This case study shows that a predictable execution
of a legacy uni-core application can be achieved on a multi-core platform by
providing both temporal- and memory-bandwidth isolations through the usage
of MRSs.

When running the memory intensive task-behavior on core 1 we see a slight
decrease in the performance of mplayer compared to the normal task-behavior.
While we have not investigated the reason for this decrease in detail, we hy-
pothesize that the reason is related to increased cache-pollution in the shared
L2 cache – making the mplayer experience more cache-misses and thus per-
forming slightly worse. In the next section we show that cache-pollution is an
issue that matters and that it can cause temporal interference among tasks.

9.8 Synthetic evaluation – Results and analysis
Here, we measure performance overheads of the implementation and we eval-
uate the timing isolation of the MRS using a set of synthetic tasks.

9.8.1 Performance assessments
We present the overheads for memory related functionality of the MRS. The
first measured overhead is of executing the Performance Monitor Counters
(PMC) and it is negligible as it only writes to a register of a core. The overhead
of the interrupt function to handle overflow memory interrupt() is 56ns (nano
seconds) on average. This interrupt is called at each memory-request. We ob-
served a maximum of 130 requests during 1ms, that means in worst case 0.7%
overhead for our experiments.
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Other overhead measures are the time required to execute (1) the server

release handler() function that activates servers and its tasks at the server’s
activation time, (2) the server complete handler() that suspends servers and
its tasks at server’s CPU-budget depletion, and finally (3) the memory server

complete handler() that suspends servers and its tasks at server’s memory-
budget depletion. Two scenarios are accounted for each of these functions:
first, the function is called when no other active server was on the core (the idle
task was executing) and a server context-switch will occur to execute the newly
released server; and second, another active server was executing on the core,
in this case a server context-switch may occur to execute the newly released
server depending upon the server’s priority. The overhead of a server context-
switch is included within the measures.

The system is executed for 5 minutes and overhead measures are extracted
for each scenario as presented in Figure 9.4. The Count column in the table
represents the total number of times that a particular scenario executed and
then average, minimum, maximum, and standard deviation on these values are
calculated and presented. All values are given in micro-seconds (µs). It is
obvious from the table that overheads are very low, i.e no more than 0.68% for
all functions for our experiments. The total overheads of the system are high
for the underlying ExSched framework due to having a kernel modification-
free solution and these overheads are presented in [14].

Scenarios server release handler() server complete handler() memory server complete handler()
Count Avg. Min. Max. St. Dev. Count Avg. Min. Max. St. Dev. Count Avg. Min. Max. St. Dev.

No other active server 7443 5.9758 2 17 1.9047 6025 6.0211 2 21 2.8607 1239 5.5343 4 7 0.5180
Another active server 2478 7.3010 5 15 0.7192 11125 6.895 3 17 1.3890 1250 5.529 4 12 0.7557

TABLE III: Overhead measures for the memory related functionality of the MRS.

Fig. 4: Memory-bandwidth reservation of MRS: an execution trace of core 0 - using the normal tasks

tasks execute smoothly because of enough available resources.
At the start of the system, both servers deplete due to their
memory-budget exhaustion since the caches are empty and the
system fetches a lot of data during this time to properly start
the execution. This effect has been observed in all experiments.

2) Experiment 2: Performance isolation effect of memory
reservation: This experiment is performed to illustrate the
memory-isolation effect among the MRSs due to memory
bandwidth reservation, even during the overload situation. For
example, if one MRS is overloaded and its tasks miss-behave,
produce a large number of memory requests, and fill-up the
memory-bandwidth, it should not affect the execution of other
MRSs in the system.

For this purpose, all servers execute the normal tasks except
Server1 that executes the memory intensive task as Task3

for longer duration and produces an increased number of
memory-requests. The experiment is executed without- and
with memory reservation steps and traces of execution for both
steps for core 0 are presented in Figures 5 and 6 respectively.
The total sum of deadline misses (No.of DMisses) during the
total number of task’s activation (Tot. Activations) by all
tasks is also measured and is presented in Table VI.

Server1 is over-flooding the system with its memory-
bandwidth usage thereby highly affecting the execution of all
other tasks in the system when executed without memory-
throttling as obvious from looking at Figure 5 and from
the number of deadline-misses outlined in Table VI. Tasks
of other servers miss their deadlines due to the reduced
availability of memory-bandwidth. Both the local and the
global interference has been observed here. However, when
the same setup is executed by enabling memory reservation
in the MRS, Server1 gets bounded by its memory-budget and
its overloaded memory-bandwidth usage keeps on reducing its

affect on the execution behavior of other servers and tasks in
the system, and finally at the memory-budget of 100 requests
per period, the number of deadline-misses become 0 for all
normal tasks as obvious from the forth column of Table VI.

Note that when executed without memory reservation, the
execution of tasks of Server0 becomes unpredictable. Not only
the tasks’ executions times are increased a lot but they are also
generating a varying number of memory-requests, as obvious
from Figure 5. Due to space reasons, the idle task execution
is removed from the figure. Since the memory-bandwidth
requirement from normal tasks is not as high as from memory
intensive task, we consider that it is the bad effect of not only
the high bandwidth usage but also of the cache pollution from
Task3. However, we observe from the detailed execution trace
of Figure 6 with memory reservation that the execution times
of the normal tasks are slightly increased in very few periods.
Mostly the trace of Server0 and its tasks resemble the trace
of experiment 1 with normal tasks in Figure 4. This could be
due to the cache pollution effect.The use of the MRS highly
reduces the cache pollution by limiting the high-demanding
bandwidth server, but it could not delete it completely.

To further investigate the effect of Server1 on other servers
in the system and to confirm that the bad-effect on tasks’
executions is only due to this server, we perform a third step
by reserving all servers for memory except Server1 and we
measured the deadline miss count. As it is clear from the sixth
column of Table VI, tasks suffer from the global interference
and cache pollution and they miss their deadlines due to the
un-bounded amount of memory requests from Server1.

3) Experiment 3: Reducing cache pollution by memory
reservation: To further investigate the cache pollution effect
and its reduction due to the memory reservation, we execute
a cache polluting task in Server1. All other servers and tasks

Figure 9.4: Overhead measures for the memory related functionality of the
MRS.

9.8.2 Synthetic experiments
Synthetic experiments are performed by executing a schedulable example con-
sisting of five servers along with their task sets on both cores for 10 seconds.
Two servers, i.e. Server0 and Server1 are executed on core 0, while all other
servers are executed on core 1. The servers’ timing properties and their as-
signment to the CPU-core is given in Table 9.3. Tasks’ properties and their
assignment to their corresponding server is given in Table 9.4. To execute our
tasks before the Linux tasks and to avoid task pre-emptions due to other Linux
tasks, we have assigned the highest priority values to tasks.
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Server Core Priority Period CPU-budget Memory-budget
Server0 0 High 24 8 650
Server1 0 Low 40 16 750
Server2 1 Medium 40 8 900
Server3 1 High 80 12 1100
Server4 1 Low 80 12 1100

Table 9.3: The servers’ specification to test the behaviors.

Task Server Priority Period WCET
Task1 Server0 98 40 2
Task2 Server0 97 48 4
Task3 Server1 98 60 8
Task4 Server2 98 60 4
Task5 Server2 97 160 10
Task6 Server3 97 160 14
Task7 Server4 98 200 8
Task8 Server4 97 200 8

Table 9.4: Tasks properties and their assignment to servers.

All synthetic experiments are performed in two steps: first executing all
servers and tasks without memory reservation using a simple idling periodic
server; and then executing using memory reservation as the MRS. The number
of missed deadlines for all tasks are measured for both steps to examine the
effect of global interference and to reveal the memory reservation and perfor-
mance isolation properties of the MRS.

Experiment 1: Memory-bandwidth reservation

This experiment is performed to illustrate the memory-bandwidth reservation
of MRS in the context of a schedulable system by means of a trace of execution
and by calculating the number of missed deadlines for all tasks. To fully utilize
the CPU- and memory-resources, we execute the server and task sets described
in Section 9.8.2 on both cores using only normal tasks in the servers. Each
experiment is executed in two steps and the total sum of missed deadlines for
all tasks is measured. Since normal tasks are low memory-intensive and they
require a low number of resources, they get a good chance to execute and
thereby never miss their deadlines.
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Figure 9.5: Memory-bandwidth reservation of MRS: an execution trace of
core 0 - using the normal tasks

The visualization of the execution for the MRS on core 0 is presented in
Figure 9.5. The execution trace of core 1 shows the same behavior; we omit
it due to limitation of space in the paper. In the diagram, the horizontal axis
represents the time in ms starting from 0. In the task’s visualization, the arrow
represents task arrival, a gray rectangle means task execution, a white rectan-
gle represents either a local pre-emption by another task in the same server or
a global pre-emption due to its server’s budget depletion or its server’s pre-
emption by a higher priority server. In the server’s visualization, the numbers
along the vertical axis are the server’s CPU-capacity and the number along
the diagonal line represents the memory-capacity (or the number of requests
made by the server) during the period. The diagonal line represents the server
execution, the vertical line shows the server depletion due to memory-budget,
while the horizontal line represents either the waiting time for the next activa-
tion (when the budget has depleted) or the waiting for its turn to execute (when
some other higher priority server is executing). There is one idle task per core
that executes only when no task is ready on the core.

Note that it is clear from the diagram that all servers and tasks execute
smoothly because of enough available resources. At the start of the system,
both servers deplete due to their memory-budget exhaustion since the caches
are empty and the system fetches a lot of data during this time to properly start
the execution. This effect has been observed in all experiments.

Experiment 2: Performance isolation effect of memory reservation

This experiment is performed to illustrate the memory-isolation effect among
the MRSs due to memory bandwidth reservation, even during the overload sit-
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uation. For example, if one MRS is overloaded and its tasks miss-behave, pro-
duce a large number of memory requests, and fill-up the memory-bandwidth,
it should not affect the execution of other MRSs in the system.

For this purpose, all servers execute the normal tasks except Server1 that
executes the memory intensive task as Task3 for longer duration and produces
an increased number of memory-requests. The experiment is executed without-
and with memory reservation steps and traces of execution for both steps for
core 0 are presented in Figures 9.6 and 9.7 respectively. The total sum of dead-
line misses (No.of DMisses) during the total number of task’s activation (Tot.
Activations) by all tasks is also measured and is presented in Table 9.5.

Figure 9.6: Execution trace without memory reservation on Core 0 - using the
memory intensive tasks

Figure 9.7: Trace showing temporal- and memory-isolation among MRSs -
using the memory intensive tasks

Server1 is over-flooding the system with its memory-bandwidth usage
thereby highly affecting the execution of all other tasks in the system when
executed without memory-throttling as obvious from looking at Figure 9.6 and
from the number of deadline-misses outlined in Table 9.5. (DMisses present
total deadline misses out of total number of task activations Act.) Tasks of
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other servers miss their deadlines due to the reduced availability of memory-
bandwidth. Both the local and the global interference has been observed here.
However, when the same setup is executed by enabling memory reservation
in the MRS, Server1 gets bounded by its memory-budget and its overloaded
memory-bandwidth usage keeps on reducing its affect on the execution behav-
ior of other servers and tasks in the system, and finally at the memory-budget
of 100 requests per period, the number of deadline-misses become 0 for all
normal tasks as obvious from the forth column of Table 9.5.

Note that when executed without memory reservation, the execution of
tasks of Server0 becomes unpredictable. Not only the tasks’ executions times
are increased a lot but they are also generating a varying number of memory-
requests, as obvious from Figure 9.6. Due to space reasons, the idle task exe-
cution is removed from the figure. Since the memory-bandwidth requirement
from normal tasks is not as high as from memory intensive task, we consider
that it is the bad effect of not only the high bandwidth usage but also of the
cache pollution from Task3. However, we observe from the detailed execution
trace of Figure 9.7 with memory reservation that the execution times of the
normal tasks are slightly increased in very few periods. Mostly the trace of
Server0 and its tasks resemble the trace of experiment 1 with normal tasks in
Figure 9.5. This could be due to the cache pollution effect.The use of the MRS
highly reduces the cache pollution by limiting the high-demanding bandwidth
server, but it could not delete it completely.

Tasks
Without mem. reserv. With mem. reserv. throttle all except server1
DMisses Act. DMisses Act. DMisses Act.

Task1 0 249 0 236 0 238
Task2 1 206 0 197 0 198
Task4 0 166 0 157 3 155
Task5 22 35 0 59 24 29
Task6 2 60 0 59 24 34
Task7 0 50 0 47 0 48
Task8 1 48 0 47 0 47

Table 9.5: Comparison of deadline misses by tasks to evaluate the behavior of
memory-throttling.

To further investigate the effect of Server1 on other servers in the system
and to confirm that the bad-effect on tasks’ executions is only due to this server,
we perform a third step by reserving all servers for memory except Server1



196 Paper D

and we measured the deadline miss count. As it is clear from the sixth column
of Table 9.5, tasks suffer from the global interference and cache pollution and
they miss their deadlines due to the un-bounded amount of memory requests
from Server1.

Experiment 3: Reducing cache pollution by memory reservation

To further investigate the cache pollution effect and its reduction due to the
memory reservation, we execute a cache polluting task in Server1. All other
servers and tasks have the same specifications and they execute the same code
as presented in Experiment 1.

The cache polluting task is designed to examine the cache pollution ef-
fects and it is executed continuously in a server like the memory intensive task.
However, its code is modified in two ways: first the size of the linked list is
now multiplied by 10 to make the cache polluted; secondly, it dynamically cre-
ates nodes for two linked lists, reads the data from the first list and writes to
the second list, and then deletes the nodes. Note that the caches have limited
effect in this case of extreme cache pollution since the data size is much bigger
than the cache size and additionally it is constantly changing over a chunk of
memory due to allocations and de-allocations of memory in the same iteration.
Therefore, this task represents the worst case of memory access pattern.

We observed that without memory-throttling, all tasks miss their deadlines
many times as expected. However when we executed the experiment using
MRSs with memory-throttling, there were always either two or three different
tasks missing their deadlines once per execution, hence either two or three
deadlines were always missed (due to space reasons we are not presenting all
the data here). This experiment shows that our solution has the potential to
reduce the cache pollution problem, however not solving it completely.

9.9 Related work
The problem of contention of shared resources has gained a significant impor-
tance in the context of multi-core embedded systems. Software-based parti-
tioning is one technique to provide predictable execution. In avionics, ARINC-
653 is used as a platform to implement partitioned software with emphasis
on predictability and safety-critical issues [16]. It provides fully deterministic
top-level Time Division Multiple Access (TDMA) based schedule for unicore
platform. Some highly predictable TDMA based techniques are used to access



9.9 Related work 197

the shared resources (memory bus arbitration) using a multiprocessor systems-
on-a-chip (SoC) architecture. Rosen et al. [17] measured the effects of cache
misses on the shared bus traffic where the memory accesses are confined at the
beginning and at the end of the tasks. Later Schranzhofer et al. [18] relaxed the
assumption of fixed positions for the bus access by arbitrating the shared bus.
TDMA arbitration techniques eliminate the interference of other tasks due to
accessing shared resources through isolation; however, they are limited in the
usage of only a specified hardware. Akesson et al. [19] proposed a two-step
approach to share a predictable SDRAM memory controller for real-time sys-
tems. This is a key component in CoMPSoC [20]. Stuijk et al. [21] used Syn-
chronous Dataflow Graphs (SDFG) for allocating resources on a heterogeneous
multi-processor system and provide throughput guarantees. Zimmer et al. [22]
provides a TDMA-like approach that optimally maps tasks on network-on-chip
(NoC) by implementing a heuristic-based solver. The research is also going on
for using COTS microprocessors and systems-on-a-chip (SoC) in complex and
safety-critical avionics with the main focus to identify risks of using SoCs,
and how to support the certification of aircraft [23]. Our approach, however,
uses SMP COTS hardware and it is software based using performance counters
which are available in almost all processors.

Pellizzoni et al. [24] initially proposed the division of tasks into superblock
sets by managing most of the memory request either at the start or at the end
of the execution blocks. This idea of superblocks was later used in TDMA ar-
bitration [18]. Bak et al. presented a memory aware scheduling for multi-core
systems in [25]. They use PRedictable Execution Model (PREM) [26] compli-
ant task sets for their simulation-based evaluations. However, PREM requires
modifications in the existing code, hence this approach is not compliant with
our goal to execute legacy systems on the multi-core platform.

Some approaches to WCET analysis are emerging which analyze memory-
bus contention, e.g. [27]. However, WCET-approaches do not tackle system
wide issues and do not give any direct support to provide isolation between
subsystems. Schliecker et al. [6] have presented a method to bound the shared
resource load by computing the maximum number of consecutive cache misses
generated during a specified time interval. The joint bound is presented for a
set of tasks executing on the same core covering the effects of both intrinsic
and pre-emption related cache misses. A tighter upper bound on the number of
requests is presented by Dasari et al. [7] where they solve the problem of inter-
leaving cache effects by using non-preemptive task scheduling. They have used
PMCs in the Intel platform running the VxWorks operating system to measure
the number of requests that can be issued by a task. However, these works lack
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the consideration of shared memory-bandwidth and the use of memory servers
to limit the access to memory-bandwidth.

Recently a server-based approach to bound the memory load of low prior-
ity non-critical tasks executing on non-critical cores was presented by Yun et
al. in [10] for an Intel architecture running Linux. In their model, one mem-
ory server is implemented on each non-critical core to limit memory requests
generated by tasks that are located on that core. Hence the interference from
other non-critical cores on the critical core is bounded. The servers are imple-
mented on Linux using cgroups in [10]. This approach might not be suitable
for those real systems that may contain more than one critical application. In
addition, using one memory server in each non-critical core will degrade the
performance of all applications in that core even if the core contains only one
memory intensive task. This work has been extended in [15] by using a mem-
ory reclaiming technique when a core is not fully utilizing its allocated memory
budget, and is implemented as a dynamic loadable Linux kernel module with
some small modifications in the main kernel.

We propose a more general approach by implementing the MRS that han-
dles both time and memory aspects reserved resources. Multiple subsystem/
applications can share one core through multiple MRS’s. Our memory throt-
tling mechanism is proposed per server level instead of per core level (as
in [10, 15]) and thereby the time and memory reservation aspects are applied
per server.

9.10 Conclusions
We have presented the first implementation the Multi-Resource Server (MRS)
for reserving both CPU- and memory-bandwidth for multi-core systems. An
evaluation shows that overhead of our implemented functionality is low. Fur-
thermore, we have demonstrated the MRS suitability to execute legacy uni-
core applications in a predictable manner on a multi-core platform by provid-
ing temporal isolation both between applications running on the same core and
between applications running on different cores.

Our demonstration shows that scheduling alone (i.e. controlling the alloca-
tion of resources over time) is not enough to achieve complete timing isolation.
We observe that cache-pollution can have a tangible effect on timing properties
of tasks executing in different serves. However, we also show that MRS, itself,
can be used to mitigate cache-pollution since it bounds the effect on the shared
cache for each server. Nevertheless, we conclude that our MRS should be
complemented with some technique to remove/bound cache-pollution amongst
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servers, e.g., accounting for it in the analysis [6, 7] or implementing a cache
partitioning solution [4, 5].

Another future direction is to find an algorithm to calculate the optimum
budgets for both resources of the MRS. Some smart online algorithms can be
developed to assign the unused capacity of one resource to another server to
improve overall average response times. We also look at implementing the
MRS without ExSched to achieve better performance, as ExSched requires
some overhead by itself.
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[14] M. Åsberg, T. Nolte, S. Kato, and R. Rajkumar. ExSched: an external
cpu scheduler framework for real-time systems. In 18th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’ 12), pages 240–249, August 2012.

[15] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms. In Proc. 19th IEEE Real-Time Technology and
Applications Symposium (RTAS’ 13), pages 55–64, 2013.

[16] S. Han and H.W. Jin. Full virtualization based ARINC - 653 partitioning.
In 30th IEEE/AIAA Digital Avionics Systems Conference, pages 7E1–1–
7E1–11, October 2011.



Bibliography 203

[17] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus Access Optimization for
Predictable Implementation of Real-Time Applications on Multiproces-
sor Systems-on-Chip. In Proc. 28th IEEE Real-Time Systems Symposium
(RTSS’ 07), pages 49–60, December 2007.

[18] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Cac-
camo. Worst-case Response Time Analysis of Resource Access Models
in Multi-core Systems. In Proc. of the 47th Design Automation Confer-
ence (DAC ’10), pages 332–337. ACM, 2010.

[19] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A Predictable
SDRAM Memory Controller. In Int’l Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 251–256, Septem-
ber 2007.

[20] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC:
A template for composable and predictable multi-processor system on
chips. ACM Trans. Des. Autom. Electron. Syst., 14(1):2:1–2:24, January
2009.

[21] S. Stuijk, T. Basten, M. C W Geilen, and H. Corporaal. Multiproces-
sor resource allocation for throughput-constrained synchronous dataflow
graphs. In 44th ACM/IEEE Design Automation Conference (DAC ’07),
pages 777–782, June 2007.

[22] C. Zimmer and F. Mueller. Low contention mapping of real-time tasks
onto TilePro 64 core processors. In Proc. 18th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’ 12), pages 131–140, April
2012.

[23] Microprocessor evaluations for safety-critical, real-time applica-
tions: Authority for expenditure no. 43 phase 5 report, May 2011.
http://www.faa.gov/aircraft/air cert/design approvals/air software/media/11-
5.pdf.

[24] R. Pellizzoni and A. Schranzhofer and J.-J.Chen and M. Caccamo and L.
Thiele. Worst Case Delay Analysis for Memory Interference in Multicore
Systems. In Proc. of the Conference on Design, Automation and Test in
Europe (DATE’ 10), pages 759–764, 2010.

[25] S. Bak and G. Yao and R. Pellizzoni and M. Caccamo. Memory-Aware
Scheduling of Multicore Task Sets for Real-Time Systems. In Proc. of the



IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA ’12), 2012.

[26] R. Pellizzoni and E. Betti and S. Bak and G. Yao and J. Criswell and M.
Caccamo and R. Kegley. A PRedictable Execution Model for Cots-based
Embedded Systems. In Proc. of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’ 11), 2011.

[27] T. Kelter and H. Falk and P. Marwedel and S. Chattopadhyay and A. Roy-
choudhury. Bus-Aware Multicore WCET Analysis Through TDMA Off-
set Bounds. In Proc. of the 23th Euromicro Conf. on Real-Time Systems
(ECRTS’ 11), pages 3 – 12, June 2011.



Chapter 10

Paper E:
Worst case delay analysis of a
DRAM memory request for
COTS multicore
architectures

Rafia Inam, Moris Behnam, Mikael Sjödin
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Abstract

Dynamic RAM (DRAM) is a source of memory contention and interference
problems on commercial of the shelf (COTS) multicore architectures. Due to
its variable access time, it can greatly influence the task’s WCET and can lead
to unpredictability. In this paper, we provide a worst case delay analysis for
a DRAM memory request to safely bound memory contention on multicore
architectures. We derive a worst-case service time for a single memory request
and then combine it with the per-request memory interference that can be gen-
erated by the tasks executing on same or different cores in order to generate the
delay bound.
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10.1 Introduction

The real-time applications that are executed concurrently on COTS multicore
platforms, face the new challenges due to sharing multiple different physi-
cal resources including CPU, shared caches, memory bandwidth and memory.
Contention for the shared physical resources is a natural consequence of shar-
ing [1]. It does not only reduce throughput but also affects the predictability of
real-time applications.

Modern multicore architectures use a single-port Double Data Rate Dy-
namic RAM (DDR DRAM) as their main memory resource [2], which is shared
among all cores. It is becoming a significant source of memory contention and
interference problems that lead to unpredictability. It exhibits a highly vari-
able DRAM access-time. Multiple studies provide bounds on memory inter-
ference delay by considering a constant access time [3, 4], and a variable access
time [5, 6] for tasks executing concurrently on different cores and contending
for memory accesses. Many hardware-based solutions have been proposed to
eliminate these limitations at the level of DRAM controller [7, 8]. However,
the real-time applications developed for COTS hardware cannot use this spe-
cialized hardware.

We provide a worst case delay analysis for a DRAM memory request to
safely bound memory contention for multicore architectures. First, a worst-
case service time for a single memory request is derived considering the worst
case latency scenarios of DRAM commands. The service time is then com-
bined with the per-request memory interference that can be generated by the
tasks executing on same or different cores to generate the delay bound. Our
analysis is similar to the work of [6], except that we have added additional
constraints for shared memory banks (details in Section 10.4).

Section 10.2 provides the background on DRAM. Section 10.3 explains our
system model. Memory interference delay analysis is presented in Section 10.4
and finally Section 10.5 concludes the paper.

10.2 DRAM background

A DRAM memory system consists of a DRAM controller and a memory de-
vice as shown in Figure 10.1. The controller serves the memory requests (i.e.
schedules memory requests generated by CPU and sent to DRAM) and the
memory device stores the actual data. The memory device consists of ranks
and only one rank is accessed at a time. Each rank consists of multiple DRAM
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Figure 10.1: DDR DRAM banks : organization and functionality

banks that can be accessed independently. The memory requests to different
banks can be served concurrently, this is called Bank-Level Parallelism (BLP).
Only one of them can transfer data at a particular time on the data bus. 1

Each bank consists of a row-buffer, and a two-dimensional structure of
rows and columns of DRAM cells that actually stores data, as depicted in Fig-
ure 10.1. The data of a bank can only be accessed from the row-buffer of the
bank. Thus to access the data from a bank, first the required row is cached
into the row-buffer using the row decoder, and then the data is accessed from
that row. The data of the particular column is accessed (read from and written
to) from the row-buffer using the column multiplexer as shown in Figure 10.1.
A column represents a small set of consecutive bits within a row. Thus the
row-buffer serves as a buffer for the last-accessed request. All the subsequent
requests to the columns of the same row do not require caching the row into
the buffer, and are directly performed by accessing the required column of the
row-buffer for faster access. The row that is cached is called an open row. A
request to an open row is considered as a row-hit. If the currently opened row
is different than the requested row, then first the opened row is saved and then
the requested row is fetched into the row-buffer; it is called a row-conflict.

DRAM controller performs internal scheduling algorithms to re-order mem-
ory requests in order to improve the row-hit ratio and to maximize the overall
throughput [9]. Since the row-hit latency is much less than the row-conflict
latency, the DRAM controller prefers the row-hit request over the row-conflict
requests, thus it unfairly prioritizes threads with high row-buffer locality. It

1This is similar for rank level parallelism. We consider one rank and one channel in this work.
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schedules memory requests using First-Ready First Come First Served (FR-
FCFS) algorithm [10] that prioritizes the ready DRAM commands (row-hit
memory request) over others and for ties it prioritizes older requests. It means
that the memory requests arriving earlier may be serviced later than ones ar-
riving later in the memory system. FR-FCFS works better with the open row
policy that keeps the row-buffer open rather than close row policy that closes
the row-buffer after serving each request.

The following commands are used to access the data from a bank (see Fig-
ure 10.1): Activate command (ACT) loads the requested row into the row-
buffer using the row decoder; Precharge (PRE) writes back the currently opened
row; (RD) reads the required data from the row-buffer using the column multi-
plexer; and (WR) writes the data into the row-buffer using the column muxti-
plexer. RD/WR commands are also called CAS. Additionally, a Refresh com-
mand is issued regularly to refresh DRAM capacitors.

The memory controller must satisfy different timing constraints that occur
between various DRAM commands. The timing constraints are taken from
the JEDEC standard [2] and are listed in Table 10.1 with values for DDR3-
1333MHz device. We consider 1333 MHz as this speed is approximately in
the middle of DDR3.

Parameters Description DDR3 Unit
tCK DRAM clock cycle 1.5 nsec
BL Burst length of data bus 8 cols
CL Read latency 9 cycles
WL Write latency 7 cycles
tRCD ACT to Read/Write delay 9 cycles
tRP PRE to ACT delay 9 cycles
tWR Data end of Write to PRE delay 10 cycles
tWTR Write to Read delay 5 cycles
tRC ACT to ACT delay (same bank) 33 cycles
tRRD ACT to ACT delay (diff. bank) 4 cycles
tFAW Four ACT window 20 cycles
tRTP Read to PRE delay 5 cycles
tRAS ACT to PRE delay 24 cycles
tRTW Read to Write delay 7 cycles
tRFC Time to refresh a row 160 nsec
tREFI Average refresh interval 7.8 usec

Table 10.1: DRAM timing constraints [2].
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Here we briefly mention different characteristics of the DRAM-system that
influence its memory access time. The details can be found in [11].

1. Row-buffer locality. Since a row-hit requires fewer steps than a row-
conflict, the latency of a row-hit is less than a row-conflict and this is
called row-buffer locality.

2. Bank-level conflicts occur when multiple requests access the same bank.
It results in a higher number of row-conflicts to the same bank, conse-
quently the requests are serviced completely serially, and in this case,
the latency is increased significantly.

3. The direction of the data bus should be changed upon the requests’ se-
quence read-to-write or write-to-read and results in read-to-write latency
and write-to-read latency respectively. During this time the data bus can-
not be utilized. This latency exists whether the requests are made to the
same bank or different banks.

4. Scheduling algorithm FR-FCFS, that unfairly prioritizes threads with
high row-buffer locality.

Bank-level conflicts can be reduced by using private banks (supported by
few hardware architectures like Freescale p4080 or by OS-based bank parti-
tioning [12]). Other three characteristics are usually taken care in the memory-
interference delay analysis for using private and/or interleaved banks [5, 6].

10.3 System model
We assume a single-chip multicore processor with a set of identical cores that
have uniform access to the main-memory. Each core has a set of local re-
sources (primarily a set of caches for instructions and/or data and busses to
access these from the cores) and a set of resources that are shared amongst all
cores (typically a Last-Level Cache (LLC), a main-memory, a memory bus,
and the LLC and DRAM are connected by a command bus and a data bus).
The architecture like Intel i5 3550, etc. complies with these assumptions. For
simplicity, we consider one rank and a single channel. More than one channel
can be considered independently since each channel has a separate command
and data bus.

We assume that a local cache miss is stalling, which means whenever there
is a miss in a LLC, the core is stalling until the cache-line is fetched from
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memory. We assume that all memory requests from the LLC to the shared
DRAM go through the same channel and the data and command busses can be
used in parallel. DRAM controller actually queues requests, however, at any
given time only one of these requests is being served by the channel. Since
the data is transferred in the burst-mode (a burst read/write allows to read/write
the whole cache line after specifying only its start address, for a DIMM in a
COTS-system has a cache line size of 64 B, a burst is 8 consecutive 64-bit
pieces of memory), therefore, a single memory request can cache the data of
one cache miss, thus the number of LLC misses is equal to the number of
generated memory requests. Similar to [13, 6] we assume that each task has
its own private partitions in the cache [14] that is sufficient to store one row
of a DRAM bank. Further, we assume that cache-related preemption delays
(CRPD) [15] are zero due to the partitioned cache.

We assume that the multicore processor uses DDR DRAM as its main
memory, and it is not put on low power state at any time. The memory con-
troller uses open row policy and employs FR-FCFS policy similar to [6] and
we assume that DRAM records the arrival times of memory requests when they
arrive at the controller. DRAM bank partitioning is considered to divide banks
into partitions where memory request can access one bank in DRAM. We as-
sume both private banks and interleaved banks (where memory request can
access all banks in DRAM) are available and only one can be used at a time.

10.4 Memory interference delay analysis
We present an analysis of worst case delay for a DRAM memory request (D`).
The analysis depends on the hardware architecture and on the number of cores
in the system. It is a sum of (1) worst case service time for a single memory
request and (2) worst case delay this request under analysis can be delayed
by other simultaneous requests (generated by other tasks executing on other
cores).

10.4.1 Worst-case service time for a single memory request
(Dlser.time)

We compute the worst-case service time for both, private banks (denoted as
Dlpser.time) and interleaved (or shared) banks (Dlsser.time). We consider the
worst cases of all previously mentioned characteristics that influence the mem-
ory access time of DRAM, i.e., row-conflicts, a change in the data bus direction
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for each request, and rescheduling algorithm. Since a row-conflict consists of
three DRAM commands: ACT, PRE and CAS (RD/WR) (see Figure 10.1),
thus Dlser.time is a sum of latencies for ACT, PRE and CAS commands plus
the DRAM timing constraints (given in Table 10.1) to meet these three com-
mands.

Dlser.time = (DlPRE +DlACT +max(TCPRE , TCACT ) +

DlCAS + TCCAS)× tCK (10.1)

where DlPRE , DlACT , DlCAS present latencies for ACT, PRE and CAS
commands respectively, while TCPRE , TCACT , TCCAS present the timing
constraints for these commands respectively.

Dlpser.time for private banks

The worst-case service time is denoted by Dlpser.time, and all other latencies
are also presented with p symbol.
PRE command latency: DlpPRE = tCK each command takes one clock
cycle on address/command bus.
ACT command latency: According to the JEDEC standard [2] (see Ta-
ble 10.1), tRRD is the minimum separation time between two ACT commands
to different banks. And maximum four ACT commands can be issued during
one tFAW window. To consider the worst-case, we take the max of both as
DlpACT = max(tRRD, tFAW − 3.tRRD).
CAS command latency: CAS latency is the sum of RD/WR latency plus
the time to transfer the data on the data bus. The read (RD) and write (WR)
latencies are CL andWL respectively (see Table 10.1). The data is transferred
in burst mode on both the rising and falling edges of the double data rate DDR
bus, therefore, the time to transfer the data is BL/2. Thus the total time for
RD command is CL + BL/2, and for WR command is WL + BL/2. For
worst-case, we take the maximum of RD and WR latencies, i.e.,
DlpCAS = max(CL+BL/2,WL+BL/2).
PRE, ACT and CAS commands’ timing constraint latencies: For pri-
vate banks, there is no timing constraint for PRE and ACT commands, thus
TCpPRE = 0 and TCpACT = 0.

The timing constraints for CAS commands are due to the change in the data
flow direction of the data bus. It depends upon whether the direction of the data
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bus is switching from Write to Read, or from Read to Write. It is zero if there
is no switching in the direction. These constraints are depicted in Figure 10.2.
In figures, the values of commands are not drawn according to the scale. tWTR

starts after the data is transferred (BL/2), however, tRTW starts at the start of
the RD command.

TCpCAS =

 tWTR if switching from write
tRTW − (CL+BL/2) if switching from read
0 if not switching,

(10.2)

Putting the values of all these latencies in equation 10.1 provides the service
time of a memory request using private banks.

Dlsser.time for shared banks:

For shared banks, the worst-case service time is denoted by Dlsser.time, and all
latencies are presented with s symbol.
PRE command latency: When memory requests are accessing the same bank
then DlsPRE = tRP (see Table 10.1).
ACT command latency: is DlsACT = tRCD (see Table 10.1).
CAS command latency: RD and WR latencies for shared banks are the same
as for private banks, i.e.,CL andWL respectively. The time to transfer the data
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on the data bus isBL/2. Thus the total time for RD and WR isCL+BL/2, and
WL+BL/2 respectively. Note that for RD command, data can be transferred
in parallel (on the data bus) with the processing of data of the next command,
therefore, BL/2 can be safely removed from all RD equations for simplicity.
Thus RD latency becomes CL. For worst-case, we take the maximum of RD
and WR latencies, i.e.,
DlpCAS = max(CL,WL+BL/2).
PRE and ACT commands’ timing constraint latencies: The timing con-
straints for PRE command depends on whether the previous command was RD
or WR. It also depends on whether the row for the previous command was open
or close.

Case 1: previous RD and open-row, (means only RD command was exe-
cuted previously), thus tRTP (RD to PRE delay) is considered (see Table 10.1).
Since it includes the time to execute RD command (CL) (see left part of Fig-
ure 10.3), thus CL is subtracted from tRTP . Thus the timing constraint is
max(tRTP − CL, 0).

Case 2: previous RD and close row, (means ACT and RD commands were
executed for the previous request), so the timing constraint is taken from the
ACT command of the previous request until the PRE command of the current
request. tRAS is the delay from ACT till PRE (see Table 10.1). It includes
the time to execute previous ACT and RD commands within it (see left part of
Figure 10.3). To calculate the timing constraint, the execution times of previous
ACT and RD commands are subtracted from tRAS ; thus it becomes tRAS −
TRCD − CL.

Case 3: previous WR and open-row, the timing constraint is tWR − tWTR

(see right part of Figure 10.3).
Case 4: previous WR and close-row is similar to case 2, only RD is replaced
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by WR latency, i.e., tRAS − tRCD − (WL + BL/2). Thus, for RD and WR
commands, TCsPRE becomes
TCsPRE(RD) = max(tRTP − CL, tRAS − tRCD − CL, 0).
TCsPRE(WR) = max(tWR − tWTR, tRAS − tRCD − (WL+BL/2)).

For worst case we take the maximum of both, i.e.

TCsPRE = max(TCsPRE(RD), TC
s
PRE(WR)) (10.3)

For timing constraint of ACT, tRC is considered for the shared bank (see
Table 10.1). It is the time starting from one ACT till the start of the next ACT
to the same bank, therefore, it includes the delays of CAS and PRE commands
within it. To compute the timing constraint of ACT, the latencies of ACT and
CAS commands are subtracted from it (see left part of Figure 10.3).
TCsACT = tRC − tRCD −min(CL, (WL+BL/2))

TCsACT includes the timing constraint for PRE command TCsPRE within
it (see left part of Figure 10.3). Since we take maximum of TCPRE , TCACT
in equation 10.1, so in worst case, the TCsACT will be chosen when row is
closed. And if the row is open then ACT command will not be executed and
TCsACT is zero, thus TCsPRE would be chosen there. The analysis in [6]
does not consider both these timing constraints (i.e. TCPRE and TCACT )
for shared banks. Timing constraints for the shared banks are higher than the
private banks and a main source of increased latencies.
CAS command’s timing constraint latency: depends upon the previous CAS
command:

TCsCAS =

{
TWTR if previous write
0 if previous read, (10.4)

10.4.2 Per-request interference delay

It is the interference delay to execute the number of memory requests present
in the memory controller and to be served before the request under analysis. If
M is number of cores, then M − 1 requests from other cores will be there in
worst-case. Because of our assumption that core is stalling until the cache-line
is fetched from memory, the maximum number of requests does not increase
M. Considering the worst-case service time for each request (as presented in the
previous Section 10.4.1), the interference delay becomes (M−1)×Dlser.time.
Adding the service time of the request under analysis, the total time to serve
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the request including interference becomes Dl = Dlser.time + (M − 1) ×
Dlser.time or simply

Dl =M ×Dlser.time (10.5)

For the private banks, Dlser.time is substituted by Dlpser.time in the above
equation. However for the shared banks, the reordering effect should also be
taken into account.
Consecutive row-hit requests: According to FR-FCFS policy, the row-hit
requests are given priority over the row-conflict requests. Row-hit requests are
reordered at the bank scheduler and served before row-conflict requests. For
worst case for m consecutive row-hit requests, we consider alternate read and
write requests (means a change in the direction of data bus at each request).
The worst-case service time for m consecutive row-hits is Dlconhit(m) =
{dm/2e×(WL+BL/2)+bm/2c×CL+m×max(case1, case3)+TCsPRE}.
Since ACT command is not issued for open-rows, timing constraints for ACT
are not included in Dlconhit(m). Also case1 and case3 (from last section) are
included for open-rows only. TCsPRE of eq 10.3 is added if a PRE command
is issued after m consecutive hit requests.

The maximum row-hits served by the system are Ncols/BL where Ncols
is the number of columns in one row. In order to bound the reordering effect,
a hardware threshold Ncap is also supported [10]. Thus in worst case the max-
imum number of row-hits prioritized over older row-conflicts is Nreorder =
min(Ncols/BL, Ncap) [6]. Substituting this number for m in Dlconhit, i.e.
Dlconhit(Nreorder) equation gives the maximum number of row-hits served
before older row-conflicts. Nreorder can be greater than M. The assumption
here is that each task can only have a single outstanding request, but once a
hit from a task is served, it will unblock and can issue a new request that also
results in a hit while the hits from other tasks are served. Considering worst-
case, of Nreorder hits and M − 2 misses before the request under analysis,
Dlconhit(Nreorder) delay for hits and Dlsser.time for miss, the total delay be-
comes

Dl = max(Dlconhit(Nreorder) + (M − 2)×Dlsser.time,
M − 1×Dlsser.time)

In case of no hits Nreorder = 0, and Dl becomes M ×Dlsser.time.
According to [5], the refresh effect is added as

ki+1 =
⌈
(Totalmemoryinterferencedelay+ki)×tRFC

tREFI

⌉
and k0 = 0. Thus for
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DDR3-1333H, tRFC /tREFI is 160ns/7.8µs = 0.02, thus will increase the
total memory interference delay by 2%.

10.5 Conclusions and future work
In this paper, we have safely bounded the memory contention for DDR DRAM
memory controller that are commonly used in COTS multicore architectures.
We have presented the worst case delay analysis of a memory request for pri-
vate and shared memory banks. The analysis depends on the hardware archi-
tecture and on the number of cores. It is independent of the number of tasks
executing in the system.

Previously, we have proposed a multi-resource server (MRS) [16, 17] ap-
proach to bound memory interference from other servers executing concur-
rently on other cores. The memory bandwidth has added as an additional
server-resource to bound memory interference by considering a constant mem-
ory access time. In future, we intend to update the schedulability analysis of
MRS by assuming a variable access time for the memory requests and combin-
ing our current analysis of (D`) for this purpose.
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Abstract

The Multi-Resource Server (MRS) technique has been proposed to enable pre-
dictable execution of memory intensive real-time applications on COTS multi-
core platforms. It uses resource reservation approaches in the context of CPU-
bandwidth and memory-bus bandwidth reservations to bound the interferences
between the applications running on the same core as well as between the ap-
plications running on different cores.

In this paper we present a complete compositional schedulability analysis
for the Multi-Resource Server technique. We present how memory contention
for contemporary DDR DRAM memory-architectures be can safely bounded
for schedulability analysis in the context of the Multi-Resource Server. Based
on the proposed analysis, we further provide an experimental study that inves-
tigates the behaviour of the MRS and identify the factors that contribute mostly
on the overall system performance.
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11.1 Introduction

With the advent of highly efficient multicore architectures, multiple real-time
applications are integrated together and are executed concurrently on multicore
platforms. As a result, these applications share not only CPU with each other,
but also other physical resources of the multicore architecture (like shared
caches, memory-bus bandwidth, and memory). Contention for the shared phys-
ical resources is a natural consequence of sharing [1]. It does not only reduce
throughput but also affects the predictability of real-time applications.

On unicore platforms, the server-based scheduling has been developed to
achieve predictable integration by successfully bounding the interference be-
tween integrated applications [2, 3, 4]. However, this approach is CPU centric
and is limited in managing the CPU-resource only. It does not account for
activities that are located on different cores and thus still allow interference
amongst applications in an unpredictable manner. For multicore platforms, a
solution has proposed to solve these problems through updating the traditional
server-based scheduling approach with a novel memory aware Multi-Resource
Server (MRS) technology [5, 6] for Commercial Off-The-Shelf (COTS) multi-
core hardware.

MRS enables predictable execution of real-time applications on multicore
platforms through resource reservation approaches in the context of CPU-band
width reservation and memory-bus bandwidth reservation. The MRS provides
temporal isolation, both between tasks running on the same core (through CPU
partitioning), as well as between tasks running on different cores (through
memory-bus bandwidth partitioning). The latter could, without MRS, cause
interfere due to contention on the shared memory bus. A local analysis for
tasks executing in an MRS considering a constant memory access time has
been presented in [5].
Contributions: In this paper we update the local analysis by relaxing this as-
sumption and considering the worst case delay for accessing memory requests
in our analysis. We present a complete and composable global schedulabil-
ity analysis for both resources (CPU- and memory-bandwidth) of the MRS.
Further, we provide a study that brings insight on how these both resources
relate to each other. In addition, the evaluation shows the effect of changing
the priority of a memory-intensive task on both of these resources.

The preliminary work [5] focused on just the presentation of the general
idea of the MRS and described its initial local schedulability analysis. It did not
address the global schedulability analysis and lacked an investigation study. In
this paper we complete the local and the global analysis and perform an exper-
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imental study to investigate the behavior of the MRS and the factors effecting
its behavior.
Paper Outline: Section 11.2 presents the related work on server-based and
memory access techniques for multicore systems. Section 11.3 explains our
system model. The local and global schedulability analysis is described in
Section 11.4. The correlation between (1) CPU and memory budgets, (2)
private and shared memory banks, and the impacts of (1) period of memory-
intensive task and (2) period of the MRS on server-budgets is investigated in
Section 11.5, and finally Section 11.6 concludes the paper.

11.2 Related work

The problem of contention of shared resources has gained a significant impor-
tance in the context of multicore embedded systems. Hierarchical scheduling is
one technique to provide predictable execution on unicore platforms [4, 7, 8].
Solutions for multi-core architectures are based on strong (often unrealistic)
assumptions on no interference originating from the shared hardware [9]. For
multicore architectures, the assumption no longer remains valid.

Some highly predictable Time Division Multiple Access (TDMA) based
techniques are used for memory bus arbitration. Rosen et al. [10] measured
the effects of cache misses on the shared bus traffic where the memory ac-
cesses are confined at the beginning and at the end of the tasks. Schranzhofer
et al. [11] relaxed this assumption of fixed positions. They divide tasks into sets
of superblocks that are specified with a maximum execution time and a maxi-
mum number of memory accesses. Another work that guaranteed a minimum
bandwidth and a maximum latency for each memory access was proposed by
Akesson et al. [12] using a two-step approach to share a predictable SDRAM
controller. These techniques eliminate the interference of other tasks through
isolation; however, they are limited in the usage of only a specified (non-COTS)
hardware.

Schliecker et al. [13] have bounded the shared resource load by computing
the maximum number of consecutive cache misses generated during a specified
time interval. The joint bound is presented for a set of tasks executing on the
same core covering the effects of both intrinsic and pre-emption related cache
misses. A tighter upper bound on the number of requests is presented by Dasari
et al. [14] by using non-preemptive task scheduling. However, these works
lack the consideration of independently developed subsystems and the use of
memory servers to limit the access to memory bandwidth. The main focus of
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our work is on both aspects (compositionality and independent development)
w.r.t. server-based methods. Pellizzoni et al. [15] proposed the division of tasks
into superblock sets by managing most of the memory request either at the start
or at the end of the execution blocks. This idea of superblocks was later used
in TDMA arbitration [11]. All these techniques assume a constant access time
for each memory request and do not consider the reordering of requests.

Recent works [16, 17] considered variable access time of memory requests
for tasks executing concurrently on different cores and contending for memory
accesses. [16] considered private banks for each requestor, using a FIFO order-
ing for serving requests, by considering one queue for each bank and a global
queue to accumulate requests from each bank. The work in [17] provided anal-
ysis for both private and shared DRAM banks and considered the First Ready
First Come First Serve (FR-FCFS) scheduling policy to account the reordering
effect. However, these works considered the task-level schedulability only and
lack the consideration of independently developed subsystems and the use of
memory servers to limit the access to memory bandwidth, which is our main
focus.

A server-based approach to bound the memory load of low priority non-
critical tasks executing on non-critical cores was presented in [18]. Memory
servers are used to limit memory requests generated by tasks of non-critical
cores. A response time analysis is proposed for tasks that are located on crit-
ical cores, including the interference that can be generated from non-critical
cores, considering a constant access time for memory requests. We propose a
more general approach to support both composability and independent devel-
opment of subsystems by using servers on all cores. The analysis in [18] only
considers one memory server on each non-critical core while we present anal-
ysis for both time and memory aspects of the servers executing on all cores
and consider multiple servers per core. An analysis for variable DRAM ac-
cess time to serve memory requests is presented in [19], and it is used in the
schedulability analysis of our MRS in Section 11.4.

11.3 System model

Here we present our hardware platform, the system model and the assumptions
we follow.
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11.3.1 Architecture

We assume a single-chip multicore processor with a set of identical cores. Each
core has a set of local resources; primarily a set of caches for instructions
and/or data and busses to access these from the cores. The system has a set of
resources that are shared amongst all cores: this is typically a Last-Level Cache
(LLC), a main-memory (DRAM) and a shared memory bus. The architectures
like Intel core 2 CPU 6700, Intel i5 3550, etc. comply to these assumptions.

In this work we assume that a local cache miss is stalling, which means
whenever there is a miss in a LLC, the core is stalling until the cache-line is
fetched from memory. We assume that all memory requests from the LLC to
the shared DRAM go through the same bus, and that the bus serves one request
at a time.

We assume that the multicore processor uses Double Data Rate Dynamic
RAM (DDR DRAM) as their main memory resource [20], which is shared
amongst all of the cores. The controller employs First-Ready First Come First
Served (FR-FCFS) scheduling policy [21], that prioritizes the ready DRAM
commands (row-hit memory requests) over others and for ties, it prioritizes
older requests in order to improve row-hit ratio and maximize the overall throug-
hput. DRAM bank partitioning (or private banks) is considered to divide the
banks into partitions where memory request can access one bank in DRAM.
Many COTS architectures do not support private banks, but it can be achieved
through operating system bank partitioning [22]. We assume both private
banks and interleaved or shared banks (where memory request can access all
banks in DRAM) are available and only one type can be used at a time simi-
lar to [17]. The DRAM model is used to compute the worst case delay for a
DRAM memory request. More details on DRAM background, DRAM model,
and memory interference delay analysis can be found in [19].

11.3.2 Server model

Our scheduling model for the multicore platform can be viewed as a set of
trees, with one parent node and many leaf nodes per core, as illustrated in
Figure 11.1. The parent node is a node scheduler and leaf nodes are the sub-
systems (servers). Each subsystem contains its own internal set of tasks that
are scheduled by a local scheduler. The node scheduler is responsible for dis-
patching the servers according to their bandwidth reservations (both CPU- and
memory-bandwidth). The local scheduler then schedules its task set according
to a server-internal scheduling policy.
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Figure 11.1: A multi-resource server model

We follow the same model for the MRS. Each MRS Ss is allocated a period
and two different budgets, according to 〈Ps, Qs,Ms〉, where Ps is the period of
the server, a CPU budget Qs is the amount of CPU-time allocated each period,
and a memory-bandwidth budgetMs is the number of memory requests in each
period. The CPU-bandwidth of a server is thus Qs/Ps and we assume that the
total CPU-bandwidth is not more than 100%.

During run-time, each MRS is associated with two dynamic attributes qs
and ms which represent the amount of available CPU- and memory-budgets
respectively. For both levels of schedulers, including the node and server-level,
the Fixed Priority Pre-emptive Scheduling (FPPS) policy is implemented.

We assume that each server is assigned to one core and that its associated
tasks will always execute only on that core, i.e., task or server migration is not
allowed.

The MRS is of periodic type, i.e., it replenishes both CPU- and memory-
budgets to the maximum values periodically. At the beginning of each server
period its dynamic attributes are set as qs := Qs,ms := Ms. In each core,
the node scheduler is responsible to schedule all ready servers and it selects
a highest priority ready server for execution. A server is ready to execute if
it possess both remaining CPU- and memory-budgets, formally: (qs > 0 ∧
ms > 0). A higher priority server can pre-empt the execution of lower priority
servers. During the server’s execution, its CPU-capacity, qs, decreases with



228 Paper F

the progression of time, while its memory-bandwidth capacity, ms, decreases
when a task in the server issues a memory request. A server which depletes any
of its resources is suspended from execution and waits for its replenishment at
the beginning of the next server-period. Thus, if any of the budgets is depleted
then the other remaining budget will be discarded, i.e., if ms = 0 or qs =
0 then ms = qs = 0

The idling periodic server strategy [23] is used for CPU reservation, i.e.,
if the scheduled server has remaining budget but there is no task ready then
it simply idles away its CPU-budget until a task becomes ready or one of the
server’s budgets depletes. A scheduled server uses its local scheduler to se-
lect a task to be executed. A higher priority task can pre-empt the execution
of lower priority tasks but not during the core is stalling. The details of the
implementation of MRS and its execution can be found in [6].

11.3.3 Task model

We are considering a simple sporadic task model in which each task τi is repre-
sented as τi(Ti, Ci, Di, CMi) where Ti denotes the minimum inter-arrival time
of task τi with worst-case execution time Ci and deadline Di where Di ≤ Ti.
The tasks are indexed in reverse priority order, i.e. τi has priority higher than
that of τi+1.

CMi denotes the maximum number of cache miss requests and the time
of issuing a cache miss request is arbitrary during the task’s execution time.
Similar to [18, 17] we assume that each task τi has its own private partitions in
the cache that is sufficient to store one row of a DRAM bank. This assumption
can be satisfied by implementing operating system based cache coloring [24].
Further, we assume that cache-related preemption delays (CRPD) [25, 26] are
zero due to partitioned cache, and the value of CMi does not change due to
preemption.

11.4 Schedulability analysis
We use the compositional hierarchical schedulability analysis techniques to
check the system schedulability by composing the subsystems interfaces which
abstract the resource demands of the subsystems [4]. The analysis is performed
in two levels; the first is called the local schedulability analysis where for each
subsystem its interface parameters are validated locally based on the resource
demand of its local tasks. The second level is called the integration or the global
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schedulability level, where the subsystems interfaces are used to validate the
composability of the subsystems.

11.4.1 Local schedulability analysis

First, we present the local schedulability analysis without considering the effect
of the memory bandwidth part of the multi-resource server, i.e., assuming a
simple periodic server, and then we extend the analysis to include the effect
of the memory requests. Note that, at this level, the analysis is independent
of the type of the server as long as the server follows the periodic model, i.e.,
both budgets are guaranteed every server period. We assume that the server’s
period, CPU-budget, and memory-budget are all given for each server.

Considering only CPU-budget

The local schedulability analysis under FPPS is given by [4]:

∀τi ∃t : 0 < t ≤ Di, rbfs(i, t) ≤ sbfs(t), (11.1)

where sbfs(t) is the supply bound function that computes the minimum
possible CPU supply to Ss for every time interval length t, and rbfs(i, t) de-
notes the request bound function of a task τi which computes the maximum
cumulative execution requests that could be generated from the time that τi is
released up to time t. sbfs(t) is based on the periodic resource model pre-
sented in [4] and is calculated as follows:

sbfs(t) =

{
t− (k − 1)(Ps −Qs)−BDs if t ∈W (k)

(k − 1)Qs otherwise,
(11.2)

where k = max
(⌈(

t + (Ps − Qs) − BDs

)
/P
⌉
, 1
)

and W (k) denotes an
interval [(k − 1)Ps + BD, (k − 1)Ps + BDs + Qs]. Blackout Duration BD
is the longest time interval that the server cannot provide any CPU resource to
its internal tasks and it is computed as BDs = 2(Ps − Qs). The computation
of BD guarantees a minimum CPU supply, in which the worst-case budget
provision is considered, assuming that tasks are released at the same time when
the subsystem budget has depleted, the budget has been served at the beginning
of the server period, and the following budget is supplied at the end of the
server period due to interference from other higher priority servers.
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For the request bound function rbfs(i, t) of a task τi, to compute the max-
imum execution requests up to time t, we assume that τi and all its higher
priority tasks are simultaneously released. rbfs(i, t) is calculated as follows:

rbfs(i, t) = Ci +
∑

τk∈HP(i)

⌈
t

Tk

⌉
× Ck, (11.3)

where HP(i) is a set of tasks with priority higher than that of τi. Looking
at (11.3), it is clear that rbfs(i, t) is a discrete step function that changes its
value at certain time points (t = a × Tk where a is an integer number). Then
for (11.1), t can be selected from a finite set of scheduling points {SPi}.

Worst case delay for a DRAM memory request

D` presents worst case delay for a DRAM memory request. The D` analy-
sis depends on the hardware architecture and on the number of cores in the
system, private or shared banks, along with the scheduling policy of memory
controller used to serve parallel requests. It is independent of the maximum
number of requests that can be generated in all the other servers. D` is a sum
of (1) worst case service time for a single memory request and (2) worst case
delay this request can be delayed by other simultaneous requests (generated by
other tasks executing on other cores) served by the memory controller. D` is
computed for worst cases for both private (denoted as D`p) and shared DRAM
banks (denoted as D`s). The detailed memory interference delay analysis can
be found in [19]. Since only one either private or shared can be used at a time,
we only use the term D` in the analysis. For experiments, we compute values
for both D`p and D`s, and use them accordingly.

Considering CPU- and memory-budget

In [13, 14, 18], the effect of the memory bandwidth access has been included in
the calculations of the response times of tasks. The basic idea in all these works
is the computation of the maximum interferenceMI(t) caused by the memory-
bandwidth contention on tasks during time interval t. The new request bound
function including the memory-bandwidth contention is provided in (11.4).

rbf∗s(i, t) = Ci +
∑

τk∈HP(i)

⌈
t

Tk

⌉
× Ck +MI(t). (11.4)
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In their approaches, MI(t) is computed by multiplying the time needed for a
request to be completed by the upper bound of memory-bandwidth requests in
t, issued by all the other tasks (executed by all the other servers in [18]) located
on cores other than the one hosting the analyzed task. However, this method
cannot be used in our case since we assume that the subsystems are developed
independently hence the tasks’ parameters that belong to the other cores are not
known in advance. In addition, the effect of both budgets (CPU and memory)
should be accounted for in the MRS, which has not been considered in the
previous works.

To solve this problem, we focus on the memory-bandwidth requests that
can be generated by the tasks running inside a MRS. Considering the behaviour
of MRS, we can distinguish two cases that can affect its tasks’ execution.

1. When a task τi, executing in Ss, issues a memory request that causes a
miss in a local cache, the associated core is stalling until the cache-line is
fetched from memory. The maximum time that the task can be delayed
due to the core in stalling state is presented as D` and this delay should
be considered in the analysis.

2. CPU-budget depletion due to memory-budget depletion. When tasks
belonging to the same server issue Ms memory requests, the memory-
budget will deplete which will force the CPU-budget to be depleted as
well. In the worst case, Ms memory requests can be issued from tasks of
the same server Ss sequentially, i.e. tasks send a new request directly af-
ter serving the current one. If this happens at the beginning of the server
execution, a complete CPU-budget will be dropped and the server’s in-
ternal tasks will not be able to execute during this server period (this case
is shown in the first server period in Figure 11.2).

In the schedulability analysis of τi, we model the task delay due to core
stalling as an interference from a fictive higher priority task τ∗fic with an
execution-time equal to D`. The number of times that τ∗fic interferes with
the execution of τi is defined as NR(i, t) which equals to the maximum num-
ber of memory requests that can be generated at a time interval t. Note that
during the execution of τi, it can be delayed by at most one memory request
sent from a lower priority task and by the number of requests that the task
itself sends and finally by the higher priority tasks that can preempt its execu-
tion. (11.5) is used to find NR(i, t). Note that we include the delay due to a
memory request sent from a lower priority task in the equation by adding one
in CMi + 1. Finally, MI(t) in (11.4) is then calculated using (11.5)
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NR(i, t) = CMi + 1 +
∑

τk∈HP(i)

⌈
t

Tk

⌉
× CMk, (11.5)

MI(t) = NR(i, t)×D` (11.6)
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Figure 11.2: An example illustrating the worst-case CPU-supply

The second case that should be considered in the analysis is when the
server CPU-budget depletes after sending Ms requests. This can happen when
a task issues a memory-bandwidth request and then directly gets preempted
after serving the request by a higher priority task that also issues a memory-
bandwidth request and gets preempted by a third higher priority task and so
on. This case affects the CPU resource supply that can be provided to the tasks.
The basic assumption for computing sbfs(t) is that the tasks are released when
the CPU budget has been fully consumed and the budget was served at the be-
ginning of the server period. However, as explained in the second case, the
CPU-budget can deplete at the beginning of the server period (after serving
Ms memory requests) because of the depletion of memory bandwidth budget.
At any time t and for any task τi the maximum number of server periods that
the server budget depletes due to the memory budget depletion, can be com-
puted using the following function.

A(i, t) = min
( ⌊NR(i, t)

Ms

⌋
,

⌈
t

Ps

⌉
− 1
)

(11.7)
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Figure 11.3: New supply bound function sbf*(i,t)

Note that the first part of the max function in (11.7) provides the upper
bound of server periods that the budget can deplete due to the memory deple-
tion during the time interval t, however, it cannot exceed the number of server
periods up to t which is bounded in the second part of the max function.

By computingA(i, t), we can consider the effect of the memory budget part
on the sbfs(t) by assuming thatA(i, t) CPU budgets will not be provided up to
t, i.e., the server budget Qs = 0 whenever memory budget depletes. This can
be achieved by increasing BD in (11.2) by A(i, t) × Ps which is equivalent
to removing A(i, t) CPU budgets, i.e., A(i, t) × Qs from the supply bound
function. However, the CPU budget will be depleted due to the depletion of
memory budget only after servingMs requests which is equivalent to providing
Ms×D` CPU resource every server period as shown in Figure 11.3 (remember
that each memory request delay D` is modeled as an extra CPU demand in the
rbf∗s(i, t)). To decrease the pessimism in the analysis then we assume that
A(i, t) ×Ms × D` will be added in the calculation of sbfs(t) which makes
this function different for different tasks. However, it will be correct only if
Ms × D` ≤ Qs. The supply bound function sbf∗s(i, t) for τi is computed as
follows.

sbf∗s(i, t) =


t− (k(i, t)− 1)(Ps −Qs)−
BDs(i, t) +A(i, t)×Ms ×D` if t ∈W (k)(i, t)
(k(i, t)− 1)Qs
+A(i, t)×Ms ×D` otherwise,

(11.8)

where k(i, t) = max
(⌈(

t + (Ps − Qs) − BDs(i, t)
)
/P
⌉
, 1
)

and W (k)(i, t)

denotes an interval:
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[(k(i, t)− 1)Ps +BDs(i, t), (k(i, t)− 1)Ps +BDs(i, t) +Qs]
and BDs(i, t) = 2Ps −Qs +A(i, t)× Ps.

11.4.2 System integration

During the integration phase of MRSes, all servers should be guaranteed to re-
ceive the required CPU and memory budgets specified in their interfaces. To
validate this, two different tests should be applied. The first test is performed on
the CPU part to make sure that the required CPU budget will be provided. The
second test is performed to make sure that the total memory bandwidth usage
by all servers in the system is lower than the maximum available bandwidth of
the memory bus. Both tests can be performed independently and should suc-
ceed to guarantee that all tasks meet their deadlines. Therefore the parameters
that are provided in the interface of each subsystem Ss to apply both tests are
Ps, Qs,Ms, D`.

As described earlier, the value ofD` depends on the hardware architecture.
This keeps our local analysis independent of other servers in the system. As
a simple example and assuming the FR-FCFS policy and knowing that only
one request can be sent from each core at a time (since a core is stalling when a
request is sent), then the upper bound value ofD` equals to the number of cores
multiplied by the time taken to serve each request, plus adding the reordering
effect of FR-FCFS policy, as presented in [19]. The reason is that for each
core when it tries to send a memory request, as a worst case all other cores
send one request just before the core under analysis, and one request from a
lower priority task on executing on the same core, which bounds the number
of requests.
Global schedulability test for CPU-budget: Since the CPU part of the server
is of periodic type, each subsystem can be modeled as a simple periodic task
where the subsystem period is equivalent to the task period and the subsys-
tem budget is equivalent to the worst case execution time of a task. Then
the schedulability analysis used for simple periodic tasks can be applied on
all servers that share the same core for this test [4]. Rk+1

i = Qi + Bi +∑
Sj∈HEP(i)

⌈
Rk

i

Pj

⌉
×Qj . The test is stopped whenRk+1

i = Rki andRk+1
i ≤ Pi.

Note that since for each memory request, the associated core is stalling then a
higher priority server may be blocked by a lower priority server at most once
with maximum blocking time equal to Bi = D`. This blocking time is consid-
ered in the analysis.
Global schedulability test for memory-budget: The total sum of request
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rates among all servers on all cores (Bmax) should be less than the minimum
bandwidth (or service rate) of the memory bus. This is similar to the require-
ment of CPU bandwidth reservation in that the total sum of CPU bandwidth
reservation must be equal or less than 100% of CPU bandwidth. The practical
minimum service rate (Bavail) that can be used to access data from DRAM
has some practical limit and is less than the maximum bandwidth of the bus.
It is difficult to obtain this bound from documentation, therefore, it is exper-
imentally measured. The practical minimum service rate measured for Intel
Core2Quad Q8400 processor is Bavail = 1198MB/s [27]. We experimen-
tally measured it Bavail = 1022MB/s for our Intel core 2 CPU 6700 archi-
tecture.

For global schedulability test, that max bandwidth (Bmax) used by all
servers on all cores should not exceed this limit Bmax ≤ Bavail. As the
memory-bus is shared among all cores, therefore, we sum up all requests from
all servers from all cores. Bmax is computed as Bmax =

∑
∀Si

(
Mi

Pi
× 64 ×

1000/(1024 × 1024)
)

. The number of memory requests are converted to the
bandwidth by dividing with server period Pi, multiplying it with the size of
cache line (i.e. 64bits). To convert the service rate to MB/s, it is multiplied
with 1000 and divided by (1024× 1024).

11.5 Investigating CPU- and memory-budgets

In this section we investigate the relationship of CPU- and memory-budgets
and the effect of increase/decrease of memory-budget Ms on CPU-budget Qs
of a MRS Ss using synthetic experiments. We look into the effects of private
and shared memory banks on the server.

11.5.1 Evaluation setup

We consider a multicore system using quad-processors, and DDR3-DRAM
1333H memory controller with 8 banks per rank. COTS architectures with
these specifications are available (e.g. Intel Core i5). The upper bound of D`
is computed for both private (D`p) and shared banks (D`s) in nano seconds
(ns) and the value of D`s is almost double than that of D`p.
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Two different task behaviours

Two different synthetic task-types are used in our synthetic evaluations, namely
normal task, and memory intensive task. The normal task generates a relatively
low number of memory requests (CMi = 1000) per task period as compared
to the memory intensive task. The memory intensive task generates higher
number of memory requests (CMi = 20000) per task period. Thus this task
will heavily affect the memory budget requirements of the server and will also
effect the CPU-budget of the associated MRS indirectly.

Timing properties of a MRS and its task set

Since we have previously shown the composition of MRSes in [6], in this paper
we focus on the individual behaviour of a single server and how a server’s
parameters are affected from its tasks.

A single MRS is considered for the experiments with a period of 60 ms,
and consisting of three tasks: two normal tasks and one memory-intensive
task. A normal tasks generates 1000 memory requests per task period, while
a memory-intensive task generates 20000 requests per task period. The timing
properties of the three tasks are presented in Table 11.1.

Tasks τ1 τ2 τ3
Priority H M L

Period (ms) 160 320 640
WCET (ms) 3 4 9

CM 1000 1000 20000

Table 11.1: Task properties.

Calculating minimum and maximum memory-budgets

We assume that the server period is given similar to [4], which is required to
evaluate both CPU and memory budgets. We first calculate a range of min-
imum and maximum values for the memory-budget, and then for each value
within the range, we evaluate the minimum CPU-budget so that the system
remains schedulable using equations 11.1, 11.4, 11.8. The minimum and max-
imum values (Mmin and Mmax) represent minimum and maximum bounds
for the memory-budget of the server respectively. From the memory perspec-
tive, each task should be able to issue all its memory requests CMi within
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its period Ti and its server should serve these requests within Ti, otherwise,
the task will miss its deadline. Thus Mmin = max ∀τi(CMi/

⌊
Ti−Ps

Ps

⌋
) and

Ms ≥ Mmin condition should be satisfied. Mmax is computed as Mmax =
max(∀τiNR(i, Ti)). NR(i, Ti) represent the maximum number of generated
requests till the deadline of task τi, and for Mmax we consider that all these re-
quests are generated in one server period Ms. More than these requests cannot
be generated during this period.

11.5.2 Synthetic experiments

The main focus of performing synthetic experiments is to investigate the be-
haviour of MRS by changing different parameters, like: (1) changing the value
of memory-budget and exploring its affect on the CPU-budget’s value; (2)
checking the effect of private and shared memory banks; (3) changing the pri-
ority of memory-intensive tasks and investigating its effect on both budgets;
and (4) increasing memory request of a task and observing its effect on both
budgets of the server. Mmin and Mmax values are computed and the experi-
ments are conducted for that range ofMs. The upper bound values forD`p and
D`s are used for private and shared memory banks respectively. The analysis
to compute D`p and D`s is presented in [19].

Experiment 1: Correlation between CPU- and memory-budgets

The purpose of this experiment is to investigate the correlation between both
budgets Ms and Qs. The timing properties of the MRS and its tasks set used
for this experiment are presented in Table 11.1. The results are presented in
Figure 11.4 where the x-axis denotes the range ofMs, and the y-axis shows the
minimum CPU-budget Qs for which the server is schedulable. Note that for
better presentation of the graph, we shortened the shown range of Ms values.

This graph shows a stair-function, and the value of Qs decreases at certain
points with the increase of Ms. The reason is that when the value of Ms is
minimum, and memory requests are generated at the start of the server period,
then Ms depletes after Ms × D` time and all the remaining CPU-budget for
that period is simply discarded (as shown in second and third server period in
Figure 11.3). The demand of Qs is high as more server periods are needed to
execute the tasks. Conversely, the increase ofMs decreases the value ofA(i, t)
in equation 11.7. This results in a decrease in BDs(i, t) (see equation 11.8),
and an increase in sbf∗s(i, t), thus requiring less Qs.
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Figure 11.4: Correlation between Ms and Qs considering private and shared
memory banks.

The Effect of private and shared memory banks

Figure 11.4 presents the results of using both private and shared memory banks
using D`p and D`s respectively. We note in this experiment that the choice of
private or shared banks does not affect the needed CPU-allocation, Qs, much.
Often the needed allocation is the same regardless which memory organization
is used. And in the rather few cases when private banks allow a smaller alloca-
tion of Qs, the decrease in Qs is negligible. It is mainly due to a big difference
between time unit of memory-interference delay (nano sec) and the time unit
of server period and CPU-budget (ms).

Experiment 2: Impact of the period of memory-intensive task on server
budgets

We performed this experiment by changing the number of memory requests
of the tasks in the previous experiment, i.e., first the high priority task τ1 in
Table 11.1 generates 20K requests, τ2 and τ3 generate 1000 requests each. It
means that the period of memory-intensive task is 160. Second, the medium
priority task τ2 generates 20K (i.e. the period of memory-intensive task is
320) and τ1 and τ3 generate 1000 requests each. Third, the low priority task τ3
generates 20K other tasks generate 1000 requests (i.e. the period of memory-
intensive task is 640 now). Other properties of tasks remain the same as pre-
sented in Table 11.1.

We see in Figure 11.5, the need for memory-budget increases a lot when
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the memory-intensive task is executed with a higher priority. There are two
reasons for this effect. First, as rate monotonic is used for priority assignment,
therefore, the shorter period task activates more often than other longer period
tasks, that leads to an increase in the total number of generated requests during
a time interval (t). It increases the memory-budget Ms of the server period
(obvious from the graph of τ1 = 20K in Figure 11.5 where MRS is schedu-
lable for a higher Ms value). The increase in the number of requests increases
the value ofA(i, t) in (11.7), consequentlyBDs(i, t) increases as well (see eq.
11.8). Second, the higher priority task affects the request bound function of
all the lower priority tasks by adding the memory interference delay MI(t) to
their rbfs (see eq. 11.4), thus increasing their rbfs. If memory-intensive task
has lowest priority, then its MI(t) does not effect other tasks in the server.
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Figure 11.5: Effect of High- and low-priority memory-intensive task on Ms

and Qs using private banks only

Experiment 3: Impact of different server periods on server-budgets

This experiment is performed for different server periods (ranging from 20ms
till 80ms) for the task set presented in Table 11.1. The results are presented in
Figure 11.6, where x-axis presents the server’s memory-bandwidth utilization
(Ms/Ps × 64 × 1000/(1024 ∗ 1024) in MB/sec), and y-axis presents CPU
utilization% (Qs/Ps × 100).

In our results, sometimes the longer server period has a smaller CPU uti-
lization when memory utilization is small as compared to the shorter server
periods (i.e. in Figure 11.6, Ps = 80ms has smaller CPU utilization at point
2, 5MB/s than for Ps = 40ms, and for Ps = 20ms the system needs more
that 100% CPU utilization thus not schedulable). However, when the memory
utilization is increased, the shorter server periods need a smaller CPU utiliza-
tion.
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In general using traditional server-based scheduling, a longer server pe-
riod results in an increase in the blackout duration that requires bigger CPU
budget to schedule the server [4]. However, from the memory perspective of
the MRS, looking at equation 11.7, the increase of memory budget has a big
impact on A(i, t) function. Bigger value of Ms, due to the floor function, de-
creases the value of A(i, t) in equation 11.7, which intern decreases the CPU
budget requirement to schedule the server. We observe in Figure 11.6 that at
smaller values of memory utilization (i.e. 2.5MB/s), the longer server period
(Ps = 80ms) has smaller CPU utilization because the impact of equation 11.7
dominates. In other cases where memory utilization has increased, the black-
out duration effect is dominating. Thus we conclude that the behaviour of MRS
differs from the behaviour of traditional servers.
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Figure 11.6: Impact of different server periods on budgets
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Candidate interfaces for the MRS

We present an example consisting of four servers executing on two different
cores with task sets presented in Table 11.2. We present results of using only
2 cores because of the space limitations. The server periods is assigned as half
of its shortest task period [4], and multiple candidate interfaces for CPU and
memory budgets are computed using local analysis as presented in Figure 11.7.
It is up to the designer to select the suitable candidate interface depending on
both global schedulability tests. The global schedulability tests for CPU- and
memory budgets can be performed using equations of Section 11.4.2.

During the subsystem development phase, selecting the optimal interface
including both budgets is not feasible without providing the details of the other
subsystems’ interfaces, which is not possible. To overcome this problem, we
propose a similar solution as presented in [28], i.e., using a finite set of CPU
and memory budgets values (called candidate interfaces). A candidate inter-
face is chosen when the CPU budget changes as a function of changing the
memory budget (see Figure 11.7). These candidate interfaces can be used later
in the subsystems integration phase. It is not straightforward to find an op-
timal interface for the MRS, since a decrease in one budget value results in
an increase in the second budget value. Finding optimal candidate interface
selection for the MRS is left for the future.

Tasks τ0 τ1 τ2 τ3 τ4 τ5 τ6
Server S0 S0 S1 S2 S2 S3 S3
Prio H L H H L H L
T 40 80 160 80 160 240 240

WCET 2 4 8 4 10 8 8
CM 20K 40K 80K 40K 60K 60K 60K

Table 11.2: Task properties.

Discussion

From experiment 1, we observe thatQs decreases significantly at the start with
the increase of memory budget Ms. And after a certain value, more increase in
Ms does not effect the value of Qs much. This helps in selecting the suitable
values for Qs and Ms. We also observe (see Exp. 3) that the behaviour of
MRS is not similar to the traditional server. The change in server period has
different impacts on CPU and memory budgets.



242 Paper F

Core 0 Core 1
S0 S1 S2 S3

Priority P Q M Priority P Q M Priority P Q M Priority P Q M

High 20

17 20001

Low 80

50 40001

High 40

35 35001

Low 120

77 60001
16 22132 49 45988 34 35330 76 65580
15 24400 48 52791 33 37597 75 72382
14 26667 47 59593 32 39865 74 79185
12 26668 46 66396 31 42132 73 85988
11 31498 45 73199 30 44400 72 92791

29 46667 71 99593
24 46668 70 106396
23 51294 69 113199

Table 3: Multiple candidate interfaces for global schedulability analysis. Empty cell means not schedulable

We have explored the source of pessimism in our analysis and in
future we intend to remove some pessimism from the analysis. An-
other future direction is to find an algorithm to calculate the opti-
mum budgets for both resources of the MRS and to find a smart
online algorithms to assign the unused capacity of one resource to
another server to improve the overall average response times.
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Figure 11.7: Multiple candidate interfaces for global schedulability analysis.
Empty cell means not schedulable.

The presented analysis in this paper is pessimistic. We can identify some
factors that contribute to the pessimism. The biggest reason of pessimism is
our consideration of worst case Ms depletion where all memory requests are
generated at the start of the server period. As a result Ms depletes and the
remaining Qs is discarded (see Figure 11.3). However, it could not be the case
in reality. To improve the analysis, we should look at the start of task periods.
We leave this improvement as a future work.

Over-provisioning the budget: typically in server based scheduling, if pos-
sible, we can over-provision the resource to get the shorter response times of
the tasks. We calculated Qs without considering memory requests (CMi is 0
for all tasks). We get a constant value for Qs which can be considered as a ref-
erence point. By adding memory requests CMi, the value of Qs will increase
slightly. In order to get the shorter response times for the tasks, the value of
Qs can be increased (budgets can be over-provisioned), as long as the global
schedulability of the system is satisfied.

11.6 Conclusion
The multi-resource server (MRS) approach has been proposed to address com-
posability of independently developed real-time subsystems executed on a mul-
ticore platform. The memory-bandwidth is added as an additional server-
resource to bound memory interference from other servers executing concur-
rently on other cores thus to provide predictable performance of multiple sub-
systems. Consequently, tasks within the MRS execute provided with both
CPU- and memory-budgets. In this paper, we have presented a compositional
analysis framework for the MRS including a complete and composable local
and global analysis. For memory interference, we have safely bounded the
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memory contention for DDR DRAM memory controller that are commonly
used in COTS multicore architectures. Further, we have performed an experi-
mental study to investigate the correlation between the server budgets and the
impact of different server periods on server-budgets. We also provide indica-
tions to find the candidate interfaces. Finding optimal interfaces for MRS is an
open issue.

We have explored the source of pessimism in our analysis and in future we
intend to remove some pessimism from the analysis. Another future direction
is to find an algorithm to calculate the optimum budgets for both resources of
the MRS and to find a smart online algorithms to assign the unused capacity of
one resource to another server to improve the overall average response times.
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