
Mälardalen University Doctoral Thesis
No.171

Preservation of
Extra-Functional Properties in

Embedded Systems
Development

Mehrdad Saadatmand

February 2015

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c©Mehrdad Saadatmand, 2015
ISSN 1651-4238
ISBN 978-91-7485-151-9
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract
The interaction of embedded systems with their environments and their
resource limitations make it important to take into account properties
such as timing, security, and resource consumption in designing such sys-
tems. These so-called Extra-Functional Properties (EFPs) capture and
describe the quality and characteristics of a system, and they need to be
taken into account from early phases of development and throughout the
system’s lifecycle. An important challenge in this context is to ensure
that the EFPs that are defined at early design phases are actually pre-
served throughout detailed design phases as well as during the execution
of the system on its platform.

In this thesis, we provide solutions to help with the preservation of
EFPs, targeting both system design phases and system execution on
the platform. Starting from requirements, which form the constraints
of EFPs, we propose an approach for modeling Non-Functional Require-
ments (NFRs) and evaluating different design alternatives with respect
to the satisfaction of the NFRs. Considering the relationship and trade-
off among EFPs, an approach for balancing timing versus security prop-
erties is introduced. Our approach enables balancing in two ways: in a
static way resulting in a fixed set of components in the design model that
are analyzed and thus verified to be balanced with respect to the timing
and security properties, and also in a dynamic way during the execution
of the system through runtime adaptation. Considering the role of the
platform in preservation of EFPs and mitigating possible violations of
them, an approach is suggested to enrich the platform with necessary
mechanisms to enable monitoring and enforcement of timing properties.
In the thesis, we also identify and demonstrate the issues related to ac-
curacy in monitoring EFPs, how accuracy can affect the decisions that
are made based on the collected information, and propose a technique to
tackle this problem. As another contribution, we also show how runtime

i

ii

monitoring information collected about EFPs can be used to fine-tune
design models until a desired set of EFPs are achieved. We have also de-
veloped a testing framework which enables automatic generation of test
cases in order verify the actual behavior of a system against its desired
behavior.

On a high level, the contributions of the thesis are thus twofold:
proposing methods and techniques to 1) improve maintenance of EFPs
within their correct range of values during system design, 2) identify and
mitigate possible violations of EFPs at runtime.

Sammanfattning

Interaktionen mellan inbyggda system och dess miljöer gör det viktigt
att ta hänsyn till egenskaper såsom timing, säkerhet, och tillförlitlighet
vid utformning av sådana system. Dessa så kallade Extra-Funktionella
Egenskaper (EFE:er) innefattar och beskriver kvalitet och egenskaper
hos ett system, och måste beaktas tidigt i utvecklingsfasen samt under
hela systemets livscykel. En central utmaning i detta sammanhang är att
säkerställa att de EFE:er som är definierade i tidiga designfaser bevaras
genom de detaljerade konstruktionsfaserna så väl som under exekverin-
gen av systemet på sin plattform.

I denna avhandling tillhandahåller vi lösningar för att stödja bevaran-
det av EFE:er, med inriktning på både systemkonstruktionsfaserna och
plattformsexekvering. Med utgångspunkt från kraven, som begränsar
EFE:erna, föreslår vi en strategi för modellering av Icke-Funktionella
Krav (IFK) och utvärdering av olika designalternativ med avseende på
uppfyllandet av IFK. Med kopplingen och avvägningen emellan EFE:er
i åtanke, introduceras ett tillvägagångssätt för att balansera tidsegen-
skaperna gentemot säkerhetsaspekterna. Vår metod gör det möjligt att
balansera på två sätt: statiskt, som resulterar i en fast uppsättning kom-
ponenter i konstruktionsmodellen som analyseras och därigenom veri-
fieras som balanserade med avseende på tids och säkerhetsegenskaper,
samt dynamiskt genom anpassning under systemexekvering. Med hän-
syn till plattformens roll i bevarandet av EFE:er samt mildrande av
eventuella kränkningar, föreslås ett sätt för att berika en plattform med
nödvändiga mekanismer för att möjliggöra övervakning samt säkerstäl-
lande av tidsegenskaper. I avhandlingen både identifierar och demon-
strerar vi problematiken med noggrannhet i övervakning av EFE:er, och
hur noggrannheten kan påverka de beslut som fattas grundat på in-
samlad information, samt föreslår en teknik för att lösa detta problem.

iii

iv

Som ytterligare bidrag visar vi också på hur information om EFE:er
som insamlats genom övervakning under drift kan användas för att fin-
justera designmodeller tills en önskad uppsättning EFE:er uppnås. Vi
har också utvecklat ett ramverk för testning som möjliggör automatisk
generering av testfall för kontrollera att faktiskt beteende hos ett system
överensstämmer med önskat beteende.
Som helhet är således avhandlingens bidrag dubbelt: föreslagna metoder
och tekniker till att 1) förbättra bevarandet av EFE:er inom tillåtet inter-
vall under systemdesign, 2) identifiera och mildra eventuella överträdelser
av EFE:er under körning. Ur detta perspektiv bidrar våra lösningar till
att producera inbyggda system med bättre kvalitetssäkring.

Dissertation Opponent:

• Assoc. Prof. Vittorio Cortellessa - University of L’Aquila, Italy.

Grading Committee:

• Prof. Antonia Bertolino - National Research Council (CNR), Italy.

• Prof. Jan Bosch - Chalmers University of Technology, Sweden.

• Adj. Prof. Tiberiu Seceleanu - ABB Corporate Research, Sweden.

Grading Committee Reserve:

• Prof. Kristina Lundqvist - Mälardalen University, Sweden.

PhD Advisors:

• Prof. Mikael Sjödin - Mälardalen University, Sweden.

• Dr. Antonio Cicchetti - Mälardalen University, Sweden.

v

To my dear family,
Massoud, Forough, Mahnaz, Farshid & Farshad.

“A PhD is someone who knows everything about something & something
about everything” - anonymous.

Acknowledgements
The journey towards a PhD degree is full of joy, ups and downs, excite-
ments, and challenges. There have been many people who have been
with me throughout this journey; people from which I have learned a
lot, shared our joys and excitements together, those that together we
worked countless hours to solve problems and tackle challenges, those
who provided support and made the progress smoother and easier, and
those people whose mere acquaintance and presence have been a great
source of inspiration and motivation.

Hereby, I would like to thank my supervisors Mikael Sjödin and An-
tonio Cicchetti for their support, encouragement, and all the things that
I learned from them helping me become a better researcher. Thanks to
Radu Dobrin, Jan Carlson and Cristina Seceleanu for their invaluable
comments and tips. I had the pleasure of sharing the office with Federico
and Antonio with whom I have also great and unforgettable memories
from all the travels that we did together. I would also like to thank my
managers and colleagues at Alten and Enea, particularly Detlef Scholle.

The success of Mälardalen Real-Time Research Centre (MRTC) at
IDT with its friendly, pleasant and enriching environment is due to the
hard work and presence of many great people and researchers and I am
glad that I have had the chance to be part of such an environment.
My studies at MDH also gave me the opportunity to meet new friends
and work with many wonderful people. I would like to thank them
all here for the all the great moments. Thanks also to the ITS-EASY
graduate school staff for their support, and the nice educational events
they organized.

My deepest gratitude to my family who have always been there for
me. Without them I could have never reached this far.

Mehrdad Saadatmand
Västerås, February 2015

ix

List of Publications

Papers Included in the PhD Thesis1

Paper A Model-Based Trade-off Analysis of Non-Functional Require-
ments: An Automated UML-Based Approach. Mehrdad Saadat-
mand, Antonio Cicchetti, Mikael Sjödin. Journal of Advanced
Computer Science, Vol. 3, No. 11, November, 2013.

Paper B Managing Timing Implications of Security Aspects in Model-
Driven Development of Real-Time Embedded Systems. Mehrdad
Saadatmand, Thomas Leveque, Antonio Cicchetti, Mikael Sjödin.
International Journal On Advances in Security, Vol. 5, No. 3&4,
December, 2012.

Paper C Monitoring Capabilities of Schedulers in Model-Driven De-
velopment of Real-Time Systems. Mehrdad Saadatmand, Mikael
Sjödin, Naveed Ul Mustafa. 17th IEEE International Conference
on Emerging Technologies & Factory Automation (ETFA), Krakow,
Poland, September, 2012.

Paper D An Automated Round-trip Support Towards Deployment As-
sessment in Component-based Embedded Systems. Federico Cic-
cozzi, Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin.
16th International Symposium on Component-Based Software En-
gineering (CBSE), Vancouver, Canada, June, 2013.

1The included articles have been reformatted to comply with the PhD thesis
layout.

xi

xii

Paper E Towards Accurate Monitoring of Extra-Functional Properties
in Real-Time Embedded Systems. Mehrdad Saadatmand, Mikael
Sjödin. 19th Asia-Pacific Software Engineering Conference (APSE-
C), Hong Kong, December, 2012.

Paper F A Model-Based Testing Framework for Automotive Embedded
Systems. Raluca Marinescu, Mehrdad Saadatmand, Alessio Bu-
caioni, Cristina Seceleanu, Paul Petterson. 40th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA),
Verona, Italy, August, 2014.

Paper G Testing of Timing Properties in Real-Time Systems: Verify-
ing Clock Constraints. Mehrdad Saadatmand, Mikael Sjödin. 20th
Asia-Pacific Software Engineering Conference (APSEC), Bangkok,
Thailand, December, 2013.

xiii

Related Publications not Included in the PhD
Thesis
Licentiate Thesis2

1. Satisfying Non-Functional Requirements in Model-Driven Devel-
opment of Real-Time Embedded Systems. Mehrdad Saadatmand,
Licentiate Thesis, ISSN 1651-9256, ISBN 978-91-7485-066-6, May,
2012.

Conferences & Workshops
1. A Fuzzy Decision Support Approach for Model-Based Tradeoff Anal-

ysis of Non-Functional Requirements. Mehrdad Saadatmand, Sa-
har Tahvili. 12th International Conference on Information Tech-
nology : New Generations (ITNG), Las Vegas, USA, April, 2015.

2. Mapping of State Machines to Code: Potentials and Challenges.
Mehrdad Saadatmand, Antonio Cicchetti. The Ninth International
Conference on Software Engineering Advances (ICSEA), Nice, Fra-
nce, October, 2014.

3. OSLC Tool Integration and Systems Engineering - The Relation-
ship Between The Two Worlds. Mehrdad Saadatmand, Alessio Bu-
caioni. 40th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Verona, Italy, August, 2014.

4. Runtime Verification of State Machines and Defect Localization
Applying Model-Based Testing. Mehrdad Saadatmand, Detlef Scho-
lle, Cheuk Wing Leung, Sebastian Ullström, Joanna Fredriksson
Larsson. First Workshop on Software Architecture Erosion and
Architectural Consistency (SAEroCon) (ACM) (Co-located with
WICSA 2014), Sydney, Australia, April, 2014.

5. Run-Time Monitoring of Timing Constraints: A Survey of Meth-
ods and Tools. Nima Asadi, Mehrdad Saadatmand, Mikael Sjödin.
The Eighth International Conference on Software Engineering Ad-
vances (ICSEA), Venice, Italy, October 27 - November 1, 2013.

2A licentiate degree is a Swedish graduate degree halfway between M.Sc. and
Ph.D.

xiv

6. On Combining Model-Based Analysis and Testing. Mehrdad Saa-
datmand, Mikael Sjödin. 10th International Conference on Infor-
mation Technology : New Generations (ITNG), Las Vegas, USA,
April, 2013.

7. Toward Model-Based Trade-off Analysis of Non-Functional Require-
ments. Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin.
38th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Cesme-Izmir, Turkey, September, 2012.

8. Modeling Security Aspects in Distributed Real-Time Component-
Based Embedded Systems. Mehrdad Saadatmand, Thomas Lev-
eque. 9th International Conference on Information Technology :
New Generations (ITNG), Las Vegas, USA, April, 2012.

9. Design of Adaptive Security Mechanisms for Real-Time Embedded
Systems. Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin.
4th International Symposium on Engineering Secure Software and
Systems (ESSoS), Eindhoven, The Netherlands, February, 2012.

10. UML-Based Modeling of Non-Functional Requirements in Telecom-
munication Systems. Mehrdad Saadatmand, Antonio Cicchetti,
Mikael Sjödin. The Sixth International Conference on Software
Engineering Advances (ICSEA), Barcelona, Spain, October, 2011

11. On Generating Security Implementations from Models of Embed-
ded Systems. Mehrdad Saadatmand, Antonio Cicchetti, Mikael
Sjödin. The Sixth International Conference on Software Engineer-
ing Advances (ICSEA), Barcelona, Spain, October, 2011.

12. Enabling Trade-off Analysis of NFRs on Models of Embedded Sys-
tems. Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin.
16th IEEE International Conference on Emerging Technologies
& Factory Automation (ETFA), WiP session, Toulouse, France,
September, 2011.

13. A Methodology for Designing Energy-aware Secure Embedded Sys-
tems. Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin.
6th IEEE International Symposium on Industrial Embedded Sys-
tems (SIES), Västerås, Sweden, June, 2011.

xv

14. Toward a Tailored Modeling of Non-Functional Requirements for
Telecommunication Systems. Mehrdad Saadatmand, Antonio Cic-
chetti, Diarmuid Corcoran, Mikael Sjödin. 8th International Con-
ference on Information Technology : New Generations (ITNG),
Las Vegas, USA, April, 2011.

15. On the Need for Extending MARTE with Security Concepts. Mehr-
dad Saadatmand, Antonio Cicchetti, Mikael Sjödin. 2nd Interna-
tional Workshop on Model Based Engineering for Embedded Sys-
tems Design (M-BED), Grenoble, France, March, 2011.

Contents

I Thesis 1

1 Introduction 3
1.1 Background and Motivation 4
1.2 Problems and Contributions Overview 7
1.3 Thesis Outline . 9

2 Research Context 11
2.1 Research Goals . 12
2.2 Research Process . 13

3 Contributions 15
3.1 Overview of the Included Papers 24

4 Related Work 31

5 Conclusion and Future Directions 39

Bibliography 43

II Included Papers 51

6 Paper A:
Model-Based Trade-off Analysis of Non-Functional Re-
quirements: An Automated UML-Based Approach 53
6.1 Introduction . 55
6.2 Non-Functional Requirements 58
6.3 Addressing the Challenges of NFRs 62

xvii

xviii Contents

6.4 Suggested Approach . 64
6.5 Usage Example . 70
6.6 Discussion . 74
6.7 Related Work . 76
6.8 Summary and Conclusion 80
6.9 Acknowledgements . 81
Bibliography . 83

7 Paper B:
Managing Timing Implications of Security Aspects in
Model-Driven Development of Real-Time Embedded Sys-
tems 89
7.1 Introduction . 91
7.2 Security in Embedded Systems 94
7.3 Motivation Example: Automatic Payment System 96
7.4 Approach . 99
7.5 Implementation . 101
7.6 Runtime Adaptation . 112
7.7 Discussion . 117
7.8 Related Work . 118
7.9 Conclusion and Future Work 121
7.10 Acknowledgements . 122
Bibliography . 123

8 Paper C:
Monitoring Capabilities of Schedulers in Model-Driven
Development of Real-Time Systems 129
8.1 Introduction . 131
8.2 Background and Motivation 133
8.3 Scheduler Design and Implementation 137
8.4 Experiment and Monitoring Results 146
8.5 Related Work . 153
8.6 Discussion and Conclusion 154
8.7 Acknowledgements . 156
Bibliography . 157

Contents xix

9 Paper D:
An Automated Round-trip Support Towards Deployment
Assessment in Component-based Embedded Systems 161
9.1 Introduction . 163
9.2 Context . 165
9.3 Related Work . 168
9.4 The AAL2 Subsystem: a Running Example 171
9.5 The Round-trip Support 173
9.6 From Models to Code and Back 176
9.7 Discussion and Future Work 183
9.8 Conclusion . 185
9.9 Acknowledgments . 186
Bibliography . 187

10 Paper E:
Towards Accurate Monitoring of Extra-Functional Prop-
erties in Real-Time Embedded Systems 191
10.1 Introduction . 193
10.2 OSE Real-Time Operating System 194
10.3 Priority-Based Monitoring Approach 195
10.4 Evaluation . 197
10.5 Discussions . 199
10.6 Related Work . 200
10.7 Conclusion and Future Work 201
10.8 Acknowledgements . 201
Bibliography . 203

11 Paper F:
A Model-Based Testing Framework for Automotive Em-
bedded Systems 205
11.1 Introduction . 207
11.2 Preliminaries . 208
11.3 Brake-by-Wire Case Study: Functionality and Structure . 212
11.4 From EAST-ADL to Code Validation:

Methodology Overview . 214
11.5 Implementation Activities 215
11.6 Testing Activities . 218
11.7 Brake-by-Wire Revisited: Applying the Methodology . . . 221
11.8 Related Work . 227

xx Contents

11.9 Conclusions and Future Work 228
11.10Acknowledgment . 229
Bibliography . 231

12 Paper G:
Testing of Timing Properties in Real-Time Systems: Ver-
ifying Clock Constraints 235
12.1 Introduction . 237
12.2 Background Context . 238
12.3 Proposed Approach . 242
12.4 Application & Implementation of the Approach 244
12.5 Related Work . 246
12.6 Conclusion . 248
12.7 Acknowledgements . 249
Bibliography . 251

I

Thesis

1

Chapter 1

Introduction

Once upon a time programmers used to get excited when they found out
that the programs they had punched on a card just worked and could
perform the expected calculations and functions. Although the com-
puters back then also had their own limitations in terms of memory and
processing capacity, getting the right functionality done was a big enough
challenge in itself, which also meant not needing to redo programming
on another punchcard. With respect to complexity, computer systems
today are rapidly becoming more and more complex. There are several
factors that contribute to this complexity. One factor is the growing de-
mands and expectations on the services provided by these systems. For
instance, more tasks are delegated to software and electric/electronic
components in a car nowadays, which used to be performed solely by
mechanical and hydraulic parts. On the other hand, the complexity of
each service itself is increasing as well. Another aspect that contributes
to the complexity issue is the complexity and variety of the infrastruc-
ture and platforms on which systems are deployed; i.e., different operat-
ing systems and frameworks (e.g., Android, iOS, .NET, JVM), different
hardware (e.g., single core, multicore, 32/64-bit processors). In case
of embedded systems, limitations and constraints on available resources
also add another dimension to the complexity issue. This means that
such systems should operate within certain constraints. In other words,
other concerns than just logical correctness of operations can play an
important role in determining the success and correctness of embedded
systems. These limitations and constraints are captured in the form of

3

4 Chapter 1. Introduction

Non-Functional Requirements (NFRs) and Extra-Functional Properties
(EFPs). However, EFPs like NFRs [1] cannot be considered individually
as they have interdependencies and mutual impacts and tuning one EFP
can affect another one.

The ultimate goal in the design of a software system is to deliver a
product which satisfies all the requirements of different stakeholders. To
assess the fulfillment of this goal, not only it is needed to be able to verify
certain properties in the end product (e.g., timing properties), but also it
is important from early design phases to consider a set of system compo-
nents, among different alternatives, that have desired properties in line
with and contributing to the overall satisfaction of system requirements
and not violating them. One important challenge in this context is that
as we build a system and go down the abstraction levels and finally get
to its execution, the properties of interest which are related and relevant
to the satisfaction of system requirements should be preserved and not
deviate from their desired values. For example, if at runtime the execu-
tion time of a task exceeds a certain threshold and value, it can impact
the satisfaction of a timing requirement on end-to-end response time in
the system.

Considering the aforementioned points, two challenges with respect
to EFPs in embedded systems can be identified: 1-coming up with a
system design (e.g., models) which respects the desired set of properties
(considering their interdependencies and trade-offs); and 2-making sure
that those properties remain valid in the final product and during ex-
ecution. The solutions that are provided in this thesis under the title
of preservation of extra-functional properties mainly tackle these two is-
sues. The importance of the contributions of this thesis lies in the fact
that regardless of the type and amount of analyses done in building a
system, if there are any deviations between the expected EFPs and the
actual ones at runtime, the developed system might be then a failure.

1.1 Background and Motivation
The number of computer systems that we use in our daily life which
are embedded as part of other devices and systems is rapidly growing.
Examples of such systems are microwave ovens, automobiles, TV sets,
digital cameras, and refrigerators. Embedded computer systems are sys-
tems that are designed basically to control and operate as part of other

1.1 Background and Motivation 5

devices. These systems are usually designed for specific and dedicated
operations, and interact with their external environment through sen-
sors and actuators [2, 3]. This interaction often brings along additional
requirements such as real-time and safety. However, besides such re-
quirements, resource constraints in these systems also introduce other
requirements with respect to power consumption, processing capacity,
memory usage, etc. Due to resource constraints that these systems have,
their correctness depends not only on providing the right functionality
but also respecting the constraints that they have. For this reason, it
is of great importance to be able to evaluate EFPs and preserve them
within their acceptable range of values mitigating possible violations of
them at runtime.

In this context, requirements serve as a means for capturing and
expressing the needs of different stakeholders of the system. Consid-
ering the variety of stakeholders, requirements can be originated from
different sources; such as customers and end users, standards and reg-
ulations, developers and refinement of higher level requirements, devel-
opment tools, operational context and environment of the system, and
so on. As for Non-Functional Requirements (NFRs), they have specific
challenges which can make their satisfaction in a system a complicated
task [4, 5, 6]. For instance, NFRs cannot usually be considered in iso-
lation as they are interconnected and have dependencies, and also can
span different aspects and parts of a system. Therefore, in satisfying an
NFR, its impacts on other NFRs should also be taken into account, and
trade-off analysis among NFRs needs to be done [7, 8]. A similar pro-
cedure needs to be done for EFPs when adjusting and tuning different
properties of the system.

There is a clear and important (but sometimes misunderstood) rela-
tionship between NFR and EFP. For example, ’response time of a com-
ponent should not exceed 2ms’ is a requirement, while ’response time
of component A never exceeds 2ms’ or ’response time of component B
is equal to 1ms’ are expressions of properties. It is only in relation to
a requirement that it becomes possible to then talk about validity/in-
validity or ’goodness/badness’ of the value of a property. For instance,
just knowing that a software component has the worst-case execution
time of 200ms does not help in determining if it is suitable to be used
in building a particular system or not. Only when the requirements are
taken into account, this value gets meaning in the sense that if it is good
for that system and context or not; in which case, another component

6 Chapter 1. Introduction

with a different worst-case execution time might be adopted. Similarly,
when monitoring and evaluating EFPs, requirements are needed in or-
der to determine if the value of an EFP is valid and acceptable or not.
Balancing trade-offs among requirements can also incur adjusting sys-
tem properties that are related to those requirements. Therefore, there
is a relationship between an NFR and EFPs in a system and in order
to satisfy an NFR, its related extra-functional properties should have
valid values. For example, to satisfy performance requirements in a real-
time system, execution and response time values of tasks (among others)
should remain within a valid range.

To tackle the design complexity issue of embedded systems, Model-
Driven Development (MDD) is a promising approach. It aids by rais-
ing abstraction level and reducing design complexity, which also enables
analysis at earlier phases of development. This helps with the identifi-
cation of problems before the implementation phase [9, 10], noting that
the cost of problems when found at later phases, especially in the code
and at runtime, grows exponentially [11, 12, 13]. The implementation of
the system can also be generated from the design models through (a set
of) model transformations. As more abstraction levels are introduced in
designing a system, it becomes also important to verify consistency of
design artifacts and their properties at each level. This means that for
each transformation, input properties should be preserved in the out-
put of the transformation. This also includes the system execution at
runtime which is the result of executing the generated source code, im-
plying that the execution platform should be able to actively monitor
and preserve extra-functional properties at runtime. To this end, the
execution platform also requires to be semantically aware of the speci-
fied properties and related events in order to monitor them and detect
their deviations. In the context of MDD, preservation of EFPs also gains
special importance and interest as it is ultimately the object code which
is executing and controlling a system, not models per se. Moreover, in
terms of timing properties, for instance, “models are only approximation
of system implementations” and therefore, “inevitable time deviations of
the implementation from the model appear” [14, 15].

Regardless of the applied development method and despite all types
of analyses done at earlier phases, the ultimate goal is to have a system
which behaves correctly and as intended at runtime and during its execu-
tion. Moreover, for performing static analysis different assumptions are
taken into account. At runtime, situations may still occur that lead to

1.2 Problems and Contributions Overview 7

the violation of those assumptions which in turn can mean invalidation
of analyses’ results [16, 17]. This again emphasizes the need for preser-
vation of EFPs which constitute such assumptions, such as worst-case
execution times of tasks, etc. For instance, it is very common nowa-
days that modern CPUs have Dynamic Voltage and Frequency Scaling
(DVFS) support for power management purposes. When DVFS is ap-
plied, the CPU can go down to a lower frequency which then affects the
execution times of tasks. In such a scenario, the results of timing anal-
ysis done assuming certain execution times of tasks based on a different
CPU frequency may not be valid anymore. Of course, in an ideal case,
all such scenarios should be considered in the analysis. However, such
extensive and exhaustive analyses may not always be economical or even
possible to perform, particularly in complex systems.

1.2 Problems and Contributions Overview
To provide support for preservation of EFPs, we first start from NFRs,
and considering the relationships between different NFRs we introduce
a method to evaluate their interdependencies and mutual impacts in a
generic manner. This step is necessary considering the relationship of
NFRs and EFPs as discussed in the previous section. Besides, early anal-
ysis of NFRs is also important considering that different sets of NFRs
on the same set of functional requirements can result in different design
decisions and implementations. For instance, to sort some data under a
specific timing constraint, only certain sorting algorithms may be suit-
able to use. However, if that timing constraint is relaxed but instead
there is a constraint on maximum memory usage, a different set of sort-
ing algorithms can then be considered as suitable. Moreover, due to
resource limitations, the NFRs that are defined for an embedded sys-
tem by different stakeholders need to be balanced and trade-off analysis
among them should be performed. As the next step in building a system
which respects its specified constraints, we introduce an approach for es-
tablishing balance among different EFPs in an embedded system. This
approach is demonstrated by looking particularly into the relationship
between security and timing.

Another challenge is collecting information about each EFP in the
system. In other words, appropriate mechanisms for monitoring EFPs
are needed in order to determine whether a violation with respect to the

8 Chapter 1. Introduction

constraints of an EFP has occurred or not. Such monitoring informa-
tion can then be used for different purposes: for example, to perform
runtime adaptation, enforcing the system constraints, testing EFPs, or
simply providing feedback on EFPs values collected during the system
execution. Along with this goal, we have developed a method for collect-
ing necessary information about the timing behavior of real-time systems
to identify violations such as deadline misses and execution time over-
runs of real-time tasks. In this thesis, we also discuss and demonstrate
a method how such monitoring capabilities and the EFPs information
collected using them can help with adjusting system models towards
reaching deployment configurations which ultimately result in a desired
set of EFPs’ values at runtime.

Moreover, we demonstrate how monitored information can be used
to perform runtime adaptation and also test a system with respect to
its timing properties. For the former, a runtime adaptation mechanism
has been developed to balance timing aspects of a system versus its
security level by adopting different encryption algorithms with different
timing properties. For the latter, we have developed a testing approach
to verify whether the timing constraints (e.g., specified in the form of
clock constraints) in a system get violated at runtime or not.

As can be understood so far, one fundamental feature needed in
achieving preservation of EFPs and to mitigate their possible violations
is the ability to monitor and collect information about EFPs. While such
capability is assumed as provided in many previous works, it has its own
unique challenges. For instance, EFPs are of different nature and kind,
and therefore, the way that necessary information is collected for each
one is a challenge in itself. Also accuracy of the collected information
plays an important role when deciding if an EFP is within an acceptable
range (as specified by an NFR). As another contribution of the thesis,
we demonstrate the importance of this issue, how it can affect taking
correct decisions about EFPs in a system, identify the factors that can
contribute to the accuracy of the collected information (or lack thereof),
and provide a solution for mitigating it.

In summary, the main goal of the thesis is to highlight the chal-
lenges with respect to the preservation of EFPs and provide techniques
and methods applicable at different levels of abstraction to increase our
confidence that at the final step, namely runtime and during execution,
EFPs do not deviate from their expected values and the system behaves
as intended. While the proposed solutions have the potential to be ap-

1.3 Thesis Outline 9

plied for various EFPs, our main focus in this work is particularly on
timing properties.

1.3 Thesis Outline
The thesis consists of two parts: Part I includes five chapters. Chapter
1 provided an introduction to the thesis, described the background, and
main problems that this thesis addresses as well as an overall description
of the thesis contributions. Chapter 2 elaborates the research context,
goals, and process. Contributions of the thesis are described in more
detail in Chapter 3. Chapter 4 discusses the related work and in Chapter
5, the work is summarized and future directions are mentioned. Part II
of the thesis contains the published peer-reviewed papers that constitute
and present the technical contributions of the thesis in detail, which are
organized in Chapters 6-12.

Chapter 2

Research Context

The main objective in this research work is to introduce methods for
preservation of extra-functional properties in embedded systems devel-
opment and to mitigate their possible violations at runtime. This goal
is based on the following principles and assumptions:

• For each EFP to be preserved, a set of values containing acceptable
and valid values for that EFP can be considered. Values that
fall outside of this set are considered invalid, and thus violate the
constraints of the EFP (considering a specific context).

• Analysis can be performed on system models in order to evaluate
satisfaction feasibility of its non-functional requirements and to
evaluate/calculate extra-functional properties of the system and its
components, such as response time. Analyses are based on some
assumptions and preconditions. Violation of these assumptions
can lead to having invalid and erroneous analysis results.

• At runtime, several factors such as transient loads, difference be-
tween the ideal execution environment (taken into account for anal-
ysis) and the actual one, can lead to the violation of the assump-
tions that were used to perform analysis [16].

• It may not be practical and/or economical to perform analysis on
all types of extra-functional properties. In such cases, runtime
monitoring becomes even more important.

11

12 Chapter 2. Research Context

• As we go down the abstraction levels, an EFP may be refined and
translated into one or more EFPs at the next levels. In that case,
preservation of the former can incur preservation of the latter at a
different abstraction level.

In this context, the term preserve that we use in our work implies
that there is some knowledge about valid and invalid values (e.g., range of
values) that an extra-functional property can have in a specific context
and system; i.e., we actually preserve the validity of the value, rather
than the actual value.

2.1 Research Goals
To achieve the objective of the work, the following main research goals
have been defined:

• G1: Define an approach for establishing balance among
NFRs at the model level: The relationship between NFRs and
EFPs makes it important to start from NFRs and evaluate and
balance them. For example, a requirement on end-to-end dead-
lines and response times in a system might require use of certain
components with specific timing properties. If that requirement is
changed, another set of components with different timing proper-
ties might be needed.

• G2: A model-based EFP-aware method resulting in prop-
erty preserving system designs: Model-Based Development
can enable identification of problems earlier in the development
phase. By exploiting this feature, system models can be analyzed
and adjusted to have extra-functional properties within their de-
sired and acceptable range of values, and thus, support EFP preser-
vation from earlier phases of development.

• G3: A framework for monitoring and testing of extra-
functional timing properties: Without monitoring EFPs at
runtime we cannot be sure whether they are preserved or not
(somehow analogous to the Schrödinger’s cat experiment [18]). A
monitoring mechanism is also needed if a system requires to ap-
ply enforcement of EFPs (for instance, to preempt a task before
it exceeds its worst-case execution time). Moreover, it should be

2.2 Research Process 13

possible to test a system with respect to its EFPs, which requires
to obtain and know the value of an EFP. In this research, we limit
ourselves to timing properties while an industrial tool should sup-
port a wider range of EFPs.

2.2 Research Process
The main steps that have taken place in performing this research work
are summarized and illustrated in Figure 2.1.

Investigation of the state
of the art & practice

Research goals

Solutions

How to preserve
EFPs?

Validation
(application example, simulation,

industrial case study)

Figure 2.1: Research Steps

To achieve the overall objective of the thesis, namely preservation of
EFPs, several research goals have been defined. Moreover, the state of
the art and practice have been consulted, which resulted in additional
research (sub-)goals or modification of already defined ones. To fulfill
the research goals, solutions have been proposed. These solutions were

14 Chapter 2. Research Context

validated in different ways: by an application example to demonstrate
how, for instance, a method is applied; by simulation; or by performing
an industrial case study. The arrow in the figure from Validation to
Research Goals indicates that in validating the solutions, new research
goals or modification of existing ones have also formed and occurred.

Chapter 3

Contributions

In this section we provide the description of the main contributions of
this work:

C1) Trade-off analysis and evaluation of conflicts among NFRs:
To model interdependencies of NFRs and evaluate their impacts on each
other, we have proposed a UML profile. The profile offers necessary
concepts to generically model an NFR along with its refinements which
can include one or several other NFRs as well as functional parts that
contribute to its satisfaction. This way, it enables to create a hierarchy
of NFRs, form child-parent relationship among them, and also estab-
lish relationships to the functional elements in the model that provide
realization and implementations for NFRs. To enable trade-off analysis
of NFRs in a quantitative manner, we introduce numerical properties as
part of the defined stereotypes in the profile. This allows to calculate the
satisfaction level of an NFR by taking into account both the contribution
degree of each of its children NFRs and any impacts that other NFRs
in the system may have on it. To automate and perform the analysis,
an in-place model transformation is used to traverse model elements,
perform necessary calculations based on the algorithms that are imple-
mented as part of the transformations, and then update the respective
properties of model elements with the calculated values. Based on the
analysis results, it can be determined if the planned decision designs to
fulfill NFRs are acceptable or not.

In the profile, we also introduce the concept of deviation indicator

15

16 Chapter 3. Contributions

(in Paper A in the thesis) for requirements, which helps to identify parts
of a system which have greater degree of deviation with respect to sat-
isfaction of an NFR. This provides for several interesting features, such
as to prioritize test cases and focus testing activities on parts of the sys-
tem with higher deviation indicator values (i.e., probably having more
’severe’ problems) as demonstrated in a separate work of ours in [19].
This is particularly interesting and beneficial considering that there is
only limited amount of resources (e.g., time or money) available for per-
forming testing activities. Such prioritization based on the deviation
indicator values allows for more efficient use of available resources for
testing.

Another variation of our approach based on the NFR profile is pre-
sented in [20]; in which we have used fuzzy logic and decision support
systems to identify best design alternatives (e.g., from a set of available
components with different properties) in order to construct a system de-
sign which is optimized with respect to the overall satisfaction level of its
NFRs. Application of fuzzy logic helps to relax the need for providing
accurate quantified values for relationships among NFRs, as is expected
in the original approach.

C2) Establishing balance between security and timing proper-
ties: The choice of security mechanisms in real-time embedded systems
where timing requirements are critical may not be trivial. For example,
performing encryption using a strong encryption algorithm may take
longer time than using a weaker (but faster) encryption algorithm and
this may lead to the violation of timing requirements. Therefore, in
implementing security requirements, timing implications of the chosen
security mechanisms should also be considered.

In this thesis, we provide two approaches to tackle this challenge. In
the first one, we address it at the model level by identifying parts of the
system (i.e., sensitive data) that need to be protected. For such parts,
appropriate security features (in here, encryption and decryption com-
ponents) to protect them are added to the original component model of
the system. Then timing analysis is performed on the derived component
model to ensure that the security features which are added do not vio-
late the timing requirements. In this approach, the original component
model of the system is used as input for a transformation that considers
the sensitive data flows in the input model and adds appropriate security
components considering their timing properties. This approach leads to

17

a static design in the sense that a fixed and particular security mech-
anism which is analyzed and thus, known to respect its allowed time
budget is always used in each execution. Our approach also provides
a form of separation of concerns in the sense that instead of defining
security on the architectural (i.e., component) model, security engineers
(or system designers) can now focus and annotate the data model, based
on which the component model is then updated (through model trans-
formation) to include appropriate security mechanisms. Moreover, in
this way we also enable to bring security concerns into earlier phases of
development. Considering security at earlier phases of development is
a need which is getting more and more attention in computer systems
today, particularly in the embedded domain where security has its own
unique challenges (such as timing implications as we already discussed)
[21].

However, the aforementioned solution may not be practical for sys-
tems with high complexity which are hardly analyzable or systems with
unknown timing properties of their components. For such systems, an
adaptive approach to select appropriate security mechanisms based on
the state of the system can be used to adapt its behavior at runtime
and stay within the timing constraints. To this end, as a second and
complementary way to establish balance between security and timing,
we have suggested an approach for selecting appropriate encryption al-
gorithms (in terms of their timing behaviors) at runtime in an adaptive
fashion. The approach works by keeping a log for each execution of
the encryption process. Based on the logged information, if a timing
violation is observed, a more suitable encryption algorithm (in terms of
timing properties) is adopted in the next execution. In other words, the
system adapts itself at runtime to keep the timing constraints and reduce
the number of timing violations. The idea behind this adaptation mech-
anism is that when it is detected that an executing encryption algorithm
is exceeding its allowed time budget, it can be more costly to terminate
it in the middle of the encryption process and restart encrypting the
data with a less time-consuming encryption algorithm. Instead we let
it finish its job and then use another encryption algorithm with a lower
execution time in the next invocation of the encryption process.

In summary, the former approach aims to help with establishing bal-
ance between security and timing properties at the design phase when
system models are being created. In the second approach, this balance
is established in an adaptive way at a later phase, namely during system

18 Chapter 3. Contributions

execution and at runtime. These two approaches can of course be used
together in building a system in order to provide a higher degree of assur-
ance to keep timing and security properties balanced and at acceptable
levels.

C3) Runtime monitoring and enforcement of EFPs: The ca-
pabilities of platforms play an important role in preservation of extra-
functional properties and mitigation of possible violations. To be able
to actively monitor and enforce EFPs, the platform needs to be seman-
tically aware of them. With respect to timing properties, this awareness
can include properties of a real-time task such as activation pattern (i.e.,
periodic, sporadic, aperiodic), deadline, execution time, and so on. The
platform needs to be aware of such properties so that, for example, it
can detect deadline misses or execution time overruns. This also im-
plies that the platform needs to have respective monitoring mechanisms
for different timing properties. We have constructed a framework that
brings such awareness about several timing properties to the platform
and provides mechanisms for runtime monitoring and enforcement of
such properties.

Moreover, in the context of a model-based development method, it
is important to verify that the actual values of EFPs at runtime are in
compliance with those expected and defined at the model level. The
importance of such capability becomes more clear remembering that the
end goal of all different development methods and techniques is to have a
system which executes and behaves as expected at runtime with respect
to both functional and extra-functional aspects. For this purpose, we
show how having a monitoring framework enables to also build and pro-
vide a round-trip support in the development chain, constituting from
design models down to code and its execution on the platform and back
again to the models. In such a round-trip chain, monitoring information
is propagated back to the design models where the expected values are
compared with the actual values. If necessary, refinements and modifi-
cations are done to the model(s) in order to finally have a system with
the desired set of EFPs. This is done by performing the process several
times until the refined models and the code that is generated from them
result in a system with satisfactory set of EFPs. This approach may
well be used towards optimizing design models for specific properties.
We have applied and validated our proposed round-trip method on the
Ericsson’s ATM Adaptation Layer 2 (AAL2) subsystem.

19

C4) Testing of timing properties and runtime model verifica-
tion: Another challenge with respect to timing properties is how to test
them. Testing EFPs, such as timing, can generally be a tricky task.
One factor contributing to this issue is that testers need to collect and
have necessary information about timing properties of a system so that
they can actually then test it. This brings us back to the previous point
about the capability to monitor and observe timing properties. To im-
prove testability of a system with respect to its timing properties, we
introduce a method and a testing framework that by exploiting moni-
toring capabilities of the platform enables testing of timing properties.
Of course, testing per se does not guarantee absence of errors, but by
detecting failures and fixing them it can help to increase our confidence
in the correctness of a system. Our suggested testing approach enables
automatic generation of Concrete Test Cases (CTC) (i.e., executable test
scripts) from abstract ones (ATC: Abstract Test Cases) which are de-
rived from Timed Automata (TA) models, executing them against the
target, and determining timing issues and violations. This is done by im-
plementing a parser which reads in ATCs and generates Python scripts
based on them. This way, we not only enable testing of timing properties
but also do so in an automatic way. We have applied and validated our
approach on the Brake-by-Wire (BBW) use-case provided by Volvo.

The result of testing also indicates if there is any deviation between
the intended behavior captured by models and the actual behavior of
the system at runtime, which can also be useful in verifying architectural
deviations and inconsistencies. This is important as models are also used
to perform model-based analysis. Therefore, if they do not correctly
represent a system’s behavior, the analyses that are done based on them
may also not be valid for that system.

Our proposed testing framework is covered by papers F and G in the
thesis. In the former, the whole testing framework and test case genera-
tion methodology are explained with a focus on functional requirements.
In the latter, the extensions to also enable testing of timing require-
ments are described (with a minor difference in how the System Under
Test (SUT) code is implemented for mapping states and transitions to
code [22], and a slightly different TA model for describing the internal
behavior of system components). In our testing approach, timed auo-
mata are used to describe the internal behavior of the components of the
target system which is modeled in EAST-ADL [23]. Figure 3.1 shows
the EAST-ADL model of the BBW system.

20 Chapter 3. Contributions

<
<

d
e
sig

n
F

u
n

ctio
n
T

y
p
e>

>

F
u

n
ctio

n
a
lD

e
sig

n
A

rc
h
ite

ctu
re

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
B

rak
eP

e
d
alS

en
so

r
<

<
d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
B

rak
eT

o
rq

u
eC

a
lcu

lato
r

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
G

lo
b

alB
rak

e
C

o
n

tro
ller

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
W

h
e
elS

e
n
so

rF
L

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
A

B
S

F
L

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
W

h
e
elA

ctu
a
to

rF
L

stru
ctu

re

P
o

sitio
n

P
o

sitio
n
_
p
e
rcen

t
B

rak
e
P

ed
alP

o
s_

p
e
rcen

t
D

riv
e
rR

eq
T

o
rq

u
e

W
h
ee

l_
rp

m
_
F

L
W

h
ee

lT
o
rq

u
e

S
p

eed
_
rp

m
_
F

L
R

o
tatio

n
_
F

L

R
e
q
u
e
sted

T
o
rq

u
e
_
F

L

W
h
ee

lS
p
e
ed

_
rp

m
_
F

L

G
lo

b
a
lT

o
rq

u
e

A
B

S
T

o
rq

u
e_

F
L

T
o

rq
u

eC
m

d
_
F

L

B
rak

e
T

o
rq

u
e_

F
L

W
h
ee

l_
rp

m
_
F

R
V

e
h
ic

leS
p

eed
E

st_
k
m

p
h

V
e
h
ic

leS
p

eed
_
k
m

p
h

_
F

L

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
W

h
e
elS

e
n
so

rF
R

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e>

>

p
A

B
S

F
R

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

+
 W

h
ee

l A
ctu

ato
r

S
p

eed
_
rp

m
_
F

R
R

o
tatio

n
_
F

R

R
e
q
u
e
sted

T
o
rq

u
e
_
F

R

W
h
ee

lS
p
e
ed

_
rp

m
_
F

R A
B

S
T

o
rq

u
e_

F
R

T
o

rq
u

eC
m

d
_
F

RB
rak

e
T

o
rq

u
e_

F
R

V
e
h
ic

leS
p

eed
_
k
m

p
h

_
F

R

Figure
3.1:

T
he

EA
ST

-A
D
L
m
odelofthe

B
B
W

system
.

21

The TA model of the Anti-lock Braking System (ABS) component in
the BBW system, without its timing and clock constraints, is depicted
in Figure 3.2.

Entry

CalcSlipRate

Exit
v>0 []

v==0 [torqueABS=0]

v<5*(v-w*R) [torqueABS=0]

v>=5*(v-w*R) [torqueABS=wheelABS]

Figure 3.2: The TA description of the ABS function (without timing).

The TA models are analyzed and verified in Uppaal Port which
also produces trace information constituting a path in the TA model.
The trace information is parsed and transformed into executable test
scripts which basically check behavioral conformance by verifying that
the same set of states and transitions (or nodes and edges) are taken and
visited at runtime and in the same order. To take into account timing
properties, the time point at which each state is visited at runtime is
timestamped. Doing so, it becomes possible to then check, for instance,
how long it has taken to go from one state to another. Having such
information as part of the test result reports, comparisons can be done
against clock constraints and other timing annotations in the TA model,
such as the model shown in Figure 3.3 (in which x represents a clock).

�����

���	
������

����
���������	�
����

���������	��
�����������
�

���������	����	����������������
�

���������	�����	�������������������� ����

����

����

Figure 3.3: The TA description of the ABS function.

22 Chapter 3. Contributions

Part of a sample internal output (the actual output shown to the
user is visualized and represented as HTML) of executing a test script
showing the timestamps at each visited state is illustrated in Listing 3.1.

Listing 3.1: Sample internal output from a test script
Running t e s t s . . .

−−−−−−−−−−−−−−−−−−
Checking the b e h a v i o u r o f G l o b a l B r a k e C o n t r o l l e r
T r a n s i t i o n 0 :

timestamp = 0 : 0 (1 3 9 8 1 7 6 8 6 8 : 1 0 7 1 8 4)
s t a t e = 0
rpm1 = 8
rpm2 = 8
reqTorque = 0
whlTorque = 0
v = 0
rpm3 = 16
rpm4 = 16
R = 1

T r a n s i t i o n 1 :
timestamp = 0 : 1 (1 3 9 8 1 7 6 8 6 8 : 1 0 7 1 8 5)
s t a t e = 1
rpm1 = 8
rpm2 = 8
reqTorque = 0
whlTorque = 0
v = 6
rpm3 = 16
rpm4 = 16
R = 1

T r a n s i t i o n 2 :
timestamp = 0 : 4 (1 3 9 8 1 7 6 8 6 8 : 1 0 7 1 8 8)
s t a t e = 4294967295
rpm1 = 8
rpm2 = 8
reqTorque = 0
whlTorque = 0
v = 6
rpm3 = 16
rpm4 = 16
R = 1

. . . .

This technique also enables to test other timing properties such as
end-to-end response times in the systems. For instance, if there is a re-
quirement on end-to-end response time from the moment that the brake
pedal is pressed until the moment that the brake force is applied, the
logged timestamp information can be used to calculate the actual end-
to-end response time and determine if it is in compliance with the re-
quirement or not. Listing 3.2 shows an excerpt of an Abstract Test Case
(ATC) generated from TA models, including a sample requirement on
end-to-end response time (specified as ’EndtoEnd = 3’).

23

Listing 3.2: A sample ATC for BBW system
###
[T e s t C a s e S p e c i f i c a t i o n]
a t c 1
#
[R e q u i r e m e n t S p e c i f i c a t i o n]
[F u n c t i o n a l]
E<> C2 . VehicleSpeed_kmph_FL#==0 or C2 . VehicleSpeed_kmph_FL#<5∗(C2 .

VehicleSpeed_kmph_FL#−C2 . WheelSpeed_rpm_FL#∗C2 .R/2) and C2 . ABSTorque_FL
#==0

#
[R e q u i r e m e n t S p e c i f i c a t i o n]
[C h a r a c t e r i s t i c s]
EndtoEnd = 3
#
[Purpose]
−
#
[D e s c r i p t i o n]
I f V e h i c l e S p e e d I n == 0 or s l i p r a t e > ABSSlipRateThreshhold , then

ABSBrakeTorqueOut s h a l l be s e t to 0Nm.
#
[P a s s C r i t e r i a]
PASS i f parameter v a l u e s i n the r e t u r n s i g n a l a r e the same as the e x p e c t e d

v a l u e s .
#
[Environment]
L o c a l h o s t
#
[P r e r e q u i s i t e s]
N/A
#
[AbstractTestCaseDateGenerated]
06/05/2014
#
[GeneratingToolAndVersion]
UPPAAL PORT v0 . 4 8
#
###
[SHORTNAME=a t c 1]
[ENDTOEND=3]

S t a t e :
(G l o b a l B r a k e C o n t r o l l e r . i d l e ABSFL . i d l e)
G l o b a l B r a k e C o n t r o l l e r . x=0 ABSFL . x=0 G l o b a l B r a k e C o n t r o l l e r . rpm1=0

G l o b a l B r a k e C o n t r o l l e r . rpm2=0 G l o b a l B r a k e C o n t r o l l e r . reqTorque=0
G l o b a l B r a k e C o n t r o l l e r . whlTorque=0 G l o b a l B r a k e C o n t r o l l e r . v=0
G l o b a l B r a k e C o n t r o l l e r . rpm3=16 G l o b a l B r a k e C o n t r o l l e r . rpm4=16
G l o b a l B r a k e C o n t r o l l e r .R=1 ABSFL .w=0 ABSFL . wheelABS=0 ABSFL . torqueABS=0
ABSFL . v=0 ABSFL .R=1

T r a n s i t i o n s :
G l o b a l B r a k e C o n t r o l l e r . i d l e −>G l o b a l B r a k e C o n t r o l l e r . Entry { reqTorque := 0 ,

rpm1 := 8 , rpm2 := 8 , x := 0 }

S t a t e :
(G l o b a l B r a k e C o n t r o l l e r . Entry ABSFL . i d l e)
G l o b a l B r a k e C o n t r o l l e r . x=0 ABSFL . x=0 G l o b a l B r a k e C o n t r o l l e r . rpm1=8

G l o b a l B r a k e C o n t r o l l e r . rpm2=8 G l o b a l B r a k e C o n t r o l l e r . reqTorque=0
G l o b a l B r a k e C o n t r o l l e r . whlTorque=0 G l o b a l B r a k e C o n t r o l l e r . v=0
G l o b a l B r a k e C o n t r o l l e r . rpm3=16 G l o b a l B r a k e C o n t r o l l e r . rpm4=16
G l o b a l B r a k e C o n t r o l l e r .R=1 ABSFL .w=0 ABSFL . wheelABS=0 ABSFL . torqueABS=0
ABSFL . v=0 ABSFL .R=1

Delay : 2

S t a t e :
(G l o b a l B r a k e C o n t r o l l e r . Entry ABSFL . i d l e)
G l o b a l B r a k e C o n t r o l l e r . x=2 ABSFL . x=2 G l o b a l B r a k e C o n t r o l l e r . rpm1=8

G l o b a l B r a k e C o n t r o l l e r . rpm2=8 G l o b a l B r a k e C o n t r o l l e r . reqTorque=0
G l o b a l B r a k e C o n t r o l l e r . whlTorque=0 G l o b a l B r a k e C o n t r o l l e r . v=0
G l o b a l B r a k e C o n t r o l l e r . rpm3=16 G l o b a l B r a k e C o n t r o l l e r . rpm4=16
G l o b a l B r a k e C o n t r o l l e r .R=1 ABSFL .w=0 ABSFL . wheelABS=0 ABSFL . torqueABS=0
ABSFL . v=0 ABSFL .R=1

. . .

24 Chapter 3. Contributions

Our testing approach also provides for other interesting features such
as defect localization. It means that when a problem is identified in the
system, it can be observed in the test result report on the transition
between which two states a deviation from the expected behavior has
occurred. This way, it provides hints and information about the vicin-
ity of a problem and helps with determining where the root cause of a
problem could be in the system.

3.1 Overview of the Included Papers
The main contributions of this thesis are organized and included as a
set of published papers as mentioned below. Other papers which can
strengthen the contributions of the thesis, but are not included here,
were mentioned at the beginning of the thesis; some of which, such as
[19, 20], were briefly discussed and cited in the thesis.

• Paper A: Model-Based Trade-off Analysis of Non-Functional Re-
quirements: An Automated UML-Based Approach

Abstract: One common goal followed by software engineers is to
deliver a product which satisfies the requirements of different stake-
holders. Software requirements are generally categorized into func-
tional and Non-Functional Requirements (NFRs). While NFRs
may not be the main focus in developing some applications, there
are systems and domains where the satisfaction of NFRs is even
critical and one of the main factors which can determine the success
or failure of the delivered product, notably in embedded systems.
While the satisfaction of functional requirements can be decom-
posed and determined locally, NFRs are interconnected and have
impacts on each other. For this reason, they cannot be considered
in isolation and a careful balance and trade-off among them needs
to be established. We provide a generic model-based approach to
evaluate the satisfaction of NFRs taking into account their mutual
impacts and dependencies. By providing indicators regarding the
satisfaction level of NFRs in the system, the approach enables to
compare different system design models and also identify parts of
the system which can be good candidates for modification in order
to achieve better satisfaction levels.

3.1 Overview of the Included Papers 25

Contribution: I have been the initiator and main author of the
paper.

• Paper B: Managing Timing Implications of Security Aspects in
Model-Driven Development of Real-Time Embedded Systems
Abstract: Considering security as an afterthought and adding se-
curity aspects to a system late in the development process has now
been realized to be an inefficient and bad approach to security.
The trend is to bring security considerations as early as possible in
the design of systems. This is especially critical in certain domains
such as real-time embedded systems. Due to different constraints
and resource limitations that these systems have, the costs and im-
plications of security features should be carefully evaluated in order
to find appropriate ones which respect the constraints of the sys-
tem. Model-Driven Development (MDD) and Component-Based
Development (CBD) are two software engineering disciplines which
help to cope with the increasing complexity of real-time embedded
systems. While CBD enables the reuse of functionality and analy-
sis results by building systems out of already existing components,
MDD helps to increase the abstraction level, perform analysis at
earlier phases of development, and also promotes automatic code
generation. By using these approaches and including security as-
pects in the design models, it becomes possible to consider security
from early phases of development and also identify the implications
of security features. Timing issues are one of the most important
factors for successful design of real-time embedded systems. In this
paper, we provide an approach using MDD and CBD methods to
make it easier for system designers to include security aspects in
the design of systems and identify and manage their timing impli-
cations and costs. Among different security mechanisms to satisfy
security requirements, our focus in this paper is mainly on using
encryption and decryption algorithms and consideration of their
timing costs to design secure systems.
Contribution: I have been the initiator and main author of the
paper.

• Paper C: Monitoring Capabilities of Schedulers in Model-Driven
Development of Real-Time Systems
Abstract: Model-driven development has the potential to reduce

26 Chapter 3. Contributions

the design complexity of real-time embedded systems by increasing
the abstraction level, enabling analysis at earlier phases of devel-
opment, and automatic generation of code from the models. In
this context, capabilities of schedulers as part of the underlying
platform play an important role. They can affect the complex-
ity of code generators and how the model is implemented on the
platform. Also, the way a scheduler monitors the timing behav-
iors of tasks and schedules them can facilitate the extraction of
runtime information. This information can then be used as feed-
back to the original model in order to identify parts of the model
that may need to be re-designed and modified. This is especially
important in order to achieve round-trip support for model-driven
development of real-time systems. In this paper, we describe our
work in providing such monitoring features by introducing a sec-
ond layer scheduler on top of the OSE real-time operating system’s
scheduler. The goal is to extend the monitoring capabilities of the
scheduler without modifying the kernel. The approach can also
contribute to the predictability of applications by bringing more
awareness to the scheduler about the type of real-time tasks (i.e.,
periodic, sporadic, and aperiodic) that are to be scheduled and the
information that should be monitored and logged for each type.
Contribution: I have been the initiator and main author of the pa-
per. The implementation was majorly done by Naveed Ul Mustafa.

• Paper D: An Automated Round-trip Support Towards Deployment
Assessment in Component-based Embedded Systems
Abstract: Synergies between model-driven and component-based
software engineering have been indicated as promising to mitigate
complexity in development of embedded systems. In this work
we evaluate the usefulness of a model-driven round-trip approach
to aid deployment optimization in the development of embedded
component-based systems. The round-trip approach is composed
of the following steps: modelling the system, generation of full code
from the models, execution and monitoring the code execution,
and finally back-propagation of monitored values to the models.
We illustrate the usefulness of the round-trip approach exploiting
an industrial case-study from the telecom-domain. We use a code-
generator that can realise different deployment strategies, as well
as special monitoring code injected into the generated code, and

3.1 Overview of the Included Papers 27

monitoring primitives defined at operating system level. Given
this infrastructure we can evaluate extra-functional properties of
the system and thus compare different deployment strategies.
Contribution: I have been the second author of the paper, respon-
sible for writing and implementing the monitoring framework part.

• Paper E: Towards Accurate Monitoring of Extra-Functional Prop-
erties in Real-Time Embedded Systems
Abstract: Management and preservation of Extra-Functional Prop-
erties (EFPs) is critical in real-time embedded systems to ensure
their correct behavior. Deviation of these properties, such as tim-
ing and memory usage, from their acceptable and valid values can
impair the functionality of the system. In this regard, monitor-
ing is an important means to investigate the state of the system
and identify such violations. The monitoring result is also used to
make adaptation and re-configuration decisions in the system as
well. Most of the works related to monitoring EFPs are based on
the assumption that monitoring results accurately represent the
true state of the system at the monitoring request time point. In
some systems this assumption can be safe and valid. However, if
in a system the value of an EFP changes frequently, the result of
monitoring may not accurately represent the state of the system at
the time point when the monitoring request has been issued. The
consequences of such inaccuracies can be critical in certain systems
and applications. In this paper, we mainly introduce and discuss
this practical problem and also provide a solution to improve the
monitoring accuracy of EFPs.
Contribution: I have been the initiator and main author of the
paper.

• Paper F: A Model-Based Testing Framework for Automotive Em-
bedded Systems
Abstract: Architectural models, such as those described in the
EAST-ADL language, represent convenient abstractions to reason
about automotive embedded software systems. To enjoy the fully-
fledged advantages of reasoning, EAST-ADL models could benefit
from a component-aware analysis framework that provides, ideally,
both verification and model-based test-case generation capabili-
ties. While different verification techniques have been developed

28 Chapter 3. Contributions

for architectural models, only a few target EAST-ADL. In this pa-
per, we present a methodology for code validation, starting from
EAST-ADL artifacts. The methodology relies on: (i) automated
model-based test-case generation for functional requirements crite-
ria based on the EAST-ADL model extended with timed automata
semantics, and (ii) validation of system implementation by gener-
ating Python test scripts based on the abstract test-cases, which
represent concrete test-cases that are executable on the system
implementation. We apply our methodology to analyze the ABS
function implementation of a Brake-by-Wire system prototype.
Contribution: I have been the second author in this paper, respon-
sible for the parts regarding generation of executable test scripts
(called as Concrete Test Case), and their execution on the plat-
form and producing test result reports. I also participated and
contributed to the development of the overall testing methodol-
ogy.

• Paper G: Testing of Timing Properties in Real-Time Systems: Ver-
ifying Clock Constraints
Abstract: Ensuring that timing constraints in a real-time system
are satisfied and met is of utmost importance. There are different
static analysis methods that are introduced to statically evaluate
the correctness of such systems in terms of timing properties, such
as schedulability analysis techniques. Regardless of the fact that
some of these techniques might be too pessimistic or hard to apply
in practice, there are also situations that can still occur at runtime
resulting in the violation of timing properties and thus invalidation
of the static analyses’ results. Therefore, it is important to be able
to test the runtime behavior of a real-time system with respect
to its timing properties. In this paper, we introduce an approach
for testing the timing properties of real-time systems focusing on
their internal clock constraints. For this purpose, test cases are
generated from timed automata models that describe the timing
behavior of real-time tasks. The ultimate goal is to verify that the
actual timing behavior of the system at runtime matches the timed
automata models. This is achieved by tracking and time-measuring
of state transitions at runtime.
Contribution: I have been the initiator and main author of the
paper.

3.1 Overview of the Included Papers 29

Table 3.1 shows how the papers cover research goals and contributions
of the thesis.

Thesis Paper Contribution Research Goal
A C1 G1
B C2 G2
C C3 & C4 G3
D C3 G2
E C3 & C4 G3
F C4 G3
G C4 G3

Table 3.1: Mapping of papers to the research goals and contributions of
the thesis

Chapter 4

Related Work

Property preservation: The importance of property preservation is
acknowledged and discussed in different contexts in building software
systems. In [24], the authors confirm that “the model can only be an
approximation of the implementation w.r.t. the timing behavior. It is
difficult to guarantee that the issuing time of an event in the imple-
mentation is exactly the same as that in the model”. Based on this
observation, in [24], they provide an approach and demonstrate that the
real-time properties of the implemented system can be predicted from
the properties of its (timed state/action sequences) model, when the time
deviation is bounded. As an extension of this work, in [25] the authors
introduce an approach for strengthening property preservation between
model and implementation by imposing urgency on the execution of ob-
servable actions (than the execution of unobservable ones). They define
the notion of distance “as a metric to express the strength of observable
property preservation between model and implementation” [25]. Using
this metric, they show that by applying the aforementioned approach
and executing observable actions before unobservable ones, a smaller
distance to the model than any other implementation of the same model
can be obtained. From this aspect, their work can also be relevant and
applicable for the issue of accuracy in monitoring EFPs that we have
discussed in this thesis and the technique we introduced to tackle it [26].

One scenario where deviation of system properties can occur is in
performing model transformations (horizontal or vertical). In this the-
sis we did not focus on property preserving model transformations and

31

32 Chapter 4. Related Work

consider it as a future work to complement the contributions of the the-
sis. There are, however, various works in the literature that discuss
and provide solutions for this problem and for verifying the correctness
of transformations. In [27], Vallecillo et al. discuss the importance of
model transformation correctness and the issues related to specification
and testing of transformations. They introduce the concept of tract as
a generalization of model transformation contracts and a mechanism to
specify and capture the expected behavior of a model transformation.
Using tracts, they then generate test cases and perform testing of model
transformations in a black-box fashion. Based on the concept of tracts,
in [28], a static and white-box fault localization method is presented
which helps to identify problematic rules in model transformations. In
[29], an investigation on techniques based on finite model theory is done
to show the use of algebraic co-limits (from category theory) in preserva-
tion of certain logical properties (consistency related) in model merging
transformations. REFINER [30] is a tool consisting of a set of tech-
niques for verification of behavioral transformations of formal models
of concurrent systems. The tool can analyze transformations to deter-
mine if semantics of the input model and also given safety and liveness
properties are preserved or not. Another work that can be consulted
for semantic preserving model transformations is [31] by Mathias Hüls-
busch et al. in which a direct bisimulation proof and borrowed context
technique are used and compared as two different ways in order to show
semantic preservation for a transformation.

NFR Framework: One of the fundamental works in addressing
NFRs in development of systems, identifying their impacts and con-
flicts, and performing trade-off analysis on them, is the NFR Framework
[32]. In this framework, NFRs are represented as softgoals which are
to be satisficed. The notion of softgoal is used as a looser notion of
goals to indicate the absence of a clear-cut criterion for satisfaction of
non-functional requirements [33]. Similarly, the term satisfice is used
to indicate that there is sufficient positive evidence and little negative
evidence for the satisfaction of an NFR. An NFR is considered unsat-
isficeable when the opposite of the above condition holds. Development
techniques for achieving NFRs are defined as operationalization which
include (but are not limited to) operations, functions and data. Besides
NFR softgoals and operationalizating softgoals, NFR framework intro-
duces claim softgoals which convey the rationale and argument for or

33

against a design decision. In refining and decomposing softgoals, the re-
lationships between them are established in the form of ’AND’ and ’OR’
contributions. An ’AND’ contribution means that all the sub-softgoals
are needed in order to achieve a softgoal at a higher level in the hierarchy.
The structure that is produced as the result of the decomposition and
refinement process is called Softgoal Interdependency Graph (SIG). The
NFR UML profile that we introduced in this thesis is inspired by the
NFR Framework and the concept of feature in our NFR profile is similar
to what NFR Framework calls operationalization. One major difference,
though, is that NFR Framework can only support a qualitative form
of analysis of NFRs while our profile along with its automated analysis
mechanism enables to do so in a quantitative manner. Moreover, the
concepts we have suggested as part of the NFR Profile enable to capture
more detailed information for each NFR in the system, such as the ratio-
nale behind having a requirement as well as numerical properties such as
deviation indicator value that are calculated as the result of automated
analysis of NFRs.

MARTE: The UML profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) [34] is one of the recent and ma-
jor efforts on modeling real-time embedded systems and their extra-
functional properties. It was introduced as the successor of UML pro-
file for Schedulability, Performance, and Time (SPT). MARTE includes
concepts and semantics for UML-based description of real-time and em-
bedded systems. The core concepts in MARTE are categorized in two
parts: modeling and analysis. The intent in the analysis part is not to
define new analysis techniques, but to provide a framework to annotate
models with the necessary extra-functional properties and information
in order to support different kinds of analyses in the real-time domain,
particularly performance and schedulability. One of the main character-
istics of MARTE is that it provides a common way to model both the
hardware and software aspects of real-time systems. This improves the
communication between developers and helps to include both hardware
and software characteristics in making predication and analysis of the
systems. In this thesis, we did not deal with how EFPs can be specified
and represented, for which MARTE can serve as one solution. There is,
however, the potential to use and gain from the capabilities of MARTE
in our suggested solutions. For instance, the concepts for modeling EFPs
in MARTE can be used together with our NFR profile to annotate and

34 Chapter 4. Related Work

include in the model of NFRs the EFPs of different feature elements that
are considered for satisfying the NFRs.

Real-Time Specification for Java (RTSJ): Many of the oper-
ating systems and also programming languages today provide support
for measuring the CPU time that a runnable entity (i.e., thread, etc.)
consumes to perform its function. However, the monitoring facilities and
event handling mechanisms provided by these platforms are not usually
integrated with their scheduling facilities [35]. As a result, the platform
cannot enforce and ensure real-time properties of threads such as their
allowed execution times and deadlines. This can lead to the violation
of the result of timing analyses performed before runtime. Real-Time
Specification for Java (RTSJ) is an attempt to integrate scheduling of
threads with the execution time monitoring facilities and enforce exe-
cution budgets on them. By monitoring the execution times of threads
and comparing them with the specified timing requirements, it can de-
tect and ensure that a thread which is about to exceed its execution
time budget does not impair the execution of other tasks as expected
and predicted through schedulability analysis [35].

The concept of the second layer scheduler that we introduced and
implemented (in paper C) to enable detailed monitoring of real-time
tasks is similar to the main idea behind RTSJ. Our approach, however,
provides more types of monitoring information such as on periodicity
of tasks, deadline misses, execution time overruns. It also generates
extensive log information which can be analyzed for different purposes
such as to detect that a task is getting closer and closer to missing its
deadline in each execution and take some measures to prevent it from
missing its deadline before it occurs. In addition, our solution enables
to configure and use different scheduling policies in the scheduler.

Ada Ravenscar: Ravenscar profile for Ada which was introduced
in the 8th International Real-Time Ada Workshop (IRTAW) [36] is a
subset of the tasking model in Ada. It is defined to provide the level
of predictability and determinism that is needed in safety-critical hard
real-time systems by removing constructs that contain non-deterministic
behavior and implementation dependancies [37, 38]. It offers features
that cover the programming needs of statically defined real-time systems.
Ravenscar profile enables specification of a safety-critical system in a way
to be certifiable to the highest integrity levels. Such a verifiable system

35

is achieved by:

• providing a task concurrency model for real-time systems along
with several concurrency-related checks,

• enforcement of constraints that are required to enable and preserve
results of schedulability analysis and other types of static analysis
techniques,

• defining bounds on memory usage and allowing only a static task
set (number of tasks are fixed),

• enabling creation of small and highly efficient runtime implementa-
tions (by reducing the size and complexity of the required runtime
system) [37].

These features facilitate temporal verification of Ravenscar programs
and gaining confidence in its behavior. In [39], several mechanisms in
Ada Ravenscar profile that contribute to the preservation of timing prop-
erties, such as WCET and period/MIAT, are introduced and discussed.

CHESS project: The CHESS project [40] which stands for Com-
position with Guarantees for High-integrity Embedded Software Com-
ponents Assembly aims to provide model-based solutions for addressing
extra-functional concerns in embedded systems while guaranteeing cor-
rectness of the system at runtime. This is done by modeling systems
using a cross-domain UML profile called CHESS ML which adopts from
the modeling concepts of MARTE [34] (for modeling of extra-functional
properties) and SysML [41] (for high-level modeling of requirements)
UML profiles, and also extends some of the concepts defined in these
profiles to cover the modeling needs of telecommunication, space, rail-
way, and to some extent automotive domains. In CHESS, Model-Driven
Architecture (MDA) methodology that is recommended by Object Man-
agement Group (OMG) is used [42]. Different types of analyses are
performed at different levels and throughout the transformation chain
for code generation to ensure correctness of the design. The idea here is
to provide a read-only Platform-Specific Model (PSM) to the user, and
also make the manual editing of the code unnecessary. This is important
in order to maintain design consistency. As a consequence, the results
of the analyses are propagated back to the Platform-Independent Model

36 Chapter 4. Related Work

(PIM), so that the user can identify parts of the model that need to be
modified in order to achieve the desired behavior.

CHESS project is basically defined as an extension of the ASSERT
(Automated proof-based System and Software Engineering for Real-
Time systems) [43] project following two main goals: to establish cor-
rectness as early as possible and to actively preserve it throughout the
whole development process down to deployment and execution. To-
wards these goals, ASSERT adopted an MDE methodology targeting
high-integrity software systems that are used in space domain and was
based on a DSL. CHESS extended the approach covering other types
of systems from telecommunication and railway (and partially automo-
tive) domains. The modeling language that was used in CHESS, called
CHESSML, was based on UML profiling approach consisting of concepts
from UML, SysML and MARTE. Some of the contributions of this thesis
have been formulated in the scope of the CHESS project (mentioned in
the respective papers).

Others: In [44] by Sentilles, a framework for management of extra-
functional properties in component models of embedded systems is of-
fered. The framework enables specification and attachment of multi-
valued and context-aware EFPs to architectural elements of component
models. In this work, it is also highlighted and emphasized that differ-
ent values for an EFP can exist which originate from different sources.
Moreover, by gaining more information and knowledge about a system,
refined and more accurate values for an EFP can be considered along the
development of the system. As part of this work, ProCom component
model is also introduced. In summary, it focuses mainly on capturing
and representation of EFPs in component models of embedded systems.

The work done by Ciccozzi in [45] is a model-driven approach to-
wards achieving preservation of properties. It introduces model-driven
techniques such as full-code generation from (analyzed) system models
and also a back propagation mechanism to facilitate preservation of prop-
erties. The back propagation mechanism enables to establish a feedback
loop between monitoring results at runtime and system models. This
way, it helps to inform designers about actual values of properties at
runtime versus their expected values specified in the model. This work
assumes that the platform for which code is generated has necessary
mechanisms for monitoring, enforcement and basically preservation of
EFPs. Moreover, it does not deal with how balance between EFPs can

37

be established, except its suggested round-trip support (which is com-
mon between that work and this thesis) which can be used as a means
towards establishing such a balance. In that work however, the focus in
the round-trip solution is on the model-based techniques to propagate
back monitored information to the design models, while in this thesis,
we focused on the monitoring part and the role of the platform in the
round-trip chain.

REMES which is a Resource Model for Embedded Systems is in-
troduced and applied in [46]. REMES enables modeling and reasoning
about the functional and extra-functional behaviors of a system and its
components. It introduces a formal language (a state-machine based
behavioral language) for modeling resources. The main intention with
REMES is to express resource usage and perform usage analysis. In a
REMES model, resources are considered as global quantities of finite size.
The analysis of resources is based on multi-priced timed automata and
enables to solve, for instance, feasibility, trade-off and optimal/worst-
case resource analysis problems [47].

An example of works that deal with EFPs at the hardware and chip
level is [48] by Hatami which provides a method for analysis and pre-
diction of hardware related EFPs at early design phases. It takes into
account various hardware parameters such as voltage, frequency, and a
few others to determine chip level EFPs such as dynamic energy for a
transistor. In [49] by Sapienza, an approach is provided for making de-
cisions based on EFPs for optimal partitioning of an embedded system
into software and hardware parts.

Chapter 5

Conclusion and Future
Directions

In this thesis, we addressed the important issue of preservation of EFPs
in embedded systems. We started by discussing the relationship between
NFRs and EFPs which is necessary in understanding how constraints
over EFPs form and where they originate from. It is based on such a
relationship that it then becomes possible to talk about if the EFPs of
a system element or component is acceptable in the context of that sys-
tem or not. In embedded systems where such EFP constraints can be
determinant in success or failure of the product, ensuring that those con-
straints are not violated and EFPs are preserved within their constraints
is crucial.

For modeling NFRs and performing trade-off analysis among them,
we introduced a UML profile which enables capturing of NFRs in a
generic way and automatic analysis of their trade-offs using model trans-
formation techniques. In this step, mutual impacts and conflicts among
NFRs are understood and they can then be balanced to achieve an ac-
ceptable overall satisfaction level for all the NFRs before continuing with
the rest of the development process. As the next step, to build a system
which respects the constraints defined over its EFPs, we introduced an
approach for balancing security versus timing constraints which enables
to produce a component model of the system including added security
features while respecting and operating within its timing constraints.
Although in the approach we only focused on security and timing prop-

39

40 Chapter 5. Conclusion and Future Directions

erties, the suggested solution has the potential to be adapted and used
for other EFPs as well.

As mentioned before, the ultimate goal in designing a software prod-
uct is that the system performs as expected at runtime and when it is
in operation. However, regardless of which development method is used
and the amount of analysis performed, situations may still occur at run-
time that lead to the violation of EFPs. To monitor for such cases for
timing properties, we suggested the second layer scheduler concept. It
basically adds to the execution platform the necessary mechanism for
monitoring of timing events. Of course, adding monitoring features has
its own overhead. In terms of the second layer scheduler, the solution
we have suggested adds the monitoring capabilities without modifying
the kernel of the OS, which is particularly interesting in cases where,
for instance, the source code is not available, legacy systems, or when
more flexibility and portability is desired. By including the monitoring
features as part of the OS kernel and scheduler, the overhead can be
reduced to some extent. In the context of model driven development,
we also demonstrated how the collected monitoring information about
EFPs can be used to propagate back to the models in order to identify
inconsistencies. The models can then be modified and new code can
be generated until the desired set of EFPs value at runtime is achieved.
Such a round-trip support is particularly useful in optimizing the system
with respect to EFPs, which deserves a separate study and investigation
as a future work.

When a system is built, the next step is to test it before shipping
it to customers. For testing timing properties, we also introduced a
model-based testing framework which enables testing the actual behavior
of the system at runtime against its desired behavior captured in the
form of timed automata models. This was achieved in our approach by
automatic generation and execution of test cases and use of timestamps
at runtime for each state transition. As a future extension, the approach
may also be well modified and used for testing of other EFPs such as
memory usage, if memory constraints are also captured as part of the
model. For instance, analogous to a timed automata model, if in a state
machine model the information on allowed memory usage in each state
is specified, the approach can easily be modified to check the memory
consumption at runtime at each state transition and verify if it matches
the specified constraints in the model. One point to note here with
respect to testing in general is that testing and passing test cases does

41

not necessarily guarantee the absence of errors and bugs in a system, but
serves as a means to gain more confidence in the quality of the product
that is developed.

In this thesis, we also investigated the issue of the accuracy of col-
lected monitoring information and demonstrated a technique for miti-
gating this issue. Accuracy plays an important role, for example, when
the collected information is used to make decisions such as for runtime
adaptation. If the information is not accurate (or fresh and up-to-date),
it can lead to taking wrong decisions, which in turn might have drastic
consequences, for instance, in safety critical systems such as a pace-
maker. In the thesis, mainly single core platforms were considered and
it would be interesting as another future work to investigate monitoring
and testing of EFPs in multicore systems which would have their unique
challenges. For instance, there could be a requirement on end-to-end
response time of a set of tasks which are allocated and run on different
cores. Extending the monitoring and testing methods introduced in this
work to such scenarios would be another future direction and extension
of this work.

As mentioned in the thesis, an EFP may well be refined and trans-
lated into one or more fine-grained EFPs at lower abstraction levels.
The refinement and granularity level at which preservation of an EFP
is applied can depend on several factors such as need and interest to
preserve an EFP at a certain level and also monitoring feasibility at that
level. For instance, if there is a composite component with a constraint
on its maximum execution time, preservation of its execution time prop-
erty may be enforced at the level of the composite component itself or
at the level of its child components. It should, however, be noted that
in the latter case, property preservation can be more restrictive, which
might actually be necessary in certain systems and contexts. On the
other hand, in the former case there should be a mechanism to be able
to monitor the execution time of the composite component or derive it
from the execution times of its child components which are feasible to
monitor.

The solutions introduced in this thesis contribute to preserving EFPs
at different abstraction levels and development phases, particularly in the
context of model-based development. Therefore, together they can form
and be part of a methodology and act as a set of design techniques for
building a system with property preservation considerations and support,
from the requirements analysis phase down to its deployment on the

42 Chapter 5. Conclusion and Future Directions

platform, and execution. Application of such a methodology as a whole
and its validation against one single system and use-case is planned as
another future work. Overall, we believe that the solutions proposed in
this thesis can help and serve as a set of means in building embedded
systems with better quality assurance.

Bibliography

[1] Martin Glinz. On Non-Functional Requirements. In 15th IEEE
International Requirements Engineering Conference, pages 21–26,
New Delhi, India, October 2007.

[2] S. Heath. Embedded Systems Design. EDN series for design engi-
neers, ISBN: 9780750655460. Newnes, 2003.

[3] Thomas Henzinger and Joseph Sifakis. The Embedded Systems
Design Challenge. In Jayadev Misra, Tobias Nipkow, and Emil Sek-
erinski, editors, FM 2006: Formal Methods, volume 4085 of Lecture
Notes in Computer Science, pages 1–15. Springer Berlin / Heidel-
berg, 2006.

[4] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. To-
ward Model-Based Trade-off Analysis of Non-Functional Require-
ments. In 38th Euromicro Conference on Software Engineering and
Advanced Applications(SEAA), September 2012.

[5] Mehrdad Saadatmand. Satisfying Non-Functional Requirements in
Model-Driven Development of Real-Time Embedded Systems, Licen-
tiate Thesis. Number 150. Mälardalen University, May 2012.

[6] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. UML-
Based Modeling of Non-Functional Requirements in Telecommuni-
cation Systems. In The Sixth International Conference on Software
Engineering Advances (ICSEA 2011), Barcelona, Spain, October
2011.

[7] Lawrence Chung and Julio Cesar Prado Leite. Conceptual Model-
ing: Foundations and Applications. chapter On Non-Functional

43

44 Bibliography

Requirements in Software Engineering, pages 363–379. Springer-
Verlag, Berlin, Heidelberg, 2009.

[8] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite.
Non-functional requirements: From elicitation to conceptual mod-
els. In IEEE Transactions on Software Engineering, volume 30,
pages 328–350, 2004.

[9] Bran Selic. The Pragmatics of Model-Driven Development. IEEE
Software, 20:19–25, September 2003.

[10] M. Torngren, DeJiu Chen, and I. Crnkovic. Component-based vs.
model-based development: a comparison in the context of vehicular
embedded systems. In Software Engineering and Advanced Appli-
cations, 2005. 31st EUROMICRO Conference on, pages 432 – 440,
aug.-3 sept. 2005.

[11] B.W. Boehm and P.N. Papaccio. Understanding and control-
ling software costs. Software Engineering, IEEE Transactions on,
14(10):1462–1477, 1988.

[12] Barry Boehm and Victor R. Basili. Software Defect Reduction Top
10 List. Computer, 34(1):135–137, January 2001.

[13] G. Tassey. The economic impacts of inadequate infrastructure for
software testing. Technical report, National Institute of Standards
and Technology, May, 2002.

[14] O. Florescu, Jinfeng Huang, J. Voeten, and H. Corporaal. Strength-
ening Property Preservation in Concurrent Real-Time Systems. In
Embedded and Real-Time Computing Systems and Applications,
2006. Proceedings. 12th IEEE International Conference on, pages
106–109, 2006.

[15] Oana Florescu, Jinfeng Huang, Jeroen Voeten, and Henk Corporaal.
Towards Stronger Property Preservation in Real-Time Systems Syn-
thesis (Technical Report). http://repository.tue.nl/710999,
2006.

[16] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitor-
ing of real-time systems. In Real-Time Systems Symposium, 1991.
Proceedings., Twelfth, pages 74 –83, dec 1991.

http://repository.tue.nl/710999

Bibliography 45

[17] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. De-
sign of adaptive security mechanisms for real-time embedded sys-
tems. In Proceedings of the 4th international conference on En-
gineering Secure Software and Systems, ESSoS’12, pages 121–134,
Eindhoven, The Netherlands, 2012. Springer-Verlag.

[18] Schrödinger’s cat Experiment. http://www.http://en.
wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat, Accessed:
December 2014.

[19] Mehrdad Saadatmand and Mikael Sjodin. On Combining Model-
Based Analysis and Testing. In Information Technology: New Gen-
erations (ITNG), 2013 Tenth International Conference on, pages
260–266, Las Vegas, NV, USA, April 2013.

[20] Mehrdad Saadatmand and Sahar Tahvili. A Fuzzy Decision Support
Approach for Model-Based Tradeoff Analysis of Non-Functional Re-
quirements. In 12th International Conference on Information Tech-
nology : New Generations (ITNG), Las Vegas, Nevada, USA, April
2015.

[21] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hat-
tangady. Security in Embedded Systems: Design Challenges. ACM
Trans. Embed. Comput. Syst., 3(3):461–491, August 2004.

[22] Mehrdad Saadatmand and Antonio Cicchetti. Mapping of State
Machines to Code: Potentials and Challenges. In The Ninth Inter-
national Conference on Software Engineering Advances (ICSEA),
pages 247–251, Nice, France, October 2014.

[23] EAST-ADL Specification. http://www.atesst.org, Accessed: De-
cember 2014.

[24] Jinfeng Huang, Jeroen Voeten, and Marc Geilen. Real-time Prop-
erty Preservation in Concurrent Real-time Systems. In In: Proc. of
10th International Conference on Real-Time and Embedded Com-
puting Systems and Applications (RTCSA), 2004.

[25] O. Florescu, Jinfeng Huang, J. Voeten, and H. Corporaal. Strength-
ening Property Preservation in Concurrent Real-Time Systems. In
Embedded and Real-Time Computing Systems and Applications,
2006. Proceedings. 12th IEEE International Conference on, pages
106–109, 2006.

http://www.http://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
http://www.http://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
http://www.atesst.org

46 Bibliography

[26] Mehrdad Saadatmand and Mikael Sjodin. Towards Accurate Moni-
toring of Extra-Functional Properties in Real-Time Embedded Sys-
tems. In Software Engineering Conference (APSEC), 2012 19th
Asia-Pacific, pages 338–341, Dec 2012.

[27] Antonio Vallecillo, Martin Gogolla, Loli Burgueño, Manuel Wim-
mer, and Lars Hamann. Formal Specification and Testing of Model
Transformations. In Marco Bernardo, Vittorio Cortellessa, and Al-
fonso Pierantonio, editors, Formal Methods for Model-Driven Engi-
neering, volume 7320 of Lecture Notes in Computer Science, pages
399–437. Springer Berlin Heidelberg, 2012.

[28] L. Burgueno, J. Troya, M. Wimmer, and A. Vallecillo. Static
Fault Localization in Model Transformations. Software Engineer-
ing, IEEE Transactions on, PP(99):1–1, 2015.

[29] Mehrdad Sabetzadeh, Shiva Nejati, Marsha Chechik, and Steve
Easterbrook. Reasoning about Consistency in Model Merging. In
Proceedings of 3rd Workshop on Living With Inconsistency in Soft-
ware Development (Co-located with ASE2010), Antwerp, Belgium,
September 2010.

[30] Anton Wijs and Luc Engelen. REFINER: Towards Formal Ver-
ification of Model Transformations. In JuliaM. Badger and
KristinYvonne Rozier, editors, NASA Formal Methods, volume 8430
of Lecture Notes in Computer Science, pages 258–263. Springer In-
ternational Publishing, 2014.

[31] Mathias Hülsbusch, Barbara König, Arend Rensink, Maria Se-
menyak, Christian Soltenborn, and Heike Wehrheim. Showing Full
Semantics Preservation in Model Transformation - A Comparison
of Techniques. In Dominique Méry and Stephan Merz, editors, Inte-
grated Formal Methods, volume 6396 of Lecture Notes in Computer
Science, pages 183–198. Springer Berlin Heidelberg, 2010.

[32] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos.
Non-Functional Requirements in Software Engineering, volume 5 of
International Series in Software Engineering. Springer, 1999.

[33] John Mylopoulos, Lawrence Chung, and Eric Yu. From object-
oriented to goal-oriented requirements analysis. Commun. ACM,
42:31–37, January 1999.

Bibliography 47

[34] MARTE specification. http://www.omgmarte.org, Accessed: De-
cember 2014.

[35] Andy J. Wellings, Gregory Bollella, Peter C. Dibble, and David
Holmes. Cost Enforcement and Deadline Monitoring in the Real-
Time Specification for Java. In 7th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC),
pages 78–85. IEEE Computer Society, 12-14 May 2004.

[36] Lars Asplund, B. Johnson, Kristina Lundqvist, and Alan Burns.
Session Summary: The Ravenscar Profile and Implementation Is-
sues. ACM Press, July 1999.

[37] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the
use of the Ada Ravenscar Profile in high integrity systems. Ada
Lett., XXIV:1–74, June 2004.

[38] Kristina Lundqvist and Lars Asplund. A Ravenscar-Compliant
Run-time Kernel for Safety-Critical Systems*. Real-Time Systems,
24:29–54, January 2003.

[39] Enrico Mezzetti, Marco Panunzio, and Tullio Vardanega. Preserva-
tion of Timing Properties with the Ada Ravenscar Profile. In Jorge
Real and Tullio Vardanega, editors, Reliable Software Technologies
– Ada-Europe 2010, volume 6106 of Lecture Notes in Computer Sci-
ence, pages 153–166. Springer Berlin Heidelberg, 2010.

[40] CHESS Project: Composition with Guarantees for High-
integrity Embedded Software Components Assembly. http://
chess-project.ning.com/, Accessed: December 2014.

[41] OMG SysML Specifcation. http://www.sysml.org/specs.htm,
Accessed: December 2014.

[42] Model-Driven Architecture (MDA). http://www.omg.org/mda/,
Accessed: December 2014.

[43] ASSERT Project: Automated proof-based System and Software En-
gineering for Real-Time systems. http://http://cordis.europa.
eu/projects/rcn/71564_en.html/, Accessed: December 2014.

http://www.omgmarte.org
http://chess-project.ning.com/
http://chess-project.ning.com/
http://www.sysml.org/specs.htm
http://www.omg.org/mda/
http://http://cordis.europa.eu/projects/rcn/71564_en.html/
http://http://cordis.europa.eu/projects/rcn/71564_en.html/

48 Bibliography

[44] Séverine Sentilles. Managing Extra-Functional Properties in
Component-Based Development of Embedded Systems. PhD thesis,
Mälardalen University, Västerås, Sweden, June 2012.

[45] Federico Ciccozzi. From models to code and back: A round-trip
approach for model-driven engineering of embedded systems. PhD
thesis, Mälardalen University, Västerås, Sweden, January 2014.

[46] Aneta Vulgarakis. A Resource-Aware Framework for Designing
Predictable Component-Based Embedded Systems. PhD thesis,
Mälardalen University, June 2012.

[47] C. Seceleanu, A. Vulgarakis, and P. Pettersson. REMES: A Re-
source Model for Embedded Systems. In Engineering of Complex
Computer Systems, 2009 14th IEEE International Conference on,
pages 84–94, 2009.

[48] Nadereh Hatami Mazinani. Multi-level analysis of non-functional
properties (PhD Thesis). PhD thesis, Universität Stuttgart, Holz-
gartenstr. 16, 70174 Stuttgart, 2014.

[49] Gaetana Sapienza. Multiple Property-Based Partitioning for Em-
bedded Applications, Licentiate Thesis. Number 176. Mälardalen
University, May 2014.

II

Included Papers

51

Chapter 6

Paper A:
Model-Based Trade-off
Analysis of
Non-Functional
Requirements: An
Automated UML-Based
Approach

Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin
In Journal of Advanced Computer Science, Vol. 3, No. 11, November,
2013.

53

Abstract

One common goal followed by software engineers is to deliver a product
which satisfies the requirements of different stakeholders. Software re-
quirements are generally categorized into functional and Non-Functional
Requirements (NFRs). While NFRs may not be the main focus in de-
veloping some applications, there are systems and domains where the
satisfaction of NFRs is even critical and one of the main factors which
can determine the success or failure of the delivered product, notably
in embedded systems. While the satisfaction of functional requirements
can be decomposed and determined locally, NFRs are interconnected and
have impacts on each other. For this reason, they cannot be considered
in isolation and a careful balance and trade-off among them needs to
be established. We provide a generic model-based approach to evaluate
the satisfaction of NFRs taking into account their mutual impacts and
dependencies. By providing indicators regarding the satisfaction level of
NFRs in the system, the approach enables to compare different system
design models and also identify parts of the system which can be good
candidates for modification in order to achieve better satisfaction levels.

6.1 Introduction 55

6.1 Introduction

In software engineering, there are different types of programming lan-
guages and development methods that have been introduced to develop
software systems in different domains. There is one common goal that is
inherent in all these different development tools and methodologies, and
that is to help build a software system which satisfies the set of require-
ments that are defined for it. While the focus has usually been mainly
on functional requirements [1, 2], inadequate attention and improper
handling of Non-Functional Requirements (NFRs) has been identified as
one of the important factors for failure of many project [3, 4]. In spite of
this fact, NFRs are still rarely taken into account so seriously as func-
tional requirements and not considered as first-class entities in software
architecture [5]. Part of this is due to the fact that NFRs are usually
defined at a high abstraction level and specified in an informal way [6, 5].
Therefore, there need to be appropriate tools and methods to incorpo-
rate them at earlier phases of development and in design models along
with functional requirements. Integration of NFRs and FRs is especially
important considering that having a different set of NFRs for the same
FRs can result in different architectural decisions and implementations
[6, 7].

While NFRs might receive less attention and degree of importance
in certain systems such as desktop applications, however, they can be
critical in certain domains such as in real-time and embedded systems.
In these systems, there are different set of constraints and limitations on
available resources and therefore, a successful design and implementation
depends heavily on how it can satisfy the non-functional requirements of
the system [8]. Examples of such limitations that get formulated in the
form of NFRs can be limited amount of available memory, limited energy
resources, and so on. Therefore, it is important to be able to evaluate
different design models and alternatives with respect to the satisfaction
of NFRs. For example, in one design, to fulfill security requirements,
a stronger encryption algorithm might be used than another design al-
ternative. However, using a stronger encryption algorithm, may lead to
consuming more memory or processing capacity and CPU time, and this
way, it impacts memory and performance requirements (if there are any
defined). This brings us to the next challenge with respect to NFRs and
it is that NFRs are interconnected and have dependencies and for this
reason, cannot be considered in isolation. Therefore, designers should be

56 Paper A

able to carefully identify how satisfying and fulfilling one requirements
can impair the satisfaction of other NFRs in the system. Establishing
and maintaining such interdependencies during the development process
and the lifecycle of the product is also an important point taking into
account the evolution of software architecture and introduction of new
requirements or modifying existing ones. Moreover, not only NFRs can
have impacts on each other, but also an NFR usually crosscuts differ-
ent parts of a system. For example, achieving security in a system,
requires design decisions for different parts of a system spanning from
user interfaces (e.g., what a user can enter as input), database backends,
communication protocols, network topology and so on.

Model-based development (MBD) is a promising approach to cope
with the design complexity of systems such as those in real-time embed-
ded domain. It helps to raise the abstraction level (and hiding unnec-
essary details and complexities in each viewpoint), perform analysis at
earlier phases of the development and also enables automatic generation
of code from the models [9]. By providing views of the system at a high
abstraction level, MBD concepts can also be used to model NFRs, which
as stated are usually defined at a high abstraction level, and incorporate
them with other parts of the system. Analysis of NFRs can then be
performed on the model and also the model of NFRs can be maintained
as a development artifact.

In this paper we introduce a UML profile [10, 11] for modeling NFRs
in a generic way and regardless of their type (i.e., performance, avail-
ability, and so on), to enable performing trade-off analysis on them. By
including important information about each requirement in the model,
such as its priority and also its relationships to other requirements and
functional parts of the system, the dependencies and impacts of NFRs
are analyzed to provide system designers with information about how
good a system design is in terms of the satisfaction of its NFRs. It
also helps to identify parts of the system in which violations and devi-
ations have occurred that deserve more attention. Based on this infor-
mation, system designers can also compare different design models and
alternatives. Another approach for modeling NFRs could be to define
a Domain-Specific Language (DSL) from scratch (i.e., non-UML based
approaches), however, using UML and its profiling mechanism to extend
it and define new modeling semantics has some advantages. Introduc-
ing a DSL requires extra efforts on training the developers, while most
developers may already be familiar or even using UML. For this rea-

6.1 Introduction 57

son, it can also serve as a unifying factor between different development
teams (e.g., to communicate design decisions). Moreover, there is a big
variety of different UML tools which are already available and can be
used off-the-shelf. Also, integrating NFRs with functional parts of the
systems will be more straightforward, such as when there already exist
UML models of the system and the model of NFRs based on our intro-
duced profile can be constructed and integrated with them (e.g., legacy
systems). A comparison of advantages and disadvantages of using DSLs
and UML profiles for defining new modeling semantics are discussed in
detail in [10, 12].

Using the suggested profile for modeling NFRs, not only NFRs can
be modeled and integrated with already existing functional models of the
system, but it is also intended to be used for constructing the NFR model
at the beginning of the development process and to perform analysis of
their trade-offs, especially when enough information about their impacts
and dependencies are available. The model may then gradually grow,
be integrated with functional parts as they get designed, and automatic
analysis of NFRs can be done iteratively when any changes that can
affect NFRs are made.

The remainder of the paper is structured as follows. In Section 6.2,
NFRs and their characteristics are introduced and the challenges related
to NFRs during the development process are identified and discussed.
In Section 6.3, we formulate and summarize the characteristics that dif-
ferent solutions for managing the trade-offs of NFRs should be able to
provide to cope with the identified challenges. Section 6.4 describes in
the detail the suggested UML profile and its modeling semantics in-
cluding the rules and formulas that are defined for performing trade-off
analysis on the models of NFRs. An application of the profile and how
analysis is performed on NFRs is provided in Section 6.5 using a selected
part of the NFR model of a mobile phone. Discussion of different aspects
of the proposed approach is offered in Section 6.6. In Section 6.7, related
works are investigated and finally in Section 6.8, a summary of the work
is provided and conclusions are drawn.

58 Paper A

6.2 Non-Functional Requirements

6.2.1 Definitions
A requirement is basically an expression of a need [13] and in developing
software systems, there can be different stakeholders with their own spe-
cific requirements [14]. Some requirements, such as those related to the
user interface, may originate from the customer or end-user side, while
some other requirements may be due to the selection of a particular de-
velopment process (e.g., agile or model-based development). Also, there
are different standards and regulations that may need to be followed in
the development of a software system which bring along additional sets
of requirements. Examples of such standards could be different safety
standards that a safety-critical system should conform to, for instance,
in avionics, automotive, and medical systems. In systems engineering,
requirements are usually categorized as functional and non-functional
[13]. Simply stated, functional requirements state what a system should
do and are sometimes identified as capabilities of a software product
[14], whereas non-functional requirements define how the system should
perform or as mentioned in [15] a non-functional requirement is “an at-
tribute or a constraint on a system”. A list of different definitions for
non-functional requirements are collected in [16]. An example for func-
tional requirements could be that a system should be able to read input
from a text file. A non-functional requirement could be that the pro-
cess of reading the input file should not take more than 10 milliseconds;
this requirement is basically an expression of a performance need in the
system.

The IEEE standards, 610.12-1990 and ISO/IEC/IEEE 24765:2010(E)
[17, 18] provide the following definitions for requirement, and functional
and non-functional requirements (quoted):

• Requirement:

1. a condition or capability needed by a user to solve a problem
or achieve an objective.

2. a condition or capability that must be met or possessed by a
system, system component, product, or service to satisfy an
agreement, standard, specification, or other formally imposed
documents.

6.2 Non-Functional Requirements 59

3. a documented representation of a condition or capability as
in (1) or (2).

4. a condition or capability that must be met or possessed by
a system, product, service, result, or component to satisfy a
contract, standard, specification, or other formally imposed
document.

• Functional Requirement:

1. a statement that identifies what a product or process must
accomplish to produce required behavior and/or results.

2. a requirement that specifies a function that a system or system
component must be able to perform.

• Non-Functional Requirement: a software requirement that describes
not what the software will do but how the software will do it
(i.e., design constraints). Examples: software performance re-
quirements, software external interface requirements, software de-
sign constraints, and software quality attributes. Non-functional
requirements are sometimes difficult to test, so they are usually
evaluated subjectively.

Moreover, a requirement can be refined (into smaller, more detailed
and fine-grained ones) and this way a hierarchy of requirements can be
created. The term derived requirement is also offered by the IEEE stan-
dards, 610.12-1990 and ISO/IEC/IEEE 24765:2010(E), which is defined
as:

• Derived Requirement:

1. a lower-level requirement that is determined to be necessary
for a top-level requirement to be met.

2. a requirement that is not explicitly stated in customer require-
ments, but is inferred from contextual requirements (such as
applicable standards, laws, policies, common practices, and
management decisions) or from requirements needed to spec-
ify a product or service component.

In this context, the term extra-functional is also used at times as
an equivalent of non-functional to change the focus and take away and

60 Paper A

replace the negative aspect that is inherent in ’non’. On the other hand,
there is the concept of non-functional/extra-functional property (NF-
P/EFP), which is often confused with NFRs. As a type of requirements,
NFRs are also expression of a need which are generally stated in an
informal way, while a property is a statement that can be asserted for-
mally, and therefore, it can be analyzed and proven. An example of
extra-functional properties could be the worst-case execution time of
a component in a system which may be calculated statically or mea-
sured. Therefore, saying that “the worst-case execution of component
A is 5ms” or that “the execution time of component A never exceed
10ms” are actually expression of properties. On the other hand, “the
execution time of component A should never exceed 10ms” is a non-
functional requirement and an expression of a need. The key point here
is that a property per se does not tell us much about its validity, and it
is only when it is considered along with its related requirement(s) that
we can determine whether it is acceptable and good for a specific design
or not. In other words, if we know that the worst-case execution time of
a component is 5ms, we cannot determine whether it can be considered
a good value or not, unless we check it against the requirements. While
for one system this value of 5ms could be acceptable, for other systems
this may be considered as problematic and lead to the violation of re-
quirements. Considering such a relationship between an NFR and an
extra-functional property, to satisfy an NFR, its related extra-functional
properties should have valid values. For example, to satisfy performance
and schedulability requirements in a real-time system, execution and re-
sponse time values (among others) should remain within a valid range.
Understanding the differences between these two terms is important in
some works (such as this paper), while in other contexts, their differ-
ences can be ignored and using these two terms as equivalents can be
safe. In [19], NFP is used instead of NFR when talking about the final
product implying that the requirement has been concretized and become
an actual property of it.

6.2.2 Characteristics and Challenges
Addressing NFRs in the development of a software product is a challeng-
ing tasks. Aside from the fact that often times NFRs are expressed in
a natural language and informally, they have some characteristics that
makes their consideration in the development process complicated. In

6.2 Non-Functional Requirements 61

contrast to FRs which are typically realized locally and implemented one
by one and step by step in an incremental manner while the software
product is buing built, NFRs do not follow such a pattern. In this re-
spect, NFRs can be considered as specification of global constraints on
the software product, such as security, performance, availability and so
on [5] which can crosscut different parts of a system. Also in satisfying
NFRs, the dependencies among them should not be neglected, as satis-
fying one NFR can affect and impair the satisfaction of other NFRs in
the system. Therefore, performing trade-off analysis to establish balance
among NFRs and identify such mutual impacts is necessary.

There are also other issues that contribute to the complexity of man-
aging NFRs in the development process. For example, organizational
structures of companies and the way they are divided into different de-
velopment departments and sub-departments usually fit functional re-
quirements; as these requirements can be (more easily) implemented in
separation from each other and then integrated to satisfy a parent re-
quirement (considering a hierarchy of requirements consisting of refine-
ments of each) [20, 21]. On the other hand, a non-functional requirement
such as security, availability, or user-friendliness crosscuts different parts
of the system and requires a more holistic view and a top-down approach
[21]. Another problem which is mostly observed in large organizations is
that different teams may have different interpretations of an NFR, or vice
versa, refer to one NFR using different terms [20]. Therefore, a coherent
way of representing and defining NFRs, and also establishing and main-
taining traceability links among them can be helpful to mitigate such
problems. Issues related to traceability between NFRs can also occur
easily during the development process [22]. For example, code tweaks
that one development team may do to improve performance, which may
affect security or memory consumption, can become hidden and lost to
other teams.

Considering that NFRs are usually specified in an informal and ab-
stract way [5, 19], providing a more formal approach using model-based
development which enables to raise the abstraction level can help with
the treatment of NFRs during the development process. Dealing ex-
plicitly with NFRs and incorporating them in different phases of devel-
opment becomes more important especially considering the increasing
number of systems in which NFRs are critical such as real-time embed-
ded systems. Moreover, an explicit treatment of NFRs facilitates the
predictability of the system in terms of the quality properties of the

62 Paper A

final product in a more reliable and reasonable way [19].
Sometimes the approaches for the explicit treatment of NFRs are

categorized into two groups: product-oriented and process-oriented [23].
The former approaches try to formalize NFRs in the final product in
order to perform evaluation on the degree to which requirements are
met. In the latter approaches, NFRs are considered along with functional
requirements to justify design decisions and guide and rationalize the
development process and construction of the software in terms of its
NFRs [23, 19].

6.3 Addressing the Challenges of NFRs
Considering the nature of NFRs and to cope with the challenges that
have been discussed so far in managing and treatment of them in the de-
velopment process, we formulate here the key features that are required
in order to model NFRs and enable performing trade-off analysis among
them to evaluate a system design with respect to the satisfaction of its
NFRs.

Traceability of design decisions related to an NFR: An NFR can cross-
cut different parts of a system and there needs to be a mechanism to
identify the parts that contribute to its satisfaction. Establishing such
a relationship is especially important after performing trade-off analy-
sis in order to identify which parts of the system should be replaced or
modified in order to improve the satisfaction of an NFR. On the other
hand, in maintaining a system, it is important to find out which require-
ment(s) a specific part of a system is related to and as a result of which
requirement(s) that part has been implemented. Such information can
easily become lost in complex systems and also as the system ages.

Traceability between an NFR and its refinements: as mentioned be-
fore, during the whole development process, high level NFRs get refined
into more fine-grained ones which leads to the formation of a hierarchy
and tree-structure of NFRs and parent-child relationships among them.
Therefore, in order to evaluate the satisfaction of one NFR in the system,
it is necessary to keep track of its refinements and the children require-
ments originated from it at lower levels of requirements hierarchy. The
evaluation of an NFR, is thus, performed recursively by evaluating to
what degree its refinements have been satisfied. As an example of such
refinements, we can name security as an NFR which can then be refined

6.3 Addressing the Challenges of NFRs 63

into lower level and more concrete requirements such as encryption of
data and access control mechanisms.

Impact of an NFR on other NFRs: Due to the impacts that NFRs
have on each other and the interdependencies among them, an NFR
cannot be considered in isolation in a system in order to satisfy and
achieve it. System designers should be able to identify the impacts that
a system feature and design decision that is made to satisfy one NFR can
have on other NFRs. Examples of such impacts can be more tangible
in embedded systems. For instance, performing heavy computations by
an encryption component in an embedded system can lead to consuming
more battery. Therefore, it is important to be able to identify and include
such impacts and side effects as part of the system design models.

Priority of an NFR: In a system, different NFRs can have different
levels of importance. It is necessary to know the importance of each NFR
to be able to compare them and resolve conflicts among them (reduce the
impact of one NFR in favor of another) to improve the overall satisfaction
of NFRs. Considering priorities for NFRs is also important to capture
the preferences of customers. Similarly, priorities can also be considered
for different features implemented to satisfy an NFR.

Satisfaction level of an NFR: To enable comparison of a system de-
sign against the specifications of the system and customer requirements
and also to compare different design alternatives, it is needed to eval-
uate, specify and represent the satisfaction degree/level of an NFR in
the system. The end goal is that system designers should be able to get
an idea to what extent each NFR is satisfied and how good a system
design is in terms of the satisfaction of its NFRs. After analyzing the
dependencies and impacts of NFRs and determining their satisfaction
levels, as the next step, it can be judged whether the satisfaction level
of an NFR is acceptable or not. This phase can probably be done by
checking and consulting with the stakeholders, if needed.

Coherent terms for NFRs: It was discussed that especially in large
organizations, it can happen that different departments and development
teams may have their own interpretations for each NFR or use differ-
ent terms to refer to an NFR. By providing a coherent and consistent
representation and notation for NFRs and also establishing traceability
links for them (to other NFRs as well as to design elements implement-
ing each), it becomes possible to mitigate such inconsistency problems.
This problem can be very subtle and easily remain unnoticed [20].

Coherent measurements of NFRs: To enable the comparison of dif-

64 Paper A

ferent NFRs and performing trade-off analysis among them, specification
of the satisfaction level and impact values of NFRs should follow a co-
herent representation. This means that the criteria or metrics that are
used should be such that to allow pair-wise comparison of NFRs (e.g.
using the same types, scales and units, or a convertible format).

6.4 Suggested Approach
This section is devoted to the illustration of the proposed UML pro-
file enabling the modeling of NFRs and hence their trade-off analysis.
Therefore, in the following we first introduce some basic concepts about
UML profiles that underpin the technicalities of our proposal.

6.4.1 UML Profiles
As mentioned before in this article, thanks to MBD the early evalua-
tion of quality attributes can dramatically save development time and
verification and validation costs. The underlying assumption is that the
adopted modeling means are capable of carrying by enough details to
perform reliable evaluations.

Historically there have been two different ways of addressing lan-
guage expressiveness limitations, either UML profiling or designing a
new DSL from scratch. The former exploits a possibility given by the
UML to extend itself, while the latter prescribes building a new mod-
eling language specifically tailored to the domain taken into account.
Both approaches have their own advantages and drawbacks [10, 12], the
discussion of which goes beyond the scope of this article. However, it
is worth noting that, especially in industrial settings, UML profiles are
typically preferred due to multiple (practical) reasons: UML is a de
facto standard for modeling industrial software systems, therefore it is
expectable the existence of a “legacy” including models, tools, skilled
personnel, and so forth; UML profiles, as will be discussed below, are
still UML models, thus compatible with other models, and even more
important, with existing UML tool formats. We opted for a UML pro-
file as the means for supporting the modeling of NFRs details to enable
their trade-off analysis. Nonetheless, there are no limitations from the
expressiveness perspective preventing the realization of the same kind of
modeling support by adopting the DSL solution.

6.4 Suggested Approach 65

UML has been conceived from the beginning as a general purpose
language, therefore it does not contain any domain-specific concept. On
the contrary, it allows to model any kind of reality abstraction thanks
to its expressiveness. Preservation of generality comes at the cost of
lack of precise semantics and ambiguities that can be fixed by exploiting
UML profiles. It is worth mentioning that the UML language can be
refined by adding, removing, and changing the available concepts, thus
creating a new DSL [10]. However, models created by means of such
a new language would be not compatible with other UML models and
tools. Consequently, UML has been equipped with modeling concepts
able to specialize the language itself, i.e. profiles [11].

A Profile is a specialization of an existing UML modeling concept; for
instance, profiles can be created not only for classes and relationships,
but also for states in Activity Diagrams, actors in Use Cases, messages
in Sequence Diagrams, and so forth. Interface is a famous example of
profile for Class. When exploited, the profile allows users to recognize
that what they have in their hands is not a regular UML Class but
an Interface, and act appropriately (that is, give a precise semantic to
the kind of object taken into account). Profiles can be also enriched
by adding new attributes and properties, called Tagged Values (simply
referred to as properties in this work). In this way, information can be
provided as specifically pertaining to the introduced profile. In the next
section, we show how this powerful concept can be used to store NFRs
information in order to enable trade-off analysis at the design level of
abstraction.

6.4.2 NFR Profile
Based on the challenges identified in Section 6.3, we have created a
UML profile to define NFRs as model elements and include necessary
information (in the form of properties of model elements and different
relationships among them) to enable performing trade-off analysis and
evaluating the design with the respect to the satisfaction of NFRs. The
structure of the defined profile is depicted in Figure 6.1.

The profile consists of several key stereotypes and properties that are
described as follows:

System: In the hierarchy of NFRs, the root node will represent the
system itself which can have several different NFRs represented in the
model at the lower levels of the hierarchy as children model elements.

66 Paper A

satisfactionValue: Double{readOnly}
rationale: String
priority: Integer
deviationIndicator: Double{readOnly}

«stereotype»
NFR

«metaclass»
UML::Classes::Kernel::Classifier

NFR Profile

«metaclass»
UML::Classes::Dependencies::Realization

contributionValue: Double

«stereotype»
NFRContributes «stereotype»

NFRApplies

parentNFR

0..1

childNFR

0..*

«stereotype»
System

satisfactionValue:Double{readOnly}

satisfactionValuel: Double{readOnly}
rationale: String
priority: Integer
deviationIndicator: Double{readOnly}

«stereotype»
Feature

0..*

1..*

childFeature

0..*

parentFeature

0..*

0..1

«metaclass»
UML::Classes::Dependencies::Dependency

«stereotype»
NFRCooperates

«stereotype»
NFRImpacts

impactValue: Double

Figure 6.1: NFR Profile

The System stereotype is used to annotate this root model element as
the system. The system is also considered as the context of the analysis.

SatisfactionValue: This property is used to represent the satis-
faction degree of the model element it belongs to and to what extent it
has been fulfilled. As can be seen in the Figure 6.1, several stereotypes
have this property. In case of the System stereotype, the value of this
property shows the total calculated satisfaction value for the system (de-
scribed later). This value is calculated and set by the analysis engine
and the users cannot set it.

NFR: NFRs in the system are stereotyped and annotated with this
defined stereotype. Since NFRs can have other NFRs as refinements and
thus as children nodes, an associtation relationship to itself (reflexive
aggretation) has been defined for it.

Feature: A feature in the system that is defined to satisfy an NFR
is identified by using this stereotype. It is basically the equivalent of
Operationalization concept in NFR framework and Softgoal Interdepen-
dency Graph (SIG) [24] or tactics as used in [1] (described later in the
work).

NFRContributes: This stereotype is used to indicate that an NFR
or Feature contributes directly to the satisfaction of another one. It
has a property called contributionValue that specifies the degree of this
contribution.

6.4 Suggested Approach 67

NFRImpacts: This is similar to NFRContributes stereotype but is
used to include the impact of a model element on other NFRs in the
system in a quantitative manner. In other words, this stereotype is
defined to capture the side effects of features and NFRs. ImpactValue
property of this stereotype shows the degree of the impact. A positive
value for the ImpactValue implies a positive side effect, and a negative
one implies a negative side effect accordingly.

NFRCooperates: When there are more than one element that are
defined to work together in satisfying an NFR, this stereotype is used
to annotate and show such a cooperation relationship between them.
This concept is similar to the AND relation in the NFR framework and
SIG (another reason to provide this stereotype to explicitly specify such
cooperation relationships is to help with the extensibility of the suggested
approach in future to include different design alternatives in the form of
OR relationships in the same design model, when needed).

NFRApplies: This stereotype is defined to enable the possibility to
relate the NFR model to functional model elements (e.g. an NFR that
applies to a component). For instance, if there is already a UML model
of the system available (e.g., a class diagram), with this stereotype it
can be specified to which part of that model an NFR or Feature applies
and is related to.

Rationale: The rationale behind having an NFR or Feature and any
other description about it can be captured and specified in this property.
Both NFR and Feature stereotypes have this property.

Priority: This property which exists in both NFR and Feature
stereotypes captures the preferences of customers (and also developers
priorities when relevant and applicable) and their priorities in terms of
the relative importance of NFRs and Features.

DeviationIndicator: By taking into account the priority and the
satisfaction value of an NFR or Feature, a value for this property is
calculated (as will be described soon) and provided which indicates to
the designer the importance and magnitude of how much the satisfaction
of an NFR or Feature has deviated or been violated. The deviation
indicator value basically shows and helps to identify which parts of the
system have deviated more from the specification (i.e., from being fully
satisfied) and may need to be modified to achieve a better satisfaction
level. This value is also calculated and set by the analysis engine and
the users cannot set it. While the satisfaction value does not reflect
user preferences and priorities, the deviation indicator value identifies

68 Paper A

to the designers which parts need to be considered first with respect to
the preferences and priorities of the customers. This is especially helpful
and beneficial for identifying such parts in complex systems.

To use the profile and perform calculations, there are several rules
that are defined on model elements and their relationships and how to
set and calculate values for different properties:

• The priority for an element can be set to one of the following values:
1 (very low), 2 (low), 3 (medium), 4 (high), 5 (very high).

• The satisfaction value for each leaf node is always considered to be
1.

• The contribution value of the NFRContributes link connecting a
child node to its parent can be set as a positive value between 0 and
1, but the sum of the contribution values of the links connecting
children nodes (refinement/lower level elements) to their parent
should always be less or equal to 1.

• The contribution of a child node to its parent is calculated by
multiplying the satisfactionValue of the child node by the contri-
butionValue of the NFRContributes link that connects it to the
parent.

• For NFRImpacts links, the allowed range of values is between -1
and 1. A negative value on the NFRImpacts relationship shows
the negative impact of the source element on the target.

• The total impact value of other nodes on a node (denoted as I) is
calculated as follows: if the sum of all impact values is positive and
not greater than 1, then the total impact value will be this sum,
however, if the sum is greater than 1, then the total impact value
on the node will be 1. On the other hand, if the sum of all impact
values is negative and not less than -1, then the total impact value
will be this sum, however, if the sum is less than -1 (e.g., -1.5 or
-2), then the total impact value on the node will be set as -1. Note
that the value of I in this calculation will always be between -1
and 1. This is summarized by the following formula, considering
that ij is the impact value of another node on the node for which
we want to calculate the total impact value:

6.4 Suggested Approach 69

I =
{
Min(

∑
ij , 1) if

∑
ij >= 0

Max(
∑
ij ,−1) if

∑
ij < 0 (6.1)

• To calculate the satisfactionValue of a node, first the total contri-
butions from all of its children nodes are calculated, and then the
total impact value is also taken into account. If sk is the satisfac-
tion value for each child node of a node, lk is the value on the link
that connects the child node k to its parent node (NFRContributes
relationship), and I is the total impact value, the satisfaction value
of the parent node is calculated as:

S =
{
Min((

∑
sk ∗ lk) + I, 1) if(

∑
sk ∗ lk) + I >= 0

0 if(
∑
sk ∗ lk) + I < 0 (6.2)

Considering the above rules and formulas, the satisfaction value of
a node will be in the range of 0 and 1. To perform these calcula-
tions, nodes are navigated and traversed starting from leaf nodes
(considering that the satisfaction of leaf nodes is 1) and values
are calculated using the above formulas upwards toward the top
element which is the system.

• The DeviationIndicator is calculated after the calculation of satis-
faction value using the following formula:

DeviationIndicator =
Priority − Priority ∗ SatisfactionV alue

(6.3)

Based on this calculation and considering that the Satisfaction-
Value is always between 0 and 1 and priority is an integer value
between 1 and 5, the value of DeviationIndicator will be in the
range of [0, 5]. The perfect situation is when the DeviationIndica-
tor value is 0, and the more this value increases the more is the
deviation from the desired design, and thus, it indicates a bigger
and more severe problem.

70 Paper A

6.4.3 Implementation
The profile and its concepts that were described are implemented using
MDT Papyrus [25] in Eclipse [26]. To navigate and transform a model
that is annotated with our suggested UML profile, a model-to model
(M2M) transformation is also developed using QVT Operational lan-
guage (QVT-O)[27]. The transformation incorporates all the rules for
performing calculations and reads as input a UML model annotated with
our profile, traverses the nodes and calculates satisfaction and deviation
values and writes the results back in the same model. This means that
we use an in-place transformation (i.e. input and output models are the
same) to perform the analysis on the model. A recursive algorithm is ex-
ecuted as part of the transformation which starts from the System node.
To calculate the total satisfaction value of the system, it first retrieves
the children NFRs of the system node and recursively performs calcula-
tions on each of them based on the defined formulas and rules; meaning
that all the children of that node are again retrieved and this continues
until it reaches a leaf node whose satisfaction value will be considered 1.
In other words, for each node, first all the links that are stereotyped with
NFRContributes or NFRImpacts are retrieved. A node which does not
have such a link is then considered a leaf node, while for other nodes, the
source node of the link is retrieved (which will be another node); hence
the recursion.

6.5 Usage Example
In this section we show the applicability of the approach and how it is
used for modeling NFRs and performing analysis on them to evaluate
the satisfiability (by this term we mean the ability to satisfy the NFRs)
of a model and also compare it with other design alternatives. Figure
6.2 shows NFRs that are defined for part of a mobile phone system
using our profile in Papyrus. One NFR is defined for the quality of
the pictures that are taken by the mobile phone. This NFR which can
for example state that the quality of the picture should not be below
a certain level is represented in the model simply as Camera Picture
Quality. Similarly, another NFR is defined to represent the requirement
on efficient use of battery and energy consumption in the mobile phone,
denoted as Battery Life NFR in the model. To satisfy the Camera
Picture Quality NFR, the possibility to use flash for taking pictures,

6.5 Usage Example 71

and also a specific type of lens have been considered (modeled as Flash
and Lens features). To satisfy and achieve the requirement related to
the battery life of the mobile phone, automatic adjustment of brightness
level and also automatic standby mode (e.g., when the phone is in idle
state) have been designed.

Figure 6.2: NFRs for the mobile phone system (before analysis)

NFRContributes stereotype is used to annotate the relationship be-
tween each feature and the NFR to which it contributes. Moreover,
the dependencies and impacts of NFRs and features on each are mod-
eled using the NFRImpacts stereotype, which as mentioned before can
have positive or negative values. Since the use of the flash has a nega-
tive impact on the battery level and consumes energy, the value of the
NFRImpacts relationship between the Flash feature and Battery Life
NFR, which shows the magnitude of this impact is specified as a nega-
tive number. Importance of different NFRs and features for the customer
and his/her preferences are captured by the priority property. The ini-
tial values of satisfactionValue and deviationIndicator properties
are zero indicating that no calculation has been done on the model yet.

To analyze the model and perform calculations based on the formulas

72 Paper A

defined for the profile (which are implemented as part of the transfor-
mation code), the model is fed as input to the transformation. The
calculations are done using the recursive algorithm that was described
before. In case of the mobile phone example here, the Flash and Lens
features will be identified as leaf nodes and thus their satisfaction val-
ues are set to 1. The satisfaction value of Camera Picture Quality is
calculated as the satisfaction value of Flash multiplied by the contribu-
tion value of the NFRContributes links that connects it to the Camera
Picture Quality plus the same multiplication done on the Lens and
its NFRContributes link: 1 ∗ 0.4 + 1 ∗ 0.6 = 1.

The same calculations are done to obtain the satisfaction value for
Battery Life, however, in this case there is an impact from the use
of the Flash feature. Therefore its satisfaction value is calculated as:
1 ∗ 0.5 + 1 ∗ 0.5− 0.8 = 0.20. Figure 6.3 shows the analyzed model of the
system. The discrepancy that is observed in the calculated satisfaction
value for Battery Life, that is 0.1999. . . instead of being 0.20, is due to
the OCL implementation of real numbers that are used in QVT.

Figure 6.3: Analyzed model of the system

6.5 Usage Example 73

The total satisfaction value which is calculated for the System node
is therefore: 1 ∗ 0.3 + 0.2 ∗ 0.7 = 0.44. Having the satisfaction values of
NFRs and features in the model, the deviation indicator values can now
be calculated using Formula 6.3. The deviation indicator value for the
leaf nodes will always result in 0 as their satisfaction values are set to
1. For the Camera Picture Quality whose satisfaction value is also 1
the deviation indicator value will be 4− 4 ∗ 1.0 = 0 as well. However for
Battery Life, this value will be 5 − 5 ∗ 0.2 = 4. This high deviation
indicator value (compared to other parts) in the model shows the design-
ers that this part of the model requires a more careful attention. Such
parts could be good candidates for modification and refactoring in order
to improve the satisfiability of the system. Considering the deviation
indicator value of the Battery Life, and by investigating the elements
that have impacts on it (here only the Flash feature), it can imply that
the type of the flash that is selected to be used in this system and model
of mobile phone is not good enough in terms of energy consumption and
a more energy efficient flash can be used to improve the satisfiability of
the system. In this rather simple example, we could have also guessed
the issue with the type of flash that is used, based on the magnitude of
the impact that it has on the Battery Life in the system; especially
that it is the only impact on Battery Life (there could, for example,
exist other NFRs and features with positive or negative impacts on it
as well). However, in more complex systems with lots of dependencies
and mutual impacts and taking into account the priorities of the cus-
tomers, identifying the parts that have quite major (negative) effects on
the satisfiability of the system and thus are of utmost importance to be
re-considered could be a real staggering challenge.

Figure 6.4 shows the model of the system but without the Flash
feature, which could represent a different model and family of mobile
phones. By performing analysis on this model, the total satisfaction
value of 0.88 is calculated for this design of the mobile phone; versus
0.44 in the previous model which included the flash. On the other hand,
removing the flash, as can be seen from the analyzed model, has led to
some deviaiton (1.6) in the Camera Picture Quality NFR.

74 Paper A

Figure 6.4: Analyzed model of the system without the Flash feature

6.6 Discussion

As was demonstrated in the previous section, our suggested approach
enables designers to compare different design alternatives with respect
to the satisfaction of NFRs by taking into account interdependencies
and impacts of NFRs as well as the features that are designed to satisfy
and fulfill each. This can help the designers in making decisions when
building a system. Moreover, the approach provides for several other
interesting features which we discuss here. Considering that we can now
evaluate the satisfiability of a system design and compare different design
alternatives, it becomes also possible to use the suggested approach in
optimization of design models with respect to their NFRs. For example,
in the mobile phone system, if there is a kind of repository of NFRs
and features to choose from, it becomes possible to perform a series
of analysis in order to find a set of NFRs and features which lead to
the highest possible satisfaction value for the Battery Life NFR, for

6.6 Discussion 75

instance (or even the whole system). However, this may not be as simple
as it sounds due to the famous state-space explosion problem [28] that
can happen in bigger and more complex systems.

Another use of the suggested approach could be to support runtime
adaptation and building re-configurable systems. For instance, in case of
power consumption in the mobile phone system example, if at runtime
it is detected that the battery level has fallen beyond a certain level, an
analysis can be performed using the introduced approach to find alter-
natives and identify a set of features that incur minimum impact on the
battery consumption and then replace active components in the system
accordingly to make the system go into a power-saving mode. To reach
such an adaptive behavior, the analysis part may or may not be done
at runtime. In other words, different design alternatives may have been
considered and analyzed offline, and then based on desired Quality-of-
Service (QoS) levels at runtime, a different architecture may be adopted
to re-configure the system (similar to design diversity techniques [29]).

To enable performing a quantitative type of analysis which in turn
gives designers the possibility to more carefully evaluate a model as well
as different parts of it and also compare it with other alternatives, it
was assumed that the designers can specify the necessary values (in this
case, contribution and impact values). There are some methods that
help with providing such quantitative information (as will be discussed
in the related work section), however, as also mentioned in [18, 1], de-
ciding on these values is usually a subjective task, whose precisions can
be improved and increased through the use of the different methods.
On the other hand, our suggested approach is deemed more suitable in
Component-Based Design (CBD) of systems [30], where a system is built
by composing and as an assembly of already existing components, and
thus, more information and knowledge about the characteristics and be-
haviors of the different constituting features of the system are available.
Such information could be memory usage, execution time, energy con-
sumption and similar properties which help designers to specify more
accurate quantified values in the NFR model. For example, if there is
an NFR which specifies that the actual throughput should not be lower
than a certain level, however, a protocol is used to satisfy security re-
quirements which is known to double the amount of transmitted packets
due to the transmission of security related information, then the impact
of this feature on the bandwidth NFR can be specified as -0.5 indicating
that it consumes half of the bandwidth to pass the additional informa-

76 Paper A

tion. Also, in this work we assumed that the satisfaction values of leaf
nodes are always 1, meaning that they are/will be fully implemented. If,
for any specific reasons, the system needs to be analyzed using not-fully
implemented features, then this assumption and rule can be relaxed to
also enable specifying values between 0 and 1 for leaf nodes.

6.7 Related Work
One of the fundamental works in the field of non-functional requirements
is the NFR Framework which is proposed in [24]. It is a process- and goal-
oriented approach which makes use of Softgoal Interdependency Graphs
(SIG) to represent NFRs. In this approach NFRs are refined into other
fine-grained NFRs and also entities that function to satisfy NFRs which
are termed as Operationalization. The dependencies and contributions
of NFRs are specified using make, hurt, help, break and undetermined
relationship types. Besides NFR softgoals, and operationalizating soft-
goals, NFR framework also introduces claim softgoals which convey the
rationale and argument for or against a design decision. In addition, it
provides notations to mark critical NFRs in the graph as a way to spec-
ify priorities on NFRs, and also an evaluation procedure to determine
the satisfaction and conflicts of NFRs. NFR Framework is basically a
qualitative approach for evaluation of NFRs and their impacts and de-
pendencies, which although is quite useful for capturing NFRs and their
relationships, but evaluating the satisfaction of NFRs is not easy [1] and
hard to automate. Moreover, the criticality concept in NFR framework
may be more suitable for developers and does not convey enough in-
formation for prioritization of NFRs particularly from the customer’s
perspective and also for performing trade-off analysis. In [1], QSIG is
introduced which is basically a quantified version of SIG. It enables to
perform quantitative evaluation of impacts and trade-offs among NFRs.
Our work is inspired by the QSIG approach in the sense that the struc-
ture of the UML model that is built is similar to that of QSIG, and
as in QSIG, we also defined a set of rules for calculations of different
values, although our rules are different to be more suitable for com-
plex systems where, for example, an NFR may be impacted by several
different NFRs. We also introduced the concept of deviation indica-
tor which is especially useful in such situations in complex systems to
identify problematic parts of them. Also in QSIG, there is no explicit

6.7 Related Work 77

concept of priority for capturing customers preferences and the impact
of one NFR on another is assumed to also convey priorities. This is
also another fundamental difference as we believe the concept of impact
and priority should be separate, considering that the impact of an NFR
on another one should be evaluated per se, while the customer priority
for that the latter NFR can show the designers the meaning and im-
portance of such impact especially when the deviation indicator is also
taken into account. Moreover, in [1], no automation mechanism for the
calculations is discussed, and while the QSIG graph is used to make
decisions as a separate document with no connection to the functional
parts, the integration of NFRs with functional parts are actually done at
the code level through the notation of classpects [31] and irrespective of
the constructed graph. In contrast, we enable the integration of NFRs
with functional parts at the model level and the analysis of NFRs is also
done automatically. In the case that the code is to be generated from
the models later on, the concept of classpects could be considered as an
interesting method for the integration of NFRs in the implementation
code, if the code is based on an aspect-oriented and object-oriented lan-
guage (as classpects is basically a concept unifying classes and aspects
for such languages). [2] introduces FQQSIG which is a fuzzy quantita-
tive and qualitative softgoal interdependency graph representation for
analysis of NFRs in trustworthy software, however it offers no solution
for the integration of NFRs with other parts of the system. On the other
hand, although both QSIG and FQQSIG approaches provide solutions
for evaluating different design alternatives, one subtle but important dif-
ference that our suggested modeling solution has is that the main idea
in our work is to maintain the NFR model throughout the development
process and perform analysis whenever and as many times as needed,
such as when a new requirement is added or an existing one is modified,
as well as when a new design model is created which should be evaluated
and compared with the old one in terms of the satisfiability of its NFRs.
Such an approach and vision on NFRs is important in managing NFRs
throughout the development lifecycle, particularly, considering all the
related challenges of NFRs which we discussed in this paper.

Another important work in the area of evaluation of different sys-
tems designs and architectures, and identifying the trade-offs of com-
peting quality attributes is the Architecture Trade-off Analysis Model
(ATAM) [7]. It is a spiral model of design and risk mitigation process
that helps to find the dependencies among quality attributes which are

78 Paper A

referred in ATAM as trade-off points. These trade-off points are con-
sidered to be caused and derived from architectural elements that are
important for and affected by multiple attributes. This method is help-
ful at the beginning of development process to evaluate different designs
and architectures and select one, however, it does not help that much
to address the challenges of NFRs that we discussed in this paper such
as integration with functional requirements, and its usefulness also de-
creases when a more fine-grained analysis is needed [1]. Automation
of this analysis approach and thus its applicability for large and com-
plex systems is another weakness of this method, particularly, in cases
where trade-off analysis might need to be done several times during the
development process and lifecycle of a product.

While deciding on the satisfaction of NFRs is mainly considered to be
subjective, there are several works that try to provide quantifications for
NFRs to ease their evaluation and analysis. Kassab et al. in [3, 32] offer
a method to quantify NFR size in a software project based on the func-
tional size measurement method to help with the estimation of effects
of NFRs on the effort of building the software in a quantitative man-
ner. In a more recent work in [33], Kassab also proposes to incorporate
Analytical Hierarchy Process (AHP) with the NFR framework. AHP is
a mathematical based trade-off technique whose combination with the
NFR framework enables to quantitatively deal with ambiguities, trade-
offs, priorities and interdependencies among NFRs and operationaliza-
tions. An approach is introduced in [4] which makes use of Require-
ments Hierarchy Approach (RHA) as a quantifiable method to measure
and manipulate the effects that NFRs have on a system. It does so by
capturing the effects of functional requirements. In [34], an approach for
quantifying NFRs based on the characteristics of and information from
execution domain, application domain and component architectures is
suggested. Moreover, an interesting quantitative approach for discover-
ing the dependencies of quality metrics and identifying their impacts in
the architecture of a system is provided in [35].

While models used to be thought mainly just as another form of doc-
umentation during the development process, with the introduction of
model-based development and further maturation of this field, models
have got a more important role as in the automatic generation of code
and performing different types of analysis at earlier phases of develop-
ment, and thus saving time and effort by identifying problems earlier.
Aligned with this direction, there are several works that provide dif-

6.7 Related Work 79

ferent forms of solutions for modeling requirements. For modeling SIG
and concepts of NFR framework to represent NFRs as UML elements, a
UML profile is provided in [36] to help with integration of the graph of
NFRs with functional parts of the system (that are modeled in UML).
Considering that NFRs and design decisions are usually specified in an
informal way and as a separate document with poor or no traceability to
architectural elements, [37] offers two UML profiles for modeling design
decisions and NFRs as first-class entities in software architecture and
to maintain traceability between them and architectural elements in the
system. The profile for modeling NFRs in this work, offers six stereo-
types for modeling reliability, security, performance, modifiability, and
scalability each with their own specific and different set of fixed proper-
ties, such as a property called ’effort’ for modifiability requirement, and
’response_time’ for performance. In contrast, in our work, we have tried
to provide a generic way for modeling for all NFRs regarding of their
specificities (i.e., performance or security, etc.), and more importantly,
with the goal of enabling designers to perform trade-off analysis on them.

In the telecommunication domain, the Telecommunication Standard-
ization Sector (ITU-T) [38], has suggested User Requirements Notation
(URN) for modeling requirements which consists of Goal-Oriented Re-
quirement Language (GRL) and Use Case Maps (UCM). GRL is basi-
cally defined to models goals and non-functional requirements in the form
goals and sub-goals, while UCM is used to describe functional scenarios.
There are also some works done to define these languages as UML profiles
such as [39] for GRL. As another example, for modeling security require-
ments, UMLsec [40] is suggested that comes with an analysis suite which
enables performing analysis on the model to identify violations of secu-
rity requirements. SysML [41] which is both an extension and subset of
UML 2 was offered by Object Management Group (OMG) for system en-
gineering. SysML enables to represent requirements as first-class model
elements by providing a package for generic modeling of requirements
(both NFRs and FRs) and the relationships among them. Different types
of associations which are provided in SysML to model the relationships
between the requirements include: copy, deriveReqt, satisfy, verify, refine
and trace. While SysML does not specifically focus on NFRs and analysis
of them, our approach and SysML can be used together to complement
each other. , EAST-ADL[42] which is developed for modeling software
architecture and electronic parts of automotive systems, makes use of
SysML requirements semantics for modeling requirements and special-

80 Paper A

izes them to match the needs of automotive domain (e.g., definition of
timing, delay and safety requirements). In relation to our discussion on
non-functional requirements and the difference between a requirement
and a property, it is worth here to also mention the UML profile for
Modeling and Analysis of Real-time Embedded Systems (MARTE) [43]
which offers a rich set of semantics for modeling non-functional proper-
ties and supporting analysis of them, such as schedulability analysis.

6.8 Summary and Conclusion
In this paper, we introduced a UML-based approach for generic modeling
of NFRs and performing trade-off analysis on them. By identifying and
discussing different challenges related to the treatment of NFRs during
the development process, we formulated what information is required
to be incorporated in the models of NFRs to include them as first-class
entities as part of a system’s architecture and enable their trade-off anal-
ysis. Through an example, it was demonstrated how the approach can
be applied and how it helps to evaluate a system design with respect to
the satisfaction of its NFRs. It was also shown that using the suggested
approach designers can evaluate different design alternatives and get a
better idea of the satisfiability of each. Moreover, the analysis high-
lights problematic parts of the system through the deviation indicator
value which hints to the designers which parts of the system need to
be reconsidered and are good candidates for improvement, taking into
account the preferences of the customers. As another contribution of
this work, we applied a model transformation technique to provide sup-
port for automatic analysis of the model. The possibility to analyze
models of NFRs in an automatic way is particularly essential for large
and complex systems and also to ease performing the analysis as many
times as needed. The latter is also useful in the evolution of software
architecture [44] as requirements and features are modified or new ones
are added during the lifecycle of a software product and thus analysis of
NFRs (including different design alternatives) may need to be performed
again and again.

It was also discussed how the introduced approach can be extended
and used in other contexts and as part of other solutions such as in opti-
mizing a system design in terms of the satisfaction of its NFRs and also
for providing runtime adaptation mechanisms and to manage different

6.9 Acknowledgements 81

QoS levels of a system. As future directions of this work, quantification
of NFRs and how to evaluate and provide more accurate values for them
is an interesting research topic in order to reduce possible inaccuracies
related to their subjective specifications. Extending our approach to in-
corporate other available methods such as FQQSIG [2] in which NFRs
and their related relationships are specified in a qualitative manner and
then through a fuzzification process quantitative values are determined
for them could also be another possible direction of this work. Along
with this goal, it would be interesting to include several algorithms and
methods in the analysis engine which the user may then select to use,
and offer the approach as a complete tool suite. One point to remem-
ber though is that since the evaluation of NFRs and quality attributes
is basically a subjective task, the methods and tools provided for this
purpose serve actually as helpers for system designers to make better
and more accurate evaluations and decisions.

6.9 Acknowledgements
This work has been partially supported by the Swedish Knowledge Foun-
dation (KKS) through the ITS-EASY industrial research school [45] and
by Xdin AB [46] in the scope of the MBAT European Project [47].

Bibliography

[1] Tegegne Marew, Joon-Sang Lee, and Doo-Hwan Bae. Tactics based
approach for integrating non-functional requirements in object-
oriented analysis and design. The Journal of Systems and Software,
82:1642–1656, October 2009.

[2] Ming-Xun Zhu, Xin-Xing Luo, Xiao-Hong Chen, and Desheng Dash
Wu. A non-functional requirements tradeoff model in Trustworthy
Software. Elsevier Journal of Information Sciences, 191:61–75, May
2012.

[3] Mohamad Kassab, Olga Ormandjieva, Maya Daneva, and Alain
Abran. Software Process and Product Measurement. chapter Non-
Functional Requirements Size Measurement Method (NFSM) with
COSMIC-FFP, pages 168–182. Springer-Verlag, Berlin, Heidelberg,
2008.

[4] Andrew J. Ryan. An Approach to Quantitative Non-Functional
Requirements in Software Development. In Proceedings of the 34th
Annual Government Electronics and Information Association Con-
ference, 2000.

[5] N.S. Rosa, P.R.F. Cunha, and G.R.R. Justo. ProcessNFL: a lan-
guage for describing non-functional properties. In System Sciences,
2002. HICSS. Proceedings of the 35th Annual Hawaii International
Conference on, pages 3676 – 3685, jan. 2002.

[6] Yi Liu, Zhiyi Ma, and Weizhong Shao. Integrating Non-functional
Requirement Modeling into Model Driven Development Method. In
Software Engineering Conference (APSEC), 2010 17th Asia Pacific,
pages 98 –107, December 2010.

83

84 Bibliography

[7] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere. The architecture tradeoff analysis method. In Engineer-
ing of Complex Computer Systems, 1998. ICECCS ’98. Proceedings.
Fourth IEEE International Conference on, pages 68 –78, Aug 1998.

[8] Thomas Henzinger and Joseph Sifakis. The Embedded Systems
Design Challenge. In Jayadev Misra, Tobias Nipkow, and Emil Sek-
erinski, editors, FM 2006: Formal Methods, volume 4085 of Lecture
Notes in Computer Science, pages 1–15. Springer Berlin / Heidel-
berg.

[9] Bran Selic. The Pragmatics of Model-Driven Development. IEEE
Software Journal, 20:19–25, September 2003.

[10] Bran Selic. A Systematic Approach to Domain-Specific Language
Design Using UML. In Object and Component-Oriented Real-Time
Distributed Computing, 2007. ISORC ’07. 10th IEEE International
Symposium on, pages 2 –9, May 2007.

[11] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. An Intro-
duction to UML Profiles. In Rafael F. Calvo, editor, The European
Journal for the Informatics Professional - UML and Model Engi-
neering, volume V, April 2004.

[12] Ingo Weisemöller and Andy Schürr. A Comparison of Standard
Compliant Ways to Define Domain Specific Languages. pages 47–
58, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] G. Kotonya and I. Sommerville. Requirements engineering with
viewpoints. Software Engineering Journal, 11(1):5 –18, jan 1996.

[14] Pete Sawyer and Gerald Kotonya. Chapter 2-Software Require-
ments. In Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society, May 2001.

[15] Martin Glinz. On Non-Functional Requirements. In 15th IEEE
International Requirements Engineering Conference, pages 21–26,
New Delhi, India, October 2007.

[16] Lawrence Chung and Julio Cesar Prado Leite. Conceptual Model-
ing: Foundations and Applications. chapter On Non-Functional
Requirements in Software Engineering, pages 363–379. Springer-
Verlag, Berlin, Heidelberg, 2009.

Bibliography 85

[17] IEEE Standard Glossary of Software Engineering Terminology.
IEEE Std 610.12-1990, 1990.

[18] Systems and software engineering – Vocabulary (IEEE Standard).
ISO/IEC/IEEE 24765:2010(E), 15 2010.

[19] Nelson S. Rosa, George R. R. Justo, and Paulo R. F. Cunha. A
framework for building non-functional software architectures. In
Proceedings of the 2001 ACM symposium on Applied computing,
SAC ’01, pages 141–147, New York, NY, USA, 2001. ACM.

[20] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. UML-
Based Modeling of Non-Functional Requirements in Telecommuni-
cation Systems. In The Sixth International Conference on Software
Engineering Advances (ICSEA 2011), October 2011.

[21] Andreas Borg, Angela Yong, Pär Carlshamre, and Kristian Sandahl.
The Bad Conscience of Requirements Engineering : An Investiga-
tion in Real-World Treatment of Non-Functional Requirements. In
Third Conference on Software Engineering Research and Practice
in Sweden (SERPS’03), Lund, 2003.

[22] Andreas Borg, Mikael Patel, and Kristian Sandahl. Good Prac-
tice and Improvement Model of Handling Capacity Requirements
of Large Telecommunication Systems. In RE ’06: Proceedings of
the 14th IEEE International Requirements Engineering Conference,
Washington, DC, USA, 2006.

[23] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using
nonfunctional requirements: a process-oriented approach. Software
Engineering, IEEE Transactions on, 18(6):483 –497, jun 1992.

[24] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos.
Non-Functional Requirements in Software Engineering, volume 5 of
International Series in Software Engineering. Springer, October
1999.

[25] MDT Papyrus. http://www.eclipse.org/modeling/mdt/
papyrus/, Accessed: July 2012.

[26] Eclipse Modeling Framework Project (EMF). http://www.
eclipse.org/modeling/emf/, Accessed: July 2012.

http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

86 Bibliography

[27] QVT Operational Language. http://www.eclipse.org/m2m/, Ac-
cessed: July 2012.

[28] Antti Valmari. The State Explosion Problem. In Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the volumes are based
on the Advanced Course on Petri Nets, pages 429–528, London, UK,
UK, 1998. Springer-Verlag.

[29] John P. J. Kelly, Thomas I. McVittie, and Wayne I. Yamamoto.
Implementing Design Diversity to Achieve Fault Tolerance. IEEE
Software Journal, 8:61–71, July 1991.

[30] I. Crnkovic, M. Chaudron, and S. Larsson. Component-Based De-
velopment Process and Component Lifecycle. In Software Engineer-
ing Advances, International Conference on, page 44, Oct 2006.

[31] Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying aspect-
and object-oriented language design. In Proceedings of the 27th
international conference on Software engineering, ICSE ’05, pages
59–68, New York, NY, USA, 2005. ACM.

[32] M. Kassab, M. Daneva, and O. Ormandjieva. Early Quantitative
Assessment of Non-Functional Requirements, June 2007.

[33] M. Kassab. An integrated approach of AHP and NFRs framework.
In Research Challenges in Information Science (RCIS), 2013 IEEE
Seventh International Conference on, pages 1–8, May 2013.

[34] Raquel Hill, Jun Wang, and Klara Nahrstedt. Quantifying Non-
Functional Requirements: A Process Oriented Approach. In Pro-
ceedings of the Requirements Engineering Conference, 12th IEEE
International, pages 352–353, Washington, DC, USA, 2004. IEEE
Computer Society.

[35] Anakreon Mentis, Panagiotis Katsaros, Lefteris Angelis, and George
Kakarontzas. Quantification of interacting runtime qualities in soft-
ware architectures: Insights from transaction processing in client-
server architectures. Information and Software Technology Journal,
52(12):1331–1345, December 2010.

http://www.eclipse.org/m2m/

Bibliography 87

[36] Sam Supakkul. A UML profile for goal-oriented and use casedriven
representation of NFRs and FRs. In In Proceedings of the 3rd In-
ternational Conference on Software Engineering Research, Manage-
ment and Applications, pages 112–121, 2005.

[37] Liming Zhu and Ian Gorton. UML Profiles for Design Decisions
and Non-Functional Requirements. In Proceedings of the Second
Workshop on SHAring and Reusing architectural Knowledge Archi-
tecture, Rationale, and Design Intent, SHARK-ADI ’07, pages 8–,
Washington, DC, USA, 2007. IEEE Computer Society.

[38] Telecommunication Standardization Sector (ITU-T). http://www.
itu.int/en/pages/default.aspx, Accessed: July 2012.

[39] Muhammad R. Abid, Daniel Amyot, Stéphane S. Somé, and Gunter
Mussbacher. A UML profile for goal-oriented modeling. In Procs.
of SDL’09, 2009.

[40] Jan Jürjens. UMLsec: Extending UML for Secure Systems Develop-
ment. In UML ’02: Proceedings of the 5th International Conference
on The Unified Modeling Language, pages 412–425, London, UK,
2002. Springer-Verlag.

[41] OMG SysML Specifcation V1.2. http://www.sysml.org/specs.
htm, Accessed: July 2012.

[42] EAST-ADL Specification V2.1. http://www.atesst.org, Ac-
cessed: June 2012.

[43] OMG. MARTE specification version 1.1. http://www.omgmarte.
org, Accessed: July 2012.

[44] Hongyu Pei-Breivold, Ivica Crnkovic, and Magnus Larsson. A
systematic review of software architecture evolution research.
In Journal of Information and Software Technology. Elsevier,
doi:10.1016/j.infsof.2011.06.002, July 2011.

[45] ITS-EASY post graduate industrial research school for embed-
ded software and systems. http://www.mrtc.mdh.se/projects/
itseasy/, Accessed: June 2013.

[46] Xdin AB. http://xdin.com/, Accessed: July 2012.

http://www.itu.int/en/pages/default.aspx
http://www.itu.int/en/pages/default.aspx
http://www.sysml.org/specs.htm
http://www.sysml.org/specs.htm
http://www.atesst.org
http://www.omgmarte.org
http://www.omgmarte.org
http://www.mrtc.mdh.se/projects/itseasy/
http://www.mrtc.mdh.se/projects/itseasy/
http://xdin.com/

[47] MBAT Project: Combined Model-based Analysis and Testing of
Embedded Systems. http://www.mbat-artemis.eu/home//, Ac-
cessed: July 2012.

http://www.mbat-artemis.eu/home//

Chapter 7

Paper B:
Managing Timing
Implications of Security
Aspects in Model-Driven
Development of
Real-Time Embedded
Systems

Mehrdad Saadatmand, Thomas Leveque, Antonio Cicchetti, Mikael Sjödin
International Journal On Advances in Security, Vol. 5, No. 3&4, Decem-
ber, 2012.

89

Abstract

Considering security as an afterthought and adding security aspects to a
system late in the development process has now been realized to be an in-
efficient and bad approach to security. The trend is to bring security con-
siderations as early as possible in the design of systems. This is especially
critical in certain domains such as real-time embedded systems. Due to
different constraints and resource limitations that these systems have,
the costs and implications of security features should be carefully eval-
uated in order to find appropriate ones which respect the constraints of
the system. Model-Driven Development (MDD) and Component-Based
Development (CBD) are two software engineering disciplines which help
to cope with the increasing complexity of real-time embedded systems.
While CBD enables the reuse of functionality and analysis results by
building systems out of already existing components, MDD helps to in-
crease the abstraction level, perform analysis at earlier phases of devel-
opment, and also promotes automatic code generation. By using these
approaches and including security aspects in the design models, it be-
comes possible to consider security from early phases of development
and also identify the implications of security features. Timing issues are
one of the most important factors for successful design of real-time em-
bedded systems. In this paper, we provide an approach using MDD and
CBD methods to make it easier for system designers to include security
aspects in the design of systems and identify and manage their timing
implications and costs. Among different security mechanisms to satisfy
security requirements, our focus in this paper is mainly on using encryp-
tion and decryption algorithms and consideration of their timing costs
to design secure systems.

7.1 Introduction 91

7.1 Introduction
To cope with the specific challenges of designing security for real-time
embedded systems, appropriate design methods are required. Due to
resource constraints in these systems, the implications of introducing
security and its impacts on other aspects and properties of the sys-
tem should be carefully identified as early as possible and the meth-
ods used for designing these systems should provide such a feature [1].
Timing properties are of utmost importance in real-time embedded sys-
tems. In this paper, we introduce an approach using Model-Driven and
Component-Based Development (MDD & CBD) methods for designing
secure embedded systems to bring security aspects into early phases of
the development and take into account their timing costs and implica-
tions.

This work provides an implementation and a methodology for the
generic idea that we discussed in [1] and extends it with the result of
our works in [2, 3]. In this work we provide a more complete approach
and methodology, compared to the two aforementioned works, based on
their combination and synergy and discuss how this approach can cover
more issue regarding the timing implications of security mechanisms in
real-time embedded systems.

The approach basically works by identifying and annotating sensi-
tive data in the component model of the system, and then deriving au-
tomatically a new component model which includes necessary security
components for the protection of the data. Our main focus in this paper
will be on using encryption and decryption algorithms as security mech-
anisms. The derivation of the new component model is based on a set
of pre-defined strategies. Each strategy defines a different set of possible
encryption and decryption algorithms to be used as the implementation
of the security components. In this approach, since the derived com-
ponent model conforms to the original meta model, the same timing
analysis and synthesis as for the original component model can be used
and applied for the derived one.

With the increasing role of computer systems in our daily lives, there
is hardly any software product developed these days that does not have
to deal with security aspects and protect itself from malicious adversaries
[4]. Also with the exponentially growing number of connected and net-
worked devices and more integration between different tools and services
that store and exchange different types of data, not only new types of

92 Paper B

attacks are constantly emerging but also the risks and consequences of
security breaches have become more drastic. Even some simple software
products and applications which do not store any sensitive information
and therefore may not seem to need to care about security aspects can,
for example, be the target of buffer overflow attacks [5] and thus help
attackers in gaining access to a system. All these points emphasize that
security aspects cannot be taken into account just as an afterthought and
added feature to an already developed system [6], but instead should be
considered at different phases of development from early phases such
as requirements engineering to deployment [4]. What is needed is that
instead of adding security features in an “eggshell approach”, security
should be designed intrinsically and inseparable from the application to
be able to address the threats that target the application itself [6].

Considering security from early phases of development is especially
critical in the design of real-time embedded systems. These systems
typically have limited amount of resources (e.g., in terms of available
memory, CPU and computational power, energy and battery) and there-
fore, implications of security features should also be taken into account.
This is basically because of the fact that Non-Functional Requirements
(NFRs), such as security, are not independent and cannot be considered
in isolation and satisfying one can affect the satisfaction of others [7].
Therefore, costs and implications of security features should be identi-
fied to analyze the trade-offs and establish balance among different non-
functional requirements of the system. Such costs can be in the form of
impacts on timing, schedulability and responsiveness of the system, as
well as memory usage, energy consumption, etc. In real-time embedded
systems, satisfaction of timing requirements is critical for the successful
behavior of the system, therefore, choice of security mechanisms should
be done considering their timing characteristics and impacts.

Model-driven development is a promising approach to cope with the
design complexity of real-time embedded systems. It helps to raise the
abstraction level, enables analysis at earlier phases of development and
automatic generation of code [8, 9]. Component-based development,
on the other hand, is another discipline in software engineering and a
software development method in which systems are built out of already
existing components as opposed to building them from scratch [10, 11].
In other words, it promotes developing a system as an assembly of com-
ponents by reusing already existing software units (components). Model-
driven development and component-based development approaches can

7.1 Introduction 93

be used orthogonally to complement and reinforce each other to alleviate
the design complexity of real-time embedded systems [10].

In this context, including security aspects in design models helps with
achieving the two goals mentioned so far: bringing security aspects into
earlier phases of development and enabling analysis of security impli-
cations. Moreover, model-based security analysis (not the focus of this
paper) in order to identify possible violations of security requirements
[12] becomes possible and also system designers with lower levels of ex-
pertise and knowledge in security domain can also include and express
security concerns [2]. The latter is due to the fact that code level imple-
mentation of security features requires detailed security knowledge and
expertise, while at the model level, system designers can use modeling
concepts and annotations for expressing security concerns (which in turn
may also be used for automatic generation of security implementations).

By constructing the model of the system including security features,
timing analysis can then be done on the model to evaluate whether the
model meets the timing requirements or not. If so, the implementation
of the system can then be generated from the model(s). This leads to a
fixed set of security mechanisms that are already analyzed as part of the
whole system in terms of their timing behaviors and are thus known to
operate within the timing constraints of the system. However, there are
situations where such a guarantee in terms of timing behaviors cannot
be achieved. For example, in performing analysis some assumptions are
taken into account, such as worst-case execution times of tasks. If these
assumptions are violated at runtime, the analysis results will not hold
anymore. Moreover, in complex real-time systems where timing analysis
is not practical/economical or not much information about the timing
characteristics of each individual task is available, other approaches are
needed in order to tackle the timing issues [13]. One solution is to have
runtime adaptation to mitigate timing violations and keep the execution
of tasks within their allowed time budgets.

The remainder of the paper is structured as follows. In Section 7.2,
we discuss the issue of security and its challenges in embedded systems in
general. In Section 7.3, the automatic payment system is described as the
motivating example of this paper and also as an example of distributed
real-time embedded systems with security requirements. The suggested
approach and its implementation are described in Sections 7.4 and 7.5.
In Section 7.6, we introduce a runtime adaptation mechanism to mitigate
the violations of timing constraints at runtime. Practical aspects of the

94 Paper B

introduced approach and other related issued are discussed in Section
7.7. Section 7.8 discusses the related work and finally in Section 7.9
conclusions are made.

7.2 Security in Embedded Systems
In the design of embedded systems, security aspects have often been
neglected [14]. However, the use of embedded systems in critical ap-
plications such as aviation systems, controlling power plants, vehicular
systems control, and medical devices makes security considerations even
more important. This is due to the fact that there is now a tighter re-
lationship between safety and security in these systems (refer to [15] for
the definitions of security and safety and their differences).

Also because of the operational environment of embedded systems,
they are prone to specific types of security attacks that might be less rel-
evant for other systems such as a database server inside a bank which is
physically isolated and protected, in contrast to smart cards and wireless
sensor networks which are physically exposed. Physical and side channel
attacks [16] are examples of these types of security issues in embedded
systems that bring along with themselves requirements on hardware de-
sign and for making systems tamper-resistant. Examples of side channels
attack could be the use of time and power measurements and analysis
to determine security keys and types of used security algorithms.

Increase in the use and development of networked and connected
embedded devices also opens them up to new types of security issues.
Features and devices in a car that communicate with other cars (e.g.,
the car in front) or traffic data centers to gather traffic information of
roads and streets, use of mobile phones beyond just making phone calls
and for purposes such as buying credits, paying bills, and transferring
files (e.g. pictures, music,etc.) are tangible examples of such usages in a
networked environment.

Besides physical and side channel attacks, often mobility and ease
of access of these devices also incur additional security issues. For ex-
ample, sensitive information other than user data, such as proprietary
algorithms of companies, operating systems and firmwares, are also car-
ried around with these devices and need protection.

Because of the constraints and resource limitations in embedded sys-
tems, satisfying a non-functional requirement such as security requires

7.2 Security in Embedded Systems 95

careful balance and trade-off with other requirements and properties of
the systems such as performance and memory usage. Therefore, intro-
ducing security brings along its own impacts on other aspects of the
systems. This further emphasizes the fact that security cannot be con-
sidered as a feature that is added later to the design of a system and
needs to be considered from early stages of development and along with
other requirements. From this perspective, there are many studies that
discuss the implications of security features in embedded systems such
as [16], in which considering the characteristics of embedded systems,
major impacts of security features are identified to be on the following
aspects:

• Performance: Security protocols and mechanisms incur heavy com-
putational demands on a system that the processing capacity of
an embedded system might not be able to satisfy easily. For ex-
ample, using encryption and decryption algorithms not only have
high computational complexity but also require good amount of
memory. In systems that need to handle heavy input loads, such
as routers and many systems that are used in telecommunication
domain to handle calls and data traffics, these security features
can consume lots of processing capacity of the system and result
in missed deadlines of other tasks, dropped throughput level, and
overall transaction and data rate of the system.

• Power Consumption: In embedded systems with limited power
sources, any resource-consuming feature impacts the operational
life of the system. In this regard, security features with their heavy
computational and memory demands, as discussed above, require
careful considerations. There are studies that investigate this is-
sue and compare power consumption of different encryption/de-
cryption algorithms such as [17] that looks at this issue in wireless
sensor networks. The issue of power consumption is especially
interesting knowing that the growth of battery capacities are a
lot slower and far behind the ever-increasing power requirements
of security features. This has also led to investigating optimized
security protocols for embedded systems and hardware security
solutions [16].

• Flexibility and Maintainability: Flexibility of security features and
possibility to adapt them according to new requirements is also a

96 Paper B

challenge in embedded systems. For example, embedded devices
such as mobile phones that are used in different operational modes
and environments need to support a variety of security protocols.
Moreover, security solutions need to be updated in order to be pro-
tected against emerging hacking methods. Therefore, flexibility of
security design decisions is important for maintaining the security
of the system to apply updates and patches.

• Cost: Cost is also a limiting factor in the design of embedded
systems. Considering the issues mentioned above, using a faster
and more expensive CPU or adding more memory modules to cope
with the demands of security requirements can add to the total cost
of an embedded system. Taking into account that these devices are
often produced in large amounts (e.g. mobile phones and vehicular
systems), a small increase in cost can affect overall revenues and
competitive potentials of a product in the market. Therefore, the
security features that are implemented in embedded systems should
be balanced with hardware requirements and consequently cost
limits.

7.3 Motivation Example: Automatic Pay-
ment System

Figure 7.1 shows the Automatic Payment system which is an example of
distributed embedded systems with real-time and security requirements.
The main goal in the design of this system is to allow a smoother traffic
flow and reduce waiting times at tolling stations (as well as parkings).

For each toll station, a camera is used to detect a vehicle that ap-
proaches the station (e.g. at 100/200 meter distance), and scans and
reads its license plate information. This information is passed to the
payment station subsystem which then sends the toll fee to the vehi-
cle through a standardly defined wireless communication channel. This
amount is shown to the driver in the vehicle through its User Interface
(UI) and the driver inserts a credit card and accepts the payment to be
done. The credit card number is then sent securely to the payment sta-
tion which then performs the transaction on it through a (third party)
merchant (e.g., via a wired Internet connection at the station). The
driver is then notified about the success of the transaction and receives

7.3 Motivation Example: Automatic Payment System 97

Figure 7.1: Automatic Payment System for Toll Roads.

an OK message to go accordingly. The interactions between different
objects in this system are shown in Figure 7.2.

To allow a smooth traffic flow, all these operations should be done in
a certain time limit. Such time constraints can be calculated considering
the specifications of camera and its required time for the detection of an
approaching vehicle, traffic and safety regulations (e.g, allowed speed),
and other similar factors. For example, if the vehicle is detected at 100
meter distance from the station, and the allowed speed at that point
is 20 km/h, then the system has a strict time window during which it
should be able to store the vehicle information, establish communication,
and send the payment information to it. Different scenarios can happen
in this system. For example, it could happen that the driver/vehicle
fails to provide credit card information, or the credit card is expired.
In this case, the system can log the vehicle information in a certain
database and send the bill later to the owner, or even it can be set to
not open the gate for the vehicle to pass and also show a red light for
other cars approaching that toll station to stop. Besides the mentioned
timing constraints that exist in this system, the communication between
different nodes and transfer of data need to be secured and protected.
In this system, we have the following security requirements:

98 Paper B

Figure 7.2: Automatic Payment System.

1. Sensitive data such as credit card information should not be avail-
able to unauthorized parties.

2. The vehicle only accepts transactions initiated by the payment
station.

To achieve these requirements, the station needs to authenticate itself
to the vehicle so that the vehicle can trust and send the credit card
information. Moreover, sensitive information that is transferred between
different parts should also be encrypted.

Another scenario that can happen in this system is that several vehi-
cles may approach one station with a short time distance between each
which can result in bursty processing loads on the system (analogous to
bursty arrivals of aperiodic tasks in real-time terms). In such situations,
timing requirements may be violated as even by using static analysis of
the system, only certain levels of such bursty loads may be covered and
not all the possible cases. One solution to mitigate timing violations in
this scenario is to introduce runtime adaptation and adapt the security
level of the system at runtime; meaning that security mechanisms that
are less time-consuming (and presumably less strong) can be used when

7.4 Approach 99

such situations are detected. As the last resort, when the system real-
izes that many number of timing violations are occurring, to maintain a
smooth traffic flow and prevent any possible accidents and safety issues
due to the increasing queuing of the cars at the tolling station, instead
of the on-site payment and charging of the vehicles, the system can just
store their information to send a bill later to the owner of the vehicle, or
even add the amount to the payment done at the next tolling stations
on the road (if there are any and they are connected).

To model and build the system (software parts), particularly consid-
ering the timing constraints of the system, the following challenges are
identified:

1. Modeling security mechanisms with enough details to enable both
timing analysis on the model and synthesis of the security imple-
mentations,

2. Obtaining timing costs of security mechanisms,

3. Managing possible timing violations of the system at run-time.

The first challenge is discussed in the following two sections. To
get the timing costs of security mechanisms, we rely on studies such as
[18] that have done such measurements. To solve the third challenge, a
runtime adaptation mechanism is introduced and we show how it helps
to mitigate the runtime violations of timing constraints.

7.4 Approach
Based on the identified challenges in the previous example, we introduce
an approach that aims to bring the security concerns in the design of
embedded systems. Our suggested approach helps systems designers in
expressing the security concerns in a system without the need to have
much security expertise on the actual implementation of security mech-
anisms. It does so by just requiring the system designers to identify sen-
sitive data entities that need to be protected. In the scope of our work,
it can be for example the data that need to be confidential and/or whose
sender must be authenticated. Moreover, to mitigate potential timing
violations of security mechanisms at runtime, the approach provides the
option to include an adaptation feature for the security mechanisms.

100 Paper B

To implement the approach, ProCom [19] component model has been
used; although the approach is not dependent on this specific component
model and can be implemented using other component models as well.
Security needs are specified as annotations on the component model. A
benefit of the ProCom component model is its power in defining new
attribute types using its attribute framework to annotate and specify
new types of data. The term component model hereafter is used to ba-
sically refer to the component architecture model than the meta-model
of ProCom. From the specification of the security needs at the data
level and physical platform level, a model transformation is applied on
the component model to derive a new component model including se-
curity implementations. The derivation of the new component model
(which now has appropriate security components implementing the se-
curity needs) is done based on a selected strategy. The strategy basically
specifies the preferences in terms of security implementations and which
of them to choose among a set of different possible ones. Having the
necessary information in the model, the steps that have been described
so far can be summarized as follows:

1. The component model which specifies the functional and non-
functional (extra-functional) part of the system is transformed into
a functionally equivalent model with added security implementa-
tions;

2. Analysis can be performed on the derived component model that
includes security components to identify any possible violations of
timing constrains; and

3. Finally, the system is synthesized.

The considered process is iterative and allows to refine security spec-
ification after evaluating the resulted system properties such as timing
properties. In other words, timing analysis, for example, can be per-
formed on the derived component model and if timing properties of the
derived model do not satisfy the timing requirements, the derivation pro-
cess can be repeated with different preferences to finally gain a model
which is satisfactory in terms of timing requirements. The process is de-
picted in Figure 7.3 showing different models and annotations that are
used as input in each step (i.e., the analysis of the system model as well
as synthesis of the implementation).

7.5 Implementation 101

Component

Model

Data Model

Security

Annotations

Step 1: Transformation

Step 2:

Analyze

Step 3:

Synthesis

Secured

Component

Model

Physical

Input/Output Transformation

/Computation
Model Annotates

Physical

Platform Model

Security

Annotations

Analysis

Results

back annotations
System

Figure 7.3: General description of the approach process.

7.5 Implementation

7.5.1 ProCom Component Model

While the approach principles are component model generic, we im-
plemented it using ProCom. The ProCom component model targets
distributed embedded real-time system domain. In particular, it enables
to deal with resource limitations and requirements on safety and time-
liness concerns. ProCom is organized in two distinct layers that differ
in terms of architectural style and communication paradigm. For this
paper, however, we consider only the upper layer which aims to provide
a high-level view of loosely coupled subsystems. This layer defines a
system as a set of active, concurrent subsystems that communicate by
asynchronous message passing, and are typically distributed. Figure 7.4
shows ProCom design of the Automatic Payment System example.

A subsystem can internally be realized as a hierarchical composition of
other subsystems or built out of entities from the lower layer of Pro-
Com. Figure 7.5 shows the implementation of the subsystem E as an
assembly of two component C1 and C2. Data input and output ports are

102 Paper B

Input Message Port

Merchant
SubSystem

Payment
Station

Subsystem

Vehicle
SubSystem CI

Output Message Port

C
C

I

A
s
k
 C

C
I

PT

Ask CI

PI

TA

V
IP

S

Camera
Subsystem

User
Interface

Subsystem

Message Channel

SubSystem

CI: Customer Info
PT: Payment Ticket
TA: Transaction acknowledgement

CCI: Customer Card Info
PI: Payment Info
PS: Payment Status

VI: Vehicle Info

Figure 7.4: Component Model of the System using ProCom.

denoted by small rectangles, and triangles denote trigger ports. Connec-
tions between data and trigger ports define transfer of data and control,
respectively. Fork and Or connectors, depicted as small circles, specify
control over the synchronization between the subcomponents.

7.5.2 Data Model
As components are usually intended to be reused, their related data

may also be reused. To this end, we propose to extend the data-entity ap-
proach described in [20] for design-time management of data in component-
based real-time embedded systems. In this approach every data entity
is stored in a shared repository and designers are provided with an addi-
tional architectural view for data management, namely the data archi-
tectural view. The description of a data entity contains its type (string,
int...), its maximum size and its unit. A data entity can also be a com-
posite entity defined as a list of data entities. We use the concept of
data entity to identify data that are transfered through different mes-
sage channels in the system (shown in Figure 7.4) and map them to

7.5 Implementation 103

C1

C2

Subsystem E

(a) (b)

Figure 7.5: ProCom SubSystem Implementation.

their respective security concerns (e.g., if they need to be encrypted and
protected or not). Table 7.1 and Table 7.2 show the data entities in our
example. As described in the last section, subsystems communicate

Table 7.1: Primitive Data Entities.

Data Entity Type Max Size Unit
CCNumber String 16 byte

ExpirationDate String 4 byte
AskCI Empty 0 byte

AskCCI Empty 0 byte
PaymentStatus boolean 1 byte
VehicleNumber String 20 byte

VehicleType Enum 8 byte
AmountToPay float 4 euro

through asynchronous message passing represented by message chan-
nels. A message channel is associated with a list of data entities which
defines the message content. Table 7.3 presents the mapping between
message channels and data entities for our example. We can observe
that the same data entity can be used several times in different mes-
sage channels. The mapping between data ports of message ports and
data entities is based on naming convention which enables to distinguish
between the data ports that require to encrypt/decrypt their data and
those that do not. We call data model the set of data entities which are

104 Paper B

Table 7.2: Composite Data Entities.

Data Entity Contains
CreditCard CCNumber, ExpirationDate

CustomerInfo VehicleNumber, CreditCard
PaymentTicket AmountToPay, PaymentStatus

PaymentRequest AmountToPay, CreditCard

Table 7.3: Mapping between Data Entities and Message Channels.

Message Channel Data Entities
AskCI AskCI

CI CustomerInfo
PT PaymentTicket

AskCCI AskCCI
PS PaymentStatus

CCI CreditCard
VI VehicleNumber, VehicleType
TA CCNumber, AmountToPay, PaymentStatus
PI PaymentRequest

7.5 Implementation 105

used in the related design.

7.5.3 Physical Platform And Deployment Modeling

The physical entities and their connections are described in a sepa-
rate model called Physical Platform Model (see Figure 7.6). This model
defines the different Electronic Computation Units (ECUs), called Phys-
ical Nodes, including their configurations such as processor type and fre-
quency, the connections between the physical nodes, and the physical
platforms which represent a set of ECUs fixed together.

Bank

ECU1 ECU3
ECU4

C
A

N

T
C

P
/IP

WIFI IPSec

Inter Physical Platform
Connection

Physical Platform

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Figure 7.6: Physical Platform Model of the System.

ProCom system deployment is modeled in two steps, introducing
an intermediate level where subsystems are allocated to virtual nodes
that, in turn, are allocated to physical nodes. In a similar way, message
connections are allocated to virtual message connections which, in turn,
are allocated to physical connections. Figure 7.7 defines the physical
platform and related mapping of Automatic Payment System model. To

106 Paper B

simplify the example, we assume a one to one mapping between virtual
node and physical node.

Merchant

SubSystem

Payment

Station
Subsystem

Vehicle
SubSystem

PT

PI

TA

Bank

CI

Ask CI

WIFI IPSec

ECU1 ECU3 ECU4

V
I

C
C

I

A
s
k
 C

C
I

P
S

C
A

N

T
C

P
/IP

Camera

Subsystem

User

Interface

Subsystem

Inter Physical Platform
Connection

Physical Platform

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Figure 7.7: Deployment Model of the System depicting allocation to
Physical Platforms.

7.5.4 Security Properties
Instead of defining the security properties on the architecture, i.e.

the component model, we propose to annotate the data model and com-
pute the required security properties on the architecture, based on these
security requirements. It is an original part of our approach where a
designer can think about sensitive data without considering the archi-
tecture models. The designer applies security properties to identify and
annotate sensitive data in the system, which require to be protected
using some security mechanisms (e.g., confidentiality and encryption,
authentication, integrity, etc.). We consider two types of security prop-
erties:

• Confidentiality ensures that the considered information cannot

7.5 Implementation 107

be read by any external person of the system; and

• Authentication which ensures that the considered information
comes from the expected sender.

Table 7.4 shows security annotations associated to data entities for
our example. In addition to security properties on the data model, we

Table 7.4: Data Entity Security Properties.

Data Entity Security properties
CCNumber Confidentiality
VehicleNumber Authentication
AskCI Authentication
AskCCI Authentication
PaymentRequest Authentication
PaymentStatus Authentication

define the security properties related to the physical platform which are
independent of any application:

• Exposed defines that the physical platform is potentially accessi-
ble to external persons and that they may be able to open it and
modify physical parts.

• NotAccessible defines that the physical platform is not consid-
ered as accessible to unauthorized persons.

In a similar way, physical connections are annotated:

• Secured defines that the physical connection is considered as se-
cured due to its intrinsic security implementation.

• NotSecured defines that the physical connection protocol does
not implement a reliable security (opposite of the above).

Using these properties, the person responsible for the physical plat-
form annotates physical entities and the physical connections between
them in the platform model. Thanks to these annotations, we can de-
duce which parts do not need additional security implementations if it is
already provided (by construction). For example, if a link is established

108 Paper B

using mere TCP/IP, it is annotated as NotSecured, while in case that
IPSec protocol suite is used for a link, that link is annotated as Secured.
This means that the link is considered trusted and already secured, and
no security component is necessary to be added for the link. Table 7.5
shows the security properties of Automatic Payment System physical
platforms.

Table 7.5: Security Properties of Physical Entities.

Physical Platform or Connection Security properties
Vehicle Exposed
Station NotAccessible
Bank NotAccessible
WIFI NotSecured
IPSec Secured
TCP/IP NotSecured
CAN NotSecured

7.5.5 Cost of Security Implementations
Different encryption/decryption algorithms as security mechanisms can
be selected to satisfy the identified security properties in the system.
Considering the fact that each security mechanism in the system has
its own costs in terms of timing and performance, power consumption
and so on, choosing an appropriate security mechanism is critical in
order to ensure the satisfaction of timing requirements of the system.
For this purpose, and to take into account the timing costs of different
security mechanisms, we rely on the results of studies such as [18] that
have performed these cost measurements. Based on such methods, we
assume the existence of such timing measurements for the platforms used
in our system in the form of the Table 7.6. We assume that execution
times can be computed knowing the target platform, algorithm, key size
and data size. A timing estimation toolkit may also be provided which
provides execution time estimates based on these measurements. As
can be observed from the table, we also take into account and add this
flexibility that some algorithms may not be supported on some platforms
(marked as NS).

7.5 Implementation 109

Table 7.6: Execution times and strength ranking of different security
algorithms for a specific platform

Strength Rank Algorithm Key Size ET-P1 ET-P2 ET-Pn
1 AES 128 NS 480 . . .
2 3DES 56 292 198 . . .
3 DES 56 835 820 . . .

. . .
(ET-Px: Executime Time on Platform x in bytes per second, NS: Not Supported on corresponding

platform)

7.5.6 Security Implementation Strategy
As mentioned previously, based on the selected strategy, a security

mechanism is chosen from the table and the components implementing
it are added to the component model. The user can then perform timing
analysis on the derived component model to ensure that the overall tim-
ing constraints hold and are not violated. We propose several strategies
to help choosing among all possible security implementations:

• The StrongestSecurity strategy selects the strongest security im-
plementation available on the platforms (taking into account that
some security mechanisms, namely encryption algorithms here,
may not be available and possible on a certain platform, hence
selecting the strongest available one);

• The StrongestSecurityAndLimitImplemNb strategy selects
the strongest security implementation available on the platforms
while ensuring that we use as few as possible different security im-
plementations, since each message channel can use a different en-
cryption algorithm (finding the most common security implemen-
tation which achieves the strongest level in terms of the strength
rankings);

• The LowestExecTime strategy selects the security implemen-
tation available on the platforms which has the lowest execution
time;

• The LowestExecTimeAndLimitImplemNb strategy selects the
lowest execution time implementation available on the platforms
while ensuring that we use as few as possible different security
implementations; and

110 Paper B

• The StrongestSecuritySchedulable strategy selects the strongest
security implementation available on the platforms where the sys-
tem remains schedulable.

The selection is driven by the fact that the same algorithm must be
used for the sender and receiver components which may be deployed on
different platforms which in turn may not support the same algorithms.

7.5.7 Transformation

The transformation is performed in four steps:

1. First, we identify the part of a message which needs to be confi-
dential or authenticated while considering on which communication
channels they are transferred;

2. Next, we add components in charge of the encryption and decryp-
tion of the identified communication channels;

3. Then, the strategies are used to choose which encryption algorithm
to use and generate the code of the added components; and

4. Finally, the Worst Case Execution Time (WCET) of added com-
ponents is estimated.

The transformation aims to ensure that data decryption is performed
once and only once before that data will be consumed and that data
encryption is performed once and only once when a message should be
sent. To illustrate the algorithm, let’s consider the example in Figure 7.8.
We assume that only data D1 needs to be confidential. The pseudo
algorithm of the transformation is described in Listing 7.1.

7.5 Implementation 111

(a) Before transformation, no security

C2

C1

C2

D1

D1

C1
D2

D2

D2

C2

(b) After transformation, secured system

C1

C2

EnD1

Original elementsGenerated elements

ED1

ED1 DeD1

C1

Digest

Digest

D2

D2

D2

Figure 7.8: Transformation.

Listing 7.1: Transformation Pseudo Algorithm
msgToSecure = {}
f o r a l l channe l s M in component model {
P = M. a l l oca tedPhys i ca lChanne l ;
i f ((M. ge tConf ident ia lData () <> {}) or

(M. getAuthet icatedData () <> {}) and
(P. i sNotSecured ()) and
((P. i s I n t r aP l a t f o rm () and

P. sourcePort . p lat form . isExposed ()) or
(P. i s I n t e rP l a t f o rm ()))

add M in msgToSecure ;
}

f o r a l l M in msgToSecure {
P = M. a l l oca tedPhys i ca lChanne l ;

Source = M. sourcePort ;
EnD = cr ea t e component

with same por t s as Source ;
i f (M. getAuthet icatedData () <> {})

112 Paper B

add one output port Digest to EnD
add one input port Digest to Source

EnD. inConnect ions = Source . inConnect ions ;
c r e a t e connect i ons where EnD. outPorts

are connected to cor re spond ing
Source . inPort s ;

generate EnD implementation code

Dest = M. destPort ;
DeD = cr ea t e component

with same por t s as Dest ;
i f (M. getAuthet icatedData () <> {})

add one output port Digest to Dest
add one input port Digest to DeD

DeD. outConnect ions = Dest . outConnect ions ;
c r e a t e connect i ons where Dest . outPorts

are connected to cor re spond ing
DeD. inPort s ;

generate DeD implementation code
}

Encryption/Decryption (in EnD1 and DeD1) is done only for confi-
dential data while other data are just copied. An additional port is used
to send the digest used for authentication. The decryption component
(DeD1) ensures that all message data will be available at the same time
through the output data ports. This implementation ensures the orig-
inal operational semantic of the component model. Then, the security
strategy is used to choose which encryption/decryption algorithm must
be used and what its configuration will be.

7.6 Runtime Adaptation
The suggested approach results in a static and fixed set of security mech-
anisms to be implemented and used in each invocation and use of the
system. The system model including the added security components can
then be analyzed in terms of timing properties before reaching the im-
plementation phase and therefore it can be evaluated whether the timing
requirements are met or not.

There are, however, cases where such static analysis may not be
possible or even economical. For example, when there is not much timing

7.6 Runtime Adaptation 113

information available about each task in the system to perform timing
analysis, particularly in complex real-time systems with a big number
of different tasks. In such systems even if enough timing information is
available for each task, due to the complexity and big number of tasks,
performing timing analysis may actually be not economical. Moreover,
in performing static analysis some assumptions are taken into account
and if those assumptions are violated at runtime then the static analysis
results will not hold anymore. In such situations, a runtime adaptation
mechanism can help to cope with the above challenges and mitigate
timing violations by establishing balance between timing and security in
a dynamic fashion.

To bring such adaptation mechanism into our approach, we introduce
another strategy called StrongestSecurityAdaptive. By selecting this
strategy, the implementation of added security components will be syn-
thesized as depicted in Figure 7.9.

Main
Function

Encryption
Algorithm n

Encryption
Algorithm2

Encryption
Algorithm1

Da
ta
 to

 E
nc
ry
pt

En
cr
yp
te
d
Da

ta

Timing behavior

Previous timing behaviors

Timing
History
Log

Allowed Execution Time
(time constraint)

Figure 7.9: Adaptation mechanism.

As shown in Figure 7.9, by using this strategy, in the body of the
added security components (here encryption ones), the implementation
of all different possible encryption algorithms will also be included. When

114 Paper B

a request for an encryption arrives, the component firstly tries to use the
strongest possible encryption algorithm (based on the rank of algorithms
in Table 7.6) to encrypt the data. The time it takes to perform the en-
cryption is stored in the Timing History Log. If this time is more than
the specified timing constraint for performing the job, then for the next
encryption, another encryption algorithm with a lower rank but with
less execution time will be selected (based on the information in Table
7.6).

In case the encryption job completes sooner than the specified time
limit, the unused portion of its time budget is then used to determine
whether it is feasible to adopt a higher ranked algorithm for the next
encryption job or not. With this approach, the feedback that is pro-
duced regarding the timing behavior of encryption algorithm is used by
the system to try to adapt itself. Therefore, when the system receives
a burst of processing loads which it cannot fulfill under specified time
constraints, it adapts itself to this higher load and similarly when the
processing load decreases, it can gradually go back to using more time-
consuming (and presumably more secure) encryption algorithms. This
design is based on the implicit assumption that when it is detected that
an executing encryption algorithm is exceeding its allowed time budget,
it is basically more costly to terminate it in the middle of the encryption
procedure, and restart the encryption of the data with another encryp-
tion algorithm, than just letting it finish its job, and instead use one with
a lower execution time in the next invocation of encryption components.

The information that is logged in the Timing History Log has the
following format: Timestamp, Encryption algorithm, Time constraint,
Actual execution time (timestamp, time constraint and actual execution
time are in system ticks unit in the following experiment). An example
of the generated log information is shown in Table 7.7.

Considering the last row from the log as:

ts, alg, t, e
(ts: timestamp, alg: encryption algorithm, t: time constraint, e: actual execution time)

the decision that the system should adopt a lower ranked algorithm is
made using the following formula:

(i) e > t⇒ move down in the encryption algorithms table and select
the next algorithm with a lower rank.

Also, considering the two log records described as follows:

7.6 Runtime Adaptation 115

Table 7.7: Sample log information.

10360, AES, 50, 90
11800, 3DES, 80, 70
14500, 3DES, 60, 70
21353, DES, 60, 10
22464, 3DES, 90, 40
23112, AES, 50, 50
28374, AES, 60, 58

ts(l), alg(l), t(l), e(l) : representing the last log record
ts(h), alg(h), t(h), e(h) : representing the log record for the first encryp-
tion algorithm with a higher rank that was used before the last log record;

the decision to adopt a higher ranked algorithm is made using the fol-
lowing formula:

(ii) e(l) < t(l) ∧ t(l)− e(l) > abs(e(h)− t(h))⇒ move up in the en-
cryption algorithms table and select the previous higher ranked algorithm.

7.6.1 Evaluation of the Adaptation Mechanism
In [3], we have tested the introduced adaptation mechanism; here we
include the evaluation results produced during that work to demonstrate
the benefits of using the adaptation approach. A simulation environment
was setup as described in [3] with the use of a tool called CPU Killer
[21] to enforce arbitrary CPU loads at desired times.

Figure 7.10 shows the evaluation results comparing performing en-
cryption with and without using the adaptation mechanism. In each
case, CPU loads of 10%, 50%, 70%, and then back to 50%, and 10%
were applied.

The columns for each log record in Figure 7.10 identify: system time
(ticks), encryption algorithm (AES=1, 3DES=2, DES=3) , time con-
straint (for each invocation; in ticks), and actual execution time (ticks).
The records in which the violation of the time constraint has occurred
are marked with a ’*’. Comparing the two cases (without adaptation and
with it) shows that the number of time constraint violations are reduced
in the second case compared to the first case where only one encryption

116 Paper B

Figure 7.10: Performing encryption with and without adaptation.

algorithm (with the highest execution time) is used. Moreover, in the
second case more number of encryption jobs have been performed under
a shorter period of time.

Since the goal with this adaptive strategy is to use the strongest se-
curity algorithm possible, the adaptation mechanism assumes that the
encryption algorithms in Table 7.6 are sorted according to their execu-
tion times resulting in the strongest but most time consuming one to be
at the top and the weakest but less timing consuming algorithm at the
bottom. Also, as a note for the decryption side, there are different ways
to match and synchronize the decryption algorithm with the selected
encryption algorithm. Our suggested way to do this is to add some ad-
ditional bits identifying the used encryption algorithm (e.g., through the
use of 2-bit or 3-bit ID numbers, according to the number of different al-

7.7 Discussion 117

gorithms) to the encrypted message for the decryption side to correctly
pick and use the appropriate algorithm. Moreover, in the introduced
adaptation mechanism and its evaluation, an encryption algorithm and
the respective decryption algorithm for it have been assumed to take the
same amount of time which is generally valid as mentioned in [18]. How-
ever, to extend the adaptation approach for distributed systems where
encryption and decryption can be performed on different nodes, more
parameters for making adaptation decisions can be added. Such an ex-
tension can be to consider the sum of encryption time and decryption
time for each algorithm to make adaptation decisions instead of just
considering the encryption time only.

7.7 Discussion
This approach has been experimented partially in PRIDE, the ProCom
development environment. The feasability at model level of the ap-
proach has been validated while the code generation part remains as
future works. The security annotations have been added using the At-
tribute framework[22] which allows to introduce additional attribute to
any model element in ProCom. The model transformation has been im-
plemented using a QVTo[23] transformation plugged at the end of the
process described in [24]. These experiments aim to show the benefits at
the design level of the approach where timing properties of the overall
system can be analysed. The current implementation only supports the
LowestExecTime and StrongestSecurity strategies. The StrongestSecu-
ritySchedulable strategy is hard to implement, however, it is the most
interesting one. One of the reasons that we do not claim that we also
provide this strategy, in spite of having the execution times of security
components, is that the actual execution times in the synthesized system
will not necessarily be the sum and individual addition of the execution
times of the added security components to the rest of the system. More
complex security implementation strategies can be considered but are
not covered in this paper.

As for the synthesis of the code of the security components, in order
to keep the approach generic, we intend to let certificate specification
and other specific parameters of encryption algorithm to be filled in the
generated code. One generator is associated for each algorithm. The
suitability for timing analysis of the generated component code needs to

118 Paper B

be planned but at least will allow for measurement based timing anal-
ysis as any other ProCom component. While the system functionality
remains the same, the system needs also to react to authentication er-
rors. This problem could be partially solved by allowing developers to
add code to manage authentication errors in the generated code to define
what must be the output data in each specific case.

Regarding the runtime adaptation mechanism, while on one hand,
it may make the job of the attackers harder as not a fixed algorithm is
used in each invocation and thus it will not be known and predictable
to the attackers (hence some sort of “security through obscurity”), on
the other hand, if attackers know the internal mechanism of the runtime
adaptation, they can force some processing load on the system to make
the system adopt the weakest algorithm possible, and that way, make it
easier for themselves to break into the system. Moreover, the adaptation
mechanism which was used as part of our general approach in this paper,
can also be designed to act as an option; in the sense that it can be turned
on and used when a processing load beyond a certain level is detected
and turned off otherwise. This can help to mitigate the overhead of the
adaptation mechanism itself (although another mechanism to monitor
the processing load would need to be added in that case) and only use
it when there are many requests for encryption.

7.8 Related Work
Designing security features for real-time embedded systems is a challeng-
ing task and requires appropriate methods and considerations. [16] and
[25] particularly discuss the specific challenges of security in embedded
systems and define it as a new dimension to be considered throughout
the development process. Considering the unique challenges of security
in embedded systems, [25] also emphasizes that new approaches to secu-
rity are required to cover all aspects of embedded systems design from
architecture to implementation. The methods that we introduced in
this paper contribute towards this goal by applying different disciplines
in the field of software engineering, such as model-driven development
methods, to cope with the specific challenges of designing security for
embedded systems.

Also as a non-functional requirement [7, 26], satisfying security re-
quirements in a system has costs and implications in terms of impact on

7.8 Related Work 119

other requirements such as performance, power consumption and so on.
In [17], measurement and comparison of memory usage and energy con-
sumption of several encryption algorithms on two specific wireless sensor
network platforms have been done. Performance and timing comparisons
of several encryption algorithms are offered in [18] where Pentium ma-
chines are used as the platform. The approaches we proposed in this
paper, work by relying on the timing and performance comparison re-
sults of encryption algorithms in such studies.

While model-driven and component-based approaches serve as promis-
ing approaches to cope with the design complexity of real-time embedded
systems, management of runtime data in these systems has also become
an important issues than ever before due to the growing complexity
of them. This fact becomes more clear when we realize that keeping
track of all data that are passing through different parts of the system
is an extremely hard task for a person. In addition, most design meth-
ods based on component models focus mainly on functional structur-
ing of the system without considering semantics and meanings for data
flows [20]. A data-centric approach for modeling data as well as using
real-time databases for runtime data management in real-time embed-
ded systems is proposed in [20]. In this work, however, non-functional
(extra-functional) properties such as security are not addressed, and our
approach presented in this paper basically follows a similar method for
modeling data entities as a basis to define security specification.

As for modeling security aspects, there are several solutions such as
UMLsec [12]. UMLsec is a UML profile [27] for the specification of secu-
rity relevant information in UML diagrams. It is one of the major works
in this area and comes with a tool suite which provides the possibility
to evaluate security requirements and their violations. SecureUML [28]
is also another UML profile for modeling of role-based access controls.
UML profile for Modeling and Analysis of Real-time Embedded Systems
(MARTE) [29] provides semantics for modeling non-functional proper-
ties and their analysis (e.g., schedulability). In [30], we have discussed
MARTE and the benefits of extending MARTE with security annota-
tions to better cover the modeling needs of embedded systems. Besides
UMLsec and its tool suite which enables analysis of security require-
ments, in [31], a method for specifying security requirements on UML
models and verifying their satisfaction by relating model-level require-
ments to code-level implementation is offered. In [32], we have provided
a small example how it is possible to model security requirements along

120 Paper B

with some other requirements of telecommunication systems and then
perform model-based analysis using the analysis tool suite of UMLsec to
identify possible violations of security requirements.

The need to identify sensitive data is also discussed in [33] where
an extension to include security concerns as a separate model view for
web-services based on Web-Services Business Process Execution Lan-
guage (WS-BPEL) is offered. However, it does not take into account
the consequences of security design decisions on timing aspects, while
by identifying sensitive parts of messages which need to be secured, our
objective is to ease the computation of the timing impacts of security
implementations protecting those sensitive data. Considering the chal-
lenges of securing distributed systems [34] has done a survey on the
application of security patterns, as a form of software design patterns,
to secure distributed systems. Moreover, it discusses different method-
ologies that make use of these ad-hoc security patterns in a structured
way. It also reports that the majority of the studied methodologies lack
explicit support for distributed systems and special concerns that these
systems have and mentions the development of tailored methodologies
for different types of distributed systems as an important future work
in this area. The approach that we suggested here could serve as an
example for developing such methodologies in particular for distributed
real-time and embedded systems in which timing requirements play a
key role in the correctness of the whole system.

Regarding the adaptation method that we used as part of our sug-
gested approach, there are also several related studies and approaches
that we discuss them here. The study done in [35] is one of the interest-
ing works in the area of security for real-time embedded systems which
uses an adaptive method. In this work, the main focus is on a set of
periodic tasks with known real-time parameters, whereas, our main tar-
get is complex systems that can consist of any type of real-time tasks.
Also, while in our work, the security level of the system is considered
implicitly through the selection of algorithms from the encryption algo-
rithms table, in [35], a QoS value has been considered which explicitly
represents the security level of the system. Moreover, in our work, it is
the encryption algorithms which are adaptively replaced, while the main
adaptation component in that work is the key length. Our approach can
easily be extended to cover not only different encryption algorithms but
also variations of each, including different combinations of key length,
number of rounds and so on, as items (rows) in the encryption algo-

7.9 Conclusion and Future Work 121

rithms table (e.g., AES256, AES128, etc.). Another interesting study
with is close to our work is [36], which basically introduces a similar
type of adaptation mechanism as ours. The main focus in that work is,
however, on client-server scenarios using a database, and to manage the
performance of transactions. The security manager component used int
his work periodically adjusts the the security level of the system. In our
approach, however, the adaptation mechanism is executed per request
and is not active when there is no request for encryption. Moreover, it
is possible in the approach introduced in this work that an inappropri-
ate encryption method is used by a client, while security level change
is occurring. To solve this situation, several acknowledgment messages
are sent and the process is repeated to correct this issue. Therefore, it
is possible that the security manager faces problems regarding synchro-
nization and message loss due to out of order arrival of messages. As
another approach for managing security in real-time systems, in [37], a
secure-aware scheduler is introduced which basically incorporates and
takes into account timing management of security mechanisms as part
of its scheduling policy.

7.9 Conclusion and Future Work
In this paper, we introduced an approach to define security specifications
in real-time embedded systems at a high level of abstraction based on
the benefits of model-driven and component-based methods. Using the
suggested approach we bring semantics to the data that are transferred
in embedded systems to identify sensitive data. The approach enables
also to derive automatically the security implementations and facilitates
performing timing analysis including security features at early phases
of development. It was also demonstrated how incorporating a runtime
adaptation mechanism as part of the approach helps to mitigate the vi-
olations of timing constraints at runtime. As mentioned, such runtime
adaptation mechanisms are especially useful for complex systems where
performing static analysis may not be practical, as well as in cases where
the assumptions that have been used for performing static analysis are
prone to deviation and violation at runtime which can then lead to the
invalidation of analysis results. Moreover, the introduced approach helps
system designers to mainly focus on the system architecture and address-
ing timing properties, and at the same, including security concerns in

122 Paper B

the design models without needing much expertise on how to implement
security mechanisms. This again contributes to bringing security con-
siderations in higher levels of abstraction.

One of the extensions of this work is to define and add more strategies
for the designers to choose. Among the currently defined strategies, the
StrongestSecuritySchedulable is the most interesting one but is hard to
implement and will be part of our future works. One of the reasons that
we do not claim that we also provide this strategy, in spite of having
the execution times of security components, is that the actual execu-
tion times in the synthesized system will not necessarily be the sum and
individual addition of the execution times of the added security compo-
nents to the rest of the system. Also as another idea for the extension
of this work, it would be interesting to define and assign required secu-
rity strength to data and message channels as another factor that also
affects the selection of security components. It should also be noted that
in this work we mainly addressed encryption as a security mechanism.
Considering other mechanisms such as authorization methods and their
impacts on timing characteristics of systems is another interesting di-
rection of this work to investigate. Also including other aspects than
timing, such as power consumption of security mechanisms, performing
trade-off, and establishing balance among them, similar to what we did
here for timing properties, can be another extension of this paper and
future work.

7.10 Acknowledgements
This work has been supported by Xdin Stockholm AB [38] and Swedish
Knowledge Foundation (KKS) [39] through the ITS-EASY industrial
research school program [40].

Bibliography

[1] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. On
Generating Security Implementations from Models of Embedded
Systems. In The Sixth International Conference on Software Engi-
neering Advances (ICSEA 2011), Barcelona, Spain, October 2011.

[2] Mehrdad Saadatmand and Thomas Leveque. Modeling Security As-
pects in Distributed Real-Time Component-Based Embedded Sys-
tems. In Information Technology: New Generations (ITNG), 2012
Ninth International Conference on, pages 437 –444, Las Vegas,
USA, april 2012.

[3] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. De-
sign of adaptive security mechanisms for real-time embedded sys-
tems. In Proceedings of the 4th international conference on En-
gineering Secure Software and Systems, ESSoS’12, pages 121–134,
Berlin, Heidelberg, 2012. Springer-Verlag.

[4] Premkumar T. Devanbu and Stuart Stubblebine. Software engi-
neering for security: a roadmap. In Proceedings of the Conference
on The Future of Software Engineering, ICSE ’00, pages 227–239,
New York, NY, USA, 2000. ACM.

[5] Fu-Hau Hsu, Fanglu Guo, and Tzi-cker Chiueh. Scalable network-
based buffer overflow attack detection. In Proceedings of the 2006
ACM/IEEE symposium on Architecture for networking and commu-
nications systems, ANCS ’06, pages 163–172, New York, NY, USA,
2006. ACM.

123

124 Bibliography

[6] Alec Main. Application Security: Building in Security during
the Development Stage. Journal of Information Systems Security,
13(2):31–37, 2004.

[7] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite.
Non-functional requirements: From elicitation to conceptual mod-
els. In IEEE Transactions on Software Engineering, volume 30,
pages 328–350, 2004.

[8] Markus Voelter, Christian Salzmann, and Michael Kircher. Model
Driven Software Development in the Context of Embedded Compo-
nent Infrastructures. In Colin Atkinson, Christian Bunse, Hans-
Gerhard Gross, and Christian Peper, editors, Component-Based
Software Development for Embedded Systems, volume 3778 of Lec-
ture Notes in Computer Science, pages 143–163. Springer Berlin /
Heidelberg, 2005.

[9] Bran Selic. The Pragmatics of Model-Driven Development. IEEE
Software Journal, 20:19–25, September 2003.

[10] M. T örngren, DeJiu Chen, and I. Crnkovic. Component-based vs.
model-based development: a comparison in the context of vehicular
embedded systems. In Software Engineering and Advanced Appli-
cations, 2005. 31st EUROMICRO Conference on, pages 432 – 440,
aug.-3 sept. 2005.

[11] Ivica Crnkovic. Component-based Software Engineering - New
Challenges in Software Development. In Software Focus, volume 2,
pages 27–33, 2001.

[12] Bastian Best, Jan Jurjens, and Bashar Nuseibeh. Model-Based
Security Engineering of Distributed Information Systems Using
UMLsec. In Proceedings of the 29th international conference on
Software Engineering, ICSE ’07, pages 581–590, Washington, DC,
USA, 2007. IEEE Computer Society.

[13] Anders Wall, Johan Andersson, Jonas Neander, Christer Norstr öm,
and Martin Lembke. Introducing Temporal Analyzability Late in
the Lifecycle of Complex Real-Time Systems. In Real-Time and Em-
bedded Computing Systems and Applications, volume 2968 of Lecture
Notes in Computer Science, pages 513–528. Springer Berlin Heidel-
berg, 2004.

Bibliography 125

[14] Sigrid Gürgens, Carsten Rudolph, Antonio Maña, and Simin
Nadjm-Tehrani. Security engineering for embedded systems: the
SecFutur vision. In Proceedings of the International Workshop on
Security and Dependability for Resource Constrained Embedded Sys-
tems, S&D4RCES ’10, New York, NY, USA, 2010. ACM.

[15] Eirik Albrechtsen. Security vs Safety. NTNU - Norwegian Univer-
sity of Science and Technology http://www.iot.ntnu.no/users/
albrecht/rapporter/notat%20safety%20v%20security.pdf,
Accessed: December 2012.

[16] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan.
Security as a new dimension in embedded system design. In Pro-
ceedings of the 41st annual Design Automation Conference, DAC
’04, pages 753–760, 2004. Moderator-Ravi, Srivaths.

[17] Jongdeog Lee, Krasimira Kapitanova, and Sang H. Son. The price of
security in wireless sensor networks. Journal of Computer Networks,
54:2967–2978, December 2010.

[18] A. Nadeem and M.Y. Javed. A Performance Comparison of Data
Encryption Algorithms. In First International Conference on Infor-
mation and Communication Technologies, ICICT 2005., pages 84 –
89, 2005.

[19] Séverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carl-
son, and Ivica Crnkovic. A Component Model for Control-
Intensive Distributed Embedded Systems. In Michel R.V. Chau-
dron and Clemens Szyperski, editors, Proceedings of the 11th In-
ternational Symposium on Component Based Software Engineering
(CBSE2008), pages 310–317. Springer Berlin, October 2008.

[20] Andreas Hjertström, Dag Nyström, and Mikael Sjödin. A data-
entity approach for component-based real-time embedded systems
development. In Proceedings of the 14th IEEE international con-
ference on Emerging technologies & factory automation, ETFA’09,
pages 170–177, Piscataway, NJ, USA, 2009. IEEE Press.

[21] CPU Killer. http://www.cpukiller.com/, Accessed: December
2012.

http://www.iot.ntnu.no/users/albrecht/rapporter/notat%20safety%20v%20security.pdf
http://www.iot.ntnu.no/users/albrecht/rapporter/notat%20safety%20v%20security.pdf
http://www.cpukiller.com/

126 Bibliography

[22] Séverine Sentilles, Petr Štěpán, Jan Carlson, and Ivica Crnković. In-
tegration of Extra-Functional Properties in Component Models. In
12th International Symposium on Component Based Software En-
gineering. Springer, 2009.

[23] Ivan Kurtev. State of the Art of QVT: A Model Transformation
Language Standard. In Applications of Graph Transformations with
Industrial Relevance, volume 5088 of Lecture Notes in Computer
Science, pages 377–393. Springer Berlin, 2008.

[24] Thomas Leveque, Jan Carlson, Séverine Sentilles, and Etienne
Borde. Flexible Semantic-Preserving Flattening of Hierarchical
Component Models. In 37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA). IEEE Computer
Society, August 2011.

[25] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hat-
tangady. Security in embedded systems: Design challenges. ACM
Transactions on Embedded Computing Systems (TECS), 3:461–491,
August 2004.

[26] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. To-
ward Model-Based Trade-off Analysis of Non-Functional Require-
ments. In 38th Euromicro Conference on Software Engineering and
Advanced Applications(SEAA), September 2012.

[27] B. Selic. A Systematic Approach to Domain-Specific Language De-
sign Using UML. In Object and Component-Oriented Real-Time
Distributed Computing, 2007. ISORC ’07. 10th IEEE International
Symposium on, pages 2 –9, may 2007.

[28] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. Se-
cureUML: A UML-Based Modeling Language for Model-Driven Se-
curity. In Proceedings of the 5th International Conference on The
Unified Modeling Language, UML ’02, pages 426–441, London, UK,
2002. Springer-Verlag.

[29] MARTE specification version 1.1. http://www.omgmarte.org, Ac-
cessed: December 2012.

http://www.omgmarte.org

Bibliography 127

[30] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. On
the Need for Extending MARTE with Security Concepts. In In-
ternational Workshop on Model Based Engineering for Embedded
Systems Design (M-BED 2011), March 2011.

[31] John Lloyd and Jan Jürjens. Security Analysis of a Biometric Au-
thentication System Using UMLsec and JML. In Proceedings of the
12th International Conference on Model Driven Engineering Lan-
guages and Systems, MODELS ’09, pages 77–91, Berlin, Heidelberg,
2009. Springer-Verlag.

[32] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. UML-
Based Modeling of Non-Functional Requirements in Telecommuni-
cation Systems. In The Sixth International Conference on Software
Engineering Advances (ICSEA 2011), October 2011.

[33] Meiko Jensen and Sven Feja. A Security Modeling Approach for
Web-Service-Based Business Processes. In Proceedings of the 2009
16th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, ECBS ’09, pages 340–347,
Washington, DC, USA, 2009. IEEE Computer Society.

[34] Securing distributed systems using patterns: A survey. Computers
& Security Journal, 31(5):681 – 703, 2012.

[35] Kyoung-Don Kang and Sang H. Son. Towards security and QoS
optimization in real-time embedded systems. In SIGBED Rev., vol-
ume 3, pages 29–34, New York, NY, USA, January 2006. ACM.

[36] Sang H. Son, Robert Zimmerman, and Jörgen Hansson. An adapt-
able security manager for real-time transactions. In Proceedings
of the 12th Euromicro conference on Real-time systems, Euromicro-
RTS’00, pages 63–70, Washington, DC, USA, 2000. IEEE Computer
Society.

[37] T. Xie and X. Qin. Scheduling security-critical real-time applica-
tions on clusters. In IEEE Transactions on Computers, volume 55,
pages 864 – 879, july 2006.

[38] Xdin AB. http://xdin.com/, Accessed: December 2012.

http://xdin.com/

[39] KK-stiftelsen: Swedish Knowledge Foundation. http://www.
kk-stiftelsen.org/SitePages/Startsida.aspx, Accessed: De-
cember 2012.

[40] ITS-EASY post graduate industrial research school for embed-
ded software and systems. http://www.mrtc.mdh.se/projects/
itseasy/, Accessed: December 2012.

http://www.kk-stiftelsen.org/SitePages/Startsida.aspx
http://www.kk-stiftelsen.org/SitePages/Startsida.aspx
http://www.mrtc.mdh.se/projects/itseasy/
http://www.mrtc.mdh.se/projects/itseasy/

Chapter 8

Paper C:
Monitoring Capabilities
of Schedulers in
Model-Driven
Development of
Real-Time Systems

Mehrdad Saadatmand, Mikael Sjödin, Naveed Ul Mustafa
17th IEEE International Conference on Emerging Technologies & Fac-
tory Automation (ETFA), Krakow, Poland, September, 2012.

129

Abstract

Model-driven development has the potential to reduce the design com-
plexity of real-time embedded systems by increasing the abstraction
level, enabling analysis at earlier phases of development, and automatic
generation of code from the models. In this context, capabilities of sched-
ulers as part of the underlying platform play an important role. They
can affect the complexity of code generators and how the model is imple-
mented on the platform. Also, the way a scheduler monitors the timing
behaviors of tasks and schedules them can facilitate the extraction of
runtime information. This information can then be used as feedback to
the original model in order to identify parts of the model that may need
to be re-designed and modified. This is especially important in order
to achieve round-trip support for model-driven development of real-time
systems. In this paper, we describe our work in providing such mon-
itoring features by introducing a second layer scheduler on top of the
OSE real-time operating system’s scheduler. The goal is to extend the
monitoring capabilities of the scheduler without modifying the kernel.
The approach can also contribute to the predictability of applications
by bringing more awareness to the scheduler about the type of real-time
tasks (i.e., periodic, sporadic, and aperiodic) that are to be scheduled
and the information that should be monitored and logged for each type.

8.1 Introduction 131

8.1 Introduction
Model-Driven Development (MDD) is a promising approach to cope with
the design complexity of real-time and embedded systems. It helps to
raise the abstraction level and also perform analysis at earlier phases
of development. Therefore, problems in the design of a system can be
identified before the implementation phase [1].

Automatic code generation is also one of the end goals in model-
driven development. In the context of real-time systems, this includes
generating the implementation of periodic, sporadic and aperiodic tasks.
However, most (industrial) Real-Time Operating Systems (RTOS) such
as VxWorks, RTEMS, RT-Linux, Windows CE, OSE, and also others
such as FreeRTOS only allow specification of priority for a real-time
task. The definition of different types of real-time tasks (i.e., periodic,
sporadic, and aperiodic) and specification of timing properties for them
including period, deadline, Worst-Case Execution Time (WCET), etc.
are not explicitly supported in these RTOSes. While in theory, a real-
time task is simply specified by its timing parameters, in practice and
when it comes to implementation, these parameters are introduced in
the system in different ways. For example, a periodic task may be im-
plemented in the form of an interrupt while its period is actually set by
having a timer to trigger the interrupt periodically. For code genera-
tion, this means that for every model element defined as periodic, what
is actually generated is an interrupt handler that behaves in a periodic
way. The issue is that when we look at these systems at runtime, no
tangible and single runnable entity as a real-time periodic task is actu-
ally observable and identifiable. In other words, the semantic mapping
of a periodic task at model level and such an entity at runtime becomes
weak.

Moreover, other parameters of a real-time task such as deadline are
lost and not present at the implementation level or are defined in arbi-
trary and different ways in each implementation. This is because among
all these parameters, what is usually supported explicitly by most real-
time operating systems, is to specify only priority for a task. Other
parameters are left to be defined and implemented by system designers
in arbitrary ways, such as using timer interrupts and delays to enforce pe-
riodicity or Minimum Inter-Arrival Time (MIAT). The problem becomes
even more evident when it comes to runtime monitoring of real-time sys-
tems and where a system needs to detect events such as deadline misses,

132 Paper C

execution time overruns, etc.
To cope with these problems, we propose a second layer scheduler

which takes as input the specification and implementation of real-time
tasks including all of their temporal parameters, and schedules and ex-
ecutes them using the underlying scheduler of the operating system.
With this design, the code generators can then generate tangible real-
time tasks according to a well-defined specification (e.g., definition of a
task as: task(task type, period, deadline, execution time)), regardless of
whether, for instance, they are going to be actually implemented as a
timer interrupt or some other mechanism. This way, an actual real-time
task along with its parameters will be present and identifiable at the code
level. The system can then be easily queried, for example, for the num-
ber of periodic or sporadic tasks and their specified timing parameters
such as deadline. The top-level scheduler schedules a task and uses its
parameters to manage and report events such as deadline misses or exe-
cution time overruns. In this approach, even if the underlying platform
changes and the implementation of real-time tasks (e.g., as timer inter-
rupt) are modified, it will not require any changes in the code generators
and also the specification of real-time tasks. This may also improve the
portability of the generated code and especially transformation engines,
making them as platform-independent [2] as possible.

The issue is that for most commercial or closed-source RTOSes, it
may not be possible or economical to modify the kernel and scheduler
to add the above mentioned features. In such scenarios these features
can be provided through an added layer on top of the core scheduler.
In this work, by highlighting the role of schedulers in model-driven de-
velopment of real-time systems and to provide round-trip support, we
describe the suggested second layer scheduler built for OSE real-time
operating system [3] and demonstrate how it improves the monitoring
of the timing behaviors of tasks at runtime and detecting events such as
deadline misses which are critical in real-time systems.

The remainder of the paper is as follows. In Section 8.2, we discuss
the background context and motivation of the work. Section 8.3 de-
scribes the proposed approach along with its design and implementation
details. In Section 8.4, an example is demonstrated and the implemen-
tation and behavior of the suggested approach is evaluated. In Section
8.5 we have a look at the related work, and finally in Section 8.6, we
summarize the work and describe its future extensions and directions.

8.2 Background and Motivation 133

8.2 Background and Motivation

8.2.1 CHESS Project
This work has been done in the context of CHESS European project [4].
This project is about model-driven and component based development
of real-time embedded systems for telecommunication, space, railway,
and automotive domains which focuses on preservation and guarantee of
extra-functional properties [5]. This is done by performing static analysis
on design models and monitoring the behavior of the generated system
at runtime. The idea is to back-annotate monitored results back to the
model to inform the designer which modeled features have led to the
violation of specified requirements and may need to be modified. The
general structure of the approach is shown in Figure 8.1.

Figure 8.1: CHESS methodology

As can be seen from the above figure, different types of analysis are
done at different abstraction levels (marked as B, F, and H), and the

134 Paper C

results are propagated back to the model (D). MAST [6] is one of the
analysis tools that is used in CHESS to perform schedulability analysis
on the model. The system model which is defined in the modeling lan-
guage called CHESS ML, is transformed into an appropriate model as
input for the MAST analysis tool.

To ensure that the assumptions based on which the analyses were
done hold true, the system’s execution is monitored and runtime infor-
mation are collected. For example, the difference between the charac-
teristics of the (ideal) execution environment of the system taken into
account for analysis and the actual one when the system is implemented
may lead to the violation of the assumptions that are used to perform
analysis [7]. Therefore, monitoring the behavior of the system at runtime
is important in preservation of system properties.

Timing properties are of utmost importance in real-time embedded
systems. In order to extract and collect information about runtime tim-
ing behaviors for back-annotation to the model, the platform should be
able to provide this information. Among the most important timing
data for back-annotation that are of interest are deadline misses, actual
response time, and execution time overruns. However, such a feature is
not present explicitly in many commercial real-time operating systems
today and needs to be implemented in different ways by system develop-
ers. In the scope of this work, we narrow our focus on Part I of Figure
8.1.

8.2.2 OSE Real-Time Operating System
OSE is a real-time operating system developed by Enea [8]. It has been
designed from the ground up for use in fault-tolerant distributed sys-
tems that are commonly found in telecommunication domain, ranging
from mobile phones to radio base stations and is embedded in millions
of devices around the world [3]. It provides preemptive priority-based
scheduling of tasks. OSE offers the concept of direct and asynchronous
message passing for communication and synchronization between tasks,
and OSE’s natural programming model is based on this concept. Linx,
which is the Interprocess Communication Protocol (IPC) in OSE, allows
tasks to run on different processors or cores, utilizing the same message-
based communication model as on a single processor. This program-
ing model provides the advantage of not needing to use shared memory
among tasks.

8.2 Background and Motivation 135

The runnable real-time entity equivalent to a task is called process
in OSE, and the messages that are passed between processes are re-
ferred to as signals (thus, the terms process and task in this paper can
be considered interchangeable). Processes can be created statically at
system start-up, or dynamically at runtime by other processes. Static
processes last for the whole life time of the system and cannot be ter-
minated. Types of processes that can be created in OSE are: interrupt
process, prioritized process, background process, and phantom process.
One interesting feature of OSE is that the same programming model is
used regardless of the type of process. Of the timing properties that
we have been discussing so far, only priority can be assigned for prior-
itized processes. Periodic behavior can be implemented by using timer
interrupt processes. Information such as task completion time, deadline
misses and such, is not reported by default and it needs to be imple-
mented using system level APIs for events such as process swap_in and
swap_out which are triggered when a process starts and stops running
(i.e., context switches).

8.2.3 Goal
Figure 8.2 shows the target system that is built in the scope of this work.
As discussed before, most real-time operating systems, such as OSE,
only allow specification of priority for real-time tasks. In other words,
semantically, there is no parameter or kernel level value that represents
deadline, execution time, or period of a task. Similarly, the monitoring
information and logs that are generated by the system do not contain
information about deadline misses, or execution time overruns, because
these concepts are not actually understood by the kernel and have no
meaning for it. Therefore, it is the job of a programmer to implement
such features and collect information by also implementing event han-
dlers that monitor when a task gets CPU time and when it is preempted,
and then calculate deadline misses or execution time overruns through
this information.

The proposed solution that is shown in Figure 8.2 solves this situation
by introducing a second layer scheduler. The interface to this scheduler
layer representing the specification of a real-time task is in the form of:
Task(release time, period/MIAT, execution time, relative deadline, task
type). Considering these parameters, the second layer scheduler then
schedules the tasks using the priority-based scheduling mechanism of

136 Paper C

Figure 8.2: Interfaces between different parts in the suggested approach

the core scheduler.
The code generator on the other hand, generates real-time tasks

(from the model) according to this specification, and need not care how
such a task is actually implemented on the core scheduler, hence more
portability and re-usability of the analyzed model and generated code
are obtained.

From the monitoring perspective, since the second layer scheduler is
responsible for scheduling tasks according to the described specification,
it is aware of concepts such as deadline, and can therefore, produce log
information representing events such as deadline misses. This generated
log information from the second layer scheduler can then be used to
propagate necessary information back to the model.

We believe that the suggested added layer in our approach can also
help with decreasing the gap between theoretical aspects of real-time
systems and their actual implementations by providing more semantics
to parameters and specifications of real-time tasks at implementation
level and thus increasing the applicability of theoretical knowledge such

8.3 Scheduler Design and Implementation 137

as schedulability analysis techniques.

8.3 Scheduler Design and Implementation
In this section, the internal mechanism and design details of the second
layer scheduler are described.

The second layer scheduler developed on top of OSE, schedules a
given set of tasks (S) by releasing tasks to OSE core scheduler according
to a selected scheduling policy. S can contain three kinds of tasks: Pe-
riodic, Sporadic, and Aperiodic tasks. Task parameters such as period
and execution time are generated for the second layer scheduler from the
model as input parameter files with .prm extension.

As shown in Figure 8.3, the system consists of a few other compo-
nents besides the second layer scheduler process. At system startup, first
process creator is started. Process creator creates an OSE process for
each of the tasks that are specified as a set of input files. Initially, all
these processes will be in the waiting mode (to receive a signal from the
second layer scheduler process). From this point on, the second layer
scheduler process, which has the highest priority in the system, controls
the system. Based on a specified scheduling policy (e.g., EDF), the sec-
ond layer scheduler selects an appropriate task from the queue of waiting
tasks, and sends a start signal to it. It then enters a waiting state it-
self using OSE receive_w_tmo (receive with timeout) system call. This
system call makes the caller process wait until it either receives a signal
or the specified timeout expires. We make a specific use of this system
call in our design by setting its timeout value equal to the time interval
available before arrival of a new instance of a higher priority periodic
task. Also, whenever a task finishes execution, it sends a completion
signal back to the second layer scheduler process. Therefore, if the run-
ning task finishes its job before arrival of the next instance of a higher
priority periodic task, the second layer scheduler will receive a comple-
tion signal (at the receive_w_tmo system call), and continues its job
(scheduling next tasks). Otherwise, if the running task takes too much
time, the timeout which is set in the receive_w_tmo command in the
second layer scheduler will expire, and since the second layer scheduler
process has the highest priority in the system, it preempts the running
task, takes the CPU, checks the list of waiting tasks again, and selects
the next appropriate task to run.

138 Paper C

Right after receiving the completion signal by the second layer sched-
uler process, it generates log information about the behavior of the task
which has just completed. Since the second layer scheduler has access
to (and thus is aware of) all the real-time parameters of each task (e.g.,
periodic/MIAT, deadline, execution time), it can gracefully detect dead-
line misses, execution time overruns, and events of this kind, mark them
in the log information and report them. This way, all this critical log
information about the behavior of the system are also centralized, which
can then be easily queried. This is an important feature which is absent
in many real-time operating systems today.

Creation of monitoring log files and persistence of the collected in-
formation are done by the monitor process using the information that is
sent to it by the second layer scheduler process in the form of signals.
In this design, two separate log files are actually created: scheduling log
file, and monitoring log file. Scheduling log file contains listing of sched-
ules generated by the second layer scheduler by stating the time points
at which a task in the task set is scheduled, completed or preempted.
This log file is generated by the second layer scheduler. Events related
to task deadlines can be investigated by examining the monitoring log
file generated by the scheduler. Monitoring log file is updated with new
information only when an instance of a task is completed, and scheduling
log file is updated whenever a task is scheduled, preempted, resumed or
completed.

The scheduling policy that the second layer scheduler uses for peri-
odic tasks is selectable and not fixed. Same is the case with the schedul-
ing mechanism for aperiodic and sporadic tasks. The selected policy is
read as a configuration value at system startup. This makes the sug-
gested approach flexible. Currently Rate Monotonic Scheduling (RMS)
and Earliest Deadline First (EDF) policies are supported for periodic
tasks while aperiodic and sporadic tasks can be scheduled using back-
ground [9] or polling server [9, 10] schemes. Other policies can also be
added to design.

In the following sections, the role of different components in our de-
sign are described in detail.

8.3 Scheduler Design and Implementation 139

Figure 8.3: Components of Design

8.3.1 System Components
Process Creator

Each task in a task set is specified by two files.

• Parameter File: A file with .prm extension provides task param-
eters including release time, period/MIAT, execution time, relative
deadline and type of the task.

Type of task can have four valid values: 0 for Periodic, 1 for Spo-
radic, 2 for Aperiodic, and 3 for Polling Server.

• Body File: A file with .c extension contains the body of the task.
In other words, .prm file of a task contains its timing non-functional
specification while .c file contains its functional implementation.

140 Paper C

Process creator reads the parameters for each task from its .prm
file into a data structure, called ”constraints", and creates a prioritized
OSE process against each user defined task. Moreover, It also creates
following four OSE prioritized processes:

• Second layer scheduler process

• Sporadic queue holding process

• Aperiodic queue holding process

• Monitor process

None of the created OSE processes is started by process creator ex-
cept the second layer scheduler process. Task parameters and Process
Identifiers (PIDs) for all processes are then passed to the second layer
scheduler in the form of “constraints" data structure.

Second Layer Scheduler

After receiving “constraints" structure and PIDs of all OSE processes cre-
ated by process creator, the second layer scheduler schedules the tasks
by releasing them to core OSE scheduler according to selected scheduling
algorithm. The design provides options to select between RMS or EDF
algorithm.

To schedule sporadic and aperiodic tasks, the second layer sched-
uler supports background scheduling and polling server for scheduling
sporadic and aperiodic tasks.

Sporadic Queue Holder

Task set can contain periodic, aperiodic and sporadic tasks. Sporadic
queue holder is a prioritized OSE process which maintains a list of spo-
radic tasks waiting for scheduling, by using a queue. Each element of
queue contains two parameters for a sporadic task: PID corresponding
to the given task, and release time of sporadic task.

To release a sporadic task, its PID and release time is to be placed in
queue. An interrupt process (in case of hardware driven sporadic tasks)
or a prioritized process (in case of software driven sporadic tasks) may
initiate this placement by sending a signal to sporadic queue holder.

Upon receiving this signal, sporadic queue holder extracts the PID

8.3 Scheduler Design and Implementation 141

and release time of sporadic task from signal and updates the queue with
extracted information.

The second layer scheduler checks if there is a sporadic task to be
scheduled by making a query to sporadic queue holder process.

Aperiodic Queue Holder

Aperiodic queue holder has the same structure and mechanism as the
sporadic queue holder, except that it maintains a list of aperiodic tasks.
Also separate signals are defined for use with aperiodic and sporadic
queue holders.

Monitor

Monitor process generates a log file to state whether specified timing
constraints for each task in task set S are met or not. For example,
if the specified MIAT parameter, in case of a sporadic task, is violated
then monitor records this violation in a monitoring log file.
When a task is released to the core OSE scheduler for execution, the
second layer scheduler observes its timing parameters. As soon as a task
completes its execution, the second layer scheduler sends a signal to the
monitor process. This signal contains start time, completion time, de-
sired deadline, desired execution time, desired MIAT, actual execution
time, and actual MIAT of completed task. These timing values are ex-
tracted from .prm file of the task under monitoring (i.e., desired deadline
and execution time) and measured by the second layer scheduler (i.e., ac-
tual deadline and execution time). Monitor extracts these timing values
from the received signal and saves the relevant monitoring statements in
a monitoring log file.

8.3.2 Signals and Communications

To achieve the scheduling of tasks in a reliable way, several signals are
defined and used by system. These signals play two important roles:
carry required data from one component to another, and ensure syn-
chronous execution of all components.

These signals are described below.

142 Paper C

• start_exe_sig: Start execution signal. This signal is sent by the
second layer scheduler to a process to be scheduled on core OSE
scheduler. Target process can start execution only if it has received
start_exe_sig signal.

• comp_sig: Completion signal. This signal is sent as an acknowl-
edgment to the second layer scheduler upon completion by a pro-
cess which is created against a user defined task.

• aper_update_sig: Update signal for aperiodic queue holder. To
release an aperiodic task, an interrupt process or prioritized pro-
cess sends the aper_update_sig signal to aperiodic queue holder
process. This signal contains the PID and release time of an ape-
riodic task to be scheduled.
This signal is also used as a response to the second layer sched-
uler by aperiodic queue holder on receiving start_exe_sig from
scheduler.

• spor_update_sig: Update signal for sporadic queue holder. To
release a sporadic task, an interrupt process or prioritized process
sends the spor_update_sig signal to sporadic queue holder pro-
cess. This signal contains the PID and release time of sporadic
task to be scheduled.
This signal is also used as a response to the second layer scheduler
by sporadic queue holder on receiving start_exe_sig from sched-
uler.

• qupdate_confirm_sig: Queue update confirmation signal. This
confirmation signal is sent back to the sender of an update signal,
after receiving aper_update_sig (in case of aperiodic queue holder)
or spor_update_sig (in case of sporadic queue holder). Confirma-
tion signal informs sender if queue is updated successfully. In case
of failure, sender can send aper_update_sig again with same con-
tent after waiting for a finite amount of time.

• monitor_info_sig: Monitoring information signal. This signal
is sent by the second layer scheduler to the monitor, every time a
task completes its execution. Monitor uses the information con-
tained in this signal to determine if a completed task has met its
constraints, such as deadline and WCET.

8.3 Scheduler Design and Implementation 143

8.3.3 Priority Assignment
In OSE, there are 32 priority levels. Priority 0 is considered the highest
while 31 is considered as the lowest priority level. In our system, process
creator creates one OSE process for each task in the input task set. All
such processes are assigned priority level of 1. Similarly, sporadic queue
holder process and aperiodic queue holder process have priority level of
1. However, the second layer scheduler process has priority level of 0
which is the highest possible priority level. The reason for assigning
priority level 0 to the scheduler is to make it non preemptable by any
other prioritized OSE process.

Monitor behaves as a background OSE process and hence has the
lowest priority level. This ensures that monitoring is performed only
when no task is ready and the scheduler is idle. This reduces the effect
of monitoring on the scheduling of tasks.

8.3.4 Scheduling of Tasks
As described in the previous section, all OSE processes are created by
Process creator but not started by it. Process creator starts only the
second layer scheduler process and passes “constraints" structure along
with PIDs of all OSE processes.

Scheduling of Periodic Tasks

The second layer scheduler examines the “type" parameter of all tasks
to identify periodic tasks among the task set. Tasks are scheduled by
releasing them to core OSE scheduler according to specified scheduling
algorithm, for example RMS.

The second layer scheduler sends start_exe_sig to the the process
representing the user defined task which has highest priority according
to selected scheduling algorithm. Then scheduler waits for receiving
comp_sig back from target OSE process but with a finite waiting time
called “timeout".

If comp_sig is received before the timeout is expired, it implies that
the target process has completed. Hence the second layer scheduler re-
leases to the core OSE scheduler the next ready OSE process represent-
ing the user defined periodic task. If comp_sig is not received within
the timeout duration and a process representing a user defined task with
higher priority is ready, then the former process is preempted and second

144 Paper C

layer scheduler releases to core OSE scheduler the process with higher
priority.

Scheduling of Sporadic and Aperiodic Tasks

To schedule a sporadic task, it is necessary that its corresponding PID
and release time are placed in the sporadic processes queue maintained
by sporadic queue holder. This can be achieved by sending a spor_update_sig
signal to the sporadic queue holder containing release time and PID of
the OSE process corresponding to the task. Signal, spor_update_sig,
can be sent to the sporadic queue holder either by an interrupt OSE pro-
cess or a prioritized OSE process. In the first case, target sporadic task
becomes interrupt driven while in second case it behaves as a program
driven sporadic task. The above discussion is valid also for achieving
interrupt and program driven behavior for aperiodic tasks.

Sporadic and aperiodic tasks can be scheduled by using one of fol-
lowing two approaches:

• Background Scheme: One approach to schedule sporadic and ape-
riodic tasks is to use time slots in which no periodic task is ready to
run. In such case, the second layer scheduler first makes query to
sporadic queue holder by sending start_exe_sig to find if there is
any ready sporadic task. The spor_update_sig signal is sent back
by sporadic queue holder to the second layer scheduler, indicating
availability status of sporadic task.
If there is a ready sporadic task, the second layer scheduler re-
leases sporadic task to OSE core scheduler and waits until either
it completes its execution or a periodic task becomes ready. If
sporadic task is completed and no periodic task is ready to run,
second layer scheduler again makes query to sporadic queue holder
to find if there are any more sporadic tasks waiting in the queue.
If sporadic task queue is empty and no periodic task is ready to
run, the second layer scheduler makes query to aperiodic queue
holder by sending start_exe_sig. Availability status of aperiodic
task is communicated back to the second layer scheduler by sending
aper_update_sig from aperiodic queue holder. If aperiodic queue
is not empty and aperiodic task at the head of the queue is ready
to run, the second layer scheduler releases that aperiodic task to
core OSE scheduler.

8.3 Scheduler Design and Implementation 145

If there is no periodic, sporadic and aperiodic task to execute,
Monitor process is released to core OSE scheduler by the second
layer scheduler.

• Polling Server Scheme: An alternative approach to schedule spo-
radic and aperiodic tasks is to use polling server. Polling server is
a periodic task like any other periodic task. It has a period Ps and
execution time Es. Execution time of polling server is known as
its budget.
Polling server is scheduled along with all other periodic tasks ac-
cording to selected scheduling algorithm. However, when polling
server gets the chance to execute, the second layer scheduler makes
query to sporadic and aperiodic queue holding processes to find if
there is any ready sporadic or aperiodic task. If sporadic or aperi-
odic task is ready to run, the second layer scheduler releases that
task to OSE core scheduler and budget of polling server keeps de-
clining per unit time.
If sporadic or aperiodic task completes its execution before budget
is expired, the second layer scheduler picks next ready sporadic
or aperiodic task to release to OSE core scheduler. This sequence
continues until either there is no sporadic or aperiodic task or bud-
get of server is expired or a higher priority periodic task becomes
ready to execute.
At the start of each period of the polling server, its budget is set
equal to its execution time. If at that time point, no sporadic or
aperiodic task is ready to run then budget immediately declines to
zero. Otherwise the budget decreases one level per time unit.

8.3.5 Monitoring of Tasks
On completion of a task, independent of its type, the second layer sched-
uler sends monitor_info_sig signal to Monitor. Monitor is implemented
as a background OSE process. Hence, it can execute only when there is
no periodic, sporadic or aperiodic task ready to run. Monitor continu-
ously checks its input message queue for monitor_info_sig signal. This
message carries following information to the monitor process regarding
completed task:

• start time of the task

146 Paper C

• completion time of the task

• specified deadline parameter for the task

• specified MIAT parameter for the task

• specified execution time for the task

• actual execution time for task

• actual deadline for task

• actual MIAT for the task

Monitor uses this information to make decision if a completed task has
met its parameters or violated them. In any case, monitor records the
information in a monitoring log file.

Operation of the scheduler is summarized by the sequence diagram
of Figure 8.4. In this diagram, the task set consists of two periodic
tasks T1 and T2, one sporadic task T3 and an aperiodic task T4. Timing
parameters of the tasks defined in this task set are listed below using the
specification convention: Task (Release Time, Period, WCET, Relative
deadline, Task type).

Periodic task: T1(0, 12, 3, 8, 0)
Periodic task: T2(0, 4, 1, 3, 0)
Sporadic task: T3(0, 15, 2, 6, 1)
Aperiodic task: T4(0, 0, 1, 6, 2)

This figure shows a valid sequence of execution when RMS is used
as the scheduling policy for periodic tasks, while sporadic and aperiodic
tasks are scheduled using background scheme. As is evident from the
sequence diagram, monitor gets the chance to execute only when no
other process is in ready state.

8.4 Experiment and Monitoring Results
The described approach has been implemented and tested on OSE Soft-
Kernel (SFK) version 5.5.1 [8]. In this section, we show an example of a
task set which is implemented based on the specification of the proposed
second layer scheduler. The way the task set is scheduled and the log

8.4 Experiment and Monitoring Results 147

Figure 8.4: Sequence diagram to demonstrate operation of the scheduler

information that is generated for the behaviour of tasks are illustrated.
A task set consisting of four tasks is created. Periodic tasks in the

task set are configured to be scheduled using RMS while aperiodic and
sporadic tasks are to be scheduled using polling server scheme (this can
be changed by changing configuration parameters).

Timing constraints for tasks are given below (last parameter identifies
the type of task):

• T1(0, 10, 2, 5, 3) : Polling server with release time=0, period=10,
WCET/Budget=2, Relative Deadline=5, Task type=3.

• T2(0, 5, 2, 4, 0) : Periodic Task with release time=0, period=5, WCET=2,

148 Paper C

Relative Deadline=4, Task type=0.

• T3(0, 5, 2, 4, 1) : Sporadic Task with release time=0, MIAT=5, WCET=2,
Relative Deadline=4, Task type=1. Two instances of Sporadic task
T3 are released at time 0;

• T4(0, 0, 2, 7, 2) : Aperiodic Task with release time=0, period= 0
(Not Applicable), WCET=2, Relative Deadline=7, Task type=2.

As mentioned before, these timing parameters are actually specified
in the .prm file of each task (i.e., t1.prm, . . . , t4.prm). Process creator
opens these files and populates ”constraints” data structure with these
data.

Using the implemented second layer scheduler to schedule this task
set, the following log files are automatically generated:

• Scheduling log file: Scheduling log file provides the time points
for each task at which it is scheduled, preempted/not completed,
resumed or completed. Parts of the scheduling log information
generated for the task set are shown in Listing 8.1. To make it
easier to follow and understand the information in the log file,
the PIDs that are assigned to each task by the system are also
mentioned below:

– PID of process representing T1 = 65595.
– PID of process representing T2 = 65596.
– PID of process representing T3 = 65597.
– PID of process representing T4 = 65598.

Listing 8.1: Scheduling log file
task PID=65596
Scheduled f o r 5 t i c k s at t i c k s =1115
task PID=65596
Completed at t i c k s =1117
task PID=65597
Scheduled with budget= 2 t i c k s at t i c k s =1117
task PID=65597
Not completed at t i c k s =1119
Remaining Execution Time in t i c k s =1
task PID=65596
Scheduled f o r 5 t i c k s at t i c k s =1120
task PID=65596
Completed at t i c k s =1122
task PID=65596

8.4 Experiment and Monitoring Results 149

Scheduled f o r 5 t i c k s at t i c k s =1125
task PID=65596
Completed at t i c k s =1127
task PID=65597
Resumed with budget= 2 t i c k s at t i c k s =1127
task PID=65597
Completed at t i c k s =1128
task PID=65597
Scheduled with budget= 1 t i c k s at t i c k s =1128
task PID=65597
Not completed at t i c k s =1129
Remaining Execution Time in t i c k s =1
task PID=65596
Scheduled f o r 5 t i c k s at t i c k s =1130
task PID=65596
Completed at t i c k s =1132
task PID=65596
Scheduled f o r 5 t i c k s at t i c k s =1135
task PID=65596
Completed at t i c k s =1137
task PID=65597
Resumed with budget= 2 t i c k s at t i c k s =1137
task PID=65597
Completed at t i c k s =1138
task PID=65598
Scheduled with budget= 1 t i c k s at t i c k s =1138
task PID=65598
Not completed at t i c k s =1139
Remaining Execution Time in t i c k s =1
task PID=65596
Scheduled f o r 5 t i c k s at t i c k s =1140
task PID=65596
Completed at t i c k s =1142

• Monitoring log file: On completion of each instance of a task,
monitoring log file lists type of task, PID of process represent-
ing that task in system, start time of the task, specified deadline,
completion time of the task, specified WCET for the task, actual
execution time consumed by the task, response time of the task,
specified MIAT/period and actual interval between two consecutive
invocations of the task. Listing 8.2 shows parts of the monitoring
log information generated for the task set.

Listing 8.2: Monitoring log file
PID =65596
Type o f task =0
s t a r t time in t i c k s =1115
s p e c i f i e d d e a d l i n e in t i c k s =1119
complet ion time in t i c k s =1117
s p e c i f i e d WCET in t i c k s =2
a c t u a l e x e c u t i o n time in t i c k s =2
Response time in t i c k s =2

150 Paper C

s p e c i f i e d Period /MIAT in t i c k s =5
I n t e r v a l between two c o n s e c u t i v e i n v o c a t i o n s in t i c k s =5
PID =65596
Type o f task =0
s t a r t time in t i c k s =1120
s p e c i f i e d d e a d l i n e in t i c k s =1124
complet ion time in t i c k s =1122
s p e c i f i e d WCET in t i c k s =2
a c t u a l e x e c u t i o n time in t i c k s =2
Response time in t i c k s =2
s p e c i f i e d Period /MIAT in t i c k s =5
I n t e r v a l between two c o n s e c u t i v e i n v o c a t i o n s in t i c k s =5
PID =65596
Type o f task =0
s t a r t time in t i c k s =1125
s p e c i f i e d d e a d l i n e in t i c k s =1129
complet ion time in t i c k s =1127
s p e c i f i e d WCET in t i c k s =2
a c t u a l e x e c u t i o n time in t i c k s =2
Response time in t i c k s =2
s p e c i f i e d Period /MIAT in t i c k s =5
I n t e r v a l between two c o n s e c u t i v e i n v o c a t i o n s in t i c k s =5
PID =65597
Type o f task =1
s t a r t time in t i c k s =1117
s p e c i f i e d d e a d l i n e in t i c k s =1121
complet ion time in t i c k s =1128
s p e c i f i e d WCET in t i c k s =2
a c t u a l e x e c u t i o n time in t i c k s =3
Response time in t i c k s =11
s p e c i f i e d Period /MIAT in t i c k s =5
I n t e r v a l between two c o n s e c u t i v e i n v o c a t i o n s in t i c k s =10
PID =65596
Type o f task =0
s t a r t time in t i c k s =1130
s p e c i f i e d d e a d l i n e in t i c k s =1134
complet ion time in t i c k s =1132
s p e c i f i e d WCET in t i c k s =2
a c t u a l e x e c u t i o n time in t i c k s =2
Response time in t i c k s =2
s p e c i f i e d Period /MIAT in t i c k s =5
I n t e r v a l between two c o n s e c u t i v e i n v o c a t i o n s in t i c k s =5
PID =65596
Type o f task =0
s t a r t time in t i c k s =1135
s p e c i f i e d d e a d l i n e in t i c k s =1139
complet ion time in t i c k s =1137
s p e c i f i e d WCET in t i c k s =2
a c t u a l e x e c u t i o n time in t i c k s =2
Response time in t i c k s =2
s p e c i f i e d Period /MIAT in t i c k s =5
I n t e r v a l between two c o n s e c u t i v e i n v o c a t i o n s in t i c k s =5
PID =65597
Type o f task =1
s t a r t time in t i c k s =1128
s p e c i f i e d d e a d l i n e in t i c k s =1132
complet ion time in t i c k s =1138
s p e c i f i e d WCET in t i c k s =2

8.4 Experiment and Monitoring Results 151

a c t u a l e x e c u t i o n time in t i c k s =2
Response time in t i c k s =10
s p e c i f i e d Period /MIAT in t i c k s =5
I n t e r v a l between two c o n s e c u t i v e i n v o c a t i o n s in t i c k s =9

The first four lines in the generated scheduling log information shown
in Listing 8.1 indicates that the periodic task T2 with PID of 65596,
which is started at tick time 1115, has completed at 1117. The next task
which is scheduled is T3 with PID of 65597. The polling server has the
capacity of two time unit at this time instance, therefore, the sporadic
task T3 can run until tick time 1119, and at 1120 another instance of T2
arrives which causes the second layer scheduler to preempt T3. However,
at 1119, T3 has not managed to complete its job, and therefore, it is
marked as ’Not completed’.

On the other hand, the monitoring information in Listing 8.2, among
other things, can be used to check whether any deadline miss has oc-
curred or not. For example, it shows that the first two instances of T2
(PID=65596) have met their deadlines. The first instance has finished
its job at 1117 and finished before its deadline which is 1119. The dead-
line for the second instance is at 1124, and it has managed to complete
its job at 1122, and therefore, meet its deadline. However, the dead-
line of the sporadic task T3, with PID of 65597, has been 1121 while
it has managed to finish its job at 1128. Its actual execution time has
also been three time units which is one time unit more than its specified
WCET. This shows that there has been execution time overrun for this
task and there is something wrong with the specified WCET value of it,
and it needs to be re-considered. Such information are hardly provided
by default in any real-time operating system.

Figure 8.5 visualizes the schedule generated by the scheduler. This
figure is created (manually) using the information available in the schedul-
ing log file generated by the scheduler. The scheduling log file shows that
the first task is released at 1115 system ticks. To make this schedule eas-
ier to understand in the figure, subtraction of 1115 ticks is performed at
every time point.

As is indicated by a cloud symbol in Figure 8.5, actual execution
time consumed by first instance of sporadic task is 3 ticks instead of 2
ticks as specified in timing constraint of WCET=2. Therefore, it misses
its deadline of 5 ticks and is completed at 13 ticks. Second instance
of sporadic task is scheduled immediately after completion of the first
instance. This is because MIAT of 10 ticks is already elapsed (10+2=12).

152 Paper C

Figure 8.5: Schedule generated by the design using second layer scheduler

The diagram in the lower part of Figure 8.5 indicates the replenishment
and decrease of budget with passage of time as is defined for the behavior
of polling servers.

Now that the necessary information about the runtime behavior of
tasks is provided in the log files generated by the system, a user can easily
query them, extract desired parts, and draw conclusions. For example,
it is very easy to find out the number of deadline misses, execution time
overruns, the task with maximum number of deadline misses, etc. by
using the log files as the data source. Similarly, at any time point, the
number of periodic, sporadic, and aperiodic tasks in the system can eas-
ily be requested from the second layer scheduler; a simple but important
feature which is not provided by default in many RTOSes today. Also,
it is now possible to identify and report the time period during which
maximum number of deadline misses have occurred, and examine as well
how the system has been behaving in terms of context switches and pre-
emptions during that period. These are features whose implementations
can be very hard and complex without having the necessary monitoring
information and using the suggested approach.

8.5 Related Work 153

8.5 Related Work
Many of the operating systems and also programming languages today
provide support for measuring the CPU time a runnable entity (i.e.,
thread, etc.) consumes to perform its function. However, the monitor-
ing facilities and event handling mechanisms provided by these platforms
are not usually integrated with their scheduling facilities [11]. As a re-
sult, the platform cannot enforce and monitor real-time properties of
threads such as their allowed execution times and deadlines. Real-Time
Specification for Java (RTSJ) [11] is introduced to integrate scheduling of
threads with the execution time monitoring facilities and enforce execu-
tion budgets on them in Java. For Ada applications and particularly the
Ada Ravenscar profile [12] different kernels such as ORK [13] have been
introduced to enforce and manage task budgets and handle critical real-
time events. Moreover, the Ada compiler, GNAT, has defined GNARL
as the tasking runtime system of the compiler which is divided into two
layers. The lower layer of GNARL abstracts the execution platform and
provides OS services via POSIX interfaces.

The implementation of different scheduling algorithms on top of a
fixed priority scheduler has also been used in the FIRST project [14].
The main objective in this project has been to develop a scheduling
framework for real-time applications that have various types of tasks
(hard, soft, firm, etc.) and scheduling paradigms within the same sys-
tem to achieve a flexible integrated real-time system. The FRESCOR
project [15] which also relies on the results of the FIRST project, targets
the gap between the real-time theory and the industrial and practical
aspects of real-time systems. In this project a platform independent
scheduler called FRSH has been developed which provides a set of APIs
for the applications. FRSH implementation is made portable to differ-
ent operating systems using the FRSH Operating System Adaptation
layer (FOSA) which encapsulates all native operating system calls and
types used by FRSH into neutral names acceptable by both POSIX and
non-POSIX compliant systems [15]. The main objective of this project
has been to provide a contract-based model and framework for real-time
embedded systems.

The implementation of a new scheduling class called SCHED_DEA-
DLINE for the Linux kernel that adds EDF scheduling policy support to
Linux is done in[16]. It is also motivated by acknowledging the fact that
due to limited support for specifying timing constraints for real-time

154 Paper C

tasks (e.g., deadline) and lack of control over them, feasibility study
of the system under development and guaranteeing the timing require-
ments of tasks are not possible. There are however several differences
between this work and ours. It focuses only on mechanisms for adding
EDF scheduling policy to the Linux kernel, while we target the problem
in a more general manner and allowing the scheduling policy to be con-
figurable. Our focus is mainly on improving the monitoring of real-time
events by providing more control over real-time tasks and providing more
knowledge about their timing constraints to the scheduler regardless of
the scheduling policy and without modifying the core scheduler. More-
over, we try to provide an abstraction layer around the core scheduler
to hide platform-dependent implementation details from the user while
SCHED_DEADLINE tries to solve a different problem and is basically
added as a separate module to the system.

One concept which also introduces different levels of abstraction
around a core scheduler is Hierarchical Scheduling Framework (HSF)
[17, 10]. There are fundamental differences between what we introduced
here and HSF. HSF is a modular approach in which a system is divided
into several subsystems. The subsystems are scheduled by a global (core)
scheduler, while the tasks in each subsystem are scheduled by local (sub-
system) level schedulers. The structure that we introduced here does not
try to divide a system into different subsystems where each of these sub-
systems may be scheduled differently by a different scheduler.

There are also studies that focus on execution monitoring of real-
time systems. Many of these studies, such as [18], try to predict timing
violations in the system in different ways, for example, using statistical
models. Our suggested approach does not to try to predict violations
and produces precise monitoring information for behavior of real-time
tasks and violation of timing constraints. The monitoring part in our
approach is coupled with the scheduler and by bringing awareness to
the scheduler about the type of tasks it is scheduling, monitoring such
information becomes a natural and straightforward part of the scheduler.

8.6 Discussion and Conclusion
In this paper, we introduced the concept of the second layer scheduler as
an approach to bring semantics and awareness for different types of real-
time tasks and their parameters to the scheduler without modifying it.

8.6 Discussion and Conclusion 155

It was shown how this awareness improves the monitoring capabilities of
the system to help with the detection of critical events such as deadline
misses, and execution time overruns. While the approach was motived
and described in the context of model-driven development of real-time
systems to enable back-annotation of data and provide round-trip engi-
neering support, it does not necessarily need to be used in this context
and the concept of the second layer scheduler is applicable and practical
per se.

Considering a larger set of timing parameters for scheduling of tasks
and generating detailed log information in the second layer scheduler
can bring along their own overheads. Measurement of these overheads
and evaluation of the price of these added features are left to be done
as a future work. Especially we plan to perform two overhead measure-
ments: startup overhead (reading configurations and initializing tasks),
and context switch and scheduling decisions overheads. It should how-
ever be noted that the actual logging is done by the monitor process in
our design which behaves as a background process. The second layer
scheduler only sends out a signal (including needed information) to the
monitor process and continues its job (asynchronously) without using
any critical section for data sharing by using message passing mecha-
nisms of OSE. This way, the overhead of creating log information in the
second layer scheduler process is tried to be mitigated.

Generation of such detailed monitoring information can also help
with the predictability of real-time systems at runtime. For instance,
even in cases where no deadline misses occur in the system, it becomes
possible to observe how close tasks are to missing their deadlines and
whether this gap is decreasing or increasing. Based on such analysis
of monitoring information, the system can also adapt itself in order to
prevent deadline misses.

One issue that we did not discuss in this paper is the priority inversion
problem. This problem is handled automatically by OSE for communi-
cation among periodic tasks, but for sporadic and aperiodic tasks, the
priority inversion issue should be more investigated. Also the way the
system is designed for the background scheme, periodic tasks will have
higher priority over sporadic tasks, and the priority of sporadic tasks
will be higher than aperiodic ones. When the polling server scheme is
used, the priority of sporadic tasks will be dependent on the priority
of their periodic server, but still higher than aperiodic ones. This can
also be extended to be configurable by the user. Moreover, in this work,

156 Paper C

since the tasks were assumed to be generated from a model, the task
set was considered to be known and static. We leave the extension of
the implementation to accept new tasks dynamically as a future work.
Also, the possibility to have different numbers and types of servers for
sporadic and aperiodic tasks could be another future work.

Since the suggested approach is designed to be flexible in terms of the
used scheduling algorithms, it would be interesting as a future direction
of this work to investigate the possibility to let the system intelligently
select an appropriate/optimal scheduling algorithm based on the require-
ments at the model level and generate code accordingly especially that
the back-annotation mechanism can also be used as a feedback loop.

8.7 Acknowledgements
This work has been partially supported by the CHESS European Project
(ARTEMIS-JU100022) [4] and XDIN AB [19].

Bibliography

[1] Bran Selic. The Pragmatics of Model-Driven Development. IEEE
Software, 20:19–25, September 2003.

[2] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture - Practice and Promise. 2003.

[3] Enea. The Architectural Advantages of Enea OSE in Telecom Appli-
cations. http://www.enea.com/software/products/rtos/ose/,
Last Accessed: February 2012.

[4] CHESS Project: Composition with Guarantees for High-
integrity Embedded Software Components Assembly. http://
chess-project.ning.com/, Last Accessed: April 2012.

[5] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite.
Non-functional requirements: From elicitation to conceptual mod-
els. In IEEE Transactions on Software Engineering, volume 30,
pages 328–350, 2004.

[6] Modeling and Analysis Suite for Real-Time Applications (MAST).
http://mast.unican.es/, Last Accessed: February 2012.

[7] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring
of real-time systems. In Real-Time Systems Symposium (RTSS).
Proceedings., Twelfth, pages 74 –83, dec 1991.

[8] Enea. http://www.enea.com, Last Accessed: April 2012.

[9] Brinkley Sprunt. Aperiodic Task Scheduling for Real-Time Systems.
Technical report, Ph.D. thesis, Carnegie Mellon Univ, 1990.

157

http://www.enea.com/software/products/rtos/ose/
http://chess-project.ning.com/
http://chess-project.ning.com/
http://mast.unican.es/
http://www.enea.com

158 Bibliography

[10] Robert Davis and Alan Burns. Hierarchical fixed priority pre-
emptive scheduling. In In Proceedings of the 26 th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’05), pages 389–398,
2005.

[11] Andy J. Wellings, Gregory Bollella, Peter C. Dibble, and David
Holmes. Cost Enforcement and Deadline Monitoring in the Real-
Time Specification for Java. In 7th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC),
pages 78–85. IEEE Computer Society, 12-14 May 2004.

[12] Enrico Mezzetti, Marco Panunzio, and Tullio Vardanega. Preserva-
tion of Timing Properties with the Ada Ravenscar Profile. In Jorge
Real and Tullio Vardanega, editors, Reliable Software Technologies
- Ada-Europe 2010, volume 6106 of Lecture Notes in Computer Sci-
ence, pages 153–166. Springer Berlin / Heidelberg, 2010.

[13] Juan Zamorano and Jose F. Ruiz. GNAT/ORK: An open cross-
development environment for embedded Ravenscar-ADA software.
In Proceedings of the 15th IFAC World Congress. Elsevier, 2003.

[14] FIRST Project: Flexible Integrated Real-Time Systems Technology.
http://www.frescor.org/index.php?page=related-projects,
Last Accessed: April 2012.

[15] FRESCOR Project: Framework for Real-time Embedded Systems
based on COntRacts. http://www.frescor.org/index.php, Last
Accessed: April 2012.

[16] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio
Scordino. An EDF scheduling class for the Linux kernel. In Pro-
ceedings of the Eleventh Real-Time Linux Workshop, Dresden, Ger-
many, September 2009.

[17] Thomas Nolte, Moris Behnam, Mikael Åsberg, Reinder Bril, and
Insik Shin. Hierarchical Scheduling of Complex Embedded Real-
Time Systems. In École d’Éte Temps-Réel (ETR’09), pages 129–
142, August 2009.

[18] Yue Yu, Shangping Ren, and Ophir Frieder. Prediction of Timing
Constraint Violation for Real-Time Embedded Systems with Known

http://www.frescor.org/index.php?page=related-projects
http://www.frescor.org/index.php

Transient Hardware Failure Distribution Model. In Real-Time Sys-
tems Symposium, 2006. RTSS ’06. 27th IEEE International, pages
454 –466, dec. 2006.

[19] XDIN AB. http://ny.xdin.com/om-xdin/enea-experts/, Ac-
cessed: June 2012.

http://ny.xdin.com/om-xdin/enea-experts/

Chapter 9

Paper D:
An Automated
Round-trip Support
Towards Deployment
Assessment in
Component-based
Embedded Systems

Federico Ciccozzi, Mehrdad Saadatmand, Antonio Cicchetti, Mikael Sjödin
The 16th International Symposium on Component-Based Software En-
gineering (CBSE), Vancouver, Canada, June, 2013.

161

Abstract

Synergies between model-driven and component-based software engi-
neering have been indicated as promising to mitigate complexity in de-
velopment of embedded systems. In this work we evaluate the usefulness
of a model-driven round-trip approach to aid deployment optimization in
the development of embedded component-based systems. The round-trip
approach is composed of the following steps: modelling the system, gen-
eration of full code from the models, execution and monitoring the code
execution, and finally back-propagation of monitored values to the mod-
els. We illustrate the usefulness of the round-trip approach exploiting an
industrial case-study from the telecom-domain. We use a code-generator
that can realise different deployment strategies, as well as special moni-
toring code injected into the generated code, and monitoring primitives
defined at operating system level. Given this infrastructure we can eval-
uate extra-functional properties of the system and thus compare different
deployment strategies.

9.1 Introduction 163

9.1 Introduction
Complexity of embedded systems is continuously increasing and there-
fore solicits the introduction of more powerful and automated develop-
ment mechanisms able to mitigate it. In this direction, Model-Driven En-
gineering (MDE) [1] and Component-Based Software Engineering (CBSE)
[2] can be considered as two orthogonal ways of reducing development
complexity through different means. The former shifts the focus of the
development from hand-written code to models from which the imple-
mentation is meant to be automatically generated through the exploita-
tion of model transformations. The latter breaks down the set of desired
features and their intricacy into smaller replaceable sub-modules, namely
components, starting from which the application can be built-up and in-
crementally enhanced. Moreover, their combination has been recognised
as an enabler for them to definitely break through for industrial devel-
opment of embedded systems [3].

In this research work we exploit the synergy between MDE and CBSE
to demonstrate the benefits of an automated round-trip support in aid-
ing deployment optimization when developing embedded systems. The
round trip support consists of the following steps:
• Modelling: the first step is represented by modelling the system
through a structural design, in terms of components, a behavioural
description by means of state-machines and action code, as well as
a deployment model describing the allocation of software compo-
nents to operating system’s processes;

• Code generation: from the information contained in the design
model, we automatically generate full functional code. Note that
in the paper we refer to generated code as full or full-fledged if it
is entirely generated in an automated manner and does not require
manual tuning in order to be executed on the selected platform;

• Monitoring: after the code has been generated we monitor its ex-
ecution on top of the target platform and measure selected Extra-
Functional Properties (EFPs). In fact, in modern complex em-
bedded systems, certain EFPs cannot be accurately predicted at
modelling level, hence requiring measurements at runtime. This
would be the case, e.g., of performance-related EFPs, that often
only emerge in a running product. As example, let us consider two
sorting algorithms that speed up a program because they use a big
portion of the main memory. Although both increase the perfor-

164 Paper D

mance in isolation and they have no direct functional interaction,
in combination they may degrade the overall performance because
both share the same (too small) main memory [4];

• Back-propagation: at this point, gathered values are back-propagated
to the design model and, after their evaluation, the deployment
configuration can be manually tuned to generate more resource-
efficient code.

The round-trip support and its usefulness in aiding the preservation of
EFPs1 from models to generated code have been already proven and
discussed in [5] and [6]. Nevertheless, their limited support for platform
configurations (i.e., only single-process) prevented their employment for
deployment issues. The approach has been therefore enhanced in order
to enable synthesis of design models to either a single-process or to a
set of communicating processes. This gives flexibility to generate ei-
ther highly resource efficient (in terms of inter-system communications)
single-process systems or exploit multi-process configurations that could,
e.g., run in parallel on multicores and/or maintain error encapsulation
within one process.

In this work we describe the enhancements made to the round-trip
support and how it can employ measurements gathered at system im-
plementation (or runtime) level towards deployment optimization when
developing embedded systems. More specifically, in order to enhance
the generation of full code from models addressing multiprocess appli-
cations, additional modelling artefacts (e.g., deployment model) had to
be considered, higher variability of the transformation process had to
be addressed by enhancing the code generation transformations as well
as expanding the intermediate metamodels to entail deployment infor-
mation and diverse communication patterns. In order to employ the
approach for deployment assessment the execution platform had to be
modified for enabling monitoring facilities and back-propagating trans-
formations were implemented too. Moreover, the approach has been
validated against industrial case-studies from the telecom-domain.

The remainder of the paper is structured as follows. The scope of
the paper is defined in terms of context delimitation and contribution
formalisation in Section 9.2. The state-of-the-art related to similar ap-
proaches with focus on back-propagation features, monitoring activities
and deployment optimization based on measurements at system imple-

1By preservation of EFPs we intend keeping them within their validity ranges
and protect them from violation at runtime.

9.2 Context 165

mentation level is described in Section 9.3. A running example in terms
of an industrial case-study is introduced in Section 9.4 while the proposed
solution is described in Section 9.5. The application of the proposed ap-
proach to the example is described in all its details in Section 9.6 with
focus on showing how the round-trip support can aid the developer in
taking deployment decisions. Section 9.7 proposes a discussion on the
proposed solution and possible enhancements; the paper is then con-
cluded by a summary in Section 9.8.

9.2 Context
Following the MDE paradigm, a system is developed by designing mod-
els and refining them starting from higher and moving to lower levels of
abstraction until code is generated; refinements are performed through
transformations between models. A model transformation translates a
source model to a target model while preserving their well-formedness [7].
Since a model is an abstraction of the system under development, rules
and constraints for building it have to be properly described through
a corresponding language definition. In this respect, a metamodel de-
scribes the set of available concepts and well-formedness rules a correct
model must conform to [8].

Since different nuances of the CBSE-related terminology can be found
in the literature, in this work we refer to component-based development
as prescribed by the UML Superstructure [9]. That is to say, a system
is modelled as an assembly of components communicating via required
and provided interfaces exposed by ports, where a port represents an
interaction between a classifier instance and its internal or external envi-
ronment. Additionally, features owned by required interfaces are meant
to be offered by one or more instances of the owning classifier to one or
more instances of the classifiers in its internal or external environment.

A fairly wide variegation of different approaches to the measurement
of EFPs at system implementation level exists. In this work we focus
on runtime monitoring, that represents a method to observe the exe-
cution of a system in order to determine whether its actual behaviour
is in compliance with the intended one. In comparison to other veri-
fication techniques such as static analysis, model checking, testing and
theorem proving which are used mainly to determine “universal correct-
ness” of software systems, runtime monitoring focuses on each instance

166 Paper D

and current execution of a system [10].
In the following sections we describe the scope of the proposed solu-

tion in terms of modelling language, target platform and intended con-
tribution.

9.2.1 CHESS Modelling Language

In our work we employ the CHESS modelling language (CHESS-ML) [11],
defined within the CHESS project (cf. Acknowledgements) as a UML
profile, including tailored subsets of SysML and MARTE profiles. CHESS-
ML allows the specification of a system together with relevant EFPs
such as predictability, dependability and security. Moreover, it supports
a development methodology expressly based on separation of concerns;
distinct design views address distinct concerns. In addition, CHESS ac-
tively supports component-based development as prescribed by the UML
Superstructure [9].

According to the CHESS methodology, functional and extra-functional
characteristics of the system are defined in specific separated views as
follows:
• Functional: UML component and composite component diagrams
are employed to model the structural aspects of the system while
state-machines and activity diagrams are used to express functional
behaviour. Action Language for Foundational UML (ALF) [12] is
used to enrich the behavioural description. In this way, we reach
the necessary expressive power to be able to generate full imple-
mentation code directly from the functional models with no need
for manual fine-tuning of the code after its generation;

• Extra-functional: in compliance with the principle of separation of
concerns adopted in CHESS, the functional models are decorated
with extra-functional information thereby ensuring that the defi-
nition of the functional entities is not altered. In respect to the
back-propagation proposed in this work, it is worth clarifying that
there is no cloning nor versioning of the design model but rather
a decoration in terms of values updates on the extra-functional
stereotypes. This means that, at each iteration, the EFPs are up-
dated and, if any modification to the model is manually performed,
no history of previous versions is kept.

9.2 Context 167

9.2.2 OSE Real-Time Operating System

OSE is a commercial and industrial real-time operating system developed
by Enea [13] which has been designed from the ground specifically for
fault-tolerant and distributed systems. It is widely adopted mainly in
telecom-domain and systems ranging from mobile phones to radio base
stations [14]. OSE provides the concept of direct and asynchronous
message passing for communication and synchronisation between tasks,
and its programming model is based on this concept. This allows tasks
to run on different processors or cores, utilising the same message-based
communication model as on a single processor. This programming model
provides the advantage of avoiding the use of shared memory among
tasks. In OSE, the runnable real-time entity equivalent to a task is
called process, and the messages that are passed between processes are
referred to as signals (thus, the terms process and task in this paper can
be considered synonyms).

A system modelled through the CHESS-ML is manipulated through
model transformations to generate C++ code which constitutes defini-
tion and functionality of the processes that will run on the platform. To
retrieve information about desired EFPs, the platform has been extended
with a set of monitoring and logging processes which collect information
about the behaviour of the generated code in terms of memory and CPU
usage of a process, execution time, response time, number of signals gen-
erated by a process (to mention a few), as well as several system-level
properties such as overall CPU usage and total number of signals in the
system.

9.2.3 Contribution

Goal The aim of this work is to lessen the developer’s effort devoted
to optimise deployment configuration in the development of component-
based embedded systems exploiting measurements gathered at system
implementation level and avoiding manual editing of code.

Solution The solution we propose is represented by a fully automated
model-driven round-trip approach that enables:
• Generation of full-fledged code from source models entailing cus-
tomisable single- and multi-process deployment configurations;

168 Paper D

• Monitoring of code execution for measuring selected EFPs at sys-
tem implementation level, such as CPU load, number of generated
signals, system throughput, execution time, response time of a pro-
cess, instance execution time of a process, heap and stack usage;

• Back-propagation facilities to enrich the source models with values
gathered by monitoring.

Through the proposed approach, the developer exploits model-driven
techniques, thus operating exclusively at modelling level, and at the
same time takes advantages of measurements gathered at runtime and
automatically brought back at modelling level. This is of critical impor-
tance in order to assist the developer in understanding at a glance the
relationships between expected and actual behaviour, without having to
inspect the related generated code. Thanks to the automated support,
the process can be iterated at will until the developer is satisfied with
the results.

Specific Contribution Considering that the round-trip support and
its usefulness in aiding the preservation of EFPs from models to gener-
ated code have been already presented in [5], the specific contributions
of this paper are the following:

1. Enhancements to the code generation for entailing the synthe-
sis of both single-process and multi-process configurations (Sec-
tion 9.6.1);

2. Specific extensions to the execution platform in order to enable per
process monitoring features for EFPs (Section 9.6.2);

3. Adaptation of the back-propagation facilities (i.e., in-place model
transformations) to address newly introduced monitoring features
(Section 9.6.3);

4. Exploitation of the synergy between round-trip support and mea-
surements gathered at system implementation (or runtime) level
towards deployment optimization when developing embedded sys-
tems (Section 9.6.4).

9.3 Related Work
Attempts that propose to solve the problem by back-propagation, i.e.,
by reporting the measured values back to the models in order to possibly
fix and/or refine estimated numbers can be found in the literature. Nav-

9.3 Related Work 169

abi et al. in [15] in the early 90’s, and later Mahadevan and Armstrong
in [16], proposed different approaches for back-annotating behavioural
descriptions with timing information; however, both operate horizon-
tally2 in terms of abstraction levels and no automation is provided.

Moreover, Varró et al. propose in [17] back-propagation for enabling
execution traces retrieved by model checkers or simulation tools to be
integrated and re-executed in modelling frameworks; some similarities
to our approach might be found when dealing with traceability issues,
although the two approaches aim at solving two different problems. An
approach similar to ours is described by Guerra et al. in [18] where back-
propagation of analysis results to the original model by means of triple
graph patterns is described. Nevertheless, the approach is meant to
horizontally operate at modelling level with propagation of data among
models. Our approach focuses on vertically propagating analysis results
observed at code level back to design models for better understanding of
those EFPs that cannot be accurately predicted without executing the
code on a specific platform.

In the literature there exist approaches dealing with deployment op-
timization based on measurements at system implementation level as
described in [19]. A dated approach by Yacoub in [20] introduces sys-
tematic measurements of a component-based system, but no tool support
is provided.

The COMPAS framework by Mos et al. [21] is a performance monitor-
ing approach for J2EE systems. Components are EJBs and the approach
consists of monitoring, modelling, and prediction. An EJB application
is augmented with proxy components for each EJB, which send time-
stamps for EJB life-cycle events to a central dispatcher. Performance
measurements are then visualised with a proof-of-concept graphical tool
and a modelling technique is used for generating UML models with SPT
annotations from the measured performance indices. Then, for perfor-
mance prediction of the modelled scenarios, the approach suggests us-
ing existing simulation techniques, which are not part of the approach.
Based on the COMPAS framework, two further approaches have been
proposed: AQUA, by Diaconescu et al. in [22], and PAD, by Parsons et
al. in [23]. Both approaches expect working J2EE applications as input.
AQUA focuses on adapting a component-based application at runtime

2Horizontal and vertical are used for specifying the direction of data transitions
among artefacts; therefore with horizontal we intend transitions from model to model,
while with vertical we mean those from code to model.

170 Paper D

if performance problems occur. The main idea is that a software com-
ponent (EJB) with performance problems is replaced with one which
is functionally equivalent from a set of redundant components. Fur-
thermore, the approach involves monitoring the workload of a running
application. PAD focuses instead on automatic detection of performance
anti-patterns in running component-based systems. The approach tar-
gets EJB systems and includes performance monitoring, reconstruction
of a design model, and anti-pattern detection.

The described approaches assume that a complete component-based
system has been implemented and can be run. The goal is therefore to
identify performance problems in the running system and adapt the im-
plementation to make it able to fulfil EFPs requirements. Instead, the
uniqueness of our round-trip approach consists in introducing a new di-
mension to deployment optimization at model level with the help of mea-
surements gathered at system implementation level. In fact, when mea-
surements are completed, the code is not manually tuned, but changes
to the system are rather performed at model level from which code is
re-generated. Doing so, consistency between models and code is kept
and thereby the validity of decisions made at model level is likely to be
preserved at code level (and the other way around). Moreover, by ex-
ploiting the accuracy of system implementation level measurements at
modelling level, the developer is relieved from complex code inspection
and error-prone manual tuning of code.

Regarding measurements of EFPs at system implementation level,
besides runtime monitoring, other verification techniques (e.g., static
analysis) can be used for small and simple systems, but their application
for large and complex systems might not always be practical and eco-
nomical [24]. Even in cases where such techniques are feasible, conditions
that cause invalidation of the analysis results at runtime may happen.
An example of such is the difference between the ideal execution envi-
ronment (considered for performing analysis) and the actual one which
leads to the violation of the assumptions that were taken into account
when performing static analysis [25]. Therefore, the information gath-
ered through monitoring the execution of a system is not only interesting
and useful for observing the actual behaviour and to detect violations
at runtime, but also to be used for making adaptation decisions, as well
as to induct enforcement and preservation of properties. Our work in
[26] serves as an example of using monitoring information for balancing
timing and security properties in embedded real-time systems. Also in

9.4 The AAL2 Subsystem: a Running Example 171

[6], we provided an approach for improved enforcement and preservation
of timing properties in embedded real-time systems. Huselius and An-
dersson in [27] present a method for the synthesis of models of embedded
real-time systems from the monitoring information collected from their
execution. In this paper, however, we exploit monitoring results, from
which observed values are extracted and used to refine design models
with EFPs’ values detected during the execution of the system.

9.4 The AAL2 Subsystem: a Running Ex-
ample

The solution proposed in this work has been validated against indus-
trial case-studies modelled in CHESS-ML as described in Section 9.7.
In order to show a concrete application of the proposed solution, we
employ the Asynchronous Transfer Mode (ATM) Adaptation Layer 2
(AAL2) subsystem, originally intended to adapt voice for transmission
over ATM and currently used in telecommunications as part of connec-
tivity platform systems. The AAL2 subsystem is composed by several
thousands of component instances and multiple levels of hierarchical
composition of components. Due to its verbosity and complexity, we
will exploit a simplified version of the AAL2 to show how the approach
operates. Nevertheless, the validation of the approach has been carried
out exploiting the complete AAL2 subsystem. In Fig. 9.1 we propose
the simplified version of the AAL2 subsystem (i.e., SwSystem composite
component) which is composed by three main components: (i) NCC_i,
(ii) AAL2RI_Client_i, (iii) NCIClient_i. Note that the multiplicity
(in terms of number of instances) of components and ports is depicted
within square brackets. Each of the components has a complex internal
structure in terms of composition of other components; in this example
we consider only part of the NCC_ci internal structure while considering
AAL2RI_Client_i and NCIClient_i as stubbed. NCC_i is a connections
handler providing connectivity services for the establishment/release of
communication paths between pairs of connection endpoints handled by
AAL2RI_Client_i. NCIClient_i represents an application asking for
services provided by NCC_i and its underlying layers; the components
communicate through functional interfaces (function calls or message
passing depending on the deployment configuration) exposed by their
provided ports.

172 Paper D

Figure 9.1: Structural design of AAL2 in CHESS

The NCC_ci is a composite component (Fig. 9.1), and in this study we
focus on: NodeConnHandler_i, which dispatches the incoming connec-
tion requests to available NetConn_i instances, NetConn_i, that controls
establishment and release of network connections between nodes (Node-

9.5 The Round-trip Support 173

ConnElem_i instances), NodeConnElem_i, that handles management of
connections to the network within the single node, and PortHandler_i,
which manages connection resources. Each of these subcomponents has
in turn a complex internal structure in term of components composition;
in this case-study we consider only the first two levels of decomposition
(down to the NCC_ci’s internal structure).

The behaviour of the system (NetConn_i state-machine is defined
through state-machines and are enriched with action code definitions for
the involved operations specified by means of ALF in order to reach the
required level of expressive power needed to automatically generate full
code. Components are connected by means of ports and links between
them. The communication is thereby performed by calling operations
on the component’s required ports that propagate the invocation to the
component owning the provided ports connected to them (note that
connected provided and required ports share the same Interface). A
typical connection scenario in the AAL2 subsystem is the establishment
of a connection between two end-points residing on the same node. This
is a constrained case of a more general network-wide connection where
the two end-points reside on different nodes and the communication
transits through a number of other intermediate nodes in the network.

9.5 The Round-trip Support
This work proposes the exploitation of a round-trip technique to pro-
vide an automated support to aid deployment decisions at modelling
level in the development of component-based embedded systems. Such a
support is achieved by exploiting the multiple benefits of the round-trip
technique, namely the generation of full-fledged functional code from
source models, a set of monitoring features to gather values of EFPs of
interest from the execution of generated code on the target platform, and
the possibility to automatically propagate the computed values back to
the source models. Doing so, source models can be evaluated and possi-
bly tuned in terms of deployment of software components on processes
to enable a better resource utilisation based on actual values.

In order to maintain consistency between different artefacts in the
automated process and therefore ensure correctness of monitoring and
back-propagation activities, the generated code is not meant to be edited
by hand. Possible optimizations are indeed not performed directly through

174 Paper D

code editing, but rather by re-iterating the code generation process once
the deployment model has been refined according to the evaluation of the
back-propagated EFPs’ values. This is especially important in the con-
text of complex systems and in large organisations, where usually code
tweaks are done at sub-system and sub-department levels to achieve, for
instance, better performance. This can in turn lead to inconsistencies
among development artefacts and modifications often remain unknown
to developers at upper levels of the organisational hierarchy [28]. The
fact that EFPs (e.g., memory usage and performance) are not indepen-
dent and have inter-dependencies further emphasises the importance of
having such a consistency mechanism for development artefacts since,
most often, EFPs cannot be considered in isolation and their mutual
impacts and trade-offs need to be taken into account too [29]. The gen-
eral goal of this work is to demonstrate that the round-trip support helps
the developer in determining the most suitable deployment configuration
based on actual values gathered by executing and monitoring code which
is automatically generated from source models (Fig. 9.2). Once design
modelling tasks have been successfully completed, the objective is to
enable automatic generation of implementation code from source mod-
els. Taking design models as source artefacts 3, we generate target code
through appropriate model transformations (Fig. 9.2.a).

Information regarding tracing of source (e.g., model elements) and
target (e.g., code segment(s)) artefacts has to be defined and main-
tained for further back-propagation activities. Therefore, code gener-
ating transformations have to be properly defined by encoding apposite
rules for the generation of traceability links (explicit traceability [30])
between models and code (Fig. 9.2.b); such rules populate the back-
propagation model with traceability information according to the meta-
model described in [5]. Once the code has been generated as well as the
traceability links, EFPs can be measured by code execution monitoring
features (Fig. 9.2.c).

The monitoring features that have been added to the platform enable
collecting information about the desired EFPs of the generated system
in order to assess its behaviour at runtime and thus decide whether it
is satisfactory with respect to the resource constraints. This capability
is achieved by back-propagating to the models the necessary informa-
tion about the behaviour of the system and its components gathered at

3Throughout the paper, source and design models refer to the artefacts at the
highest level of abstraction as shown in Fig. 9.2

9.5 The Round-trip Support 175

Figure 9.2: Proposed Round-trip Solution

runtime. Since the monitoring is performed per process (as the runtime
entity), a one-to-one mapping between component and process at mod-
elling level (i.e., a process is created for each component at the model
level) would enable the monitoring of EFPs per component.

Depending on the monitoring’s output format, different actions, vary-
ing from text-to-model to model-to-model transformations (Fig. 9.2.d),
are required to extract and formalise execution results in order to com-
plete the traceability chain from models to monitoring results. The last
step of the round-trip approach aims at finally annotating the source
models with the code execution results (Fig. 9.2.e) through dedicated
in-place model-to-model transformations.

At this point the source models are evaluated by means of actual

176 Paper D

EFPs’ values and, if needed, the allocation of components to processes
can be tuned (Fig. 9.2.f) by the developer to generate more resource-
efficient code. Thanks to the automated support, the process can be
re-iterated until the developer is satisfied with the generated code.

9.6 From Models to Code and Back
In this section we show the application of the round-trip support to the
AAL2 subsystem in terms of generation of C++ code from the source
model described in Section 9.4, monitoring of the code execution on
OSE and back-propagation of gathered values to the CHESS model.
Moreover, after performing deployment tuning based on such values, we
re-iterate the process to show how these modifications at modelling level
can affect EFPs of re-generated code.

9.6.1 Generation of C++ from CHESS Model
A set of model-to-model transformations operates on the CHESS model
to generate three different intermediate artefacts: i) Instance model, that
stores component instances and links among them via ports [31], ii) In-
termediate model, that represents the main intermediate artefact in the
process and contains all the information needed to generate code [5],
and iii) Back-propagation model, that contains explicit traceability links
between model elements and code as well as place-holders for EFPs val-
ues coming from the following monitoring activities [5]. The intermediate
model is enriched with behavioural information defined in ALF by means
of parsing operations and in-place model-to-model transformations. At
this point, the C++ implementation code is generated through model-
to-text transformations taking as input the intermediate model [5].

Each of these intermediate artefacts conforms to its corresponding
metamodel that we expressly defined for the code generation process.
With regards to the technologies employed in the generation process,
model-to-model transformations are defined by means of Operational
QVT, while model-to-text transformations are defined in Xpand [32].

As aforementioned, the synthesis described in [5] was limited to
single-process applications, which prevented its employment for deploy-
ment issues. The approach has been therefore enhanced in order to be
able to consider deployment configurations specified at modelling level

9.6 From Models to Code and Back 177

Figure 9.3: Multiprocess Deployment Configuration of AAL2 Subsystem

and therefore generate single- or multi-process implementation accord-
ingly. Deployment is described in CHESS-ML by means of an ad-hoc
model in which the modeller defines allocation of components instances
to processes with the help of specific concepts provided by MARTE.
In Figure 9.3 a portion of the deployment model concerning the AAL2
subsystem is depicted.

More specifically the following possible allocations are shown:
• Different instances of a same component on different processes:
represented by the two instances of the component NCIClient_i
(SwSystem_NCIClient_inst) respectively allocated to processA
and processB (Figure 9.3.a);

• Single component instance on a process: represented by the in-
stance of AAL2RIClient_i (SwSystem_AAL2RIClient_inst) allo-
cated to processC (Figure 9.3.b);

• Multiple set of component instances on a single process: repre-
sented by the entire set of NetConn_i (SwSystem_NetConn_inst)

178 Paper D

instances allocated to processE (Figure 9.3.c).
In order to achieve this, the transformation process proposed has been
enhanced to take into account the information carried by the deploy-
ment model that, together with the functional model, drives the code
generation. More specifically, in the case of code tailored for OSE, that
information is exploited to create processes and deploy component in-
stances on them, as well as generate the communication code in order
to distinguish between:
• Intraprocess communication: communication between compo-

nents deployed on a same process is achieved by function calls;
• Interprocess communication: components allocated to differ-

ent processes communicate via signals across processes.
More specifically, the communication between components defined in

the CHESS-ML model in terms of ALF as function calls on ports had to
be properly translated into appropriate intermediate concepts. Depend-
ing on the deployment configuration of the communicating components,
a function call in the model is translated into (i) a function call, if the
components are deployed on the same process, or (ii) into a message
send (i.e, OSE signal) in the case of components deployed on different
processes. This means that the entailment of different deployment con-
figurations has introduced a higher degree of variability in the semantic
interpretation of the design models that depends on the modelled deploy-
ment. The ability to correctly interpret such information and thereby
generate code that reflects the modelled deployment configuration has
been embedded in the model transformations responsible for the code
generation.

Due to the complexity of the multi-process code generation, the de-
tails related to the involved artefacts ranging from intermediate meta-
models to model transformations will be dealt with separately. For the
interested reader, preliminary information about the single-process gen-
eration chain can be found in [5].

9.6.2 Monitoring Code Execution
In order to enable the needed monitoring features, specific extensions
to the execution platform have been made. These extensions have been
implemented mainly in the form of two additional system processes: one
for monitoring and another for logging. These two processes are assigned
lower priorities than the generated application ones. The monitoring pro-

9.6 From Models to Code and Back 179

cess is responsible for calculating and determining the values for EFPs
of interest for both the whole system (e.g., overall CPU usage) as well
as per process. The actual task of logging such information is separated
from the monitoring process and performed by the logging one. This
separation allows to mitigate the side effects of resource-demanding I/O
activities. When a request for monitoring is issued by one of the applica-
tion processes, the monitoring process starts executing and determining
EFPs’ values. The information to be logged is sent to the logging process
by the monitoring one through apposite signals. Therefore, if the logging
process does not get the needed CPU time to perform its job, the signals
sent to it are pushed in its signal queue, maintained automatically by
OSE, and processed as soon as it gets to execute.

The implemented monitoring process is capable of determining values
for the following properties:
• System-level properties: total CPU load, total number of gener-
ated signals in the system, system throughput (sent and received
packets), total number of processes in the system;

• Process-level properties: total execution time of a process (from
the startup of the system including all invocations of it), instance
execution time of a process (one invocation and instance), response
time of a process, heap and stack usage for a process, number of
signals generated by a process, and CPU load of a process.

To calculate execution and response times, swap_in and swap_out
handlers of OSE have been used. The former event handler is invoked
each time a process gets CPU to execute, and the latter is invoked when
CPU is taken from a process and it is preempted. The algorithms and
mechanisms for the calculation of execution and response times have
been implemented into these two event handlers. However, since they
are invoked for every process in the system, additional tweaks were made
in order to filter their executions for only the generated application pro-
cesses which are of interest.

The monitoring activities give a textual description of the gathered
values as output. The results of monitoring the execution of the C++
code generated from the AAL2 model and with the deployment con-
figuration partially depicted in Fig. 9.3 are shown partially in Listing
9.1.

180 Paper D

Listing 9.1: Monitored Properties

466 ,PROCID, mprocA ,1003 c ,65596
476 ,S_CPU_LOAD, 29.9780
476 ,S_NUMBER_OF_PROCESSES, 73476
476 ,S_NUMBER_OF_SIGNALS, 365
476 ,S_MTBF, 558.6177479
479 ,S_THROUGHPUT, 942 ,1676
479 ,P_HEAP_USAGE, 384 ,512
479 ,P_STACK_USAGE, 1536 ,0 ,2048
479 ,P_NUMBER_OF_SIGNALS, 2
579 ,P_EXECUTION_TIME, 14
579 ,P_RESPONSE_TIME, 1609984
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
579 ,PROCID, mprocE ,10040 ,65600
. . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
612 ,PROCID, mprocC ,1003 e ,65598
622 ,S_CPU_LOAD, 9.8427
622 ,S_NUMBER_OF_PROCESSES, 73
622 ,S_NUMBER_OF_SIGNALS, 675
622 ,S_MTBF, 558.6177
622 ,S_THROUGHPUT, 820 ,1676
623 ,P_HEAP_USAGE, 384 ,512
623 ,P_STACK_USAGE, 1536 ,0 ,2048
623 ,P_NUMBER_OF_SIGNALS, 2
623 ,P_EXECUTION_TIME, 11
623 ,P_RESPONSE_TIME, 1619979
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
623 ,PROCID, mprocB ,1003 d ,65597
. . .

The first column in Listing 9.1 indicates the time instance at which
monitoring has been performed (in system ticks unit). The second col-
umn identifies the type of the monitored information; the properties
beginning with ‘S_’ indicate a system-level value while the ones starting
with ‘P_’ identify a process-level value (e.g., S_NUMBER_OF_SIGN-
ALS: total number of signals in the system at the moment of monitoring,
P_NUMBER_OF_SIGNALS: total number of signals owned by a pro-
cess). The values after the name of the process (i.e., mprocA) indicates
process’ ID in hexadecimal and decimal format respectively. As it can
be seen, some of the properties have multiple values, in which case they
mean different aspects related to the same property. For example, the
first value related to P_HEAP_USAGE represents the heap size re-
quested by the process and the second one shows the actual heap size
allocated for the process by the operating system (the difference between
the two is due to factors such as memory paging and memory manage-
ment mechanisms of OSE).

9.6 From Models to Code and Back 181

9.6.3 Back-propagation to CHESS Model
While a similar approach had been proposed in [5], since the monitoring
features, and thereby the output format, had entirely changed, the back-
propagation facilities had to be consequently adapted. More specifically,
a specific in-place text-to-model transformation has been implemented
from scratch in order for the monitoring results of interest to be ma-
nipulated and stored in the back-propagation model. Observed values
as source for the back-propagating transformations are not enough. In
fact, the traceability chain defined along the path from design models
to observed values is also part of the source artefacts to be fed to the
transformations in order to correctly propagate values back to the design
models. The actual enrichment of the CHESS model with such EFPs
values is performed through a model-to-model transformation. Taking
as input the CHESS model and the back-propagation model, it performs
a set of in-place transformations (adapted version of the ones proposed
in [5]) on the CHESS model to enrich it with the observed values stored
in the back-propagation model. The results of the back-propagation are
partially shown by means of extra-functional decorations of the AAL2
model in Fig. 9.4. More specifically, we can notice that values concerning
mprocA are back-propagated to instance 1 of NCI_Client_i (marked by
[1] – e.g., EXECUTION_TIME[1]) while the ones carried by mprocC ap-
ply to the single instance of AAL2RI_Client_i. Such correspondence is
stored in the back-propagation model and originates from the deploy-
ment model depicted in Fig. 9.3. Regarding the technologies used in
the back-propagation process, model-to-model transformations are de-
fined by means of Operational QVT as well as text-to-model transfor-
mations (which are aided by structured text parsers defined in Java).
Once the monitored results have been back-propagated, the developer
has at her disposal the modelled system enriched with actual values
gathered at runtime. The values depicted in Listing 9.1 and propagated
back to the AAL2 model (in Fig. 9.4) are related to the deployment
configuration in which the component instance NCI_Client_i[1] is de-
ployed on ProcessA (mprocA in Listing 9.1) and the component instance
AAL2RI_Client_i[1] is allocated to ProcessC (mprocC).

9.6.4 Evaluation of Deployment Configurations
At this point, let us try out a different deployment configuration in
which we allocate both NCI_Client_i[1] and AAL2RI_Client_i[1] to

182 Paper D

Figure 9.4: Decorated AAL2 model in CHESS

ProcessA, since the communication between them is quite dense. Once
the model is modified, the code can be regenerated and its execution
monitored. In Table 9.1 the monitoring results concerning both the first
as well as the tuned deployment configurations are depicted. Configu-
ration 1 represents the deployment of the two component instances on
separate processes, while 2 concerns the deployment of both instances
on a single process.

As we can see, by changing the deployment configuration, in the spe-
cific case by allocating the two instances on the same process, we actu-
ally experience a decrease of the execution time of AAL2RI_Client_i
from 11 to 3. Besides this reduction which may not be relevant in
the actual employment of the system, what we aimed at pointing out
was the usefulness of having an automatic mechanism for gathering and
back-propagating runtime values to model level for allowing thorough
evaluation of the system’s deployment configuration. While providing
meaningful values at model level, the approach is not yet able to provide
any hint on how to interpret them. Limitations of the current solution
in this sense as well a future enhancements towards further automation
in the tuning phase are discussed in the next section.

9.7 Discussion and Future Work 183

Config. Comp. Instance Process Exec. Time
1 NCI_Client_i[1] A 14
1 AAL2RI_Client_i C 11
2 NCI_Client_i[1] A 14
2 AAL2RI_Client_i A 3

Table 9.1: Different deployments that induce different monitoring results

9.7 Discussion and Future Work

Validating the approach against an industrial case-study gave us the
possibility to evaluate the scalability of the proposed solution by testing
several design model sizes for the same system. The hardware configu-
ration was composed by a Windows machine running on a 2.6GHz CPU
and 8GB RAM. Moreover, we employed the OSE Soft-Kernel (SFK)
5.5.1 as target platform for code execution. The SFK edition provides
a simulated environment of the actual target embedded board on a host
machine (a Windows or Linux host) and accurately reproduces the be-
haviour of the real environment. Focusing on the most time-consuming
task in the approach (i.e., automatic code generation) and considering
n as the greatest number of instances per component, m as the greatest
number of instances per port, and k as the number of hierarchical compo-
sition level, the general limit behaviour of the computation is represented
by O((n ∗m)k). Overall the proposed solution, on a model with k = 2,
resulted very scalable up to n + m = 103 (i.e., within 5 minutes) while
gradually slowing down for greater number of instances (e.g., over 30
minutes for n+m = 104). More specifically, in terms of number of com-
ponent and port instances (i), the generation time (in seconds) was: (i)
52s for i = 90, 113s for i = 1853, and 831s for i = 16003 (complete AAL2
subsystem). However, the presented validation has been performed on a
preliminary implementation of the code generator which focuses mostly
on the correctness of the generation process with no major emphasis on
performance issues. That is why we expect to achieve better results, in
terms of scalability, with a more mature version of the code generator.

Regarding the time needed for monitoring activities, it heavily de-
pends on the duration of the code execution since the measurements
themselves are mostly performed by parallel processes during the exe-
cution. Nevertheless, the calculation of more complex EFPs could in-
troduce additional complexity hence requiring additional computation

184 Paper D

time.
Concerning back-propagation tasks, they resulted to be more scalable

thanks to the detailed information, concerning the path to the specific
model element to be annotated, carried by the back-propagation model.
This means that most of the needed computation is performed when
generating the back-propagation model, while the actual values injection,
first from monitoring results to back-propagation model and therefore
from the latter to the design model only involves an update of specific
values with no need of complex searches nor navigations.

Generally, the number of iterations for reaching the desired EFPs
depends on the accuracy of measurements as well as the modeller’s abil-
ity in both modelling the system and also effectively employ the back-
propagated values to tune the models accordingly. That is to say that
the developer is supposed to be able to understand the back-propagated
values in relation to the expected behaviour and thereby tune the models
accordingly to generate a better-performing implementation. In aid to
the modeller, model-based analysis and deployment optimization tech-
niques could be exploited to minimise the number of iterations.

As described in the previous sections, measurements of EFPs are gen-
erally performed at process level, which means that in order to obtain
component-level values, each component should be deployed on a sepa-
rate process. This, although representing an important step forward in
comparison to the previous version of our approach, only opens up to
further enhancements. In fact, while in principle the back propagation
can handle the case of several components mapped to one process, the
monitoring facilities cannot due to the execution platform. Therefore,
future improvements will entail the possibility to always monitor prop-
erties at runtime per component even when several components would
be deployed on a same process. In order to achieve this, both improved
dedicated marking in the generated code as well as specific tweaks at
platform level should be defined and implemented.

We plan to further enhance the code generation in order to address
deployment on multiple processing units, which would amplify the ben-
efits of multiprocessing addressed in this work (i.e., multi-process on
single processing unit).

As aforementioned, starting from an initial model, the approach is
iterated at will until the EFPs requirements are fulfilled. Therefore, once
providing support for multicore solutions, there would be the possibil-
ity to minimise the number of such iterations by exploiting model-based

9.8 Conclusion 185

deployment optimization techniques (e.g., [33] by Feljan et al.) to en-
hance the deployment-tuning phase with a semi-automated approach
that combines both runtime measurements as well as design-time per-
formance predictions.

Additionally, as for the monitoring part, by adding the support for
further EFPs, it becomes possible to take into consideration more param-
eters for tuning the deployment of the system. It would be possible, as
an extension of the monitoring part, to enable the calculation of MTBF
for each generated process, and therefore for the components that are
mapped to it. Having MTBF values as one of the parameters indicating
the dependability of the system, would add a further dimension (i.e.,
dependability) at model level that may help in making deployment deci-
sions. Similarly, if there would be a mechanism to determine an indicator
value for the energy consumption of each process (e.g., something similar
to the ACPI standard [34]) it would become possible to even tune the
system in terms of energy consumption. The feasibility of this possible
enhancement needs further investigations.

9.8 Conclusion
In this paper we described a possible solution to relieve the developer’s ef-
fort in optimising deployment configuration when developing component-
based embedded systems with the help of accurate measurements gath-
ered at system implementation level and avoiding manual editing of code.
The solution consists of a fully automated model-driven round-trip ap-
proach that enables: (i) generation of full-fledged code from source mod-
els entailing customisable single- and multi-process deployment configu-
rations, (ii) monitoring of code execution for measuring a selected set of
EFPs at system implementation level, and (iii) back-propagation facili-
ties to enrich the source models with such measurements.

By operating exclusively at modelling level, the developer is dis-
charged from inspecting as well as editing generated code. At the same
time, through automatic back-propagation of measurements gathered at
system implementation level, the approach assists the developer in un-
derstanding at first sight the relationships between expected and actual
behaviour hence enabling a well-aware tuning of deployment configura-
tion at model level.

While a previous version of the round-trip support (i.e., only single-

186 Paper D

process deployment was entailed) had been already described in [5], in
this work we describe how we enhanced it to enable synthesis of design
models to generate either highly resource efficient (in terms of inter-
system communications) single-process applications or exploit multi-
process configurations that could run in parallel on multicores. More-
over, having at our disposal this variety of deployment options, we were
able to focus on how the round-trip support can employ measurements
at system implementation level towards deployment optimization and
we showed it by applying the solution to an industrial example in the
telecom-domain. Additionally, we described complexity and scalability
of the different steps constituting the solution, as well as interesting
directions for possible future enhancements.

9.9 Acknowledgments
This research is supported by the RALF3 (Swedish Foundation for Strate-
gic Research (SSF), http://www.mrtc.mdh.se/projects/ralf3/) project
and the Swedish Knowledge Foundation (KKS) through the ITS-EASY
research school.

http://www.mrtc.mdh.se/projects/ralf3/

Bibliography

[1] J. Bezivin. On the unification power of models. Software and Sys-
tems Modeling, pages 171–188, 2005.

[2] Ivica Crnkovic. Component-based software engineering for embed-
ded systems. In Procs of ICSE’05, pages 712–713. ACM.

[3] R. Land, J. Carlson, S. Larsson, and I. Crnkovic. Project Monitoring
and Control in Model-driven and Component-based Development
of Embedded Systems - The CARMA Principle and Preliminary
Results. In Procs of ENASE’10, pages 253–258.

[4] N. Siegmund, M. Rosenmuller, M. Kuhlemann, C. Kastner, and
G. Saake. Measuring Non-Functional Properties in Software Prod-
uct Line for Product Derivation. In Procs of APSEC’08, pages 187
–194, 2008.

[5] F. Ciccozzi, A. Cicchetti, and M. Sjödin. Round-trip support for
extra-functional property management in model-driven engineering
of embedded systems. Information and Software Technology, 2012.

[6] M. Saadatmand, M. Sjödin, and N. U. Mustafa. Monitoring Ca-
pabilities of Schedulers in Model-Driven Development of Real-Time
Systems. In Procs of ETFA 2012, 2012.

[7] K. Czarnecki and S. Helsen. Feature-based survey of model trans-
formation approaches. IBM Systems Journal, pages 621–645, 2006.

[8] S. Kent. Model Driven Engineering. In IFM, 2002.

[9] Object Management Group (OMG). UML Superstructure Specifica-
tion V2.3. http://www.omg.org/spec/UML/2.3/Superstructure/
PDF/, 2011. [Online. Last access: 11/04/2012].

187

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

188 Bibliography

[10] N. Delgado, A.Q. Gates, and S. Roach. A taxonomy and catalog
of runtime software-fault monitoring tools. Software Engineering,
IEEE Transactions on, 30(12):859 – 872, 2004.

[11] A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, A. Zovi,
and T. Vardanega. CHESS: a model-driven engineering tool envi-
ronment for aiding the development of complex industrial systems.
In Procs of ASE’12, pages 362–365. ACM.

[12] OMG. Action Language For FoundationalUML - ALF. http://
www.omg.org/spec/ALF/, Oct 2010.

[13] Enea. http://www.enea.com, Last Accessed: January 2013.

[14] Enea. The Architectural Advantages of Enea OSE in Telecom Appli-
cations. http://www.enea.com/software/solutions/rtos/, Last
Accessed: January 2013.

[15] Z. Navabi, S. Day, and M. Massoumi. Investigating Back Annota-
tion of Timing Information into Dataflow descriptions. In Procs of
VHDL International User Forum, pages 185–195, 1992.

[16] G. Mahadevan and J. R. Armstrong. Automatic Back Annotation
of Timing into VHDL Behavioral Models. In Procs of VHDL Inter-
national User Forum, pages 27–41, 1995.

[17] Á. Hegedüs, G. Bergmann, I. Ráth, and D. Varró. Back-annotation
of Simulation Traces with Change-Driven Model Transformations.
In Procs of SEFM’10, pages 145–155, 2010.

[18] E. Guerra, D. Sanz, P. Díaz, and I. Aedo. A transformation-driven
approach to the verification of security policies in web designs. In
Procs of ICWE’07, pages 269–284, Berlin, Heidelberg. Springer-
Verlag.

[19] H. Koziolek. Performance evaluation of component-based software
systems: A survey. Performance Evaluation, 67(8):634–658, 2010.

[20] S. Yacoub. Performance Analysis of Component-Based Applica-
tions. In Software Product Lines, LNCS, pages 299–315. Springer
Berlin Heidelberg, 2002.

http://www.omg.org/spec/ALF/
http://www.omg.org/spec/ALF/
http://www.enea.com
http://www.enea.com/software/solutions/rtos/

Bibliography 189

[21] A. Mos and J. Murphy. A framework for performance monitor-
ing, modelling and prediction of component oriented distributed
systems. In Procs of WOSP’02, pages 235–236. ACM.

[22] A. Diaconescu and J. Murphy. Automating the performance man-
agement of component-based enterprise systems through the use of
redundancy. In Procs of ASE’05, pages 44–53. ACM.

[23] T. Parsons and J. Murphy. Detecting Performance Antipatterns in
Component Based Enterprise Systems. Journal of Object Technol-
ogy, pages 55–91, 2008.

[24] A. Wall, J. Kraft, J. Neander, C. Norström, and M. Lembke. In-
troducing Temporal Analyzability Late in the Lifecycle of Complex
Real-Time Systems. In Procs of RTCSA’03. Springer Berlin Hei-
delberg.

[25] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring
of real-time systems. In Procs of RTSS’91, pages 74 –83.

[26] M. Saadatmand, A. Cicchetti, and M. Sjödin. Design of adaptive
security mechanisms for real-time embedded systems. In Procs of
ESSoS’12, pages 121–134. Springer-Verlag, 2012.

[27] J. Huselius and J. Andersson. Model Synthesis for Real-Time Sys-
tems. In Procs of CSMR’05, pages 52–60. IEEE Computer Society.

[28] M. Saadatmand, A. Cicchetti, and M. Sjödin. UML-Based Modeling
of Non-Functional Requirements in Telecommunication Systems. In
Procs of ICSEA’11.

[29] M. Saadatmand, A. Cicchetti, and M. Sjödin. Toward Model-Based
Trade-off Analysis of Non-Functional Requirements. In Procs of
SEAA’12.

[30] B. Grammel and S. Kastenholz. A generic traceability framework
for facet-based traceability data extraction in model-driven software
development. In Procs of ECMFA-TW’10. ACM.

[31] F. Ciccozzi, A. Cicchetti, and M. Sjödin. Exploiting UML Semantic
Variation Points to Generate Explicit Component Interconnections
in Complex Systems. In Procs of ITNG’13). IEEE CS.

[32] Eclipse Projects. Xpand. http://www.eclipse.org/modeling/
m2t/?project=xpand, October 2011.

[33] J. Feljan, J. Carlson, and T. Seceleanu. Towards a model-based
approach for allocating tasks to multicore processors. In Procs of
SEAA’12.

[34] ACPI: Advanced Configuration & Power Interface. http://www.
acpi.info/, Last Accessed: January 2013.

http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.acpi.info/
http://www.acpi.info/

Chapter 10

Paper E:
Towards Accurate
Monitoring of
Extra-Functional
Properties in Real-Time
Embedded Systems

Mehrdad Saadatmand, Mikael Sjödin
The 19th Asia-Pacific Software Engineering Conference (APSEC), Hong
Kong, December, 2012.

191

Abstract

Management and preservation of Extra-Functional Properties (EFPs) is
critical in real-time embedded systems to ensure their correct behavior.
Deviation of these properties, such as timing and memory usage, from
their acceptable and valid values can impair the functionality of the
system. In this regard, monitoring is an important means to investigate
the state of the system and identify such violations. The monitoring
result can also be used to make adaptation and re-configuration decisions
in the system as well. Most of the works related to monitoring EFPs are
based on the assumption that monitoring results accurately represent
the true state of the system at the monitoring request time point. In
some systems this assumption can be safe and valid. However, if in a
system the value of an EFP changes frequently, the result of monitoring
may not accurately represent the state of the system at the time point
when the monitoring request has been issued. The consequences of such
inaccuracies can be critical in certain systems and applications. In this
paper, we mainly introduce and discuss this practical problem and also
provide a solution to improve the monitoring accuracy of EFPs.

10.1 Introduction 193

10.1 Introduction
Successful design of real-time embedded systems depends heavily on how
they behave with respect to their extra-functional properties. This is
mainly due to the constraints and limitations of these systems in terms
of available resources [1]. Therefore, a real-time embedded system needs
to achieve its functionality under these limitations and constraints. This
implies that the extra-functional properties of the system should remain
within an acceptable range and violations in this aspect should be man-
aged and prevented. For example, due to memory constraints, different
components of a system should not consume more memory than ex-
pected. Similarly, in terms of timing properties, a task may not execute
more than its allowed execution time budgets; otherwise, it can affect
the overall behavior and functionality of the system.

Monitoring extra-functional properties is an important means in this
regard not only to detect and identify violations but also to provide nec-
essary information for runtime adaptation and reconfiguration in systems
[2, 3]. However, accuracy of the monitored values plays a significant role
in the correct identification of violations and also making appropriate
decisions for performing runtime adaptation. The term accuracy in this
paper is used in the sense that to what extent a monitored value rep-
resents the actual state of the system and the extra-functional property
that is monitored at a certain time point.

One of the factors that contribute to the accuracy of monitored extra-
functional properties is the time difference between the point when a re-
quest for monitoring an extra-functional property is issued and the time
point when it is actually monitored and its value is obtained. This time
difference (referred to as ‘monitoring time difference’ in this paper) is
especially critical in systems where frequent changes of extra-functional
properties can happen. An example could be when CPU load in a system
changes constantly due to frequent termination and execution of different
jobs or when memory usage varies rapidly because of frequent allocation
and deallocation of memory. For this reason, it is also deemed necessary
to consider timestamps in monitoring of extra-functional properties to be
able to judge their accuracy and validity. A point to remember though
is that how this time difference affects the accuracy of monitored values
can change from one system and even execution scenario to another.
For example, in one system, rapid changes in CPU load may happen
while memory usage can remain at a certain level. In such a system, the

194 Paper E

aforementioned monitoring time difference is critical for validity and ac-
curacy of CPU load measurements while it may not be so for monitoring
memory usage. In another system the situation could be the opposite of
this case.

In this paper, we focus on this problem and how we can improve the
accuracy of monitored values by having more control over the time differ-
ence between a request for monitoring and the actual act of monitoring.
We introduce an approach which enables to reduce this time difference
and thus helps with the accuracy of the monitored extra-functional prop-
erties. This is achieved by considering priorities for performing moni-
toring of different extra-functional properties. The approach works by
performing the task of monitoring properties with higher frequency of
changes (for which the monitoring time difference can greatly affect the
accuracy of the obtained values) at a higher priority level than other
properties. We have implemented the approach using OSE Real-Time
Operating System (RTOS) [4] which is a commercial RTOS used heav-
ily in telecommunication systems and is embedded in millions of devices
around the world.

The remainder of the paper is structured as follows. In Section 10.2 a
short introduction to OSE RTOS is provided. Section 10.3 describes the
general approach along with its implementation and in Section 10.4, an
evaluation of the implemented approach is done. Discussions on several
important points regarding the suggested approach is done in 10.5. In
Section 10.6 related works are mentioned and finally in Section 10.7
conclusions are made and future directions are explained.

10.2 OSE Real-Time Operating System
OSE is a real-time operating system developed by Enea [4] designed from
the ground for use in fault-tolerant distributed systems that are com-
monly found in telecommunication domain, ranging from mobile phones
to radio base stations [4]. It provides preemptive priority-based schedul-
ing of tasks. OSE offers the concept of direct and asynchronous mes-
sage passing for communication and synchronization between tasks, and
OSE’s natural programming model is based on this concept. The Inter-
process Communication Protocol (IPC) in OSE, allows tasks to run on
different processors or cores, utilizing the same message-based communi-
cation model as on a single processor. This programing model provides

10.3 Priority-Based Monitoring Approach 195

the advantage of not needing to use shared memory among tasks. The
runnable real-time entity equivalent to a task is called process in OSE,
and the messages that are passed between processes are referred to as
signals (thus, the terms process and task in this paper can be considered
interchangeably). Processes can be created statically at system start-up,
or dynamically at runtime. Static processes last for the whole life time
of the system and cannot be terminated. Types of processes that can
be created in OSE are: interrupt process, timer interrupt process, pri-
oritized process, background process, and phantom process. A process
can be in one of the following states: ready, running or waiting. One
interesting feature of OSE is that the same programming model based
on signal passing can be used regardless of the type of a process. OSE
also has a tool for debugging, profiling and monitoring called Optima.
Among many other features, Optima enables to monitor properties such
as CPU load and number of signals by communicating with a target
embedded system using OSE signals.

10.3 Priority-Based Monitoring Approach
10.3.1 Background Scenario
To monitor different properties in the system, a monitoring process has
been implemented. In this process, by using the APIs provided by the
operating system, values for different properties such as total CPU load,
CPU load of a specific process, memory usage (both heap and stack us-
age), total number of generated signals in the system, number of signals
belonging to a certain process, etc. can be monitored. When an applica-
tion (e.g., a monitoring and profiling tool) needs to obtain the value for
any of the properties, it just sends a signal containing a code identifying
the desired property to the monitor process. Upon the receipt of this
signal, the monitor process which is in waiting state, starts and obtains
the property value and sends it back to the requesting process. In this
scenario, the monitor process needs to compete with other processes in
the system based on their assigned priority levels to obtain CPU and
perform its job. Therefore, it is natural that there will be some time
difference until the monitor process can successfully obtain the value of
a property. This scenario is shown in Figure 10.1. We aim to reduce the
time difference which is denoted in the figure by t for properties whose
values can change during this time and also this change is considered

196 Paper E

important and sensitive.

Figure 10.1: Monitoring a property and the time difference between the
request for monitoring and the reply

As stated before, if a property in the system changes so frequently
then this time difference affects the accuracy of its read value. In this
case, if the application requesting this value needs to perform some cal-
culations and make decisions based on the value of the property at the
exact time point that it issued the request for monitoring, the accuracy
of the monitored value can affect the correctness of such calculations and
decisions.

10.3.2 Priorities for Extra-Functional Properties

As described so far, the frequency of change in the value of properties in
the system can be different from one property to another. Considering
this fact, the user may prefer to fetch the value of a specific property
with a shorter monitoring time difference to have better accuracy for
it. To capture this need, we let different priority levels be assigned for
different properties for performing monitoring. This way, the monitoring
of CPU load, for example, can be done at a higher priority level than
the monitoring of memory usage. It is achieved by dynamically adjust-
ing the priority of the monitoring process for each property, instead of
always invoking the monitoring process at the same fixed priority level.
Therefore, the system becomes more flexible and monitoring of different
properties does not have to be done at the fixed and default priority level
of the monitoring process.

10.4 Evaluation 197

10.3.3 Implementation
The preferred way of communication between processes in OSE is through
signals. Send and Receive APIs are provided in OSE for this purpose.
To send a signal, a pointer to the signal structure along with the PID
of the receiver is specified as: send(&sig, pid). In our implementation,
the signal contains an identifier code to tell the monitor process which
priority to monitor, which is defined in the system in the form of an
enum structure in C/C++.

To allow the specification of priority levels for properties, we have
defined a wrapper around the send API as: send_w_prio(&sig, pid,
prio). What send_w_prio does is basically that it first sets the priority
of the monitor process (which is in the waiting mode to receive a signal)
to the value of prio, and then sends to it the rest of the parameters using
the normal send API. This way, it can be triggered to execute at a lower
or higher priority level than its default value.

10.4 Evaluation
To test the suggested approach, a simulation environment has been
setup. A monitor process is implemented which waits to receive a signal
containing the identifier of a property based on which it then obtains
the value for that property from the system and sends back the result
to the requester. Another process (referred to as P) is also implemented
which constantly changes the value of a dummy property (represented
by a variable called N) to a random number and logs it in a file for later
inspections and comparisons. The purpose of this process is to simulate
a property whose value changes very frequently and constantly in the
system. Two additional processes are defined in the system with priority
levels below that of process P but above the default priority of monitor
process (we call them I1 and I2). A shell command (in the OSE shell)
called App has also been created which when executed sends a request
for monitoring the property N to the monitor process.

When a request for monitoring the property N is initiated using the
added shell command, the execution of the monitor process is delayed
by higher priority processes. This situation is demonstrated in the Table
10.1 where log records corresponding to such cases (extracted from the
log files generated by the P and monitor processes) are listed.

The first row in the table, for example, shows that the request for

198 Paper E

MRTP* Monitoring Done at Monitored Value Value at MRTP*
(µs) (µs)

5140013 5150001 838 3200
6630025 6630026 5600 5600
7350011 7360001 5883 9600

13460011 13470001 5032 1600

Table 10.1: Discrepancy between property values at monitoring request
time and when actual monitoring is done.
(* MRTP:Monitoring Request Time Point - from the startup of the system)

monitoring property N is issued at 5140013µs (from the start of the
system). Due to the interferences from the two other processes (I1 and
I2) in the system, the actual monitoring is performed at time point
5150013µs which results in obtaining 838 as the value for the property
(remember that when P executes, it repeatedly generates a random num-
ber and sets it as the value of N). However, by consulting the generated
log file from process P, we can see that the actual value of the property
at the time when monitoring request has been issued was 3200.

In the next step, we initiate again a request for monitoring but this
time with a priority higher than those of I1 and I2 processes. Part of the
result from the generated log files is shown in Table 10.2.

MRTP* Monitoring Done at Monitored Value Value at MRTP*
(µs) (µs)

5970013 5970014 6804 6804
8630001 8630002 6698 6698

12060001 12060002 3629 3629
14500018 14520000 7673 9600
21590011 21590012 6400 6400

Table 10.2: Property values using flexible priority levels for the monitor
process.
(* MRTP:Monitoring Request Time Point - from the startup of the system)

From the result of the second case, we can see that more instances
of monitoring have managed to obtain accurate results for the property.
The discrepancies which are still observed in this scenario, such as the
second row from the bottom of Table 10.2, are due to the re-activations
of process P which still has higher priority than the monitor process (the
1µs difference between the monitoring request time point and actual time
of performing monitoring is the natural increment of internal clock of the
system).

10.5 Discussions 199

10.5 Discussions
In the previous section, it was shown how by allowing to assign prior-
ity levels for monitoring of different properties it becomes possible to
achieve better accuracy. However, there are some important points that
need careful attention. If the priority of the monitor process is increased,
it also means that other processes in the system can suffer delays due
to preemption by the now higher priority monitor process. The con-
sequences of such delays are of course dependent on the nature and
responsibilities of those processes in the system. Therefore, the user ini-
tiating a monitoring request at a high priority level should also consider
its consequences.

Another factor that contributes to the monitoring time difference and
thus accuracy of monitored properties is the time length of the monitor-
ing process itself. Implementation efficiency of the monitor process can
thus help with the reduction of monitoring time difference.

A point which can be specific to our implementation is that the shell
daemon in OSE is a system process which also has an assigned priority
level. This can be important for knowing how the shell command that we
implemented is interpreted by the shell daemon and executed and how
the daemon behaves in terms of getting CPU time to execute comparing
its priority level to other processes in the system. In our settings, since
the priority of the shell daemon was the same default value in both cases,
its effect on monitoring was simply ignored.

Here we mainly discussed the frequency of change in the value of a
property. Another aspect that can also be added to the picture is the
magnitude of such changes and its importance for accurate monitoring.
For example, the value of a property can change quite frequently in small
increments from 1.0 to 5.0. But depending on the use of the monitored
value, the difference between 1.45 and 1.80 may not be significant at all.
Therefore, deciding for which properties we need more accurate moni-
toring is dependent on the use of the monitored values as well as the
importance, tolerance and negligible fluctuations in the value of those
properties. Moreover, in this paper we did not discuss how exactly the
values of different extra-functional properties are calculated and deter-
mined. For some properties such as CPU load or the number of signals
(in case of OSE and signal-based systems) it may be straightforward to
obtain such values, while for some other properties such as reliability, it
might be very cumbersome and complicated. This topic, however, is out

200 Paper E

of the scope of the paper.

10.6 Related Work

The work done in [5] discusses the issue of accuracy in monitoring per-
formance of a system using the hardware counters and registers that are
available on modern microprocessors. One of the differences between
this work and ours is that it compares the accuracy of monitoring using
hardware counters versus hardware sampling while we basically discussed
the issue of accuracy by targeting the monitoring time difference. It also
touches on the effects of adding monitoring features by acknowledging
the fact that “as in any physical system, the act of measuring perturbs
the phenomenon being measured” [5]. [6] which introduces a very inter-
esting approach to reduce energy consumption in real-time distributed
embedded systems, defines the concept of monitoring intervals for cycli-
cally monitoring the system to identify and exploit dynamic slacks. It
discusses the overhead of monitoring and how to find an optimal interval
value for it. However, it does not deal with the accuracy of monitoring
results versus constant changes in the state of the system.

As for the application of monitoring, [7] serves an example for the
use of monitoring results where models of real-time systems are synthe-
sized based on the monitoring information that is collected. In [3], we
have introduced and implemented an adaptive approach using monitor-
ing information about timing behaviors of encryption algorithms to bal-
ance security and timing requirements in real-time systems. Regarding
the implementation of monitoring mechanisms, in [2], we have discussed
the challenges and practicalities of monitoring timing properties in real-
time systems, especially in industrial RTOSes, and provided a solution
to improve monitoring of real-time events. The work in [8] provides
a framework for monitoring of timing properties and a model for the
specification of timing constraints. It provides two general approaches
for synchronous and asynchronous monitoring of real-time constraints.
The disturbances of adding monitoring features and issues related to
probe-effect are discussed in detail in [9].

10.7 Conclusion and Future Work 201

10.7 Conclusion and Future Work
In this paper, we discussed the issue of accuracy in monitoring EFPs
and its importance in real-time embedded systems. Mainly, the mon-
itoring time difference has been discussed as an important factor that
contributes to the accuracy of monitoring results. An approach was
introduced to reduce this time difference. An implementation of the
approach was also provided and it was evaluated and shown how the
approach reduces the monitoring time difference.

By implementing the approach as part of OSE and Optima, more
flexibility can be provided for monitoring the system in terms of accu-
racy levels, and also regarding the inclusion of timestamps for monitored
values, the users can get a better idea about the monitoring time differ-
ence. One point to remember is that adding monitoring features bring
along their own costs and effects which should also be taken into account
in the design of systems. In our evaluation example, the monitoring re-
quest was always initiated with a priority less than the priority of the
main process P. If not so, the monitoring could preempt process P which
could represent a main task in the system such an engine control task,
and thus impair the functionality of the system. Therefore, there is a
type of trade-off between the monitoring accuracy and other functions
of the systems. Considering this issue especially on multi-core systems
could be an interesting direction of this work.

As a continuation of this work, we are working on building a moni-
toring framework to provide a flexible environment to the user to tune
the monitoring of different properties based on different factors that con-
tribute to its accuracy. Towards this goal, we are also investigating other
possible factors that can affect the accuracy of monitoring results.

10.8 Acknowledgements
This work has been supported by the CHESS European Project (ARTEMIS-
JU100022) [10] and XDIN AB [11] through the ITS-EASY program.

Bibliography

[1] Thomas Henzinger and Joseph Sifakis. The Embedded Systems
Design Challenge. In Jayadev Misra, Tobias Nipkow, and Emil Sek-
erinski, editors, FM 2006: Formal Methods, volume 4085 of Lecture
Notes in Computer Science, pages 1–15. Springer Berlin / Heidel-
berg.

[2] Mehrdad Saadatmand, Mikael Sjödin, and Naveed Ul Mustafa.
Monitoring Capabilities of Schedulers in Model-Driven Develop-
ment of Real-Time Systems. In 17th IEEE International Conference
on Emerging Technologies & Factory Automation (ETFA 2012),
September 2012.

[3] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. De-
sign of adaptive security mechanisms for real-time embedded sys-
tems. In Proceedings of the 4th international conference on En-
gineering Secure Software and Systems, ESSoS’12, pages 121–134,
Berlin, Heidelberg, 2012. Springer-Verlag.

[4] Enea. The Architectural Advantages of Enea OSE in Telecom Appli-
cations. http://www.enea.com/software/products/rtos/ose/,
Last Accessed: May 2012.

[5] Michael E. Maxwell, Patricia J. Teller, and Leonardo Salay. Ac-
curacy of performance monitoring hardware. In Proceedings of the
LACSI Symposium, Sante Fe, New Mexico, 2002.

[6] Subrata Acharya and Rabi Mahapatra. A Dynamic Slack Man-
agement Technique for Real-Time Distributed Embedded Systems.
IEEE Trans. Comput., 57(2):215–230, February 2008.

203

http://www.enea.com/software/products/rtos/ose/

[7] Joel Huselius and Johan Andersson. Model Synthesis for Real-
Time Systems. In Proceedings of the Ninth European Conference
on Software Maintenance and Reengineering, CSMR ’05, pages 52–
60, 2005.

[8] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitor-
ing of real-time systems. In Real-Time Systems Symposium, 1991.
Proceedings., Twelfth, pages 74 –83, dec 1991.

[9] Henrik Thane. Design for Deterministic Monitoring of Distributed
Real-Time Systems. Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-23/2000-1-SE, Målardalen University, May 2000.

[10] CHESS Project: Composition with Guarantees for High-
integrity Embedded Software Components Assembly. http://
chess-project.ning.com/, Last Accessed: June 2012.

[11] XDIN AB. http://ny.xdin.com/om-xdin/enea-experts/, Ac-
cessed: June 2012.

http://chess-project.ning.com/
http://chess-project.ning.com/
http://ny.xdin.com/om-xdin/enea-experts/

Chapter 11

Paper F:
A Model-Based Testing
Framework for
Automotive Embedded
Systems

Raluca Marinescu, Mehrdad Saadatmand, Alessio Bucaioni, Cristina Se-
celeanu, Paul Pettersson
40th Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA), Verona, Italy, August, 2014.

205

Abstract

Architectural models, such as those described in the East-adl language,
represent convenient abstractions to reason about automotive embed-
ded software systems. To enjoy the fully-fledged advantages of reason-
ing, East-adl models could benefit from a component-aware analysis
framework that provides, ideally, both verification and model-based test-
case generation capabilities. While different verification techniques have
been developed for architectural models, only a few target East-adl. In
this paper, we present a methodology for code validation, starting from
East-adl artifacts. The methodology relies on: (i) automated model-
based test-case generation for functional requirements criteria based on
the East-adl model extended with timed automata semantics, and (ii)
validation of system implementation by generating Python test scripts
based on the abstract test-cases. The scripts represent concrete test-
cases that are executable on the system implementation. We apply our
methodology to analyze the ABS function implementation of the Brake-
by-Wire system prototype.

11.1 Introduction 207

11.1 Introduction

The complexity of embedded systems in the automotive domain is con-
tinuously increasing, in part due to the replacement of mechanical or
hydraulic technologies with electrical/electronic systems that implement
complex functions, such as cruise control, automatic braking, etc. Conse-
quently, the system development needs to conform with stringent safety
standards. To align with such standards, the development process must
provide evidence that requirements are satisfied at each level of system
abstraction, from architectural and behavioral models to implementa-
tion (e.g., as required by ISO 26262). In this context, there is a real
need for advanced and formal methodologies for verification and testing
of automotive systems, which can provide industrially relevant artifacts.

Although there is a solid research know-how of generating test-cases
from behavioral specification models [1, 2, 3], in principle these meth-
ods are not directly applicable to architectural models where the system
behavior is defined in terms of function blocks with no formal support
to specify and analyze their internal behaviors. The latter is usually
described in semi-formal languages such as UML, Simulink etc. The
operation of each function block can, for instance, be formalized using
notations such as timed automata (TA) [4], which could serve as the
semantic representation of the block behavior [5]. Assuming this, the
abstract test-case generation can then be carried out using component-
aware model-checking algorithms [6]. The resulting abstract test-cases
contain internal state information not corresponding to the actual code.
Hence, the abstract test-cases need to be transformed into executable
scripts that would then be used as concrete test-cases to analyze the
system implementation. This need has kindled our motivation to intro-
duce a methodology (see Section 11.4) for model-based testing against
functional requirements of embedded systems, starting from the East-
adl architectural models, an emerging standard for automotive industry,
already used by Volvo Group Trucks Technologies, Sweden. As part of
the methodology, we show how to generate executable test-cases for the
system implementation automatically, starting from abstract tests gen-
erated by model-checking East-adl high-level artifacts extended with
TA behavior. The main goal of this paper is to check the feasibility
of the East-adl+TA generated abstract test-cases by actually running
the corresponding executable test-cases on the implemented code, in an
attempt to obtain a pass or fail verdict. If the endeavor succeeds, the

208 Paper F

testing effort of the code could then be reduced by the automatic provi-
sion of valid test-cases.

Our contribution assumes three actors in the system development
process: the System Designer, the Developer, and the Tester. The
methodology presented in this paper describes only two main phases:
model-based system implementation and testing. Concretely, we adopt
ViTAL [7] as our main modeling and analysis framework, as it inte-
grates component-aware model-checking with East-adl models. In Sec-
tion 11.5 we define an executable semantics of the Uppaal Port TA
that facilitates code implementation (see Section 11.5) in a semantics-
preserving manner. Next, we we show how to generate abstract test-
cases for functional requirements, from the TA model of the East-adl
system description (see Section 11.6.1). The functional requirement cri-
terion is formalized as a reachability property in Uppaal Port [8], and
the result is an abstract test-case defined by an execution trace of the
TA models corresponding to the function blocks. In Section 11.6.2 we
transform the states and transitions of the test-case into C/C++ code
signals, by generating Python test-scripts in Farkle test execution envi-
ronment [9]. These test-scripts are run against the system under test
(SUT) to obtain a pass or fail verdict w.r.t. the testing goal. Our frame-
work adapts already existing model-checking based testing techniques,
to obtain a novel integrated approach for testing automotive embedded
systems, starting from high-level system artifacts modeled in East-adl,
and their requirements specification. To check the applicability of our
framework, we illustrate it on a simplified version of Volvo’s Brake-by-
Wire System prototype, which we describe in Section 11.3. We compare
to related work in Section 11.8, and summarize our work, together with
outlining ideas for future work in Section 11.9.

11.2 Preliminaries
In this section we give a brief overview of: (i) ViTAL, used for generating
abstract test-cases, and (ii) Farkle, used for transforming the latter into
test-scripts.

11.2.1 ViTAL
ViTAL, a Verification Tool for East-adl Models using Uppaal Port,
integrates architectural languages and verification techniques to provide

11.2 Preliminaries 209

simulation and model-checking of timing and functional behavioral re-
quirements. To achieve this, the tool provides functional and timing be-
havior for East-adl functional blocks using timed automata semantics,
and performs an automatic model transformation to the input language
of Uppaal Port, which enables the model-checker to handle East-adl
models for formal verification.

The tool is an integrated environment based on Eclipse plug-ins and
contains an editor for the East-adl model (i.e., Papyrus), an editor for
timed automata description of the behavior of EAST-ADL blocks, and
a semantic mapping between each East-adl block and a corresponding
TA model (e.g., mapping internal TA variables to East-adl external
ports). The result of the transformation is compliant to the input lan-
guage of the Uppaal Port model-checker, able to simulate the system
model and verify various requirements (e.g., functional, timing), speci-
fied in Timed Computation Tree Logic (TCTL). ViTAL integrates the
following artifacts:

EAST-ADL East-adl is an architecture description language ded-
icated to the development of automotive embedded systems [10]. The
definition of an East-adl system model is given at five levels of ab-
straction representing different stages of the engineering process with
complete traceability between them. At each level, the behavioral de-
scription relies on the definition of a set of function prototypes (refereed
as blocks) fps, executed assuming the "read-execute-write” semantics.
A block starts executing by reading data, which are constantly replaced
by fresh data arriving on ports, performs some calculation and finally
outputs data on the output ports.This enables analysis, behavioral com-
position, and makes the function execution independent of its internal
behavior. The functionality of each fp is defined using different notations
and tools, e.g., Simulink or Uppaal Port TA in ViTAL.

UPPAAL PORT TA Component As depicted in Figure 11.1, an
Uppaal Port [6] component is defined by its interface and its timed
behavior. The interface consists of a set of input data ports, a set of
output data ports, and a set of trigger ports that define the control flow.
The timed behavior is modeled as a tuple:

B = (N, l0, lf , VD, VC , r0, rf , Ed, I) (11.1)

210 Paper F

Component

Port1 Port2

Entry

b>5 [c=a+b]

b<=5 [c=a-b]

x<2
[a=10]

Calc Exit

Figure 11.1: UPPAAL PORT TA Component.

where N is a finite set of locations, l0 is the initial location, lf is the final
location, VD and VC are sets of data and clock variables, respectively,
r0 and rf are sets of initial and final clock resets, and Ed is a set of
edges. The function I : N ∪ {l0, lf} → B(VC), with B(VC) denoting the
set of conjunctive formulas of clock constraints of the form xi ∼ m, or
xi − xj ∼ n, xi, xj ∈ VC , ∼∈ {≤, <,=,≥, >}, m,n ∈ N , assigns each
location l ∈ N ∪ {l0, lf} to its invariant I(l). To describe an edge from
location l to l′, with guard g, update action e, and clock resets r, we
write l g,e,r−−−→ l′, for (l, g, e, r, l′) ∈ Ed.

The timed behavior associated to the Uppaal Port TA component
depicted in Figure 11.1 has three locations Entry, Calc, and Exit, three
data variables a, b, and c, and a clock variable x. When the execution
of the TA is triggered, it enters the Entry location, updates variable a
to 10 along the first edge to location Calc, where it remains as long as
the invariant x < 2 holds. The update of variable c is determined based
on the evaluation to "TRUE" of guards b > 5 and b <= 5, placed on the
edges to location Exit.

The semantics of an Uppaal Port TA component are defined as a
state: (l, u, v), where l is a location, v is a data valuation, and u is a
clock valuation. Uppaal Port [6] allows the following transitions from
one state to another:

• internal transitions: (l, u, v) τ−→ (l′, u′, v′), along an edge l g,e,r−−−→ l′,

• delay transitions: (l, u, v) δ−→ (l, u, v + δ) where
δ ∈ R≥0,

• read transitions: (idle, u, v) read−−−→ (lo, input(u),
[r0 := 0]u) if triggered(v),

• write transitions, (lf , u, v) write−−−→ (idle, output(u), [rf := 0]u).

11.2 Preliminaries 211

UPPAAL PORT Model-checker Uppaal Port is an extension
of the Uppaal tool, which supports simulation and model-checking of
component-based systems, without the usual flattening of the TA net-
work [8]. This is complemented by thePartialOrderReductionTechnique
(PORT) that improves the efficiency of analysis by exploring only a rel-
evant subset of the state-space when model-checking. The tool also uses
local time semantics [11] to increase independence, being suited for the
analysis of “read-execute-write” component models.

11.2.2 Farkle
Farkle is a test execution environment that enables testing an embedded
system in its target platform. It uses LINX as the Inter-Process Com-
munication (IPC) protocol to provide direct and asynchronous message
passing between tasks. This allows tasks to run on different processors or
cores, while utilizing the same message-based communication model as
on a single processor, but without using shared memory. The messages
that are passed between processes (i.e., tasks) are referred to as signals.
An example signal definition is shown in Figure 11.2.

1 #define WHEEL_SPEED_SIG 1026
2 typedef struct WheelSpeedSignal{
3 SIGSELECT sigNo;
4 float WheelSpeed;
5 } WheelSpeedSignal;

Figure 11.2: Signal example

Using the signal passing mechanisms of LINX, Farkle runs on a host
machine and communicates with the target. Hence, Farkle enables test-
ing an embedded system by providing certain inputs to the target in
the form of signals and receiving the result as signals containing output
values. The test-scripts that are used to send and receive signals, and
also decide the verdict of a test-case are implemented in Python. More-
over, in order for the signal passing mechanism to work between the
host and target, the host needs to also have information about signal
structures. For this purpose, Farkle also generates signal definitions in
Python from the signal definitions of the application source code, which
is then imported and used in the Python test-script.

212 Paper F

11.3 Brake-by-Wire Case Study: Function-
ality and Structure

Through the paper we use the Brake-by-Wire (BBW) system as a run-
ning example. Figure 11.3 shows the East-adl model of the BBW
system at the analysis level. To simplify, we have modeled only two out
of the four wheels of the system. The Brake Pedal Sensor reads the
position of the pedal and the Brake Torque Calculator computes the
desired braking force based on this value. Similarly, the Wheel Sensor
reads the rotation speed of the wheel. The Global Brake Controller
calculates the actual braking force by updating the desired braking force
based on the speed of the wheels, and provides it to the ABS block,
which calculates the slip rate to decide if the braking force can be ap-
plied without locking the wheel. Finally, the braking force is applied by
the Wheel Actuator.

The ABS fp calculates the slip rate s based on the equation:

s = (v − w ×R)/v, (11.2)

where w is the rotation speed of the wheel, v is the speed of the car, and
R is the radius of the wheel. The friction coefficient of the wheel has a
nonlinear relationship with the slip rate: when s starts increasing, the
friction coefficient also increases, and its value reaches the peak when
s is around 0.2. After that, further increase in s reduces the friction
coefficient. For this reason, if s is greater than 0.2 the brake actuator
is released and no brake is applied, or else the requested brake torque
is used. Our goal is to test whether the actual system implementation
meets this functional requirement.

11.3 Brake-by-Wire Case Study: Functionality and Structure
213

<
<

d
e
sig

n
F

u
n

ctio
n
T

y
p
e>

>

F
u

n
ctio

n
a
lD

e
sig

n
A

rc
h
ite

ctu
re

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
B

rak
eP

e
d
alS

en
so

r
<

<
d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
B

rak
eT

o
rq

u
eC

a
lcu

lato
r

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
G

lo
b

alB
rak

e
C

o
n

tro
ller

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
W

h
e
elS

e
n
so

rF
L

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
A

B
S

F
L

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
W

h
e
elA

ctu
a
to

rF
L

stru
ctu

re

P
o

sitio
n

P
o

sitio
n
_
p
e
rcen

t
B

rak
e
P

ed
alP

o
s_

p
e
rcen

t
D

riv
e
rR

eq
T

o
rq

u
e

W
h
ee

l_
rp

m
_
F

L
W

h
ee

lT
o
rq

u
e

S
p

eed
_
rp

m
_
F

L
R

o
tatio

n
_
F

L

R
e
q
u
e
sted

T
o
rq

u
e
_
F

L

W
h
ee

lS
p
e
ed

_
rp

m
_
F

L

G
lo

b
a
lT

o
rq

u
e

A
B

S
T

o
rq

u
e_

F
L

T
o

rq
u

eC
m

d
_
F

L

B
rak

e
T

o
rq

u
e_

F
L

W
h
ee

l_
rp

m
_
F

R
V

e
h
ic

leS
p

eed
E

st_
k
m

p
h

V
e
h
ic

leS
p

eed
_
k
m

p
h

_
F

L

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

p
W

h
e
elS

e
n
so

rF
R

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e>

>

p
A

B
S

F
R

<
<

d
e
sig

n
F

u
n

ctio
n
P

ro
to

ty
p
e
>

>

+
 W

h
ee

l A
ctu

ato
r

S
p

eed
_
rp

m
_
F

R
R

o
tatio

n
_
F

R

R
e
q
u
e
sted

T
o
rq

u
e
_
F

R

W
h
ee

lS
p
e
ed

_
rp

m
_
F

R A
B

S
T

o
rq

u
e_

F
R

T
o

rq
u

eC
m

d
_
F

RB
rak

e
T

o
rq

u
e_

F
R

V
e
h
ic

leS
p

eed
_
k
m

p
h

_
F

R

Figure
11.3:

T
he

EA
ST

-A
D
L
m
odelofthe

B
B
W

system
.

214 Paper F

11.4 From EAST-ADL to Code Validation:
Methodology Overview

This section overviews our model-based testing (MBT) framework, which
allows test-case generation starting from East-adl models, down to
their execution on the system under test (SUT). This framework fol-
lows the MBT methodology [12], and it is implemented by a tool chain
consisting of ViTAL and Farkle, as depicted in Figure 11.4.

ViTAL

Extended Farkle

System

Designer

UPPAAL PORT Timed

Automata Models

EAST-ADL System Models

Import/ create models

fp

Port Port

fp

Port Port

Abstract Test-Cases

C Code

(SUT)
Concrete Test-Cases

Integration

Test case generation by model-

checking using UPPAAL PORT

Tester

Code implementation

Test Execution Engine

Pass/Fail

Verdict

Generation of

test scripts

Coverage Criterion

in TCTL

Requirements

Document

Formalize

requirements

Execution of

test scripts
Linx protocol

Developer

UPPAAL PORT Integrated

Formal Model

Figure 11.4: From ViTAL to Farkle: The Methodology

We assume three actors in the process: the System Designer, the
Developer, and the Tester. Their roles are explained below.

The System Designer performs the following actions:

• Imports the East-adl model and creates the associated TA be-
havior to each EAST-ADL fp.

• Performs an automatic transformation from the EAST-ADL + TA
models to the input language of Uppaal Port, in ViTAL. The

11.5 Implementation Activities 215

result is the integrated abstract formal model used for formal ver-
ification and test-case generation by means of model-checking.

TheDeveloper implements the code (here the SUT) manually, based
on the system’s integrated abstract formal model (for which we define
an executable semantics).

The Tester performs the following actions:

• Formalizes the system requirements manually into TCTL prop-
erties, the query language of Uppaal Port. Each requirement
represents a testing goal, whereas their collection is our coverage
criterion.

• Generates abstract test-cases with Uppaal Port for the inte-
grated formal model, against the above formalized criterion.

• Converts the abstract test-cases into concrete test-cases automat-
ically, by generating Python test-scripts executable by Farkle.

• Executes the concrete test-cases against the SUT, to obtain a pass
or fail verdict, and also code-related information (e.g., variable
values).

The activities performed by the System Designer are part of our
previous work, and for further details we refer the reader to our previous
publication [7]. The next sections provide details on semantics preserving
code implementation (see Section 11.5), as well as our method for test-
case generation from East-adl models with TA semantics, up to test-
case execution on the SUT (see Section 11.6).

11.5 Implementation Activities
The implementation is an important, labor intensive, and error prone
phase in the development process of any software system. To ease the
implementation process, we are interested in providing guidelines that
could help the developers to implement C code, based on the East-adl
system models extended with TA semantics. For this, we introduce an
executable semantics for Uppaal Port TA that could serve as the basis
of future code synthesis.

216 Paper F

11.5.1 Executable Semantics of UPPAAL PORT TA

In principle, the TA behavior of an East-adl block can be non-determin-
istic. To obtain an implementation of the East-adl component whose
behavior is modeled as Uppaal Port TA, we need to define its deter-
ministic semantics that needs to be obeyed by the code. For this, we
adapt the approach proposed by Amnell et. al [13] for task automata
code synthesis, to Uppaal Port TA.

Similar to ordinary timed automata, the semantics of an Uppaal
Port timed automaton is given in terms of a labeled transition system.
Assume that the set of VD variable valuations is ranged by v, the set of
VC clock valuations by u, and l stores the automaton’s current location,
l ∈ N ∪{l0, lf}. In addition, we say that a transition trs = (l g,e,r−−−→ l′) is
enabled in state s = (l, u, v), denoted by Enabled(trs,s), when its guard
holds, that is, u, v |= g.

The non-determinism of the semantic representation of the Uppaal
Port TA stems from the internal, read, or write actions, as well as from
time-delays. As in previous work on TA, we resolve non-determinism,
as follows: (i) Let Pr : E 7→ N be a function that assigns unique pri-
orities to each edge in the Uppaal Port TA. If several transitions are
enabled in a state, the function Pr establishes the order in which the
transitions are fired. This resolves the action non-determinism; (ii) Time
non-determinism is resolved by implementing the maximal progress as-
sumption [14], in which delay transitions are forbidden if an action tran-
sition is enabled. The TA should fire all the enabled transitions until no
enabled transition exists anymore.

In the following, we write (l, u, v) e,r−−→ (l′, u′, v′) for a state-changing
discrete transition (internal, read, or write) on which update actions
in form of assignments e, or clock resets r, occur. In case of a delay
transition that does not result in a state-change, we write (l, u, v) t−→
(l, u′, v′), where u′ = u+ t, and (u+ t) |= I(l) holds.

Definition 1 (Deterministic Semantics). Let B = (N, l0, lf , VD, VC , r0,
rf , Ed, I) be a Uppaal Port TA behavior of an EAST-ADL compo-
nent. Assuming a function Pr that assigns priorities to TA edges, the
deterministic semantics of the component’s behavior is a labeled transi-
tion system defined by the following rules:

• (l, u, v) e,r−−→ (l′, u′, v′) if Enabled(l g,e,r−−−→ l′, (l, u, v)), and there is no

11.5 Implementation Activities 217

edge ∈ Ed such that Pr(edge) > Pr(l g,e,r−−−→ l′) and Enabled(edge, (l, u, v));
• (l, u, v) t−→ (l, u + t, v′) if (u + t) |= I(l), and for all edge ∈ Ed and
d < t, ¬Enabled(edge, (l, u+ d, v)).

The above definition ensures conformance of the implementation to
the high-level behavioral model, since the behavior defined by the deter-
ministic semantics is a subset of the Uppaal Port TA behavior. Hence,
all the transition sequences possible in the (deterministic) implementa-
tion model are also possible in the original (possibly non-deterministic)
one, thus guaranteeing preservation of the safety properties of the East-
adl behavioral TA model. However, the code generation is not au-
tomated yet. Even if the latter were achieved, the code might still
need human intervention in implementing primitives or aggregations that
would improve its performance. Hence, testing the code itself cannot be
avoided.

11.5.2 Implementing the System Model
We approach the problem of code implementation as a mapping activity
between the East-adl system model extended with TA behavior and
C code. We propose a simple 1-to-1 mapping to code elements starting
with the elements of the East-adl model focusing on: (i) components,
(ii) ports, (iii) connectors and (iv) triggering information. The mapping
is defined in Table 11.1.

Table 11.1: Mapping East-adl fp’s interface to C code

East-adl fp C Code
Component (block) C function
Port (input and output) Buffer of size 1
Connector Connection between buffers
Triggering information Function calls and time interrupts

This mapping provides guidelines for the structure of the C code,
which should also conform to the semantics of Definition 1. For in-
stance, for each fp in the East-adl model we will create a C function
implementing its behavior. Since the input and output data-flow ports

218 Paper F

can store only the latest value of the corresponding variable, the im-
plemented C function will have a buffer of size 1 for each port. This
implies that the connection between a block’s output ports and another
one’s input ports is translated into a link between buffers. The trigger-
ing information for each fp is implemented as a function call or a time
interrupt. However, some of the features of the East-adl model are lost
at the implementation level. For instance, the C code does not respect
the “read-execute-write” semantics of the model.

The C code inside each function is implemented based on the TA
behavior. Each element in the TA tuple is mapped to code elements
according to Table 11.2.

Table 11.2: Mapping TA behavior to C code

TA model C code
data variables variables
clock variables variables of type long
locations state variables
clock reset (initial and final) assignment to zero
invariant while loop
enabled action selection if/case statement
action update assignment

Based on these rules and Definition 1, a complete implementation
of the system can be obtained. The implementation conforms with the
model. This conformance is an important aspect in model-based testing,
as the formal model and the SUT need to be in close relation for the
abstract test-cases to really aid the generation of executable test-cases,
in a meaningful way.

11.6 Testing Activities
In model-based testing, the formal model is a faithful yet abstract rep-
resentation of the intended system, based on requirements and spec-
ification, and describes rigorously the intended behavior using formal
modeling notations. In our framework, we employ ViTAL to create the
formal model starting from the architectural representation of the sys-
tem in East-adl and describe the behavior of each fp as a Uppaal

11.6 Testing Activities 219

Port TA model using the specific TA semantics. In this section, we use
such a model to generate abstract test-cases with Uppaal Port auto-
matically, followed by their automatic conversion to Python scripts, and
their execution on the SUT.

11.6.1 Generation of Abstract Test-Cases in ViTAL
ViTAL employs Uppaal Port to automate the abstract test-case gen-
eration and takes as input: (i) the abstract formal model represented
by the "Uppaal Port compliant" East-adl model with TA semantics,
and (ii) a testing goal, i.e., a functional requirement of the system (or
a collection of such requirements) formalized as a TCTL reachability
property (properties).

Uppaal Port is a model-checker designed for the simulation and
the formal verification of component-based embedded systems, and is
not tailored for test-case generation. However, we exploit its ability to
automatically generate witness traces for reachability properties specified
in TCTL. Such properties are encoded as E <> q, where E represents
the existential path quantifier, <> is the temporal operator, and q is
the goal state. The property can be read as follows: there exists an
execution path such that, eventually, the state q is reached. The test
goal guides the generation of a witness trace from an infinite number of
possible executions of the system.

The witness trace is a sequence of states and transitions, and it rep-
resents the abstract test-case (ATC) for the test goal specified by the
reachability property:

ATC , (l0, u0, v0) a0−→ (l1, u1, v1) a1−→ ...
an−1−−−→ (ln, un, vn)

In the above, the state of the system is defined by the current locations
li, data valuations ui and clock valuations vi in the TA network that
describes the system behavioral model. The transition actions aj repre-
sent either delays, or internal TA transitions, or the special read/write
transitions from/to ports, respectively.

For each test goal, the Uppaal Port model-checker generates only
one trace representing the execution of the system from its initial state
to the goal state encoded by the reachability property. Such a trace
represents our abstract test-case with respect to a particular system re-
quirement. A collection of such abstract test-cases is provided to Farkle,
for further transformations and execution on the code.

220 Paper F

11.6.2 Generation and Execution of Concrete Test-
Cases in Farkle

The abstract test-cases generated by ViTAL are provided as input to
the Extended Farkle environment (i.e., Farkle plus Parser, etc.). The
abstract test-cases are parsed and the order of states and transitions,
along with the values of variables in each state, are identified. Based on
this information a test-script is created. The test-script basically creates
signals with values of variables at each state extracted by parsing the
abstract test-cases, which are then sent to the target system. The initial
values of variables that are sent to the target system by the test-script,
in form of signals, trigger the SUT to execute and evolve through a
set of states and transitions. The information about the actual set of
states and transitions taken by the SUT during execution is collected
and sent back to the script (again in form of signals). An important
contribution here is that we enable tracking of state changes at runtime
by implementing the code based on the formal models. In other words, a
switch-case structure is used and some variable keeps track of the current
system state, and changes accordingly when moving to a different state.

The test-script receives the result, that is, the information on the set
of states and transitions, as well as the values of variables at each state.
This information, collected during execution and at runtime, is then
used to compare the actual order of states and transitions against the
expected one originated from the models and specified in the abstract
test-case. If any discrepancy between the actual and expected orders
of traversed states and transitions (with the option of also checking the
expected values of variables) is found, the test result is evaluated to fail,
otherwise a pass verdict is issued. In other words, it is checked that,
based on the given inputs, the exact same order of states as in the trace
and abstract test case appears at runtime, during the execution of the
system.

In the above steps, the generation of executable test-scripts is based
on the following principles:
• For each variable (in the Uppaal Port TA), we create an array

containing all of its expected values, respectively, at each state and in
the exact same order as it appears in the abstract test-case, as follows:
<statemachine_name>_<variable> = [x,..,y].
• The initial values of variables are used in the structure of a signal,

which is then sent to the target.

11.7 Brake-by-Wire Revisited: Applying the Methodology
221

•We define an additional array to preserve the order of states, in the
form of: <statemachine_name>_state = [x,..,y]; e.g., line 18 in Figure
11.8, where the numbers serve as IDs, and each represents a unique state
in the automaton, respectively.
• Based on the number of states, we create a loop in the script.
• Inside the loop, we add assertion statements for each variable, e.g.,

line 28 in Figure 11.8, to check its expected value at the current state
versus its received value at that state, which is retrieved from the log
information sent back from the target (in the form of a signal), respec-
tively.
• An additional assertion statement is used in a similar way, for

checking the actual order of visited states in the code, versus the expected
ones in the model.

Basically, this allows to verify the internal state of the system, and to
determine whether it is behaving as expected (as specified in the models)
or not. Moreover, it makes it possible to determine exactly between
which states a deviation from the expected behavior has occurred. This
mechanism provides a defect localization feature as well. In other words,
testers can get some insight into the vicinity of a problem in the code,
which can ease debugging and fixing that respective problem.

11.7 Brake-by-Wire Revisited: Applying the
Methodology

We illustrate and exercise the applicability of our approach on the BBW
system, introduced in Section 11.3.

11.7.1 Creating the formal model
In ViTAL, we have imported the East-adl model described in Section
11.3 and created nine TA describing the behavior of each East-adl fp,
respectively. Figure 11.5 shows the behavior of the pABSFL fp as an
Uppaal Port TA model.

The functionality of the timed automaton is described as follows.
First, the speed of the car is evaluated; if the car has no speed then
no brake force is applied which corresponds to transversing the edge
annotated with v == 0[torqueABS = 0], otherwise the slip rate is eval-
uated. If the slip rate exceeds 0.2, no braking force should be applied

222 Paper F

Entry

CalcSlipRate

Exit
v>0 []

v==0 [torqueABS=0]

v<5*(v-w*R) [torqueABS=0]

v>=5*(v-w*R) [torqueABS=wheelABS]

Figure 11.5: The TA description of the ABS function.

to not block the wheel. In our TA model, we are evaluating s > 0.2 as
v < 5× (v − w ×R).

Table 11.3: Mapping TA variables to EAST-ADL ports

TA variable EAST-ADL port
w WheelSpeed_rpm_FL
wheelABS RequestedTorque_FL
torqueABS ABSTorque_FL
v VehicleSpeed_kmph_FL

In ViTAL, the TA local variables need to be mapped to the East-
adl ports shown in Figure 11.3. This mapping is presented in Table
11.3. Next, ViTAL performs an automatic transformation to the input
language of Uppaal Port. At this point, we can use the Uppaal
Port model-checker to simulate and formally verify the model against
its requirements. Once the correctness of our model is ensured, we start
generating test-cases.

11.7.2 Code implementation
Based on the guidelines of Section 11.5, we have implemented the code
for the BBW system. A section of the code, depicting the functionality
of the ABS component is shown in Figure 11.6.

Each location in the TA model depicted in Figure 11.5 represents
a possible value of the variable state, which is initially set to Entry.
While state is different from Exit, the code implements all the possible
computations of the TA, e.g., if v == 0 then torqueABS is set to zero.

11.7 Brake-by-Wire Revisited: Applying the Methodology
223

1 void mbatAbs_calc(MbatAbsInput* input, void* hdl)
2 { state = Idle;
3 /* Internal variables of automaton */
4 float s;
5 /* Output variables */
6 U32 TorqueABS=0;
7
8 state = Entry;
9 while(state != Exit) {

10 switch(state) {
11 case Entry: {
12 if(input->v > 0) {state=CalcSlipRate; }
13 else
14 if(input->v == 0) { TorqueABS=0; state=Exit; }
15 else { // Error }
16 break; }
17 case CalcSlipRate: {
18 s = (float)(input->v-input->w*input->R)/input->v;
19 if(s > 0.2) { TorqueABS=0; }
20 else { TorqueABS=input->WheelABS; }
21 state = Exit;
22 break; }
23 case Exit: { break; } }
24 printf(" Tracing ABS calculation state:%d\n",
25 state);
26 mbatAbs_transition(state, input->w, input->WheelABS,
27 input->v, TorqueABS, input->R,
28 (MBAT_TRC*)hdl);
29 state = Idle; } }

Figure 11.6: Implementation of the ABS component

Note that time is not considered in this implementation, so all transitions
are taken instantly.

11.7.3 Testing goal

In this paper, we focus on one of the requirements of the ABS function,
which states that: “If the brake pedal is pressed and a wheel has a slip
rate > 20%, then the brake torque for that wheel should be set to 0 N/m2”.
The requirement is expressed in TCTL as follows:
E <> (BrakeP edalSensor.pos > 0 and ABS.v < 5×
(ABS.v −ABS.w ×ABS.R) and W heelActuator.NoBrake)

224 Paper F

11.7.4 Abstract test-case generation

As presented in Section 11.6.1, we employ Uppaal Port to generate
abstract test-cases from the abstract model previously constructed. The
model-checker takes as input the formal model together with the test
goal specified as the TCTL reachability property above.

1 State:(ABSFL.idle)
2 ABSFL.w=0 ABSFL.wheelABS=0 ABSFL.torqueABS=-1
3 ABSFL.v=0 ABSFL.R=1/2
4 Transitions: ABSFL.idle->ABSFL.Entry { w:= 8, wheelABS:= 1,
5 v:= 12}
6 State:(ABSFL.Entry)
7 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=-1
8 ABSFL.v=12 ABSFL.R=1/2
9 Transitions: ABSFL.Entry->ABSFL.CalcSlipRate { v> 0}

10 State:(ABSFL.CalcSlipRate)
11 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=-1
12 ABSFL.v=12 ABSFL.R=1/2
13 Transitions: ABSFL.CalcSlipRate->ABSFL.Exit
14 { v< 5* (v- w* R), torqueABS:= 0 }
15 State: (ABSFL.Exit)
16 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=0
17 ABSFL.v=12 ABSFL.R=1/2
18 Transitions: ABSFL.Exit->ABSFL.idle { }
19 State:(ABSFL.idle)
20 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=0
21 ABSFL.v=12 ABSFL.R=1/2

Figure 11.7: Abstract Test-Case

The Uppaal Port model-checker generates the witness trace pre-
sented in Figure 11.7 automatically. The trace represents the execution
of the pABSFL fp. Initially, the TA is in location idle and all variables
are zero. The first transition to state Entry is a read transition, where
the latest variable values of w, wheelABS, and v are read. Since v > 0,
the TA moves to the CalcSliprate location. On the transition to Exit,
the torqueABS variable is set to zero, and after the write transition,
the TA returns to the idle location.

Model-checking this particular instance has involved exploring 154182
states out of 203384 stored ones, and the abstract test-case generation
took 3.27 seconds on a 1.8 GHz Intel Core i5 processor, with 8 GB of
RAM memory.

11.7 Brake-by-Wire Revisited: Applying the Methodology
225

11.7.5 Python scripts generation

From the abstract test-case of Figure 11.7, the input variable values
determining transitions in the TA model are identified automatically,
and a Python test-script is generated. When executed by Farkle on the
host system, the script sends the signals representing those input values
to the target. An excerpt of the generated script is shown in Figure 11.8.
Lines 6-10 in the script set the content of the input signal with the initial
variable values, whereas line 11 encodes sending the signal to the target.
The expected values of variables, as well as the expected order of visited
states are defined in lines 13-18, according to the principles described
in Section 11.6.2. The log information sent back to the host, from the
target, in the form of a signal is then received (line 20). Again, following
the aforementioned principles, a set of assertion statements for checking
the returned values versus the expected values are also generated as the
body of a loop, depicted in lines 23-39 of the script.

When the test-script is executed, an input signal is sent to the tar-
get. Upon the receipt of a signal, the process to which the signal is sent
starts executing. The different states that a process enters are tracked
and logged at runtime and during the execution of the code. This infor-
mation is then sent back to the script, where it is checked whether the
order of the states at runtime and also the value of variables after each
state change match the specification in the abstract test-case generated
from the TA models. To enable tracking of different states at runtime,
the code is implemented in the form of deterministic state-machines, as
shown in Figure 11.6. The Python script of Figure 11.8 delivers a "pass"
verdict on the implementation of Figure 11.6.

226 Paper F

1 import sys
2 import signals
3 import xmlrunner
4 ...
5 # Sending input signal to ABSFL
6 sig_send_ABSFL = signals.ABSFL_INPUT_SIG()
7 sig_send_ABSFL.input.ABSFL_w = 8
8 sig_send_ABSFL.input.ABSFL_v = 12
9 sig_send_ABSFL.input.ABSFL_wheelABS = 1

10 sig_send_ABSFL.input.ABSFL_R = 1
11 self.linx.send(sig_send_ABSFL, self.pid_ABSFL)
12 # Expected values
13 ABSFL_w = [8, 8, 8]
14 ABSFL_wheelABS = [1, 1, 1]
15 ABSFL_torqueABS = [-1, -1, 0]
16 ABSFL_v = [12, 12, 12]
17 ABSFL_R = [0.5, 0.5, 0.5]
18 ABSFL_state = [1, 2, 3]
19 # Receive signals from test targets
20 sig_recv_ABSFL = self.linx.receive
21 ([signals.ABSFL_OUTPUT.SIGNO])
22 # Testing of ABSFL
23 for i in range(sig_recv_ABSFL.num_states):
24 print "Transition %d:" %(i+1)
25 self.assertEqual(sig_recv_ABSFL.states[i].state,
26 ABSFL_state[i])
27 print " state = %d" %sig_recv_ABSFL.states[i].state
28 self.assertEqual(sig_recv_ABSFL.states[i].w, ABSFL_w[i])
29 print " w = %d" %sig_recv_ABSFL.states[i].w
30 self.assertEqual(sig_recv_ABSFL.states[i].wABS,
31 ABSFL_wABS[i])
32 print " wheelABS = %d" %sig_recv_ABSFL.states[i].wheelABS
33 self.assertEqual(sig_recv_ABSFL.states[i].tABS,
34 ABSFL_tABS[i])
35 print " torqueABS = %d"
36 %sig_recv_ABSFL.states[i].torqueABS
37 self.assertEqual(sig_recv_ABSFL.states[i].v, ABSFL_v[i])
38 print " v = %d" %sig_recv_ABSFL.states[i].v
39 self.assertEqual(sig_recv_ABSFL.states[i].R, ABSFL_R[i])
40 print " R = %d" %sig_recv_ABSFL.states[i].R
41 ...

Figure 11.8: Generated Python script

11.7.6 Conformance between the abstract test-case
and the Python script

Our abstract test-case presented in Figure 11.7 can be represented op-
erationally by a sequence of states and transitions as follows:
(idle, w = 0, wheelABS = 0, torqueABS = −1, v = 0, R = 1/2)

11.8 Related Work 227

read(v,wheelABS,v)
−−−−−−−−−−−−−−→
(Entry, w = 8, wheelABS = 1, torqueABS = −1, v = 12, R = 1/2)
v>0−−−→
(CalcSlipRate, w = 8, wheelABS = 1, torqueABS = −1, v = 12, R = 1/2)
v<5∗(v−w/R),torqueABS=0
−−−−−−−−−−−−−−−−−−−−−→
(Exit, w = 8, wheelABS = 1, torqueABS = 0, v = 12, R = 1/2)
write(torqueABS)
−−−−−−−−−−−−−→
(idle, w = 8, wheelABS = 1, torqueABS = −1, v = 12, R = 1/2)

In a similar manner, the Python scripts give rise to the following:
(ABSF L_state = 1, ABSF L_w = 8, ABSF L_wheelABS = 1,

ABSF L_torqueABS = −1, ABSF L_v = 12, ABSF L_R = 1/2)
v>0−−−→
(ABSF L_state = 2, ABSF L_w = 8, ABSF L_wheelABS = 1,

ABSF L_torqueABS = −1, ABSF L_v = 12, ABSF L_R = 1/2)
v<5∗(v−w/R),torqueABS=0
−−−−−−−−−−−−−−−−−−−−−→
(ABSF L_state = 3, ABSF L_w = 8, ABSF L_wheelABS = 1,

ABSF L_torqueABS = 0, ABSF L_v = 12, ABSF L_R = 1/2)

In the above we have the following: the Entry state in the TA model
is ABSFL_state = 1 in the Python script. Given this, we observe that
the trace generated from executing the Python script is included in the
trace generated by executing the TA model. Thus, it follows that we can
actually use the Python script as a concrete test-case on the SUT, so
the abstract test-case of Figure 11.7 has proven to be a feasible abstract
test-case candidate.

11.8 Related Work
Model-based testing by model-checking is a technique introduced almost
fifteen years ago [15] as an efficient way of using a model-checker to
interpret traces as test-cases. Some approaches to testing with model-
checkers are applied on real-time reactive systems. Hessel et al. have
proposed test-case generation using the Uppaal model-checker for real-
time systems [1] using timed automata specifications. In comparison, in
our work we provide an approach suited to an architectural description
language, and we offer an end-to-end tool-chain with support for test-

228 Paper F

case generation and execution.
Over the last few years, researchers in the software testing commu-

nity have been investigating how design components and architecture
description languages (ADLs) can be used for testing purposes. This
led several research groups to develop concrete testing techniques for
ADLs[16, 17, 18]. Our framework allows the formal specification of both
the interface, and the internal behavior of each East-adl block as Up-
paal Port TA. In addition, in this work we have provided functional
test goals to be considered by the Uppaal Port model-checker, de-
fined an executable semantics for the Uppaal Port TA, and described
a method for generating code that preserves the semantics of the TA
model.

While a number of groups have made a distinction between abstract
and concrete test cases [19, 20, 21], there are also differences in each
case. For instance, Peleska [20] has proposed the RT-Tester tool-suite
along with the corresponding methodology, and discussed the two types
of test-cases, abstract and executable. The major goal in RT-Tester is
to execute test-cases against the models of the system. In our work,
we have introduced an approach that generates abstract test cases and
then concrete ones, which the latter are actually executable against the
running system in its target environment. In [22] based on a subset and
preliminary version of the approach (which is extended here in this work)
and focusing only on the concrete test cases part, we have discussed
how having such executable test scripts to test the system behavior also
serves as a method to verify architectural consistency. Finally, it is
worth noting that there are different static analysis methods that can
be applied to ensure that expected properties in a system hold, thus
increasing confidence in its correctness. However, despite the application
of such methods, there are still situations/systems where the results
of such analysis may be invalidated at runtime due to different factors
[23, 24]. In this work, we have tackled this issue by complementing
formal verification of the system at the model level with the testing of
its behavior at runtime.

11.9 Conclusions and Future Work
In this paper, we have presented a methodology for testing system im-
plementations, starting from East-adl architectural models that are

11.10 Acknowledgment 229

extended by TA behavioral models. The methodology is supported by a
tool-chain consisting of ViTAL and Farkle, which can produce and run
test-cases automatically. The abstract test-cases for functional require-
ments result by model-checking the “TA enriched” East-adl models
in Uppaal Port. Next, such test-cases are transformed into Python
scripts representing the executable test-cases that are finally run on the
actual code that is implemented based on the (verified) formal model.
Our work is an attempt to exercise the feasibility of test-case generation
from East-adl models. The method has shown encouraging results
when applied on a Brake-by-Wire prototype from Volvo. As future work,
we plan to also investigate abstract test-case generation for timing prop-
erties of East-adl models, and integrate the results in our methodology.
In addition, we envision extending our work towards other ADLs.

11.10 Acknowledgment
The authors would like to thank Elaine Weyuker for her valuable com-
ments on this work. This research has received funding from the ARTE-
MIS JU, grant agreement number 269335, and from VINNOVA, the
Swedish Governmental Agency for Innovation Systems, within the MBAT
project, and also partially from the Swedish Knowledge Foundation
(KKS) through the ITS-EASY industrial research school.

Bibliography

[1] Anders Hessel, Kim Larsen, Brian Nielsen, Paul Pettersson, and
Arne Skou. Time-Optimal Real-Time Test Case Generation Us-
ing UPPAAL. In Lecture Notes in Computer Science, Formal Ap-
proaches to Software Testing, pages 114–130. Springer Berlin Hei-
delberg, 2004.

[2] Tretmans Jan. Model based testing with labelled transition systems.
In Formal methods and testing, pages 1–38. Springer, 2008.

[3] Manoranjan Satpathy, Michael Leuschel, and Michael Butler.
ProTest: An automatic test environment for B specifications. Elec-
tronic Notes in Theoretical Computer Science, 111:113–136, 2005.

[4] Rajeev Alur and David L Dill. A theory of timed automata. Theo-
retical computer science, 126(2):183–235, 1994.

[5] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic transla-
tion of Simulink/Stateflow models to hybrid automata using graph
transformations. Electronic Notes in Theoretical Computer Science,
109:43–56, 2004.

[6] John Håkansson and Paul Pettersson. Partial order reduction for
verification of real-time components. In Formal Modeling and Anal-
ysis of Timed Systems, pages 211–226. Springer, 2007.

[7] Eun-Young Kang, Eduard Paul Enoiu, Raluca Marinescu, Cristina
Seceleanu, Pierre-Yves Schobbens, and Paul Pettersson. A method-
ology for formal analysis and verification of EAST-ADL models.
Reliability Engineering & System Safety, 120:127–138, 2013.

231

232 Bibliography

[8] John Håkansson, Jan Carlson, Aurelien Monot, Paul Pettersson,
and Davor Slutej. Component-based design and analysis of em-
bedded systems with uppaal port. In Automated Technology for
Verification and Analysis, pages 252–257. Springer, 2008.

[9] Daniel Digerås. Integration between Optima and Farkle and ver-
ification with a use case about file storage stack integration in a
quality of service manager in OSE - Master Thesis. http://liu.diva-
portal.org/smash/record.jsf?pid=diva2:624122, April 2011.

[10] The ATESST2 ATESST2 Consortium. EAST-ADL Profile Specifi-
cation, 2.1 RC3 (Release Candidate). pages 10–75. www.atesst.org,
2010.

[11] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Par-
tial order reductions for timed systems. In CONCUR’98 Concur-
rency Theory, pages 485–500. Springer, 1998.

[12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxon-
omy of model-based testing approaches. Software Testing, Verifica-
tion and Reliability, 22(5):297–312, 2012.

[13] Tobias Amnell, Elena Fersman, Paul Pettersson, Hongyan Sun, and
Wang Yi. Code synthesis for timed automata. Nord. J. Comput.,
9(4):269–300, 2002.

[14] Wang Yi. CCS+ time= an interleaving model for real time sys-
tems. In Automata, Languages and Programming, pages 217–228.
Springer, 1991.

[15] André Engels, Loe Feijs, and Sjouke Mauw. Test generation for in-
telligent networks using model checking. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 384–398. Springer,
1997.

[16] Antonia Bertolino and Paola Inverardi. Architecture-based soft-
ware testing. In Joint proceedings of the second international soft-
ware architecture workshop (ISAW-2) and international workshop
on multiple perspectives in software development (Viewpoints’ 96)
on SIGSOFT’96 workshops, pages 62–64. ACM, 1996.

[17] Henry Muccini, P Inverardi, and A Bertolino. Using software archi-
tecture for code testing. Software Engineering, IEEE Transactions
on, 30(3):160–171, 2004.

[18] Hassan Reza and Suhas Lande. Model based testing using software
architecture. In Information Technology: New Generations (ITNG),
2010 Seventh International Conference on, pages 188–193. IEEE,
2010.

[19] C. Nebut, F. Fleurey, Y. Le-Traon, and J.-M. Jezequel. Automatic
test generation: a use case driven approach. Software Engineering,
IEEE Transactions on, 32(3):140–155, 2006.

[20] Jan Peleska. Industrial-Strength Model-Based Testing - State of the
Art and Current Challenges. In Proceedings of the Eighth Workshop
on Model-Based Testing, pages 3–28, March 2013.

[21] Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann.
Chapter 15: Case Studies. In Manfred Broy, Bengt Jonsson, Joost-
Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors,
Model-Based Testing of Reactive Systems: Advanced Lectures (Lec-
ture Notes in Computer Science). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[22] Mehrdad Saadatmand, Detlef Scholle, Cheuk Wing Leung, Sebas-
tian Ullström, and Joanna Fredriksson Larsson. Runtime Verifica-
tion of State Machines and Defect Localization Applying Model-
based Testing. In Proceedings of the WICSA 2014 Companion Vol-
ume. ACM, 2014.

[23] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. De-
sign of adaptive security mechanisms for real-time embedded sys-
tems. In Proceedings of the 4th international conference on En-
gineering Secure Software and Systems (ESSoS), pages 121–134,
Berlin, Heidelberg, 2012. Springer-Verlag.

[24] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring
of real-time systems. In Real-Time Systems Symposium (RTSS),
1991. Proceedings., Twelfth, pages 74–83, 1991.

Chapter 12

Paper G:
Testing of Timing
Properties in Real-Time
Systems: Verifying Clock
Constraints

Mehrdad Saadatmand, Mikael Sjödin
The 20th Asia-Pacific Software Engineering Conference (APSEC), Bangkok,
Thailand, December, 2013.

235

Abstract

Ensuring that timing constraints in a real-time system are satisfied and
met is of utmost importance. There are different static analysis methods
that are introduced to statically evaluate the correctness of such systems
in terms of timing properties, such as schedulability analysis techniques.
Regardless of the fact that some of these techniques might be too pes-
simistic or hard to apply in practice, there are also situations that can
still occur at runtime resulting in the violation of timing properties and
thus invalidation of the static analyses’ results. Therefore, it is impor-
tant to be able to test the runtime behavior of a real-time system with
respect to its timing properties. In this paper, we introduce an approach
for testing the timing properties of real-time systems focusing on their
internal clock constraints. For this purpose, test cases are generated
from timed automata models that describe the timing behavior of real-
time tasks. The ultimate goal is to verify that the actual timing behavior
of the system at runtime matches the timed automata models. This is
achieved by tracking and time-measuring of state transitions at runtime.

12.1 Introduction 237

12.1 Introduction
In building real-time systems, it is very important to ensure that timing
properties are in accordance with the specified timing requirements and
constraints. The correctness of these systems is not only dependent on
the correctness of the logical results of computations, but also on the time
at which the results are produced [1]. The criticality of this issue can
vary from one real-time system to another, such as in a real-time media
player vs. the airbag system in an automobile. Different methods have
been suggested in order to verify the correctness of timing properties in
real-time systems. For example, there are diffeent schedulability analysis
methods [2] that help to determine whether a set of real-time tasks are
schedulable or not. There are several assumptions that are taken into
account in performing such analyses, for instance, Worst-Case Execu-
tion Times (WCETs) of tasks. Some of the approaches for determining
execution times can result in assigning very pessimistic values [3]. More-
over, at runtime, situations may occur that lead to the violation of the
assumptions that were taken into account for performing the analyses,
and thus invalidation of the analysis results [4, 5]. It should also be noted
that for complex systems, such as those in telecommunication domain
with huge number of concurrent tasks handling big loads of calls, data
connections, billing, routing, and so on, it can be very hard in practice
to get such detailed information about each task in the whole system in
order to perform schedulability analysis [4, 6].

In this paper, we introduce an approach to test the timing behavior of
real-time systems at runtime. The main intention is to basically verify
that the timing properties of the tasks constituting the system match
the specifications by testing the running system. This is achieved in our
approach by consulting the timed automata models [7, 8, 9] of the system
and automatically generating test cases from them1. Timed automata
models representing the timing constraints are used as the source for the
generation of test cases and determining pass/fail criteria for them. The
test cases when executed against the running system determine whether
the observed timing behaviors match what is specified for the tasks in

1In this paper, the term verify is used as its ordinary meaning in English and
not to refer to ’formal verification’ in software engineering, unless explicitly stated.
Moreover, the term state machine is used as a synonym to refer to a timed automaton
whenever the main concern is only the states and transitions in the model regardless
of the timing specifications.

238 Paper G

the timed automata models or not. The focus in this work is mainly on
the verification of the clock constraints that are specified in the models.

While most of the methods for verification of timing properties mainly
target development phases before the actual execution of a real-time
system, such as static analysis and model checking methods [1], our ap-
proach provides a way to dynamically test and verify the actual running
system. This is especially important to alleviate the issues mentioned
above, particularly scenarios which may occur at runtime that can cause
invalidation of the results of static analysis methods, and to identify such
misbehaviors. On the other hand, the approach can also be very well
used to complement static analysis methods to gain more confidence in
the correctness of designed systems in terms of their timing properties.
We demonstrate the applicability of our approach by using it for testing
of timing properties in a Brake-By-Wire (BBW) system from automo-
tive industry. As the platform for implementation of the system, we have
used OSE Real-Time Operating System (RTOS) [10], on top of which,
BBW application is developed in C/C++.

The remainder of the paper is structured as follows. In Section 12.2,
background information about the used technologies and the BBW sys-
tem is provided. Section 12.3 describes the details of the proposed ap-
proach and in Section 12.4, we discuss how we have implemented the
approach and applied it on the BBW system. In Section 12.5, related
works are discussed and possible scenarios for combination of our ap-
proach with those works are also identified. Finally in Section 12.6, a
summary of the paper along with highlights and conclusions are pro-
vided.

12.2 Background Context
12.2.1 Timed Automata
Timed Automata (TA) are essentially finite state machines which are
annotated and extended with real-valued clocks [7, 8, 9]. The clocks, ini-
tially set to zero at system start-up, progress and increase synchronously
and at the same rate. The value of clocks can also be reset if needed.
Timed automata are used to provide an abstract model of real-time sys-
tems. Timing constraints are specified using clocks whose values can
be checked in the form of guards and invariants. Invariants can be re-
garded as progress conditions and are used to restrict the way that time

12.2 Background Context 239

may elapse at a state (location). For example, using invariants, it can be
specified that the system is not allowed to stay in a state more than some
time units and the transition has to be taken by the specified amount of
time. Guards are specified on a transition (edge) as conditions to restrict
its temporal occurrence.

Figure 12.1 shows an example timed automata for modeling a real-
time lamp introduced in [8]. In this system, there is a timing requirement
on how the user presses a button. The action of the user in pressing the
button is modeled with the right-hand automaton. The timing require-
ment in this example states that if the user presses the button, the lamp
is switched off or on (on in the low mode). However, if he is fast enough
in pressing the button again, the lamp is switched on and ends up in the
bright mode. The decision whether the user has been fast in pressing
the button or not is determined by using the clock y.

Figure 12.1: TA model of a real-time lamp [8]

12.2.2 OSE RTOS & Farkle
OSE is a commercial and industrial real-time operating system devel-
oped by Enea [10] which has been designed from the ground specifi-
cally for fault-tolerant and distributed systems. It provides preemptive
priority-based scheduling of tasks. OSE offers the concept of direct and
asynchronous message passing for communication and synchronization
between tasks, and OSE’s natural programming model is based on this
concept. Linx, which is the Inter-Process Communication protocol (IPC)
in OSE, allows tasks to run on different processors or cores, utilizing the
same message-based communication model as on a single processor. This

240 Paper G

programing model provides the advantage of not needing to use shared
memory among tasks. The runnable real-time entity equivalent to a
task is called process in OSE, and the messages that are passed between
processes are referred to as signals (thus, the terms process and task in
this paper can be considered interchangeably). Processes can be created
statically at system start-up, or dynamically at runtime by other pro-
cesses. Static processes last for the whole life time of the system and
cannot be terminated. Types of processes that can be created in OSE
are: interrupt process, timer interrupt process, prioritized process, back-
ground process, and phantom process. A process can be in one of the
following states: ready, running or waiting. One interesting feature of
OSE is that the same programming model based on signal passing can
be used regardless of the type of process.

Farkle is a test execution framework that is originally developed for
testing systems built using OSE. It enables testing embedded systems
in their target environments. This capability has become possible by
using the signal passing mechanism of OSE which allows Farkle to run
on a host machine and communicate with the target by passing signals.
In other words, Farkle basically enables testing an embedded system by
providing certain inputs to the target in the form of signals and receiving
the result as signals containing output values. The test scripts that are
used to send and receive signals, and also decide the verdict of test cases
are implemented in Python. Figure 12.2 provides an overall idea on how
Farkle works.

Figure 12.2: Farkle test execution environment.

12.2 Background Context 241

12.2.3 Brake-by-Wire System
The Brake-by-Wire (BBW) is a braking system in which mechanical
parts are replaced by electronic sensors and actuators and thus remov-
ing the hydraulic connections between the brake pedal and each wheel
brake. Anti-lock Braking System (ABS) is usually an inherent func-
tionality provided by BBW systems [11]. The purpose with the ABS
subsystem is to prevent locking of the wheels by controlling braking
based on calculated slip rate value. Slip rate is calculated according to
the following formula (where r is the radius of the wheel):

s = (vehicleSpeed− wheelSpeed ∗ r)/vechileSpeed

If s is greater than a certrain limit, then the brake actuator is re-
leased and no brake is applied, otherwise the requested brake torque is
used. The Electronic Control Unit (ECU) for each wheel will have three
application software components: one is a sensor to measure the wheel
speed, one is an actuator for the brake, and the third one implements
the ABS controller for the wheel. A schematic view of the BBW sys-
tem components is shown in Figure 12.3 considering only one wheel for
brevity.

Figure 12.3: Components composing a BBW system

There are several timing requirements in BBW systems. For exam-
ple, the total brake reaction delay could be specified not to be more than

242 Paper G

200ms (in a sample implementation of the BBW system), or require-
ments on the periods of samplings done by sensors. Generally, BBW is
an example of safety-critical, distributed and real-time systems in which
meeting timing requirements has also direct impacts on the safety of the
system.

A Timed Automata (TA) model, designed in Uppaal tool [8], de-
scribing the internal behavior of the ABS component of BBW system is
shown in Figure 12.4. In this model, y is a clock whose specification on
the states indicates the amount of time units that can be spent in each
state (non-deterministically, between 0 and the specified value) before
a transition has to be made to the next state. These timing specifica-
tions are naturally derived from high level timing requirements of the
BBW system and its components. The values in the TA model here are
just samples, and the exact values for each implementation of the BBW
system might be different.

Figure 12.4: Timed automata model of the ABS component

12.3 Proposed Approach
In this section we describe our proposed approach to generate test cases
in order to verify that the timing properties of the system at runtime
match the clock constraints specified in the timed automata models of
the system. This is made possible basically by annotating the code
so that state changes can be determined and tracked at runtime, and
measuring the time difference between the state changes. The following
are the steps that constitute the approach:

12.3 Proposed Approach 243

1. Based on the automata models, C/C++ enumerations (enum) that
represent each state machine and their internal states are gener-
ated. These enumeration structures are stored in a C/C++ file
along with a helper function called set_state_wtime(StateMachine,
State). The file is then included in the implementation code of
the target application (i.e., to be tested).

2. The states in the timed automata model are mapped to the code
using the above helper function. This is done by adding calls to
the set_state_wtime() helper function at places where a state
change occurs in the code. The helper function basically logs the
new state belonging to the specified state machine along with the
time stamp at which the transition and change to the new state
has occurred.

3. According to the timing specifications in the timed automata model,
a test script is generated which verifies the measured time dif-
ference between (pairs of) consecutive states against the model.
In other words, if the time difference and also the order of state
changes match the model, then the result of the test is determined
as pass, otherwise a fail verdict is decided.

The generation of executable test scripts described in Step 3 is done
in the following way:

• Minimum number of paths covering all clock constraints in the
timed automata model are identified (clock constraint coverage).
For example, in case of the TA model of the ABS component
shown in Figure 12.4, the following paths are selected: Entry →
CheckSpeed → AsigT1 → Exit and Entry → CalcSlipRate →
AsigT2→ AsigT3→ Exit.

• For each of the identified paths a test script is generated. The
script basically provides and sends necessary input(s) causing the
state machine to start from the Entry state, taking the states and
transitions constituting the selected path until reaching the Exit
state. Considering the example in Figure 12.4, this means provid-
ing a value for wABS variable resulting in a value for V causing
the desired transition and path to be taken. Based on the log infor-
mation generated by the helper function, the script checks whether
the order of the states and the time spent in each state with a clock

244 Paper G

constraint match the extracted path from the timed automata or
not.

12.4 Application & Implementation of the
Approach

We have implemented the BBW system on OSE 5.5.1. An OSE process is
created and developed for each component shown in Figure 12.3, and the
communication between them is implemented by defining and passing
appropriate OSE signals. For example, the signal definition for passing
wheel speed information between processes is shown in Listing 12.1.

Listing 12.1: Signal definition for wheel speed
#define WHEEL_SPEED_SIG 1026
typedef struct WheelSpeedSignal {

SIGSELECT sigNo ;
f loat WheelSpeed ;

} WheelSpeedSignal ;

To test and verify the clock constraints in the running system, the
approach described in the previous section is followed. First informa-
tion about different states is extracted from the timed automata models
and enumeration structures (C/C++ enums) representing them are au-
tomatically generated:

enum StateMachines {BrakePedalSensor , BrakeTorqueCalculator ,
GlobalBrakeContro l l e r , WheelActuator , ABS, WheelSensor } ;

enum Sta t e s {Entry , CheckSpeed , CalcSl ipRate , AsigT1 , AsigT2 ,
AsigT3 , Exit , Brake , NoBrake , Reac , . . . } ;

The result of this step is a C/C++ file containing the generated
data structures along with the aforementioned helper function (that has
a fixed implementation), which is then included in the implementation
code of the BBW-ABS system. The next step is to map the states
in the timed automata models to the code by adding calls to the helper
function. The result is depicted in Figure 12.5 in case of the ABS process.

This is the only manual step in the whole approach. This step may
also be automated if in a model-driven development methodology, for

12.4 Application & Implementation of the Approach 245

Figure 12.5: Mapping of states to the code (ABS function)

example, the code is generated taking into account the timed automata
models of the system and thus aware of different states and transitions.

The final step is the generation of executable test scripts. For each
identified path for covering the clocks constraints in the model, a test
script is generated which, by investigating the generated log information
about state changes, verifies that:

1. the order of visited states is in accordance with the timed automata
model,

2. the amount of time spent in each state matches the timing speci-
fications in the timed automata model. This is done by consulting
the time stamps associated with and logged for each state change.

These details (order of states and timing specifications) are inherent
and present in the timed automata models and are extracted from them
in generating test scripts.

The test scripts are generated in the form of Python scripts which
are then executed by the Farkle test execution framework (described
in Section 12.2.2). Farkle which runs on the host machine enables test
scripts to communicate with the target system. The scripts send signals
to the BBW processes running on the target. These signals (e.g., wheel
speed signal in Listing 12.1) contain input values which are received,

246 Paper G

extracted and acted upon by the recipient process. In terms of state
machines in the models, passing these input values invoke transitions in
the recipient process’s internal states. Whenever during the execution of
a process the set_state_wtime(StateMachine,State) helper function
(added during the mapping step) is called, a log record is created for
tracking the states and the time point that a state change has occurred.
This is used by test scripts to determine test verdicts. Finally, the pass
or fail results returned by executing the test scripts show whether the
actual behavior of the system at runtime has been in accordance with
and respecting the constraints specified in the timed automata models
or not.

12.5 Related Work
In [12], we have previously introduced an approach for monitoring of
timing properties of real-time tasks at runtime by enriching schedulers
with the necessary monitoring mechanisms. The approach does not only
enable provision of information about timing properties such as actual
execution time (vs. estimated WCET), response time, deadline misses,
and observed period and Minimum Inter-Arrival Time (MIAT) of tasks,
but also helps to preserve and enforce such properties at runtime. In
other words, if, for example, a task is taking too much time than its
allowed time budget, this time budget is enforced by preempting the
task, to let other tasks in the system perform as expected and pre-
determined. Although in [12], we have not explicitly discussed and dealt
with testing of such timing properties, the approach and the monitoring
mechanisms introduced there can be regarded as the core functionality
needed for dynamic testing of properties such as execution time of tasks,
determining occurrence of deadline misses in the system, violation of
period and MIAT values, and so on. In this paper, however, we more
directly addressed testing of real-time systems. Moreover, we focused
mainly on timing properties specifiable in the form of timed automata
describing the internal behavior of real-time tasks, as well as the system
in general (e.g., end-to-end deadlines). Extending the work done in [12]
for testing purposes, and combining it with the approach suggested here
to provide a comprehensive testing framework for timing properties is
left as future directions of this work to investigate. Beside the monitoring
method we have introduced in [12], we have also provided a survey of

12.5 Related Work 247

different available methods and tools for monitoring of timing constraints
in [13].

Uppaal is a tool suite for modeling and verification of real-time sys-
tems modeled as networks of timed automata [8, 14]. Three main parts
that constitute Uppaal are a description language, a simulator and a
model-checker. Uppaal is an example of prominent tools and meth-
ods for verification of real-time systems at the modeling level and does
not concern implementation code and actual execution of the system.
Uppaal TRON [15, 16] is a testing tool based on the Uppaal engine
that is designed for black-box conformance testing of real-time systems.
The testing approach provided by TRON is similar to ours in the sense
that both communicate with and execute test cases against the running
system, and also both use timed automata models. Uppaal TRON de-
rives, executes, and evaluates test cases against the implementation of
the system in real-time. However, the main difference between the test-
ing method of Uppaal TRON and our approach is that Uppaal TRON
addresses online generation and execution of test cases based on the re-
sults of previous executed test cases, and focuses mainly on observable
input and output actions considering the Implementation Under Test
(IUT) as black-box and assuming that its internal states are not observ-
able [16]. While in our approach, test cases are only generated offline,
and also the IUT is considered as white-box whose internal state changes
are fully tracked and compared against the TA models. The mapping of
states to code in our approach is thus needed and introduced to enable
this feature. Also what is tested in our approach is not the output from
the IUT and the time at which it is produced, but the order of states
and the time spent in each one which has a time constraint. From this
perspective, there seems to be potentials for combining our testing ap-
proach with Uppaal TRON. Shin, Drusinsky and Cook present in [17]
an approach for white-box testing of timing properties. They introduce
assertion state charts as a way to specify and keep track of timing con-
straints. From these state charts, some test cases are derived manually
(e.g., testing single use case scenarios) and some are automatically gen-
erated (e.g., testing the state chart under test itself). Their approach
is however closer to Uppaal TRON with respect to what is actually
testable and tested in the running system.

In [18], we have discussed the general idea of combining static analysis
and testing. Its potentials and different combination scenarios along with
an example are also provided in that work.

248 Paper G

12.6 Conclusion
In this paper, we introduced an approach for dynamic testing of timing
properties in real-time systems. By tracking state changes at runtime,
the approach allows for more detailed testing of timing properties of real-
time systems and their tasks whose internal behaviors are represented
in the form of timed automata. Testing and runtime verification of
timing properties becomes especially important in cases where static
analysis methods are hard to apply in practice or can be invalidated at
runtime. In general, however, both approaches (static analysis methods
and testing) can be considered complementary and used together to gain
more confidence in temporal correctness of real-time systems.

Timed automata models are used in our approach as a representa-
tion and source for timing requirements and constraints from which test
cases are automatically generated. We demonstrated the applicability
of our approach on the ABS subsystem of Brake-By-Wire system, veri-
fying the timing constraints specified on different states constituting its
behavioral model. Also, as for the implementation of our approach, we
used OSE as the core platform and real-time operating system, C/C++
for implementing the BBW application, and Python as the language
for generating executable test scripts. Using OSE along with its test
execution environment, Farkle, enables to test an embedded system in
its target environment. This is a valuable feature considering that re-
source constraints originating from the execution environment (e.g., bat-
tery/power, layout and size, heat generation, available memory, CPU,
etc.) affect and dictate, to a great degree, how an embedded system
should be designed and perform. It should, however, be noted that the
approach is not necessarily dependent on these technological choices and
may be well implemented differently.

As mentioned in the paper, the mapping step of the approach, in
which state changes are annotated and marked in the code using the
helper function, is the only step which needs manual intervention. As a
future work, we are working on solutions for automating this step, and
thus automating the whole testing approach. Also, in this work, since
we were only interested in the time difference between state changes,
the execution time of the added calls to the helper function (to log and
timestamp state changes) had no effect on the test result and was simply
ignored. However, if, for example, end-to-end response times are to be
tested, it is important to take into account the added timing-cost of

12.7 Acknowledgements 249

the helper function. Considering that the helper function has a fixed
execution time, though, its impacts on the execution time of a task to
which it is added may be easily predicted and reduced from the task’s
total execution time. Also, it might be possible to claim that in some
systems, if tests are passed while having helper function calls in the
code, they might also work fine in terms of timing properties when the
helper function calls are removed, e.g., in the release and final version of
a product. Careful investigation of such claims and scenarios, and side
effects of adding helper functions to enable testing, as well as different
ways to mitigate them are left as other future directions of this work.

12.7 Acknowledgements
This work has been supported by the MBAT European Project [19]
and Xdin Stockholm AB (formerly Enea Services Stockholm AB) [20]
through the ITS-EASY industrial research school [21]. The research
leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement no 269335 (see Article II.9. of the
JU Grant Agreement) and from the Swedish Governmental Agency for
Innovation Systems (VINNOVA). We would also like to thank Raluca
Marinescu and Cristina Seceleanu for their technical tips and support
for this work.

Bibliography

[1] Joachim Wegener and Matthias Grochtmann. Verifying Timing
Constraints of Real-Time Systems by Means of Evolutionary Test-
ing. Real-Time Syst., 15(3):275–298, November 1998.

[2] Robert I. Davis and Alan Burns. A survey of hard real-time schedul-
ing for multiprocessor systems. ACM Comput. Surv., 43(4):35:1–
35:44, October 2011.

[3] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Is-
abelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem-overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53,
May 2008.

[4] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. De-
sign of adaptive security mechanisms for real-time embedded sys-
tems. In Proceedings of the 4th international conference on En-
gineering Secure Software and Systems, ESSoS’12, pages 121–134,
Eindhoven, The Netherlands, 2012. Springer-Verlag.

[5] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitor-
ing of real-time systems. In Real-Time Systems Symposium, 1991.
Proceedings., Twelfth, pages 74 –83, dec 1991.

[6] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. UML-
Based Modeling of Non-Functional Requirements in Telecommuni-
cation Systems. In The Sixth International Conference on Software
Engineering Advances (ICSEA), October 2011.

251

252 Bibliography

[7] Rajeev Alur and David L. Dill. A theory of timed automata. The-
oretical Computer Science, 126(2):183 – 235, 1994.

[8] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on Up-
paal 4.0. http://www.it.uu.se/research/group/darts/papers/
texts/new-tutorial.pdf, November 2006.

[9] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Al-
gorithms and Tools. In W. Reisig and G. Rozenberg, editors, In
Lecture Notes on Concurrency and Petri Nets, Lecture Notes in
Computer Science vol 3098. Springer–Verlag, 2004.

[10] Enea. http://www.enea.com, Last Accessed: June 2013.

[11] S. Anwar. An anti-lock braking control system for a hybrid elec-
tromagnetic/electrohydraulic brake-by-wire system. In American
Control Conference, 2004. Proceedings of the 2004, volume 3, pages
2699–2704 vol.3, 2004.

[12] M. Saadatmand, M. Sjodin, and N.U. Mustafa. Monitoring capa-
bilities of schedulers in model-driven development of real-time sys-
tems. In 17th IEEE Conference on Emerging Technologies Factory
Automation (ETFA), pages 1–10, Krakow, Poland, 2012.

[13] Nima Asadi, Mehrdad Saadatmand, and Mikael Sjödin. Run-Time
Monitoring of Timing Constraints: A Survey of Methods and Tools.
In The Eighth International Conference on Software Engineering
Advances (ICSEA), Venice, Italy, October 2013.

[14] Uppaal. http://www.uppaal.org/, Accessed: August 2013.

[15] Uppaal for Testing Real-Time Systems Online (TRON). http://
people.cs.aau.dk/~marius/tron/, Accessed: August 2013.

[16] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou.
Testing real-time embedded software using UPPAAL-TRON: an in-
dustrial case study. In Proceedings of the 5th ACM international
conference on Embedded software, EMSOFT ’05, pages 299–306,
New York, NY, USA, 2005. ACM.

[17] Man-Tak Shing, D. Drusinsky, and T.S. Cook. Quality assurance
of the timing properties of real-time, reactive system-of-systems. In

http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.enea.com
http://www.uppaal.org/
http://people.cs.aau.dk/~marius/tron/
http://people.cs.aau.dk/~marius/tron/

2006 IEEE/SMC International Conference on System of Systems
Engineering, pages 6 pp.–, 2006.

[18] Mehrdad Saadatmand and Mikael Sjödin. On Combining Model-
Based Analysis and Testing. In 10th International Conference on
Information Technology : New Generations (ITNG 2013), Las Ve-
gas, NV, USA, April 2013.

[19] MBAT Project: Combined Model-based Analysis and Testing of
Embedded Systems. http://www.mbat-artemis.eu/home/, Ac-
cessed: June 2013.

[20] XDIN AB. http://xdin.com/en/about-xdin/enea-experts/,
Accessed: June 2013.

[21] ITS-EASY post graduate industrial research school for embed-
ded software and systems. http://www.mrtc.mdh.se/projects/
itseasy/, Accessed: June 2013.

http://www.mbat-artemis.eu/home/
http://xdin.com/en/about-xdin/enea-experts/
http://www.mrtc.mdh.se/projects/itseasy/
http://www.mrtc.mdh.se/projects/itseasy/

	Thesis
	Introduction
	Background and Motivation
	Problems and Contributions Overview
	Thesis Outline

	Research Context
	Research Goals
	Research Process

	Contributions
	Overview of the Included Papers

	Related Work
	Conclusion and Future Directions
	Bibliography

	Included Papers
	Paper A: Model-Based Trade-off Analysis of Non-Functional Requirements: An Automated UML-Based Approach
	Introduction
	Non-Functional Requirements
	Addressing the Challenges of NFRs
	Suggested Approach
	Usage Example
	Discussion
	Related Work
	Summary and Conclusion
	Acknowledgements
	Bibliography

	Paper B: Managing Timing Implications of Security Aspects in Model-Driven Development of Real-Time Embedded Systems
	Introduction
	Security in Embedded Systems
	Motivation Example: Automatic Payment System
	Approach
	Implementation
	Runtime Adaptation
	Discussion
	Related Work
	Conclusion and Future Work
	Acknowledgements
	Bibliography

	Paper C: Monitoring Capabilities of Schedulers in Model-Driven Development of Real-Time Systems
	Introduction
	Background and Motivation
	Scheduler Design and Implementation
	Experiment and Monitoring Results
	Related Work
	Discussion and Conclusion
	Acknowledgements
	Bibliography

	Paper D: An Automated Round-trip Support Towards Deployment Assessment in Component-based Embedded Systems
	Introduction
	Context
	Related Work
	The AAL2 Subsystem: a Running Example
	The Round-trip Support
	From Models to Code and Back
	Discussion and Future Work
	Conclusion
	Acknowledgments
	Bibliography

	Paper E: Towards Accurate Monitoring of Extra-Functional Properties in Real-Time Embedded Systems
	Introduction
	OSE Real-Time Operating System
	Priority-Based Monitoring Approach
	Evaluation
	Discussions
	Related Work
	Conclusion and Future Work
	Acknowledgements
	Bibliography

	Paper F: A Model-Based Testing Framework for Automotive Embedded Systems
	Introduction
	Preliminaries
	Brake-by-Wire Case Study: Functionality and Structure
	From EAST-ADL to Code Validation: Methodology Overview
	Implementation Activities
	Testing Activities
	Brake-by-Wire Revisited: Applying the Methodology
	Related Work
	Conclusions and Future Work
	Acknowledgment
	Bibliography

	Paper G: Testing of Timing Properties in Real-Time Systems: Verifying Clock Constraints
	Introduction
	Background Context
	Proposed Approach
	Application & Implementation of the Approach
	Related Work
	Conclusion
	Acknowledgements
	Bibliography

