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Abstract
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The collaboration with Obelix Configuration Tool lead to that memory allocation, initializing of memory areas,
etc. can be done off-line and the implementation can be kept simple and hence decrease the size of the kernel.
The source code is released as Open Source to make it available for researchers, students and developers in the
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Chapter 1

Introduction

In this chapter we first give a brief introduction to
what real-time systems are. We then give an intro-
duction and background to a our Master thesis and
continues with a brief description of some of the algo-
rithms used.

1.1 Background

Embedded systems are a fast growing and exciting
market. An example is a computer system that con-
trols the speed of an electrical motor. A system like
this is often called a Real-Time System (RTS). In [11]
a RTS is defined by:

A real-time system is a system that re-
acts on external events and perform actions
within a fized time. Correctness is not only
depending on correct result but also on the
point in time when the result was delivered.

A hard real-time system is a system
where the cost of not fulfilling the functional
and temporal requirements is very high.

A soft real-time system tolerates er-
rors with respect to the functional and tempo-
ral requirements. This means that constraints
may be broken (typically with an upper bound
defined over a time interval), and that a ser-
vice may be accomplished a bit late occasion-
ally (again within an upper bound).

In order to handle such systems an operating system
that supports mentioned definitions is needed, in other
words a Real-Time Operating System (RTOS).

When selecting a software solution, for a new em-
bedded system, developers face a number of technol-
ogy choices:

e Microprocessor must be chosen on basis of
cost, performance, power and application require-
ments.

e Real-Time Operating System, commercial or in-
house development to fulfill the requirements of
the embedded system.

e Software Development Tools which may be bun-
dled with the commercial RTOS or selected for a
particular microprocessor.

There exists a large number of commercial RTOS
on the market. Most of them are based on old as-
sumptions of RTS and do not supply the necessary
infrastructure needed to apply modern/contemporary
scheduling and analysis theory. This causes prob-
lems when new ideas need to be tested and evalu-
ated, since the real-time aspect differs between state-
of-the-practice and state-of-the-art. There already ex-
ists state-of-the-art RTOS, for example MiThos [9],
the Spring kernel [15] and Emeralds [19], all with dif-
ferent advantages and drawbacks. These systems are
often not general solutions but aimed at something
special, for example special hardware or scheduling
theory. Most of the state-of-the-practice (commercial,
off-the-shelf) RTOS are in some way configurable in or-
der to fit in a general embedded system solution. The
features in these RTOS vary a lot, and also the way
they are distributed to the purchaser. Some of them
are delivered as modules and others as open source
code that can be modified and compiled to a specific
system. If the developer needs to modify the RTOS,
the source-code is necessary, which may be a prob-
lem if the source-code is not open. Different kinds
of synchronization, communication and collaboration
between tasks are supported and so on. There exists
more or less practical development environments that
could be used to facilitate the configuration of a spe-
cific embedded system [16] [18]. In fact many of these
commercial RTOS (if not all) lack desirable state-of-
the-art features of a RTOS. To many questions answers
are hard to find, for example:

e Is the system predictable?

e Does the system support debugging of any kind?
e Which scheduling principles are supported?

e How does the error handler work, if there is one?
e Is priority inversion prevented?

o Is the system multitasking, is it preemptive?

e Which development tools exists?

This gave birth to the idea of a new RTOS at the
Department of Computer Engineering at Mélardalens
University. The name of the project is the Asterix
Framework. The idea is to develop a new analyzable



distributed RTOS, a communication system, a pow-
erful development environment and analysis tools. In
other words a complete set of development tools to
configure and analyze a real-time system. The Asterix
Framework have the following features:

e A task-model which supports state-of-the-art
scheduling theory.

e Support for debugging and monitoring,.
e Wait- and Lock-free interprocess communication.

e Compiling kernel, in other words only the parts
of the system that are utilized are included.

The task-model includes both preemptive scheduling
of statically generated schedules [1] and Fized Priority
Scheduling (FPS) [4]. Tt also supports both strictly pe-
riodic and event triggered tasks. The tasks terminate
each time they finish execution.

A multi-tasking RTOS, like the Asterix Framework,
enables the user to divide an application into sepa-
rate, individual programs called tasks. A task is the
basic unit of execution in any application that runs
under Asterix. Each task can be started, suspended,
resumed and terminated separately. Asterix handles
two kinds of tasks, hard and soft. A hard task has
hard time-constraints which must be kept or the whole
system is taken into a failure mode. The hard tasks in
the system are included in the system analysis, which
makes sure that all time-constraints are possible to ful-
fill. A soft task do not have hard time-constraints and
a missed deadline, for example, will not endanger the
system. In other words, soft tasks will be assigned ex-
ecution resources when there is time left from the hard
task execution.

In order to interest embedded real-time system de-
velopers, the Asterix Framework is portable and the
source-code open. The architecture of the Asterix
Framework is illustrated in figure 1.1.

1.2 Requirements of the
Asterix real-time kernel

In the Asterix Framework all proposals have minimum
requirements, below is a numeration of some of the
criteria for the Asterix real-time kernel.

- The task model must support Static Scheduling,
Fixed Priority Scheduling with or without offsets.

- A task must consist of at least the attributes pe-
riodicity, offset, priority and deadline.

- Support for future implementation of monitoring.

- The kernel must support wait- and lock-free com-
munication between tasks, and synchronization
mechanisms such as signals and semaphores.

- The kernel overhead must be predictable and
computable.

ANALYSIS
TOOL

DEVELOPMENT
ENVIRONMENT

REAL-TIME REAL-TIME REAL-TIME
0S 0S (O]

| COMMUNICATION SYSTEM

Figure 1.1: The Asterix architecture

- All jitter that may be caused by the kernel must
be minimized.

- The system must be compilable, portable and
scalable.

Other features that the kernel supports, but which
were not required in the thesis work: Support for soft
tasks, mail-box communication between tasks, error
and/or exception handling, execution-time measure-
ment mechanisms for tasks and critical sections, mon-
itor task-switches, timestamps and minimize a task’s
execution time jitter.

1.3 Summary

In the Asterix Framework project two proposals were
available, Asterix the real-time kernel and Obelix the
configuration tool. This document describes the work
of designing, analyzing and implementing the real-time
kernel. The work was done during a 20 weeks pe-
riod, at the Real-Time System Design Laboratory at
Malardalens University. The real-time operating sys-
tems that exists today often lacks support of devel-
opment tools and state-of-the-art methods. If such
real-time operating system are to be found, often the
source code are restricted and not availably. A solu-
tion! with Open Source code is presented. The al-
gorithms in the kernel are as simple as possible but
still practically useful. By keeping the implementa-
tion simple leads to that the kernel is very restrictive
in using resources. The Obelix Configuration Tool is

1Based on the ideas in Monitoring, Testing and Debugging
of Real-Time Systems, doctoral thesis by Henrik Thane



responsible for allocation of resources. Memory allo-
cation routines, initializing routines, etc. can thereby
be omitted in the kernel and memory optimization can
be done off-line. The task model supported by Asterix
includes Fixed Priority Scheduling with or without off-
sets. This makes the kernel flexible as many schemes
based on other scheduling algorithms can be converted
to a Fixed Priority scheme, for example static schedul-
ing. It also includes synchronization of tasks such as
signals and semaphores. Communication between task
are performed by Wait- and Lock-Free channels.

1.4 Document Outline

The outline of this document is such, that in chap-
ter 2 the terminology used in this document are de-
fined. First terms that can be applied to the Asterix
Framework are defined, and then terms specific to the
Asterix real-time kernel. Chapter 3 describes the ba-
sics of a Real-Time Operating System and sets the
aim of Asterix the real-time kernel. How the kernel is
designed and implemented is presented in chapter 4.
Methods that can be used to decrease the usage of
RAM is also described. In chapter 5 the interface to
the kernel are explained, it is also described how to use
interface and the design and implementation. The first
version is implemented on the Lego Mindstorm RCX.
How the hardware architecture looks like is briefly ex-
plained in chapter 6. The RCX is shipped with a ROM
which advantages and drawbacks encountered are also
briefly described. The analyzes and the outcome of
the implementation are presented in chapter 7. Some
ideas of future work are given in chapter 8. Finally,
summary and conclusion of the work are discussed in
chapter 9. This document can be read by our super-
visor, students in a computer science program, those
who are interested in embedded system and in partic-
ular small sized real-time kernels. It can also be read
by those who continues to develop the Asterix Frame-
work. Preferably the reader of this document have ba-
sic knowledge of real-time systems. This document is
best read with the Asterix Manual and Obelix Devel-
opment Environment and manuals related to Obelix.



Chapter 2

Name definition in the Asterix Framework

In this chapter we give some definitions, first in gen-
eral and then specific for this document.

2.1 General definitions

Asterix Framework

A distributed real-time system, including analysis
tools, development environment, real-time kernel and
communication system.

Asterix

Asterix is a small-sized real-time kernel that supports
state-of-the-art methods.

Obelix

Obelix is an easy-to-use Development Environment for
the Asterix Framework.

Miraculix

Miraculix is the analysis tool for Asterix and Drakar.

Drakar

Drakar is the communication system, connecting a dis-
tributed Asterix system.

System / Asterix System

Asterix system is both the real-time executive and the
user defined application, compiled together. An As-
terix system is downloaded to a target system.

Mode

An Asterix system (see above definition) can be run
in two different modes, test-mode and normal-mode.

Application

An application is a program written by developer(s).
The application may consist of arbitrary number of
tasks and resources. An application can be pro-
grammed to have different application modes (sched-
ules).

Task

A task is the basic unit of execution in any applica-
tion that runs under Asterix. The Asterix Framework
supports two classes of tasks, hard and soft.

Wait- and lock-free communication

Wait- and lock-free communication is a form of state
based interprocess communication. Writers and read-
ers communicate over a channel that is made up by a
number of buffers. Wait-free communication guaran-
tees instant access of the channel and a task cannot be
blocked.

Target system

The target system is the platform/hardware on which
Asterix system is executing. In the first version the
target system is a Lego Mindstorm RCX with a Hitachi
H8 processor. Asterix is portable so different target
systems can be used.

Configuration file

The configuration file is the input file to the Obelix
Configuration Tool. This file describes the user ap-
plication on a higher level than ordinary source code.
It is written in ASCII format, therefore it is human-
readable. The configuration file can be produced by
an application programmer or an application design
tool.

2.2 Definitions specific to the

Asterix real-time kernel

Task

In the kernel four types of tasks are supported, soft
periodic, hard periodic, soft aperiodic and hard aperi-
odic. A periodic task will execute once within a pre-
defined time-interval with a start time that could be
the start of the time-interval or an offset in relation
to the time-interval. It also has a deadline in relation
to the start of the time-interval. An aperiodic task
do not have any periodicity, instead it will execute
when a specific event has occurred. The hard tasks
are guaranteed from an off-line scheduler or response



time analysis to meet their timing constraints. Soft
tasks may or may not meet their timing constraints.

Task Control Block

Information about a task is gathered in a structure
called Task Control Block (TCB). This structure con-
sists of several fields that hold information about the
task it belongs to. When a task-switch occurs, the
TCB is used to store and restore information. To rep-
resent all the tasks in the system, each task’s TCB is
stored in a list called the Task Control Block list.

Kernel Overhead

Kernel overhead is the amount of CPU-time and and
the amount of memory that the kernel uses. CPU-
time and memory are used in system-calls, interrupts,
or when the kernel is invoked.

Jitter

By jitter, the difference in execution time between calls
to the same function is meant. There exists several
other types of jitter, but these are not considered in
this work. Such jitter could be the difference in release
times of a task, the difference of a task’s execution
time, difference in clock-ticks arrival into the system.

Predictability

Predictability is the behavior of the system. Such be-
havior can be timing and memory usage. The knowl-
edge of the behavior is essential when off-line schedul-
ing is used.

Size-of function, o

The sizes of data-structures will be altered depending
on the hardware. Therefore, a size-of function ¢ is
needed to specify the size of a particular data-type or
structure on a specific hardware-platform. This func-
tion is used when calculating the memory overhead.



Chapter 3
Basics

In this chapter a general RTOS is described, fol-
lowed by an explanation and problems with different
methods implemented in the operating system, such
as:

o Mutual exclusion
e Synchronization
o Interprocess Communication

Finally, a walk-through of how the Asterix kernel
mix state-of-the-art techniques with traditional func-
tionality is given.

3.1 A general RTOS

In a multi-tasking RTOS, such as Asterix, tasks can
preempt, each other and create an illusion of several
tasks ’executing’ in parallel. This means that the ker-
nel must know whether a task is able to execute or
not. By using a ’state’ flag for each task, the kernel
can, in an easy way, determine which tasks that are
valid for execution.

Another issue is that some tasks cannot be inter-
rupted by other tasks and therefore some sort of hier-
archy is needed. A priority for each task is introduced
and thereby let task execute in order of importance.
This will prevent lower prioritized tasks to preempt
tasks with a higher priority. The kernel checks, at cer-
tain time-intervals, which task that currently has the
highest priority and is ready to execute. This task pre-
empts the current executing task and is given the op-
portunity to run until it terminates or gets preempted
by another task with higher priority.

3.2 Operating systems

The actual task-switching is done by the kernel, but an
extension of the kernel is required to protect shared re-
sources or let tasks communicate or synchronize. This
functionality is put in the operating system and in this
section, general approaches to these techniques are ex-
plained.

3.2.1 Mutual exclusion

Mutual exclusion is a technique to ensure that only one
task at a time can access a shared resource. One way to

implement mutual exclusion is to use semaphores. The
major problem with semaphores occurs if two or more
tasks wants to access a resource. These situations can
cause Priority Inversion (PI), deadlock or starvation
in the system. To illustrate the problem, a scenario of
n tasks is assumed. Two tasks, task A with the low-
est priority and task Z with highest priority, share a
semaphore S. If task A takes the semaphore S before
Z, Z will be delayed until A releases S, as illustrated
in figure 3.1. The problem gets worse if all tasks with
higher priority than A, preempts A and due to that
A has the lowest priority, task Z will be delayed even
more, or worse, never be able to execute again. A solu-
tion to this is to let the task that owns the semaphore
inherit the priority of the highest prioritized task that
have access to that semaphore, as shown in figure 3.1.

A Blocked
High| > 2 =
o)
2N | |
Low A m <
A 7 |:| s
High| >
5N |
T A Q s
Low

Figure 3.1: Priority inversion and how it is solved by using
Immediate Inheritance Protocol.

An example of a classical priority inversion problem
from real life can be read about in Risks Digests [6]. It
is a story about the software in the Pathfinder space-
craft, landed on the Martian surface July 4th 1997.

Deadlock and starvation can easily be described as a
four-way junction for cars. All cars enter the junction
at the same time. In the deadlock case, see figure 3.2,
all cars ends up in the middle of the junction but none
will be able to move any further. Starvation occurs
if all cars went back (put in reverse) and waited for
n seconds and then enter the junction again (still at
the same time), see figure 3.2. The cars are avoiding
the deadlock situation but will not be able to pass the
junction.



Figure 3.2: Deadlock represented as a four-way junction
of cars(above).In the starvation case, deadlock is avoided
but since all cars are still entering the junction at the same
time, no one will pass.

There exists many ways to design semaphores. The
easiest is to just put a restriction in the way of us-
ing the semaphore, but this is not very suitable for a
RTOS since problems may still occur and it is up to
the designer of the task-set to make sure that no mu-
tual exclusion cause problems. Some protocols, like
the classical Priority Inheritance Protocol [14], varies
a lot in complexity which make them difficult to imple-
ment and to use in a RTOS regarding timing aspect.
Better method are thus needed.

3.2.2 Synchronization

Tasks needs to be synchronized with each other. For
instance if a task A and Task B is waiting for a Analog-
to-Digital Converter (ADC) to produce a value. It
takes 10 - 20 milliseconds for the ADC to produce a
value. If no synchronization is used, as shown in fig-
ure 3.3, task A and task B can read the ADC at any
specific time, even when the conversion is not com-
plete.

A better approach is to let the other tasks know
when the ADC has a valid value. Task C is controlling
the ADC and informs task A and task B that a new
value has been produced. The most common solution
to this problem is to use signals, see figure 3.4. By
letting task A and B wait for signal s, the ADC can
convert a new value with any disturbance form A or
B. When this is done, task C can raise s and thereby
allow task A and task B to read a newly produced and
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B [ = =
A [ = = =
aC [ ][] [ ]
Valid

Figure 3.3: No synchronization allows task to read illegal
values from the ADC.

c M N

B [ N N

A N B N
ADC [ ] [ [ 1]
Valid

Figure 3.4: Synchronization with signals. Task C is in-
forming the other tasks when a valid value can be read.

correct value.

Another way to solve this is by using a semaphore
that protects the value, see figure 3.5. The only time a
value can be read by task A and task B, is when they
have taken a semaphore. The ADC only produces a
value when task C' owns the semaphore and after the
conversion, task C' releases the semaphore and tries
to take it again when the ADC wants to produce a
new value. Hopefully, task A and task B will take the
semaphore within that time or else task C' will try to
access the semaphore again.

ciii [ e

B [ N N

A N B B
ADC [ ] [ [ 1]
Valid

Figure 3.5: Synchronization with a semaphore. Task C
owns the semaphore until a valid value is produced by the
ADC.

The semaphore approach is much more difficult to
use for this purpose, not only because it is more dif-
ficult to coordinate the tasks in such a way that no
problem with mutual exclusion occurs, section 3.2.1,
but also that the tasks A and B cannot read the ADC
value independent of each other.

3.2.3 Interprocess Communication

In a RTOS, tasks frequently communicate with other
tasks, either via shared resources, mailboxes or some
other communication primitives. Which primitive to
choose is dependent on four major issues:



Availablilty Data is valid as soon as it has been pro-
duced.

Independency No task should be waiting on another
to access a valid data.

Static The data can be read anytime during the exe-
cution of task and still give the same result.

Atomicity A task that reads a value but get pre-
empted, must read the original value, even if a
newer one exists.

In the case of the shared resource, the availability
issue is easily achieved but the independency, static
and atomicity issues are almost impossible since a task
that is accessing the data will not allow anyone else to
access the resource, see section 3.2.1. Mailboxes rep-
resents a traditional way to implement IPC, but this
technique has its disadvantages as well. First of all, if
task A want to send message M to task B, but task
B’s mailbox is full, the message will be undeliverable.
Even if task B’s mailbox was not full, task B must
still process all messages in the mailbox until it can
read M. This can be solved by using priorities on the
messages [8] but the solutions is rather complex.

3.3 Asterix RTOS

The Asterix Framework is to be used as a platform for
elaborations in computer engineering courses and as a
test platform for researchers. The framework must be
portable to different types of CPU’s and it must be
easy to use, so the user of the framework can focus on
his own work and not to learn a complex system.

To design a kernel that is easy to use and easy to
implement the idea were to support algorithms that
were as simple as possible but still were usable. This
leads to several advantages: The first prototype can
be designed and implemented in a short time, com-
plexity of the analysis can be kept simple, calculation
of various overhead can be done by simple formulas.

By choosing Fized Priority Scheduling (FPS) as
scheduling algorithm, both FPS and Static Schedules
can be used since a static scheme can be expressed as
a FPS scheme when offsets are used. This is briefly
explained in section 4.2.

In Asterix, an algorithm called Immediate Inheri-
tance Protocol (ITP) [4] is used in order to avoid prob-
lems with mutual exclusion. IIP is basically a simplifi-
cation of Priority Ceiling Protocol [14]. A description
of the protocol can be found in section 5.1.

To maintain the demands of predictability the focus
is on minimization of jitter and kernel overhead. Min-
imal jitter can be achieved by careful programming.
But to minimize kernel overhead it is not sufficient to
program in a ’smart’ way. The idea to minimize the
amount of CPU-time and memory used by the kernel
is achieved by a compiling kernel. This means that
all tasks, semaphores, etc. are compiled together with
the kernel and therefore creates a system that is large
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enough for the specific target system. Another bene-
fit is that all structures used within the kernel can be
initialized off-line, which minimize the cost when start-
ing the system. One major disadvantage with this ap-
proach is that the designer of an application must initi-
ate all data-structures before compiling. This can be a
problem if no tools are available. In the Asterix Frame-
work, a tool called the Obelix Configuration Tool [3]
can be applied to automatically generate and initiate
these data-structures and thereby give the designer the
possibility to describe the application on a higher level
of abstraction.



Chapter 4

The Asterix Kernel

In this chapter, an explanation of the timer in the
kernel is given, followed by a description of the task
model supported by the Asterix kernel. The design
and implementation of the kernel is presented last in
this chapter.

4.1 System timer

The heart of Asterix is the system timer. The timer
is set up to periodically activate the kernel. When the
kernel is activated by the timer, it checks if the current
task is the one with the highest priority, if not the
kernel switches tasks. These time intervals are called
system ticks. All time references that tasks make are
given in the number of system ticks. The resolution of
the timer can be altered by the designer of the system.
If the resolution is high, yielding a short time between
the timer-ticks, a greater part of the CPU-time will
be required by the kernel. On the other hand, if the
resolution is to low, the useful usage of the CPU can
be low if tasks will finish their execution within a tick,
see figure 4.1.

’tD&Dﬁu’tuﬁuﬁu’tuﬁu’tu’tuﬁu’tu’tu’t I

{
]

{
]

Figure 4.1: Two different system timers with high resolu-
tion (above) and low resolution (below).

4.2 Task-model

A task in Asterix can either run periodically or be trig-
gered by an event. An task that is event triggered is
called aperiodic task, and a periodically task is called
periodic task. Periodic tasks can have a displacement,
offset, set in relation to the period start. Even if tasks
can start in different ways, they will still have a latest
time, deadline, when they must terminate their execu-
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tion. When a task has completed its execution, it will
terminate and wait until a new period or a new event.

Priority is an unique value that represent the signif-
icance of the task. The priority determines in which
order the tasks are dispatched. The kernel will always
execute the task that holds the highest priority and is
ready to execute.

A task is defined as: task < P,T,0,DL >
where P is the priority of the task, T is the period,
O is the offset and DL is the deadline. If the task is
aperiodic, it will not have a period or offset.

The tasks model in Asterix supports Fized Priority
Scheduling (FPS) with or without release time offsets
and Static Scheduling. FPS is an algorithm that cre-
ates a set of tasks, where each task has a statically as-
signed priority. The priority is determined by off-line
analysis. There is no schedule created, the scheduling
is performed during run-time by a scheduler that let
the task with the highest priority execute.

Task | period | Deadline | Priority
A 20 20 Highest
B 30 30 High
C 40 40 Normal
D 50 50 Low

Table 4.1: A set of tasks, where priorities are assigned
off-line. Feasibility according to Fixed Priority Schedul-
ing algorithm. An online scheduler let the task with the
highest priority execute, if it is available for execution

Static Scheduling is an algorithm that creates a
schedule with a given set of task by calculating the
least common multiple (LCM) of the tasks periodic-
ity. This is done pre-runtime and the schedule created
is a table with the tasks period set to LCM and the
release time of each task is determined by the offset.
If a task appears more than once in the LCM period,
each instance is treated as an unique task. The kernel
dispatches the tasks from the created table. As stated
earlier, the Asterix task model supports both FPS and
Static Scheduling. This can be done by adding offsets
to FPS. Static Scheduled tables can then be expressed
as a FPS scheme by setting offset to each instance of
a task equal to the task’s release time. The priori-
ties corresponds to each task’s release time. All tasks
in the set get a period set to the LCM of the tasks’
original period.



Task | Release Time | period
A 0 LCM
B 10 LCM
A’ 20 LCM
C 30 LCM
A" 40 LCM
D 50 LCM

Table 4.2: A set of task Static scheduling

The task-model consists of four states which task
can occur in. Valid states and transition between the
states are shown in figure 4.2. In table 4.3, an overview
of the transitions in the task-model is given, with a
brief description of what causes the transitions.

Figure 4.2: Transition in the task-model

Transition | Cause

A Periodic task starts here

B Aperiodic task starts here

C Each time when a task is ready to exe-
cute in a new period.

D When the scheduler determines that the
task is the next one to execute.

E When the task has terminated and are
waiting for a new period.

F When the task has been preempted.

G When an executing task are blocked in
order to wait for a signal.

H When an aperiodic task is trigger by a
signal.

Table 4.3: This table describes which state a task can
be in under the systems life cycle

4.3 Design

There are several issues that should be addressed when
designing an embedded real-time kernel. Such issues
could be execution time, memory usage, jitter mini-
mization and guarantees of tasks’ timing constraints.
Efficient execution time and memory usage are needed
because our embedded real-time system are meant to
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be implemented on micro-controllers with limited com-
putational power and RAM.

Kernd blocks OS blocks
Readyqueue Identity Semaphores
] —

[
Executing —
Identity Signals
TCBList Displist Tasklisl | ==
[ ] [— :I:
—

Wait—and lock—free Channel

D:D Wait-and lock—free

Buffer

Figure 4.3: Asterix kernel showed as block diagram, both
the kernel and the the extended kernel (OS)

The kernel is separated into five different blocks, see
figure 4.3. This has the advantage that each of the
blocks can be optimized for its own specific purpose.
An explanation of the design decisions that are specific
to each block are given in the section of each block.

The examples in this chapter are based on certain
assumptions, if the assumptions not are valid in a ex-
ample it is explicitly said. Assumptions are made that
there exist an Asterix system with 50 task, the type
of the tasks are of no significance. The tasks are not
using any signals or semaphores.

4.3.1 Tasks

The kernel supports the following task-types: soft peri-
odic, hard periodic, soft aperiodic and hard aperiodic.

The difference between the task types can be de-
scribed as:

e soft periodic tasks are restarted every occurrence
of their period and may or may not meet their
timing constraints

hard periodic tasks are restarted every occurrence
of their period and must meet their timing con-
straints

soft aperiodic tasks are waiting for a specific signal
and may or may not meet their timing constraints

hard aperiodic tasks are waiting for a specific sig-
nal and must meet their timing constraints

Soft periodic and soft aperiodic tasks are not guar-
anteed to finished before their deadline. An aperiodic
task has no regular time-interval; it waits on an event
to occur. On events, the kernel initiates the deadline
of a task in relation to the start time of the task. Ape-
riodic task have yet another purpose, that is that it
can be used to start the execution of interrupt ser-
vice routine, see section 5.4. Tasks are only allowed to



start in either WAITING or SIGNAL BLOCK. Ape-
riodic tasks, waiting for a signal, starts in SIGNAL
BLOCK, and all the other tasks starts in WAITING,
see figure 4.2.

From the kernels perspective it is not sufficient to
define a task as a user does. The internal represen-
tation of a task must contain more than just pri-
ority (P), periodicity (T), offset (O) and deadline
(DL). Information about start address, parameters, er-
ror/exception handlers, stack-pointers, CPU registers,
etc. is also needed. This is described in more detail in
section 4.3.2.

The priority of a task must be an unique value. This
is handled by the Obelix Configuration Tool by assign-
ing appropriate priority to each task based on the user
defined priority. When all tasks have unique priori-
ties, the kernel can use these priorities as an unique
identifier for each task. This simplifies the access in
lookup tables and arrays, in other words no traversing
of lists is required to find the task. Another benefit is
that it is enough to compare the identifiers for tasks
to determine which has the highest priority.

Since tasks can be preempted, each task has its own
stack space. One of the big drawbacks with this solu-
tion is that it consumes a lot of RAM. An advantage
is that the handling of a preempted task can be kept
simple. When a task is preempted the state of the
task can be saved on the stack. State means the pro-
cessors registers, stack-pointer and program-counter of
a task. The approach to save the state on user stack
was not chosen in the Asterix kernel, why is explained
in section 4.3.2.

4.3.2 Task Control Block

To design a system that allows preemption information
about the state of a task must be stored. This could
be saved on each tasks stack, but it will require that
the stacks would be large enough to store the state
in addition to the already required stack-size, given
by the user. It will also be more difficult to monitor
the system if a stack is used. Since the Asterix kernel
is designed to support monitoring by using determin-
istic replay (DR) [17], the state needs to be stored
where it is easily accessible. For each task a memory
area is assigned for storage of the state. This memory
area is generally called Task Control Block (TCB). The
first approach was to create a data-structure that con-
sisted of the necessary fields, and use this structure as
the TCB. But due that Asterix supports DR, a lot of
memory would be wasted because a tasks period, off-
set, etc. will not be altered during run-time and hence
not necessary for the tasks’ state. By using two struc-
tures instead of one, not only the problem with DR
will be solved, it will also be very suitable for embed-
ded systems due that the static structure can easily
be put in ROM instead of RAM and automatically
get a protection against overwritten memory. In the
Asterix kernel, the static structure is called TCB and
the dynamic structure Dispatch.

A TCB will contain a tasks period (T), offset (O),
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deadline (DL), start-address (SA), input parameter
(PA), an error-handler (EH) and an initial stack-
pointer (SP). The TCB is defined as:

TCB < T,0,DL,P,SA,PA,EH,SP > (4.1)

A task is a function with one input parameter, a gen-
eral pointer (void *). Tasks can thereby share the same
function but pass different parameters for different be-
havior. The initial stack-pointer will not be altered
during runtime. The pointer is copied into the stack-
pointer in the tasks corresponding Dispatch-structure
when the task is released. The error-handler will be
explained in section 4.3.6.

The state of a task will be saved in the Dispatch-
structure. The necessary parts that are needed to store
are the task state (S) according to the transition-graph
4.2, length until deadline (LDL), length until next pe-
riod (LPD), the current stack-pointer (SP), current
program-counter (PC), control register (CCR) and all
the processor registers (RO ... Rn). The dynamic
Dispatch-structure is defined as:

Dispatch < S,LDL,SP,PC,CCR,R0... Rn,LPD >
(4.2)
By introducing counters for deadlines and period,
the task does not have to know the exact number of
elapsed ticks. This is useful since the system timer will
eventually overflow and be restarted. For instance, if
the placeholder for the system ticks is just a 16-bit in-
teger, it can only hold 65536 values. When the number
of ticks have reached 65535, the next tick would be 0.
To ensure that the tasks will not be affected from this
overflow, they keep an intern counter instead of the
system timer.

4.3.3 Task Control Block List

The Task Control Block list (TCBList) is a list that
holds a TCB for each task. But due to that the TCB
is divided into two parts, TCB and Dispatch, this list
is also divided. The TCBList holds just the TCB and
DispList holds all Dispatches for every task. A tasks
position in the TCBList has the same position in the
DispList.

By using arrays to represent the TCBList and Dis-

pList instead of linked lists, memory space equal to
one pointer is saved for each task. For instance, if the
system has 50 tasks, the size of (o) a pointer is 2, and
by using arrays instead of linked lists memory saved
is: 50 * o(pointer) bytes per list.
If pointer size is 4 bytes then 400 bytes (50 * 4 * 2)
is saved. This technique can easily map a tasks iden-
tity and priority to an index in an array. Even though
it takes more assembler instructions to resolve an in-
dexed position in the array, it will save two positions
in the TCB (ID and P). By using ’smart’ coding, the
penalty for resolving the index can be minimized. An
example of this is shown in figure 4.4.

Since the parameters for the mapping are not known
by the kernel, the actual mapping is done off-line by
the Obelix Configuration Tool.



Original:

for (taskidx=0;taskidx<no_tasks;taskidx++)
{
displist[tasklist[taskidx]].LDL++;
displist[tasklist[taskidx]].LDP++;
displist[tasklist[taskidx]].SP=NULL;
displist[tasklist[taskidx]].CCR=0x0000;

Smart:
dispatch_t *dispptr;
for (taskidx=0;taskidx<no_tasks;taskidx++)
{
dispptr=&displist[tasklist[taskidx]];
dispptr->LDL++;
dispptr->LDP++;
dispptr->SP=NULL;
dispptr->CCR=0x0000;

Figure 4.4: How smart coding can be used to minimize
the penalty for using arrays.

To keep track of which task currently is running a
variable, Executing, is used. The identity of the task is
stored in Executing as long as the task owns the CPU.
This is helpful for system-calls, to determine which
task that has called the function.

4.3.4 Tasklist

The Tasklist is a list of references to the TCBList, and
the idea is to use the Tasklist as a priority lookup-
table. In order to separate soft tasks from hard, the
hard task with the lowest priority must be higher than
the soft task with the highest priority. A problem
occur when a task is accessing a semaphore due the
immediate inheritance protocol requires that the task
change its priority. The solution is to create an ex-
tended list of tasks that holds references to TCBs ac-
cording to position. The Tasklist holds all tasks and
a placeholder, a virtual task, for the ceiling of each
semaphore. The virtual task is a empty entry in which
the identity of the task that currently is owning the
semaphore is stored.

4.3.5 Readyqueue

The readyqueue is a queue of all tasks ready to execute.
Traditionally the readyqueue is designed as a linked
list. This classical approach has two disadvantages:

1. Each task in the queue will require at least a
pointer the next task. The amount of memory needed
will therefore grow with the size a pointer for each task
in the system.

2. The number of tasks in the queue also vary from
no task in the queue to all the tasks in the queue. The
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time it takes to traverse the list will depend from time
to time, which in the end generates jitter.

Since the goal of the Asterix kernel was to minimize

jitter and minimize the amount of memory needed, a
traditional design is not suited unless some changes
are made. If the array-approach is chosen, the size for
50 task will be: 50 x o(taskid) bytes.
Assuming the identity fits in an 8 bits integer, 50 bytes
would be needed for the readyqueue. This is a waste
of memory, and to try to solve it with some kind of
dynamic memory management is a contradiction to
overhead requirements since this adds more code and
hence more overhead and jitter from the kernel. The
solution was to represent readyqueue as a string of bits
with, at least, the size of the number of tasks in the
task-list.

All tasks, including the virtual ones, must be con-
sidered when determine the amount of memory needed
by the readyqueue. The sum of all ’real’ tasks (n;) and
virtual tasks (ns) divided over the available data-type
(A)in the hardware platform gives the number of in-
stances of A needed to represent the readyqueue. But
theses instances must be an exact number of A, hence
an upper bound will create the number of instances
needed. A formula, R,, that gives the number of in-
stances needed is presented in 4.3.

1

As in the example with 50 tasks, the amount of
memory used will be 7 bytes with bits instead of bytes.
This saves 43 bytes (50-7). Memory saved is far more
if the next pointer also is taken into account.

By using this technique, both the problems with the
traditional approach have been solved. The jitter will
be minimal since the size of the readyqueue is constant,
assuming that number of tasks is constant. Hence it
will be possible to traverse all the positions every time
and select which task that has the highest priority of
those in the queue.

To determine which task that has the highest prior-
ity, each tasks identity (ID) is mapped to a bit position
in the readyqueue. For example, the task with ID=5
will be represented by the fifth bit in the readyqueue.
This means if the tasks’ bit is set, the task is in the
queue and ready to execute.

Nng + Ng
A

R, = (4.3)

4.3.6 Error Handlers

Error handling is a tricky issue. Perhaps the most dif-
ficult thing is to identify different problems that can
occur in the system. The kernel has deadline monitor-
ing of tasks and protection against illegal accesses of
resources (see chapter 5). All tasks will have an error
handler, either by user-defined or the default handler.
By letting tasks have their own error-routines, the ker-
nel does not need to support all possible errors. When
an error occur, the task causing the error will start its
error routine. The routine will be executed in the ker-
nel mode (section 4.3.9) with all interrupts disabled so



if( expression )

X = 42;
else
dummy = 42;

Figure 4.5: Usage of dummy code to reduce jitter in
execution-time.

the error handling will not be preempted. Alternatives
to this approach are discussed in the chapter 8.

4.3.7 Execution-time measurement

mode

To achieve accuracy in scheduling it is important to
know the execution time of both tasks and the kernel.
One way to do this is to measure the execution time.
Although measuring the execution time does not auto-
matically find the worst case execution time (WCET),
it can still be handy for the task designer. The tasks
that is measured can be initialized in such a way that it
will execute its WCET, but this action must be taken
by the designer, not the kernel. When measuring a sin-
gle task all system-calls are disabled (returning imme-
diately). Measuring of the execution time of the kernel
should be performed so that each part is measured, i.e
the execution time of a task-switch should be mea-
sured in all possible cases when switching to another
task and when no switch occurs. The mode also mea-
sures the different type of system-calls, so called criti-
cal sections. These sections requires that the system is
complete and that the resources involved in the section
remains unchanged after the measurement, otherwise
the section must be measured again.

4.3.8 Jitter

Execution time jitter is an unwanted issue in a real-
time system [17]. In order to minimized the jitter, sev-
eral design-choices have been included in Asterix. Jit-
ter minimization regarding kernel overhead is achieved
by letting all paths in the kernel code have, as close
as it can be, the same execution time. This is done by
implementing dummy paths and dummy code that is
equivalent to the real code. For example if-statements
that have no else-branch are extended with a dummy
else branch, as illustrated in figure 4.5. Another im-
portant approach is to always traverse lists until the
end, even if the element needed was found in the be-
ginning.

Further improvements of jitter minimization are
given in chapter 8.

4.3.9 Kernel and User Mode

When the kernel is invoked or when system-calls are
called it is appropriate to not to use space on the tasks’
stacks. If the tasks’ stacks are used, the amount of
memory needed on each of them would increase by
the size of the stack needed by the system-calls. It
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is better to have a separated stack for that purpose.
An extra mode, kernel mode, is necessary to separate
the system-calls from the ordinary code in the tasks.
Kernel mode allows the system to work without use of
memory from the user stacks and instead use the ker-
nel stack. When the system-call is finished, the system
changes from the kernel stack to the tasks’ stack again.
The execution continues in user mode until the next
time the kernel is activated.

4.4 System-calls

void someCall( inparam_t param ,
{
declaration of variables;
statements;
disable interrupt;
{
declaration of variables;
Statements;
}

enable interrupts;

Figure 4.6: How interrupts are disabled within a system-
call.

A system-call is a connection between a user and the
kernel. When making a system-call, the kernel will re-
quire that the interrupts are disabled (if necessary).
To ensure that interrupts are disabled correctly, the
construction in figure 4.6 is used. This gives the pos-
sibility to enclose variable assignments, that can cause
side-effects if interrupts are enabled, in a block. When
a system-call is initiated, various context switches in
the kernel are invoked and the system goes into kernel
mode 4.3.9. A system-call is implemented as a faked
interrupt so the kernel can be entered differently but
only one exit for all context-switches, regardless if they
are triggered by software or hardware.

4.4.1 t return

When a task is about to terminate, the last thing
to do is inform this to the kernel. The is done by the
system-call ¢t return. The kernel makes all necessary
updates and the next task in the ready-queue will start
or continue to execute.

4.4.2 yield

Yield is a system-call that activates the scheduler even
if no system tick have occurred. This is mainly in-
tended for the user to be able to create a system where
tasks voluntarily give other tasks the possibility to run.
It has, however, only the ability to switch to a task
with higher priority than the current one, just like
a ordinary system tick. In a system based on FPS,
a yield-call will have no effect due to that task that



void Task_A( void *parameter )

{
while(1)
{
do_something_useful;
yield();
}
}

Figure 4.7: Traditional usage of yield.

called yield where the executing one and thereby is
the highest prioritized task at the moment. A version
of yield is implemented to be used in the case when
an interrupt invokes yield. The only thing that dif-
fer yield from a user and a yield from an interrupt is
that in the case of the user initiated yield, all other
interrupts must be explicitly disabled. While a yield
invoked from an interrupt automatically disables the
interrupts via the hardware.

The most traditional way to use yield is shown in
figure 4.7, but such a task will never terminate thus
never restart its period. The task will not be able to
keep the deadline since this is determined at the restart
of a tasks period. Asterix still support such a design,
but only as soft tasks since such a task-construction
will never be able to keep their deadlines.

4.4.3 self

Sometimes it can be useful to known the identity of a
task. Especially if several tasks share the same func-
tion. Self() returns the tasks identity. It is intended
to be used by the user to find the identity of the task,
and pass it as an argument to other system-calls. The
call performs a lookup in the Tasklist and returns the
value stored there.
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Chapter 5

Operating system

A description of the design and implementation of
the extensions of the kernel, such as interrupts, signals,
semaphores and wait- and lock-free communication,
are given in this chapter. These parts are separated
from the kernel because they are not a necessity for
the system to work. Compiled systems may or may
not include these parts, depending on the users need.

5.1 Semaphores

Since semaphores can cause problems in the system
3.2.1, an algorithm called immediate inheritance proto-
col (ITP) is used to prevent dangerous situations. The
IIP requires that all semaphore contains a priority ceil-
ing, which is one step higher than the priority of the
highest prioritized task of those who can access the
semaphore. When a task takes a semaphore, it in-
creases its priority to this ceiling and thereby prevents
the other tasks that wants the semaphore to execute
due to that they will have lower priority than the ceil-
ing.

A semaphore in Asterix needs plenty of information
that may not be the ordinary semaphore case. The
definition of a semaphore is:

Semaphore < O, N, P >

The information in a semaphore is a list of owners
of the semaphore (O), the number of owners (N) and
the virtual task in the Tasklist (P).

All semaphores are stored in a list, an array of
semaphore structures, where each semaphore id is
mapped to an array index. The actual mapping is
done by the Obeliz Configuration Tool (OCT) [3] by
creating a variable with the name of the semaphore
and initiate it with the index to the semaphore array.
In this way both the kernel and the user can easily de-
termine which semaphore the system-call is regarding.

The implementation of semaphores is divided into
two OS system-calls. One for requesting a semaphore
and one for releasing a semaphore:

void getSemaphore( semid_t semid );
void releaseSemaphore( semid_t semid );

In the getSemaphore call, three controls are made
to ensure that the task is legally accessing the
semaphore. The first control is that the task claiming
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the semaphore must have passed a semaphore identity
check. If an identity of a semaphore is given that is
not valid, the tasks error handler is called. If the task
that currently owns the semaphore and the task that
is running is the same, then the call is returning. This
is done to make sure that a task do not request for a
semaphore twice without releasing the semaphore in
between. The last check performed is to see whether
the task is allowed to access the semaphore or not.

Note: When a task is owning a semaphore the task
must continue to execute or be preempted by a task
with a higher priority. The task that owns a semaphore
is not allowed to wait for a signal or by any other
method block itself, unless it is granted by an off-line
analysis. It is up to the programmer of the task to
ensure that this rule is not violated.

If all controls are passed then the task is moved to
the semaphores virtual task in the task, which corre-
sponds to the ceiling of the semaphore. The virtual
task is moved to the readyqueue and a context switch,
via yield section 4.4.2, is called. It is up to the ker-
nel to determine if the task owning the semaphore will
continue to execute or if a task with higher priority is
allowed to execute. This can lead to that the task own-
ing the semaphore can be delayed by a task with higher
priority. This is no problem regarding priority inver-
sion, deadlock and starvation. Only when response-
time is important, this can be seen as a problem.

5.2 Signals

Signals have three purposes: to serve as synchroniza-
tion between periodic tasks, wake up aperiodic tasks
and to trigger the Interrupt Service Routine (ISR)
when an interrupt has occurred. The definition of a
signal is:

Signal < O,N,B,L >

A signal is represented as a list of owners that can
access the signal (O), the number of tasks in the owner-
list (N), references to tasks that is currently waiting
for the signal (B) and finally the number of tasks in
the waiting-list (L).

Signals are supported by two system-calls :

void waitSignal( sigid_t sigid );
void raiseSignal( sigid_t sigid );
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Figure 5.1: The connection between a task and its corre-
sponding wait- and lock-free channel.

Similar to the semaphores, the signals also have pro-
tection against unauthorized accesses. Every time a
task is either waiting or raising a signal, a check is
done to see whether the task is allowed to use that sig-
nal or not. If an illegal access is discovered, the tasks
error-handler will be invoked. Problems may still oc-
cur, since a periodic task can wait on a signal that
is raised by an aperiodic task. If this aperiodic task
never starts, the periodic task will be blocked until it
misses its deadline which is detected by the deadline-
monitor and the task error-routine starts. No control
is made when a signal is sent by an interrupt since an
interrupt is not scheduled as a task and hence not have
an identity.

5.3 Wait- and Lock-free Commu-
nication

In the current version of Asterix kernel a simplified
wait- and lock-free algorithm is implemented. The
reason for this is that the responsibilities for design
and implementation has altered during the work. The
solution given here is not optimal in any way. There
are lot of improvements that could be made, the most
obvious improvement is shown in the OS analysis, sec-
tion 7.2.3, regarding memory usage and CPU usage.
Wait- and lock-free communication is method to ac-
complish communication between tasks. The advan-
tage with this method is that it is a non-blocking com-
munication. Non-blocking means that if two or more
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Figure 5.2: How a linked list is used to represent the buffer
within a wait- and lock-free channel.

tasks wants to read from a wait- and lock-free channel
(WLFC), no one of the readers are delayed because of
another task. This is done by assigning one buffer to
each reader of the WLFC, explained in Obelix Devel-
opment Environment [3]. One extra buffer is added to
assure that there always exists one free buffer in the
WLFC.

The formula for calculating number of buffers in a
WLFC is

Nariters T Nreaders T 1 (51)

Npuffers

Currently, only one writer is supported per WLFC,
but there can be an arbitrary number of readers. So
the formula to use is:

Nbuf fers Nreaders T 2 (52)

System-calls to be used from the tasks:

buffertype_t *readWaitfree(bufferid_t id);
buffertype_t *writeWaitfree(bufferid_t id);

Both the read- and writeWaitfree functions returns
a pointer to the buffer to operate on. Since the buffers
are user-defined it is the user who is responsible for
filling the buffer with data.

A WLFC contains an array of buffers (B), an array
of counting semaphores (S), a pointer to the oldest
value in the buffer (OLD), a pointer the the newest
value in the buffer (NEW) and a list of all nodes that
can use the buffers (NODES). The definition of a wait-
and lock-free channel is:

WLFC < B,S,0LD, NEW,NODES >

To know which buffer that contains the most re-
cently written value, a linked list is used in which each
node has a pointer to a buffer in the wait- and lock-free
channel. The reason to use a linked list is that it is
easier and faster to sort than an array. This solution
is not optimal from the memory and jitter constrains
and needs to be analyzed and redesign to better suit
the constrains. The list is sorted so that a pointer
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Figure 5.3: The order of execution when an interrupt has
occurred.

to the newest value is in the end of the list, and the
oldest in the front of the list, as shown in figure 5.3.
This helps the kernel to assign the newest value to the
readers and a free buffer to the writers.

Functions to be called from the kernel:

void updateWaitfree(tcbid_t tcbidx);
void t_returnWaitfree(tcbid_t tcbidx);

Every time a task is moved to the readyqueue due
of a new period, it is assigned to a pointer to a buffer
within the WLFC. The connection between a task and
its WLFC is made by a wait- and lock-free control-block
(WLFCB), shown in figure 5.1.

The buffer, assigned to the WLFCB, will be the
most recently written if task is a reader and the first
free buffer with the oldest value if the task is a writer.
This assigning phase, updateWaitfree, is performed by
the kernel by looking in the sorted linked list that rep-
resents a WLFC. When a task terminates, it is updat-
ing the WLFC by either just releasing it if the task
is a reader, or updating and rearranging the internal
linked list if the task is a writer. This update is done
by the function t returnWaitfree and it is automati-
cally called from the t_return 4.4.1.

5.4 Interrupts

The interrupt handling has been solved by creating two
code parts, one interrupt handler and one Interrupt
Service Routine (ISR), as shown in figure 5.4. The in-
terrupt handlers are executed in kernel-mode with all
interrupts disabled, in contrast to the ISR that is exe-
cuted in user mode. When an interrupt is triggered, an
interrupt handler is invoked. This is done by letting
the interrupt vector for the corresponding interrupt
be set to the address of the interrupt handler. Then,
the interrupt handler raises a signal which is statically
assigned to an ISR which is an aperiodic task by de-
fault. It is the responsibility of the ISR-designer to
make sure that the ISR does not have a negative effect
on Asterix.
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void int_handler( void )

{
invokeISR(signal_number) ;
}
void ISR( void *ignore )
{
Do_something() ;
}

Figure 5.4: Pseudo-code of the default interrupt-handler
and the corresponding task. The interrupt handler raise
a signal to wake up the interrupt service routine. The
interrupt service routine is a aperiodic task that can be
preempted.

By letting the default interrupt-handler raise a sig-
nal, the designer of a system can easily connect in-
terrupts with tasks thus creating an aperiodic task
(waiting for a signal /interrupt). Although a handler is
supported by the kernel, a user can rewrite it to sup-
port their specific system (interrupt-controlled device-
drivers etc.). This solution has already been imple-
mented [15] [2] and the result is satisfactory [1].

The kernel does not fully support interrupts, since
this is hardware specific and not yet supported by the
Obelix Configuration Tool, see section 8. A pseudo-
code of the default interrupt handler is shown in figure
5.4.



Chapter 6
Hardware

The current version of the Asterix kernel is imple-
mented on the Lego Mindstorm system. This chapter
describe the internals of this embedded system and
what kind of difficulties the hardware architecture has
caused.

6.1 Description

The Lego Mindstorm is a complete set of bricks which
can be used to build and control robots, etc. Sev-
eral different sensors and actuators exist for this sys-
tem which makes it very suitable for educational pur-
poses. The brain of the Mindstorm is the RCX-unit.
The RCX consists of a LCD-display, four buttons, an
infra-red transceiver and it has three inputs and out-
puts, that can be controlled simultaneously. The in-
puts are analog which allows users to create their own
customized actuators. The outputs are designed to
control motors designed by LEGO.

The RCX is based on the single-chip Hitachi
H8/3292 [5] microcomputer which is a RISC archi-
tecture running at 16 MHz with eight 16-bit regis-
ters. This particular series has 16 kBytes of read-only
memory (ROM) and 512 bytes of random-access mem-
ory (RAM) on-chip but with an additional 32 kBytes
of RAM in a separate circuit. Also located on-chip
are one 16-bit timer, two 8-bit timers, a watchdog-
timer, a serial communication interface (SCI), an 8-
channel 10-bit analog-digital converter (ADC) and 43
input/output lines. The ROM includes several func-
tions for reading the ADC-channels, controlling the
motors, display segments and numbers on the LCD-
display. Additional mathematical functions are also
included in the ROM.

6.2 Problems

The Mindstorm System is not really intended to be
altered or modified. The designers of the RCX wanted
it to be simple to work with, and not being replaced
with some other application like Asterix. This cause
a few problems; somehow the existing software needed
to be replaced with Asterix, no debug tools were avail-
able and finally, the ROM and the hardware had to
be overridden so that it not could affect Asterix in a
negative way. The next sections, the focus will be on
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explaining these problems and how they were solved
or neglected.

6.2.1 Replacing existing programs

First of all, the RCX uses an interpreting language
which means that a interpretor is downloaded be-
fore the actual program. When the interpreter has
been downloaded, the program is sent to the inter-
preter whom translates the byte-code to hardware-
instructions. This solution has some similarities with
a Java Virtual Machine [7] but is much more simple.
But to convert a complete system into byte-code is
not an option in a real-time operating system. Instead
the interpreter needs to be replaced with another ap-
plication, such as a compiled Asterix system. These
problems had already been solved and are fairly well
documented [10].

6.2.2 Debugging

A major problem is that the RCX is really an em-
bedded system, which allows very few alternatives for
debugging. The LCD and the motors were the only
possibilities due that no communication with the RCX
was available at that moment. The majority of the
source-code to Asterix were debugged and verified on
an ordinary PC-system so that only the really low-
level parts of the code needed to be debugged on the
RCX. The only possibility to debug the low-level code
was to run it on the RCX and try to display as much
information on the LCD as possible. With that infor-
mation, pens, and lots of paper, the cause of the errors
could be traced backwards to find the source.

6.2.3 Architecture

Perhaps the most difficult problem with the RCX is the
hardware, the ROM in particular. Even though there
exists a few disassemblations of the ROM [13], prob-
lems still occur due that the ROM handles interrupts
and other hardware initializations such as timers, ADC
and I/O-ports. A re-initialization of each device is
possible, but changing the interrupt-vectors were not
that simple, hence a general interrupt-handler starts
for all interrupts and runs the address located in the
interrupt-vector. This forces all interrupt-handlers in
the interrupt-vectors to be a return from sub-routine



instead of a return from exception as in the normal
case. The implementation of the context switch is an
extension to the existing timer interrupt. This and the
fact that the program stored in ROM is not developed
to support third party solution, makes it difficult to
make a kernel with efficient code. A major problem
from the real-time aspect is that the timer-interrupt
has lower priority than the external interrupts. The
external interrupts are connected to two buttons. This
means that if a button is pressed and a ISR is config-
ured in the system, the timer interrupt will be masked
off and thereby delaying updates of tasks etc.
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Chapter 7

Analysis

One part of this thesis was to be able to calculate
all the overhead caused by Asterix. In this chapter,
analysis of the kernel and the Operating System (OS)
are given. Since the OS and the kernel is separated, the
analysis will also be separated. The analysis includes
both jitter reduction and memory consumption.

7.1 Kernel

The kernel will always be included in an Asterix sys-
tem, even if the application consists of only one task.
In this section, formulas are presented to calculate the
memory usage and the execution-time of the kernel.

7.1.1 Jitter and Execution-time

In order to achieve a predictable kernel, the first thing
to do is minimize or, even better, eliminate the jit-
ter. This requires that the programmers of the ker-
nel writes code in such a way that the execution time
of each function is identical each time the function is
called, regardless of the current time and state of the
system.

The kernel should also be easily ported to other
hardware platforms. The decision were made to use
ANSI-C (ISO/IEC 9899:1990) extended with inline
assembler for low-level programming. All compiler-
optimizations of the code are forbidden just to ensure
the programmers that no rearrangements of the code
is performed by the compiler. Another thing that the
compiler must fulfill is that it is not producing any jit-
ter when compiling, including all low-level-operations
(arithmetical, logical, etc.). The Gnu C Compiler
(GCCQ) [12] was chosen because it is open-source, and
it is available on a large amount of hardware platforms.

One problem with the design and implementation
of Asterix is that all error-routines runs in kernel-
mode 4.3.9. This generates jitter every time an er-
ror occurs. This problem can be solved by letting a
task run its error routine as a task instead of within
kernel-mode. This technique is given more detailed in
section 8.

A general formula, ¥, is used to describe the
execution-time for a task 7. ¥ adds the internal
execution-time (A) of 7 with the execution-time for
each task 7, where 7 € V functions F called by 7.
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¥(T) (7.1)

7
A+ (n)
neF

With the function ¥ (7.1), along with the neces-
sary jitter demand, each call within the kernel can
be measured and summarized so that the designer of
the system knows what overhead every function (task-
switches, interrupts, etc.) in the kernel takes. This
overhead is very useful for latency calculations of the
tasks.

7.1.2 Memory

Beside the jitter minimization, the memory require-
ments should be reduced. A few approaches were
considered to fulfill this but all have not been imple-
mented, mostly because this demands a much more
advanced configuration tool than the one that exists
today [3]. To find exactly how large the kernel is,
its size needs to be measured on the actual hardware
platform since data-types might differ from hardware
to hardware, but the source-code of kernel consists of
approximately 1100 lines of C-code (all comments and
file-headers included, but all initializations of tasks are
excluded). In this analysis, the kernel was measured
on the Hitachi-H8 hardware platform, see chapter 6,
with a task-set that varied from one to two-hundred
tasks.

As seen in the unoptimized part of figure 7.1, the
amount of memory needed for five tasks ends up at
around 3.5 kBytes (3498 to be exact). In the cur-
rent implementation, the size of a post in the TCB-
List 4.3.3 is 18 bytes (9*16 bits), the size of a post in
Displist 4.3.3 is 26 bytes (13*16 bits) and one posi-
tion in the Tasklist is 2 bytes (16 bits). These num-
bers can be derived directly from the definitions in sec-
tion 4.1. One more thing to keep in mind is that the
size of readyqueue will also change with the amount of
tasks in the system, see section 4.3.5 and formula 4.3.
Now, all the necessary information about the kernel-
overhead for n; task can be defined by the function 2
in formula 7.2.

ng

k = Y o(TCB)+ o(Dispatch) + o(taskid)
1=0
Q = o(A)xR,+k (7.2)
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Figure 7.1: Memory usage of the kernel with various num-
ber of tasks.

The calculated kernel-overhead in a system with five
tasks is 232 bytes which indicates that the raw kernel
uses 3266 bytes (3498-232). For a system consisting of
two-hundred tasks, the calculated overhead would be
9226 bytes. The measured size of the entire kernel with
two-hundred task is 12492 bytes. If we subtract the
calculated overhead of 9226 bytes from the measured
size, the result is 3266 bytes that would represent the
raw kernel.

Even if the raw size of the kernel is identical regard-
less whether five or two-hundred tasks were used, one
noticeable matter that even if GCC is forced to dis-
able all optimizations, some optimizations are still per-
formed. This results in that the raw size of the kernel
may not be 100% accurate, but it gives the user a hint
of the size. One interesting thing is that if the kernel
is compiled with optimization, the amount of memory
needed is about half the size of the case without any
optimization. This indicates that all additional code
that were added to minimize the execution-time jit-
ter has been reduced and joined with the useful code.
The problem now is that the jitter may have increased
depending on the compiler.

7.2 Operating system

Most designers will require more functionality besides
the basic kernel. This will of course cost in the terms of
execution-time and memory usage. One major prob-
lem is that all jitter and memory overhead caused by
the OS are dependent on two factors:

e The number of resources.
e The number of tasks sharing a resource.

Even if the jitter is depending on the two factors
above, the design of Asterix is created in such a way
that the system-calls for obtaining resources are al-
ways executing the worst case, e.g. always traverse
the internal lists for that resource.
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Memory usage with various sets of

7.2.1

Since the Asterix kernel is using protection against
unauthorized access of semaphores, the amount of
memory needed from one semaphore to another dif-
fers only by the number of tasks that can access the
semaphores. The definition of a semaphore, given in
section5.1, and the task position added in the Tasklist
would be enough to calculate the size but this is
only useful from the kernels point-of-view. To make
the usage of semaphores a bit more user-friendly, an
additional variable that represents the identity of a
semaphore is needed for each semaphore. The Obelix
Configuration Tool adds extra variables to be able to
generate the lists needed by a semaphore. This results
that the total overhead per semaphore will be a bit
larger than actually required by the kernel. The total
cost of adding one semaphore with n accesses is de-
fined by T in formula 7.3. The unnecessary overhead
is presented within brackets.

Semaphore

Y(n) = (n * o(taskid) + 2  o(taskid)) +

+ [2 x o(taskid) + o(semid)])  (7.3)

But the needed memory can be a bit larger since
every semaphore in the Asterix kernel needs to add one
position to the readyqueue, see section 4.3.5. But this
cost is only depending on the number of semaphores,
not how may access each one of them grants, so that
overhead is calculated by the kernel-overhead, see 2 in
formula 7.2 and R, in formula 4.3..

A set of 25 semaphores all with five accesses will
need 500 bytes of memory (25 * T(5)). If these
500 bytes are subtracted from the 4918 as given in
figure7.2, the result would be the penalty for intro-
ducing semaphores in the system. But since the
semaphores, in this case, also increase the size of the
readyqueue, an additional 4 bytes needs to be sub-
tracted. This results in a total of 4414 bytes. The
measured 25 semaphores is part of a system with ten
tasks, which already uses 3728 bytes of memory. Two
bytes are removed from this due the readyqueue is not
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Figure 7.3: Memory usage with various sets of signals.

needed in the calculation. The penalty for introducing
semaphores, regardless how many, will be 684 (4918-
500-4-3728-2) bytes on the Lego Mindstorm-system.

7.2.2 Signals

The signals are very similar to the semaphores, but
they differ on one point; each signal keeps record of
all tasks that is currently waiting on it. On the other
hand, no changes in the readyqueue or any other list
is needed. This means that it is easier to calculate the
amount of memory needed both for the general penalty
for introducing signals, and for calculate the overhead
that each signal cause. The overhead for each signal
can easily be derived for its definition, see section 5.2,
and thus present a formula, I' shown in formula 7.4,
that calculates the amount of memory that each signal
needs for n tasks that can access the signal. As in the
semaphore-case, OCT adds one reference to the signal
for easier access, but it adds two extra variables to
generate the owner-list and the block-list. This extra
overhead is given within brackets in formula 7.4.

T'(n) = (2 * o(taskid))(n + 1) +

+ [(2 x o(taskid)) + o(sigid)] (7.4)

The ability to calculate the overhead for a single
signal, along with the information about the kernel-
overhead for a system with ten tasks, is enough to
calculate the general penalty for introducing signals in
Asterix. 25 signals with five accesses would require
750 bytes out of the 5268 bytes measured (figure7.3),
leaving 4518 bytes left. Since the signals have no im-
pact on any of the lists used by the kernel, it is enough
to subtract the general kernel-overhead from the pre-
vious calculation. The one-time penalty for signals
is 1252 bytes (4518-750-3266). The reason that this is
larger than in the semaphore-case is because more list-
operations are needed for the block-list in particular.
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Figure 7.4: Memory usage with various sets of wait- and
lock-free channels.

7.2.3 Wait-free communication

A simple form of wait-free communication is imple-
mented in Asterix, but it is not as well designed as
the signals and semaphores. The reason is that this
part was a separate project but the person working
on that part unfortunately chose to leave the project.
Based on his work, the decision to implement a sim-
ple but very memory consuming communication were
made. Since linked lists are used instead of arrays
and control-blocks per task instead of per wait-free
channel, it is very difficult to predict the behavior and
present a general formula to calculate the amount of
memory needed on pre-runtime basis. The measured
values in figure7.4 confirms the large amount of mem-
ory needed to use wait-free communication in the sys-
tem.



Chapter 8
Future work

This document is a description of Asterix, the real-
time kernel. Since the current implementation is just
a prototype, improvements can be made. Suggestions
of improvements are described first in this chapter fol-
lowed by some thoughts and ideas of further extension
of the kernel.

8.1 Improvements

The current implementation has some limitations. In
this section, a description of these limitations and how
some of them can be removed is given.

8.1.1 Interrupts

Interrupts are hardware-dependent but they have the
same functionality regardless of the hardware. The
design of interrupts are designed well in the kernel
but the initialization and how they can be accessed
and altered by the user must be redesigned, both in
the Asterix kernel and the Obelix Configuration Tool
(OCT). The simplest thing to do would be to let the
user write the interrupt-handler or use the default for
all interrupts, and let OCT connect these routines with
the initialization-phase in the kernel. OCT must also
have access to a list of valid interrupts and thereby
make the right connection to the interrupts via the
kernel. Hence some sort of hardware description-file is
needed.

8.1.2 Wait- and Lock-free channels

The current implementation of Wait- and Lock-free
channels (WLFC) is very memory consuming due that
it has not been analyzed in the same way as the other
extensions of the kernel (signals, semaphores and in-
terrupts). The reason is that linked lists are used to
determine which buffer inside the channel is the old-
est and latest. The linked list can be replaced with
timestamps or some other mechanism that can sort
elements in chronological order. Another possibility
to minimize the consumption of memory is to have a
control block per WLFC instead of a control block per
task. The problem is to update a tasks’ corresponding
buffer if the task have access to multiple WLFCs.
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8.1.3 Signal extension

A signal is used in several purposes in the Asterix-
prototype; Synchronization, aperiodic tasks and inter-
rupts. A slight disadvantage is that an aperiodic task
cannot wait for other signals due that it always con-
nected to its wakeup-signal and will be activated every-
time this signal is raise. This means that all aperiodic
tasks will never be removed from any waiting-list in
the signals and hence every-time it waits for another
signal, it will never be removed from that list either.
This will eventually cause a system failure since mem-
ory will be overwritten when a waiting-list is full.

8.1.4 Execution-time measuring

Only execution-time of tasks are available at the mo-
ment. It would be nice if different elements (task-
switches, system-calls etc.) in the kernel could be mea-
sured as well. Such a measurement requires that the
system remains unchanged regarding the number of re-
sources and tasks since the execution-time within the
kernel is different depending on the tasks and resources
in the system.

8.2 Next generation

In this section, some thought and ideas to improve
Asterix are given. These ideas are extensions of the
existing kernel and changes in both the kernel and the
configuration tool might be necessary. The ideas that
are presented are focused on the kernel and not the
entire Asterix Framework. Future work on the frame-
work would be to create an analysis-tool and a commu-
nication layer to support a distributed system based
on the Asterix kernel.

8.2.1 Minimize memory

Since the kernel is static and compiling, the largest
data-type needed for each purpose is known. This
means that some extra memory can be saved if cor-
rect data-types would be chosen. For instance if no
task have a period (T) larger than 250, it would be
a waste of memory to let the data-type to hold T to
be 16-bits, when a 8-bit data-type would do just fine.
This requires that the configuration tool will detect
and set these data-types. But this will not require any



changes in the kernel since everything is taken care of
by the compiler.

8.2.2 Monitoring

The kernel is designed in such a way that an imple-
mentation of Deterministic Replay could be done rel-
atively easy. An example of this is the TCB-list that
is separated in two. The actual implementation would
require to communicate with the kernel so all necessary
information about task-switches etc. can be uploaded
and debugged off-line.

8.2.3 Soft tasks

Soft tasks must be treated in a certain way that the
hard tasks are unaffected. One major problem is that
all error-handling is executed in kernel mode. This
result in that a system-tick will be longer when an
error has occurred. It would be better if the soft tasks
error-routine executes in user-mode and thereby not
affect the time-constraints in the system.

8.2.4 Execution-time jitter on tasks

The kernel can be forced to always run tasks worst
case execution time (WCET) and thereby increase
the predictability. The kernel need to be make two
major changes;

e Add every tasks WCET to the task-model.

e Make sure that no task-switches are performed
even if a task has terminated.

The problem is to determine how long the kernel will
wait between a termination of a task and the start of
the next. But this functionality can easily be derived
from the system-timer although the resolution may not
be enough.

27



Chapter 9
Conclusions

It takes a long time to develop tools, real-time ker-
nel and operating system. This document describes
the beginning of the process of developing a real-time
kernel. To be successful when designing and imple-
menting a small-sized real-time kernel, it is important
to have suitable development tools. By letting the ker-
nel and the tools collaborate so functionality usually
performed by the kernel is moved to the tools. Thus
optimizations can be done off-line. This is essential
in embedded systems where computational power and
amount of memory are limited.

The Asterix kernel supports state-of-the-art meth-
ods for mutual exclusion, interprocess communication
and synchronization. The development tools have a
significant role, for example when memory areas are
allocated and initializing of these areas. Even more
the importance of analyzing tools (not developed yet)
are substantial for easy use of the Asterix Framework.

There are trade-offs to consider when implementing
state-of-the-art methods. The algorithms must be as
simple as possible to reduce the execution time, but
yet perform what it is supposed to. The Immediate
Inheritance Protocol is an example of such algorithm,
another is the implemented Wait- and lock-free chan-
nel algorithm.

The kernel is designed is such way that future im-
plementation of monitoring can be made. Specifically
the Task Control Block is designed to support mon-
itoring by Deterministic Replay. In this first version
one of the major problem have been the absence of a
debugging tool. During the development, a trial-and-
error method have been the debugging tool. Hence the
possibility to use Deterministic Replay is preferable.

The Asterix real-time kernel is designed with focus
on reducing execution-time jitter and memory con-
sumption. Low jitter and low memory consumption
together with statically allocated resources makes the
kernel predictable and so that its overhead can be cal-
culated. There are trade-offs in jitter reduction and
memory usage, for example reducing jitter are often
solved with additional code. To reduce the memory us-
age, arrays are used instead of linked list and thereby
the identity and priority can be combined with the
index to the array to save even more memory. The
most reduction of memory consumption is achieved
with the design of the readyqueue. The amount of
memory needed by this queue is only one bit per task.
The fact that a task have its own stack has a big im-
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pact on memory usage. This can be solved but not
without major changes of the design.

Jitter minimization of the kernels execution-time is
difficult to achieve, since this depends on both pro-
gramming skills and the behavior of the chosen com-
piler. For example; code optimized by a compiler can
increase the jitter. Not all types of optimizations ben-
efit the system. It is an advantage if the behavior of
the compiler can be examined. Therefore a compiler
shipped with source code is to be preferred.

To summarize the work, we must say that even
though not all thoughts and ideas have been success-
fully implemented, the result have been quite satisfac-
tory. The kernel is still a prototype but fully functional
can thereby be used for demonstration and educational
purposes. The design is simple and straight-forward so
that any redesign can be done with little effort.
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