
Noname manuscript No.
(will be inserted by the editor)

Towards benchmarking feature subset selection methods for software
fault prediction

Wasif Afzal · Richard Torkar

Received: date / Accepted: date

Abstract Despite the general acceptance that software engineering datasets often contain noisy, irrele-
vant or redundant variables, very few benchmark studies of feature subset selection (FSS) methods on
real-life data from software projects have been conducted. This paper provides an empirical comparison
of state-of-the-art FSS methods: information gain attribute ranking (IG); Relief (RLF); principal com-
ponent analysis (PCA); correlation-based feature selection (CFS); consistency-based subset evaluation
(CNS); wrapper subset evaluation (WRP); and an evolutionary computation method, genetic program-
ming (GP), on five fault prediction datasets from the PROMISE data repository. For all the datasets,
the area under the receiver operating characteristic curve—the AUC value averaged over 10-fold cross-
validation runs—was calculated for each FSS method-dataset combination before and after FSS.

Two diverse learning algorithms, C4.5 and näıve Bayes (NB) are used to test the attribute sets given
by each FSS method. The results show that although there are no statistically significant differences
between the AUC values for the different FSS methods for both C4.5 and NB, a smaller set of FSS
methods (IG, RLF, GP) consistently select fewer attributes without degrading classification accuracy.
We conclude that in general, FSS is beneficial as it helps improve classification accuracy of NB and
C4.5. There is no single best FSS method for all datasets but IG, RLF and GP consistently select fewer
attributes without degrading classification accuracy within statistically significant boundaries.

1 Introduction

A bulk of literature on prediction and estimation in software engineering contributes to software fault/defect
prediction (also termed as software quality classification/software quality modeling). Software fault pre-
diction research uses software metrics to predict the response variable which can either be the class
of a module (e.g., fault-prone and not fault-prone) or a quality factor (e.g., number of faults) for a
module (Khoshgoftaar and Seliya, 2004). This paper is concerned with classifying software compo-
nents/modules as fault-prone and not fault-prone (Lessmann et al, 2008), (Hall et al, 2011), (Catal
and Diri, 2009b). Such a classification task is useful for the following reasons:

– Knowing which software components are likely to be fault-prone supports better targeting of software
testing effort. This in turn has the potential to improve test efficiency and effectiveness.

– Fault-prone software components are candidates of refactoring whereby their internal structure can
be improved.

W. Afzal
School of Innovation, Design & Engineering
Mälardalen University, Väster̊as, Sweden
E-mail: wasif.afzal@mdh.se

R. Torkar
Blekinge Institute of Technology, Karlskrona, Sweden. &
Chalmers University of Technology — University of Gothenburg, Gothenburg, Sweden
E-mail: richard.torkar@cse.gu.se

Despite the presence of a large number of models for software fault prediction, there is lack of a defini-
tive advice on what prediction models are useful under different contexts. In order to increase confidence
in the results of software fault prediction studies, more and more research is focussing on the need for
a robust process and methodology to build prediction models (Song et al, 2011; Fenton and Neil, 1999;
Hall et al, 2011). Central to such a methodology are issues such as data quality, measurement of predic-
tive performance (Foss et al, 2003), resampling methods to use (Afzal et al, 2012) and reporting of fault
prediction experiments (Hall et al, 2011). For data quality, important issues are data preprocessing (Gray
et al, 2011), class imbalance (Khoshgoftaar et al, 2010; Shivaji et al, 2009) and impact of feature subset
selection (FSS) methods (Rodriguez et al, 2007a,b). This paper contributes to the last aspect of data
quality: use of FSS methods in software fault prediction.

The purpose of FSS is to find a subset of the original features of a dataset, such that an induction
algorithm that is run on data containing only these features generates a classifier with the highest possible
accuracy (Kohavi and John, 1997). There are several reasons to keep the number of features in a data
set as small as possible:

1. Reducing the number of features allows classification algorithms to operate faster, more effectively
(Hall and Holmes, 2003) and with greater simplicity (Jain et al, 2000).

2. Smaller number of features help reduce the curse of dimensionality1.
3. Smaller number of features reduce measurement cost as less data needs to be collected (Chen et al,

2005a).
4. FSS helps to achieve a better understandable model and simplifies the usage of various visualization

techniques (Janecek et al, 2008).

The simplest approach to FSS would require examining all possible subsets of the desired number of
features in the selected subset and then selecting the subset with the smallest classification error. How-
ever, this leads to a combinatorial explosion, making exhaustive search all but impractical for most of
the data sets (Jain et al, 2000). Naturally many FSS methods are search-based (Burke and Kendall,
2005), combined with an attribute utility estimator to evaluate the relative merit of alternate subsets of
attributes (Hall and Holmes, 2003).

Several researchers in software engineering have emphasized the need to investigate only relevant
variables. According to Dyb̊a et al. (Dyb̊a et al, 2006): “Careful selection of which independent variables
to include and which variables to exclude, is, thus, crucial to raising the power of a study and the
legitimacy of its potential findings”. Further emphasizing the importance of FSS, Song et al. (Song et al,
2011) argue that “[. . .] before building prediction models, we should choose the combination of all three of
learning algorithm, data pre-processing and attribute selection method, not merely one or two of them”. It
is also generally accepted that software engineering data sets often contain noisy, irrelevant, or redundant
variables (Chen et al, 2005a; Afzal et al, 2009), therefore, it is important to evaluate FSS methods for
software engineering data sets. In literature, there are few studies that compare FSS methods for software
fault prediction (Section 2) but no benchmark study on commonly used FSS methods on real-life public
data from software projects has been conducted. Moreover, the use of evolutionary algorithms (e.g.,
genetic algorithm, genetic programming) have sporadically been investigated as FSS methods (Vivanco
et al, 2010; Smith and Bull, 2003; Muni et al, 2006; Yang and Honavar, 1998) but not to an extent
of comparing with state-of-the-art FSS methods, using publicly available real-life data from software
projects.

This paper provides an empirical comparison of the state-of-the-art FSS methods and an evolutionary
computation method (genetic programming (GP)) on five software fault prediction data sets from the
PROMISE data repository (Boetticher et al, 2007). Two diverse learning algorithms, C4.5 and näıve
Bayes (NB), are used to test the attribute sets given by each FSS method. We are interested in investi-
gating if the classification accuracy of C4.5 and NB significantly differ before and after the application
of FSS methods. In order to formalize the purpose of the empirical study, we set forth the following
hypotheses to test:

H0: The classification accuracy of C4.5 and NB is not significantly different before and after applying
the FSS methods, i.e., ACCC4.5 = ACCNB .

H1: The classification accuracy of C4.5 and NB is significantly different before and after applying the
FSS methods, i.e., ACCC4.5 6= ACCNB .

1 The requirement that the number of training data points to be an exponential function of the feature dimension.

2

The results of this study indicate that FSS is generally useful for software fault prediction using NB
and C4.5. However there are no clear winners for either of the two learning algorithms for the variety of
FSS methods used. Based on individual accuracy values, RLF, IG and GP are the best FSS methods for
software fault prediction accuracy while CNS and CFS are also good overall performers.

The paper is organized as follows. The next Section describes related work. Section 3 describes the
FSS methods used in this study while Section 4 describes the datasets used, the evaluation measure and
the experimental setup of the replication study. Section 5 presents the results of the empirical study and
presents a discussion. Validity evaluation is given in Section 6 while the paper is concluded in Section 7.

2 Related work

Molina et al. (Molina et al, 2002), Guyon and Elisseeff (Guyon and Elisseeff, 2003), Blum and Langley
(Blum and Langley, 1997), Dash and Liu (Dash and Liu, 1997) and Liu and Yu (Liu and Yu, 2005)
provide good surveys reviewing work in machine learning on FSS. This section will, however, summarize
the work done on FSS in predictive modeling within software engineering. FSS techniques in software
engineering have been applied for software cost/effort estimation and software quality classification (also
called as software defect/fault prediction). As the below paragraphs would illustrate, there is no definitive
guidance available on FSS techniques to use in software engineering predictive modeling.

Dejaeger et al. (Dejaeger et al, 2012) used a generic backward input selection wrapper for FSS and
reported significantly improved performance for software cost modeling in comparison to when no FSS
was used. Similar results were reported by Chen et al. (Chen et al, 2005a,b). They showed that using
wrapper improves software cost prediction accuracy and is further enhanced when used in combination
with row pruning. However, for the COCOMO-styled datasets used in a study by Menzies et al. (Menzies
et al, 2010) for estimating software effort/cost, wrapper FSS technique did not improve the estimation
accuracy. Kirsopp et al. (Kirsopp et al, 2002) used random seeding, hill climbing and forward sequential
selection to search for optimal feature subsets for predicting software project effort. They showed that
hill climbing and forward sequential selection produce better results than random searching. Azzeh et
al. (Azzeh et al, 2008), on the other hand, showed that their proposed fuzzy FSS algorithm consistently
outperforms hill climbing, forward subset selection and backward subset selection for software effort
estimation. Li et al. (Li et al, 2009) showed that a hybrid of wrapper and filter FSS techniques known
as mutual information based feature selection (MICBR) can select more meaningful features while the
performance was comparable to exhaustive search, hill climbing and forward sequential selection.

Menzies et al (Menzies et al, 2007) showed that there are no clear winners in FSS techniques for learn-
ing defect predictors for software fault/defect prediction. They compared information gain, correlation-
based feature selection, relief and consistency based subset evaluation. Rodriguez et al. (Rodriguez et al,
2007a,b) also compared filter and wrapper FSS techniques for predicting faulty modules. They, however,
concluded that wrapper FSS techniques have better accuracy than filter FSS techniques. Song et al. (Song
et al, 2011) used wrapper FSS with forward selection and backward elimination search strategies for de-
fect proneness prediction. They showed that different attribute selectors are suitable to different learning
algorithms. Catal and Diri (Catal and Diri, 2009a) applied correlation-based FSS method on class-level
and method-level metrics for software fault prediction. They showed that random forests gives the best
results when using this FSS method. Khoshgoftaar et al. (Khoshgoftaar et al, 2006) found that the use
of a stepwise regression model and a correlation-based FSS with greedy forward search did not yield
improved predictions. Wang et al. (Wang et al, 2009) compared seven filter based FSS techniques and
proposed their own combination of filter-based and consistency-based FSS algorithm. Their proposed
algorithm and the Kolmogorov-Smirnov technique performed competitively with other FSS techniques.
Koshgoftaar et al. (Khoshgoftaar et al, 2003) also showed better results with a FSS method based on
the Kolmogorov-Smirnov two-sample statistical test. Altidor et al. (Altidor et al, 2010) compared their
new wrapper FSS algorithm against 3-fold cross-validation, 3-fold cross-validation risk impact and a
combination of the two. They showed that the performance of their new FSS technique is dependent on
the base classifier (ranker aid), the performance metric and the methodology. Gao et al. (Gao et al, 2012)
concluded that data sampling followed by wrapper FSS technique improves the accuracy of predicting
high-risk program modules. Gao et al. (Gao et al, 2011) compared seven feature ranking techniques and
four FSS techniques. Their proposed automatic hybrid search performed best among FSS techniques.
Khoshgoftaar et al. (Khoshgoftaar et al, 2012) compared seven filter-based feature ranking techniques,

3

including a signal-to-noise (SNR) technique. SNR performed as well as the best performer of the six
commonly used techniques. Wang et al. (Wang et al, 2012) compared several ensemble FSS techniques
and concluded that although there are no clear winners but ensembles of few rankers are effective then
ensembles of many rankers. Khoshgoftaar et al. (Khoshgoftaar et al, 2010) investigated the relation be-
tween six filter-based FSS methods with random under-sampling technique. They concluded that FSS
based on sampled data resulted in significantly better performance than FSS based on original data.

3 Feature subset selection (FSS) methods

There are two commonly known categories of FSS methods: the filter approach and the wrapper approach.
In the filter approach, the feature selection takes place independently of the learning algorithm and is
based only on the data characteristics. The wrapper approach, on the other hand, conducts a search
for a good subset using the learning algorithm itself as part of the evaluation function (Kohavi and
John, 1997). Hall and Holmes (Hall and Holmes, 2003) provides another categorization for FSS methods,
namely, those methods that evaluate individual attributes and those that evaluate subset of attributes.

We have chosen to empirically evaluate a total of seven FSS methods, two that evaluate individual
attributes (information gain attribute ranking and Relief), three that evaluate subsets of attributes
(correlation-based feature selection, consistency-based subset evaluation, wrapper subset evaluation),
one classical statistical method for dimensionality reduction (principal components analysis) and one
evolutionary computational method (genetic programming). Following is a brief description of the FSS
methods used in this study.

3.1 Information gain (IG) attribute ranking

The foundation of IG attribute ranking is the concept of entropy which is considered as a measure of
system’s unpredictability. If C is the class, the entropy of C is given by:

H(C) = −
∑
p(c) log p(c)

where p(c) is the marginal probability density function for class C. If the observed values of C are
partitioned based on an attribute A and the entropy of C after observing the attribute is less than the
entropy of C prior to it, there is a relationship between C and A. The entropy of C after observing A is:

H(C|A) = −
∑
aεA

p(a)
∑
cεC

p(c|a) log p(c|a)

where p(c|a) is the conditional probability of c given a.
Given that entropy is a measure of system’s unpredictability, information gain is the amount by which

the entropy of C decreases (Quinlan, 1993). It is given by:

IG = H(C)−H(C|A) = H(A)−H(A|C)

IG is a symmetrical measure meaning that information gained about C after observing A is equal to
the information gained about A after observing C.

IG attribute ranking is one of the simplest and fastest attribute ranking methods (Hall and Holmes,
2003) but its weakness is that it is biased in favor of attributes with more instances even when they are
not more informative (Novakovic, 2009).

In this study, IG attribute ranking is used with the ranker search method that ranks attributes by
their individual evaluations.

3.2 Relief (RLF)

Relief is an instance-based attribute raking algorithm proposed by Kira and Rendell (Kira and Rendell,
1992). The Relief algorithm estimates the quality of attributes according to how they differentiate between

4

instances from different classes that are near to each other. So given a randomly selected instance R,
Relief searches for a nearest hit H (a nearest neighbor from the same class) and a nearest miss M (a
nearest neighbor from a different class). It then updates the relevance score for attributes depending on
their values for R, M and H. The process is repeated for a user-defined number of instances m. The
basic Relief algorithm, taken from (Sikonja and Kononenko, 1997), is given in Figure 1.

Algorithm Relief
Input: for each training instance a vector of attribute values and the class value
Output: the vector W of estimations of the qualities of attributes

1. set all weights W[A] := 0.0;
2. for i := 1 to m do begin
3. randomly select an instance R;
4. find nearest hit H and nearest miss M;
5. for A := 1 to #all attributes do
6. W[A] := W[A] - diff(A,R,H)/m + diff(A,R,M)/m;
7. end;

Figure 1: The basic Relief algorithm

2 RReliefF

2.1 Relief and ReliefF for classification

The key idea of the original Relief algorithm (Kira and
Rendell, 1992), given in Figure 1, is to estimate the quality
of attributes according to how well their values distinguish
between the instances that are near to each other. For that
purpose, given a randomly selected instance R (line 3), Re-
lief searches for its two nearest neighbors: one from the
same class, called nearest hit H, and the other from a dif-
ferent class, called nearest miss M (line 4). It updates the
quality estimation W[A] for all the attributes A depending
on their values for R, M, and H (lines 5 and 6). The process
is repeated for times, where is a user-defined param-
eter.

Function calcu-
lates the difference between the values of Attribute for two
instances. For discrete attributes it is defined as:

(1)
and for continuous attributes as:

(2)

The function is used also for calculating the distance
between instances to find the nearest neighbors. The total
distance is simply the sum of distances over all attributes.
Relief’s estimate of the quality of attribute is an
approximation of the following difference of probabilities
(Kononenko, 1994):

(3)

The complexity of Relief for training instances and
attributes is . The original Relief can deal
with discrete and continuous attributes. However, it can not
deal with incomplete data and is limited to two-class prob-
lems. Kononenko (1994) has shown that Relief’s estimates
are strongly related to impurity functions and developed an
extension called ReliefF that is more robust, can tolerate in-
complete and noisy data and can manage multiclass prob-
lems. One difference from original Relief, interesting also
for regression, is that, instead of one nearest hit and one
nearest miss, ReliefF uses nearest hits and misses and
averages their contribution to .

The power of Relief is its ability to exploit information lo-
cally, taking the context into account, but still to provide
the global view.

2.2 RReliefF for regression

In regression problems the predicted value (class) is con-
tinuous, therefore the (nearest) hits and misses cannot be
used. Instead of requiring the exact knowledge of whether
two instances belong to the same class or not, we can intro-
duce a kind of probability that the predicted values of two
instances are different. This probability can be modeled
with the relative distance between the predicted (class) val-
ues of the two instances.

Still, to estimate W[A] in (3), the information about the
sign of each contributed term is missing. In the follow-
ing derivation we reformulate (3), so that it can be directly
evaluated using the probability of the predicted values of
two instances being different. If we rewrite

(4)

(5)

Fig. 1 The basic Relief algorithm.

The function diff(Attribute, Instance1, Instance2) calculates the difference between the values of
attribute for two instances. For discrete attributes, the difference is either 1 (the values are different) or
0 (the values are the same). For continuous attributes the difference is the actual difference normalized
to the interval [0,1] (Hall and Holmes, 2003).

In this study the Relief method is used with the ranker search method that ranks attributes by their
individual evaluations and the value of m is set to 250 which is a recommended figure (Hall and Holmes,
2003).

3.3 Principal component analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique that transforms a set of possibly correlated
variables into a set of linearly uncorrelated variables. These linearly uncorrelated variables are called
principal components. The transformation is done by first computing the covariance matrix of the original
variables and then finding its Eigen vectors (principal components). The principal components have the
property that most of their information content is stored in the first few features so that remainder can
be discarded. In this study, PCA is used with the ranker search method that ranks attributes by their
individual evaluations.

3.4 Correlation-based feature selection (CFS)

Correlation-based feature selection (CFS) evaluates subsets of attributes rather than individual at-
tributes (Hall, 2000). The technique uses a heuristic to evaluate subset of attributes. The heuristic
balances how predictive a group of features are and how much redundancy is among them.

Merits =
krcf√

k+k(k−1)rff

where Merits is the heuristic merit of a feature subset s containing k features, rcf is the average
feature-class correlation and rff is the average feature-feature intercorrelation (Hall and Holmes, 2003).
In order to apply Merits, a correlation matrix has to be calculated and a heuristic search to find a good
subset of features. In this study, CFS is used with the Greedy stepwise forward search through the space
of attribute subsets.

3.5 Consistency-based subset evaluation (CNS)

Consistency-based subset evaluation (CNS) is also an attribute subset selection technique that uses class
consistency as an evaluation metric (Liu and Setiono, 1996). CNS looks for combinations of attributes

5

whose values divide the data into subsets containing a strong single class majority (Hall and Holmes,
2003). Liu and Setiono (Liu and Setiono, 1996) proposed the following consistency metric:

Consistencys = 1−

j∑
i=0

|Di| − |Mi|

N

where s is an attribute subset, j is the number of distinct combinations of attribute values for s,
|Di| is the number of occurrences of the ith attribute value combination, |Mi| is the cardinality of the
majority class for the ith attribute value combination and N is the total number of instances in the data
set.

In this study, greedy stepwise forward search is used to produce a set of attributes, ranked according
to their overall contribution to the consistency of the attribute set (Hall and Holmes, 2003).

3.6 Wrapper subset evaluation (WRP)

The wrapper feature subset evaluation conducts a search for a good subset using the learning algorithm
itself as part of the evaluation function. In this study, repeated five-fold cross-validation is used as an
estimate for the accuracy of the classifier while a greedy stepwise forward search is used to produce a
list of attributes, ranked according to their overall contribution to the accuracy of the attribute set with
respect to the target learning algorithm (Hall and Holmes, 2003).

3.7 Genetic programming (GP)

Genetic programming (GP) is an evolutionary computation technique and is an extension of genetic
algorithms. It is a “systematic, domain-independent method for getting computers to solve problems
automatically starting from a high-level statement of what needs to be done” (Poli et al, 2008). GP
applies iterative, random variation to an existing pool of computer programs to form a new generation of
programs by applying analogs of naturally occurring genetic operators (Burke and Kendall, 2005). The
basic steps in a GP system are given below (Poli et al, 2008):

1. Randomly create an initial population of programs.
2. Repeat (until stopping criterion is reached):

(a) Execute each program and evaluate its fitness.
(b) Select one or two programs to undergo genetic operations.
(c) Create new programs by applying the genetic operations.

3. Return the best individual.

As compared with genetic algorithms, the population structures (individuals) in GP are not fixed
length character strings, but programs that, when executed, are the candidate solutions to the problem.

The evolution of software fault prediction models using GP is an example of a symbolic regression
problem. Symbolic regression is an error-driven evolution as it aims to find a function, in symbolic form,
that fits (or approximately fits) data from an unknown curve (Koza, 1992). In simpler terms, symbolic
regression finds a function whose output matches some target values. GP is well suited for symbolic
regression problems, as it does not make any assumptions about the structure of the function.

Programs are expressed in GP as syntax trees, with the nodes indicating the instructions to execute
and are called functions (e.g., min, ∗, +, /), while the tree leaves are called terminals which may consist
of independent variables of the problem and random constants (e.g., x, y, 3). The fitness evaluation
of a particular individual is determined by the correctness of the logical output produced for all of
the fitness cases (Bäck et al, 2000). The fitness function guides the search in promising areas of the
search space and is a way of communicating a problem’s requirements to the GP algorithm. The control
parameters limit and control how the search is performed like setting the population size and probabilities
of performing the genetic operations. The termination criterion specifies the ending condition for the GP
run and typically includes a maximum number of generations (Burke and Kendall, 2005). GP iteratively
transforms a population of computer programs into a new generation of programs using various genetic

6

Start

generation = 0

generate initial
population

Fitness evaluation

termination
criteria

reached?
return
results Stop

Population
size

reached?

Select
genetic

operators

mutationcrossoverreproduction

Insert into
population

No

No

generation+=1
Yes

Yes

Fig. 2 The GP process.

operators. Typical operators include crossover, mutation and reproduction. It is expected that over
successive iterations, more and more useful structures or programs be evolved, eventually resulting in a
structure having most useful sub-components. That structure would then represent the optimal or near-
optimal solution to the problem. The crossover operator creates new structure(s) by combining randomly
chosen parts from two selected programs or structures. The mutation operator creates a new structure
by randomly altering a chosen part of a program. The reproduction operator simply copies a selected
structure to the new population. Figure 2 shows the flowchart of the GP process.

For this study, the best GP program (having the minimum
∑n
i=1 | ei − e

′

i |, where ei is the actual

outcome, e
′

i is the classification result and n is the size of the data set used to train the GP models)
over the 10 runs of each fold of the 10-fold cross-validation is selected. The features making up this best
GP program is then designated as the features selected by the GP algorithm. The control parameters
that were chosen for the GP system are shown in Table 1. We did not fine tune these parameters for
each new data set so as not to bias the results. The population size is related to the size of search space
because if the search space is too large, GP will take longer times to find better solutions. The population
size was fixed to 50 and this decision was based on our prior experience in experimentation with GP.
The termination condition was set to 500 generations and was selected to give enough chance to GP for
promoting variety in each generation. The tree initialization method selected was ramped half-and-half
which results in very diverse population of trees, with balanced and unbalanced trees of several different
depths (Silva, 2007). The probabilities of crossover, mutation and reproduction were set to 0.8, 0.1 and
0.1 respectively which was done again to promote maximum variation. The selection method used was
roulette-wheel which is one of the few sampling methods used in GP to select parent individuals to
produce their children.

Table 1 GP control parameters.

Control parameter Value
Population size 50
Termination condition 500 generations
Function set {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Ramped half-and-half method
Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1
Selection method roulette-wheel

7

4 Experimental setup

In order to compare the performance of different FSS methods, the attribute sets selected by each method
are tested with two learning algorithms, namely C4.5 and NB. These algorithms represent two different
approaches (C4.5 being a decision-tree learner and NB being a probabilistic learner) and are considered
state-of-the-art techniques. Also one of the previous benchmark studies (Hall and Holmes, 2003) have
used the same algorithms for comparing the effectiveness of attribute selection.

The NB classifier is based on the Bayesian theorem. It analyses each data attribute independently
and being equally important. The NB classifier learns the conditional probability of each attribute Ai
given the class label C, from the training data. Classification is done by applying the Bayes rule to
compute the probability of C given the particular instance of A1 . . . An, and then predicting the class
with the highest posterior probability (Friedman et al, 1997). The NB classifier assumes that features
are independent given class, that is, P (X|C) =

∏n
i=1 P (Xi|C) where X = (X1 . . . Xn) is a feature vector

and C is a class (Rish, 2001). By independence, it is meant as probabilistic independence, that is, A
is independent of B given C whenever Pr(A|B,C) = Pr(A|C) for all possible values of A, B and C,
whenever Pr(C) > 0 (Friedman et al, 1997).

C4.5 is the most well-known algorithm in the literature for building decision trees (Quinlan, 1993;
Kotsiantis et al, 2007). C4.5 first creates a decision-tree based on the attribute values of the available
training data such that the internal nodes denote the different attributes, the branches correspond to value
of a certain attribute and the leaf nodes correspond to the classification of the dependent variable. The
decision tree is made recursively by identifying the attribute(s) that discriminates the various instances
most clearly, i.e., having the highest information gain. Once a decision tree is made, the prediction for a
new instance is done by checking the respective attributes and their values.

We have applied the selected FSS methods to five real-world datasets from the PROMISE repository
(Boetticher et al, 2007). These data sets are jEdit, AR5, MC1, CM1 and KC1 Mod. The datasets are
available in ARFF (Attribute-Relation File Format), useable in the open source machine learning tool
called WEKA (Waikato Environment for Knowledge Analysis) (Hall et al, 2009). The datasets are selected
based on their variance in terms of number of instances and the number of attributes. The number of
instances vary from being less than 50 up to several thousands, with the number of attributes varying
from being in a single digit to nearly a hundred. The characteristics of datasets are given in Table 2.

Table 2 Characteristics of datasets used in the study.

No. Dataset Features No. of classes Train size Test size
all nominal continuous

1 jEdit 9 1 8 2 369 CV
2 AR5 30 1 29 2 36 CV
3 MC1 39 1 38 2 9466 CV
4 CM1 22 1 21 2 498 CV
5 KC1 Mod 95 1 94 2 282 CV

The source of jEdit data set is jEdit editor source code in Java and its Apache Subversion (SVN)
log data. The data set contains metrics data computed by Understand C++ metric tool while bug
data is extracted from SVN log files. The metrics are computed for jEdit release 4.0 while bugs are
calculated between the releases 4.0 and 4.2. The source of AR5 data set is an embedded software used in
manufacturing and implemented in C. Function/method level static code attributes are collected using
Prest Metrics Extraction and Analysis Tool. The rest of the data sets (MC1, CM1, KC1 Mod) are NASA
Metrics Data Program defect data sets. The metrics data consist of static code measures such as The
McCabe and Halstead measures.

We restrict ourselves to evaluate the performance of binary classifiers which categorizes instances
or software modules as being either fault-prone (fp) or non-fault prone (nfp). We are interested in
predicting whether or not a module contains any faults, rather than the total number of faults. A common
assessment procedure for binary classifiers is to count the number of correctly predicted modules over
hold-out (test set) data. A fault prediction sheet (Menzies et al, 2004), as in Figure 3, is commonly used.

Based on the different possibilities in the fault prediction sheet, various measures are typically derived.
El-Emam et al. (El-Emam et al, 2001) have derived a number of measures based on this; the most

8

FN: False NegativeTN: True Negative

FP: False Positive TP: True Positive

NO

NO

YES

YES

C
la

ss
ifi

er
 p

re
di

ct
s

fa
ul

ts

Module actually has faults

Fig. 3 The fault prediction sheet (confusion matrix).

common ones being rate of faulty module detection (or probability of detection (PD) or specificity),
overall prediction accuracy (acc), probability of false alarm (PF or recall) and precision (prec). However
the measure of overall accuracy acc has been criticized as being misleading since it ignores the data
distribution and cost information (Ma and Cukic, 2007). The other measures of PD, PF and prec also
reveal only one aspect of the prediction models at a time; thus their use introduces bias in performance
assessment. Use of these measures also complicate comparisons and model selection since there is always
a tradeoff between three measures, e.g. one model might exhibit a high PD but lower prec (Ma and
Cukic, 2007).

A receiver operating characteristic (ROC) curve (Fawcett, 2006) and the area under a ROC curve
(AUC) (Hanley and McNeil, 1982) have been shown to be more statistically consistent and discriminating
than predictive accuracy, acc (Ling et al, 2003). The ROC curve is also a more general way, than numerical
indices, to measure a classifier’s performance (Yousef et al, 2004). A ROC curve provides an intuitive
way to compare the classification performances of different techniques. ROC is a plot of the trade-off
between the ability of the classifier to correctly detect fault-prone modules (PD) and the number of
non-fault prone modules that are incorrectly classified (PF) across all possible experimental threshold
settings (Ma and Cukic, 2007; Jiang et al, 2008). In short the (PF , PD) pairs generated by adjusting
the algorithms threshold settings forms an ROC curve. A typical ROC curve is shown in Figure 4.

Real data

 Yes No

Yes TP FP

P
re

d
ic

te
d

No FN TN

Figure 1. A defect level prediction sheet.

These results are discussed in Section 5. Section 6 sum-

marizes our findings and points out possible directions for

future work.

2 Measurement

In this study, we develop statistical models to predict de-

fective software modules. Requirement metrics, module-

based code metrics, and the fusion of requirement and mod-

ule metrics serve as predictors. The predicted variable is

whether one or more defects exists in the given module.

Figure 1 describes prediction outcomes.

Throughout the paper, we use the following set of evalu-

ation measures. The Probability of Detection (PD), also
called recall or specificity in some literature [13, 18]), is

defined as the probability of the correct classification of a

module that contains a defect:

PD =
TP

TP + FN

The Probability of False alarm (PF) is defined as the ratio
of false positives to all non-defect modules:

PF =
FP

FP + TN

Intuitively, we would like to maximize PD and at the same

time minimize PF . Since we have a limited space avail-
able here, we refer readers to a recent publication [16]

which provides a rather comprehensive overview of statis-

tical methods relevant for evaluating predictive models in

software engineering.

3 Experimental Methodology

3.1 Random Forests

Random Forest is a tree-based classifier which has

demonstrated its robustness in building software engineer-

ing models [13]. As implied from its name, it builds an

ensemble, i.e., the “forest” of classification trees using the

following strategy:

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
D

=
 p

ro
b

a
b

ili
ty

 o
f

d
e

te
c
ti
o

n

PF= probability of false alarm

risk-adverse region

cost-
adverse
region

PF=PD=no
information

negative
curve

preferred curve

Figure 2. Regions of a typical ROC curve.

1. The root node of each tree contains a bootstrap sample

data. Each tree has a different bootstrap sample.

2. At each node, a subset of variables are randomly se-

lected to split the node.

3. Each tree is grown to the largest extent possible with-

out pruning.

4. When all trees in the forest are built, test instances are

fitted into all the trees and a voting process takes place.

The forest selects the classification with the most votes

as the prediction of new instances.

Random forest [6] as a machine learning classifier pro-

vides many advantages. One, it automatically generates the

importance of each attribute in the process of classification.

Two, by varying voting thresholds in step 4 of the algorithm,

we can generate a Receiver Operator Characteristic
(ROC) curve that represents an entire range of achievable

performance characteristics relative to PD and PF . In the
experiments, we build 20 random forests for each data set,

each with a different voting threshold ranging from 0.05 to

0.95.

3.2 ROC curve

In this study, we apply the same set of classification al-

gorithms to the set of software engineering datasets. There-

fore, we need an intuitive way to compare the ensuing clas-

sification performance. An ROC curve provides a visual

comparison of the classification performance. It is a plot

of PD as a function of PF across all the possible exper-

imental settings. A typical ROC curve is shown in Figure

2. Typical ROC curve has a concave shape with (0,0) as the

beginning and (1,1) as the end point.

Figure 2 provides an insight into the implications of the

classification performance to software engineering experi-

ments. A straight line connecting the (0,0) and (1,1) implies

that the performance of a classifier is no better than random

2

Fig. 4 A typical ROC curve.

This concave curve has the probability of detection (PD) on y-axis while the x-axis shows the proba-
bility of false alarms (PF). The start and end points for the ROC curve are (0, 0) to (1, 1), respectively.
The software engineers need to identify the points on the ROC curve that suits their risks and budgets
for the project (Jiang et al, 2007). A straight line from (0, 0) to (1, 1) offers no information while the
point (PF = 0, PD = 1) is the ideal point on the ROC curve. A negative curve bends away from the
ideal point while a preferred curve bends up towards the ideal point. As such, if we can divide the ROC
space into four regions as shown in Figure 5, the only region with practical value for software engineers
is region A with acceptable PD and PF values. The regions B, C and D represent poor classification
performance and hence are of little to no interest to software engineers (Ma and Cukic, 2007).

9

A B

DC

PD
 =

 p
ro

ba
bil

ity
 o

f d
et

ec
tio

n
 PF = probability of false alarm

0.0 0.5 1.0

0.
5

1.
0

Fig. 5 Four regions in the ROC space.

Table 3 FSS results with NB.

Dataset NB IG RLF PCA CFS CNS WRP GP
jEdit 0.659 0.67 0.67 0.629 0.668 0.67 0.629 0.67
AR5 0.907 0.933 0.942 0.938 0.942 0.866 0.875 0.915
MC1 0.909 0.919 0.92 0.907 0.881 0.906 0.794 0.93
CM1 0.658 0.718 0.728 0.653 0.691 0.685 0.738 0.68
KC1 Mod 0.78 0.851 0.938 0.854 0.84 0.86 0.802 0.87

Area under the curve (AUC) (Bradley, 1997) acts as a single scalar measure of expected performance
and is an obvious choice for performance assessment when ROC curves for different classifiers intersect
(Lessmann et al, 2008) or if the algorithm does not allow configuring different values of the threshold
parameter. AUC, as with the ROC curve, is also a general measure of predictive performance since it
separates predictive performance from class and cost distributions (Lessmann et al, 2008). The AUC
measures the probability that a randomly chosen fp module has a higher output value than a randomly
chosen nfp module (Fawcett, 2006). The value of AUC is always between 0 and 1; with a higher AUC
indicating that the classifier is on average more to the upper left region A in Figure 5.

We have used AUC as a measure of classification performance for the different FSS methods. For
all the datasets, the AUC value averaged over 10 fold cross-validation runs, was calculated for each
FSS method-dataset combination before and after FSS. For each cross-validation fold, the FSS method
reduced the number of features in the dataset before being passed to C4.5 and NB classifiers.

5 Results and Analysis

Table 3 show results for all the datasets for FSS with NB. This table shows the AUC statistic for each FSS
method and along with the AUC statistic when no feature selection is performed (the second column).
The values in bold indicate if the use of the FSS method leads to an improvement of the AUC value, in
comparison with when no FSS method is used. A number of FSS methods give an improved AUC value
in comparison with the original AUC value without any feature selection. However, we need to test for
any statistically significant differences between the different groups of AUC values. Since we have more
than two samples with non-normal distributions, the Kruskal-Wallis test with significance level of 0.05
is used to test the null hypothesis that all samples are drawn from the same population. The result of
the test (p = 0.86) suggested that it is not possible to reject the null hypothesis and, thus, there is no
difference between any of the AUC values for the different FSS methods using NB and the AUC values
of using NB as a classifier before and after applying the FSS methods.

Table 4 shows the number of attributes selected by each FSS method for NB. Wrapper, CFS, Relief
and GP produce comparable AUC values with fewer number of selected features. PCA and IG, on the
other hand, tend to select a much wider range of features to provide comparable classification results
using NB.

10

Table 4 Number of features selected by each FSS method for NB. The figures in % indicate the percentage of original
features retained.

Dataset Org. IG RLF PCA CFS CNS WRP GP
jEdit 9 6 (66.67%) 6 (66.67%) 5 (55.55%) 5 (55.55%) 6 (66.67%) 3 (33.33%) 2 (22.22%)
AR5 30 4 (13.33%) 2 (6.67%) 7 (23.33%) 2 (6.67%) 2 (6.67%) 1 (3.33%) 6 (20%)
MC1 39 20 (51.28%) 12 (30.77%) 14 (35.90%) 4 (10.26%) 15 (38.46%) 1 (2.56%) 4 (10.26%)
CM1 22 5 (22.73%) 3 (13.64%) 4 (18.18%) 7 (31.82%) 11 (50%) 2 (9.09%) 14 (63.64%)
KC1 Mod 95 3 (3.16%) 8 (8.42%) 17 (17.89%) 8 (8.42%) 2 (2.10%) 4 (4.21%) 7 (7.37%)
Average 39 7.6 (19.49%) 6.2 (15.90%) 9.4 (24.10%) 5.2 (13.33%) 7.2 (18.46%) 2.2 (5.64%) 6.6 (16.92%)

Table 5 FSS results with C4.5.

Dataset NB IG RLF PCA CFS CNS WRP GP
jEdit 0.594 0.644 0.623 0.636 0.612 0.592 0.636 0.62
AR5 0.717 0.817 0.866 0.763 0.866 0.757 0.817 0.797
MC1 0.791 0.829 0.796 0.708 0.795 0.776 0.747 0.854
CM1 0.558 0.615 0.587 0.506 0.542 0.596 0.49 0.644
KC1 Mod 0.599 0.806 0.684 0.555 0.553 0.589 0.579 0.69

Table 6 Number of features selected by each FSS method for C4.5. The figures in % indicate the percentage of original
features retained.

Dataset Org. IG RLF PCA CFS CNS WRP GP
jEdit 9 3 (33.33%) 4 (44.44%) 5 (55.55%) 5 (55.55%) 6 (66.67%) 5 (55.55%) 2 (22.22%)
AR5 30 1 (3.33%) 2 (6.67%) 7 (23.33%) 2 (6.67%) 2 (6.67%) 1 (3.33%) 6 (20%)
MC1 39 9 (23.08%) 19 (48.72%) 14 (35.90%) 4 (10.26%) 15 (38.46%) 1 (2.56%) 4 (10.26%)
CM1 22 2 (9.09%) 9 (40.91%) 4 (18.18%) 7 (31.82%) 11 (50%) 2 (9.09%) 14 (63.64%)
KC1 Mod 95 3 (3.16%) 7 (7.37%) 17 (17.89%) 8 (8.42%) 2 (2.10%) 4 (4.21%) 7 (7.37%)
Average 39 3.6 (9.23%) 8.2 (21.02%) 9.4 (24.10%) 5.2 (13.33%) 7.2 (18.46%) 2.6 (6.67%) 6.6 (16.92%)

Table 5 shows the AUC statistic for each FSS method using C4.5 along with the AUC statistic when
no feature selection is used (second column). Again, the values in bold indicate that the use of FSS
method leads to an improvement of the AUC value, in comparison with when no FSS is used. The result
show that multiple FSS methods do improve the classification performance across all data sets. However,
the result of using the Kruskal-Wallis test with α = 0.05 (p = 0.628) suggested that it is not possible
to reject the null hypothesis of all samples being drawn from the same population. Thus there is no
significant difference between: (a) any of the AUC values for the different FSS methods using C4.5 and
(b) the AUC values of using C4.5 as a classifier before and after applying the FSS methods.

Table 6 shows the number of attributes selected by each FSS method for C4.5. WRP, IG, CFS and
GP produce comparable average AUC values with fewer number of selected features. RLF, PCA and
CNS tend to select a wider range of features to provide comparable classification results using C4.5.

As is clear from the above discussion, NB and C4.5 show insignificantly different classification ac-
curacies for the variety of FSS methods used. This result is in agreement with the study by Hall and
Holmes (Hall and Holmes, 2003) where the authors concluded that there is no single best approach for
FSS for all situations. Song et al. (Song et al, 2011) and Menzies et al. (Menzies et al, 2007) also reach
a similar conclusion:

“[. . .] we see that a data preprocessor/attribute selector can play different roles with different learning
algorithms for different data sets and that no learning scheme dominates, i.e., always outperforms the
others for all data sets. This means we should choose different learning schemes for different data sets,
and consequently, the evaluation and decision process is important” (Song et al, 2011).

“[. . .] the best attribute subsets for defects predictors can change dramatically from data set to data
set. Hence, conclusions regarding the best attribute(s) are very brittle, i.e., may not still apply when we
change data sets” (Menzies et al, 2007).

Below we discuss the individual AUC values given for NB and C4.5 for different FSS methods.

From Table 3, it can be seen that for attribute selection with NB, the best AUC values are from three
FSS methods (RLF, IG and GP) that improve NB on all five data sets and degrade it on none. CFS is
the second best with improvement on four data sets and degradation on one. CNS, WRP and PCA give
better performance on two data sets but also degrade performance on three data sets.

11

An overall pattern that is clear from Table 3 is that FSS is generally useful for NB’s application to
software fault prediction studies without significantly affecting classification accuracy. The results for NB
in this study differ with the results given in the study by Hall and Holmes (Hall and Holmes, 2003). In
that study, WRP was a clear winner in accuracy for NB. The potential reason for this performance could
be attributed to the nature of the forward selection search in WRP which is used to generate the ranking
such that strong attribute rankings are not identified. This search mechanism potentially works well in
tandem with NB which has an attribute independence assumption (Hall and Holmes, 2003). However
our results suggest that WRP is not at all a clear winner for NB where other FSS methods are also
giving statistically insignificant results. This suggests that there are reasons other than the attribute
independence assumption of NB that affects classification accuracy of NB with different FSS methods.

In terms of number of features selected for NB, the methods retaining the least number of features
on average are WRP, CFS, RLF and GP. From Table 4 it can be seen that CFS chooses fewer features
to all other FSS methods. From the techniques that were better on accuracy based on AUC values for
NB, i.e., RLF and GP, are also among the methods that retains the least number of features. This is
encouraging and shows that RLF and GP produce higher AUC values for NB while retaining minimum
number of features on average, considering the data sets used in the experiment. PCA turns out to be
worst in terms of retaining few features.

From Table 5, one can see the individual AUC values for attribute selection with C4.5. The results
are in agreement with the results from NB. The best FSS methods for C4.5 are IG, RLF and GP which
improve C4.5’s performance on five data sets and degrade it on none. CFS improve C4.5’s performance
on three data sets and degrades it on two. CNS and PCA improve C4.5’s performance on two data sets
and degrades it on three. Result for WRP is that it degrades performance on four data sets and improves
it on one.

As with NB, an overall pattern clear from Table 5 is that FSS is generally useful for C4.5’s application
to software fault prediction without significantly affecting classification accuracy. According to the study
by Hall and Holmes (Hall and Holmes, 2003): “The success of ReliefF and consistency with C4.5 could be
attributable to their ability to identify attribute interactions (dependencies). Including strongly interacting
attributes in a reduced subset increases the likelihood that C4.5 will discover and use interactions early
on in tree construction before the data becomes too fragmented”. The fact that we did not get consistent
results with both RLF and CNF allows us to suggest that the ability to identify attribute interactions
(dependencies) might not be the only differentiating factor in classification accuracy with respect to C4.5.
As was our argument in case of NB, we argue that there are factors other than the ability to identify
attribute interactions that are affecting classification accuracy of C4.5.

In terms of number of features retained for C4.5 (Table 6), WRP retains the minimum percentage of
features on average, followed by IG, CFS, GP, CNS and RLF respectively. PCA is the worst in terms of
retaining features for C4.5 with 24.10%. Our results show WRP as a clear winner in our case while CFS
is at third place in terms of retaining the minimum number of features on average. From the methods
that were better on accuracy based on AUC values for C4.5 (IG, RLF and GP), IG and GP are at
second and fourth place respectively in terms of retaining minimum percentage of features on average.
This might suggest that IG and GP are suitable FSS methods for C4.5 considering the data sets we used
in this study. RLF is down in ranking in Table 6, however its larger feature set sizes are justified by
higher classification accuracy than the other methods.

Below we summarize the results of our study:

– FSS is useful and generally improves classification accuracy.
– There are no statistically significant differences for either NB or C4.5 for the variety of FSS methods

used.
– Based on individual AUC values, IG, RLF and GP improve NB and C4.5 on five data sets and degrade

them on none.
– CFS, RLF and GP retain the minimum percentage of features on average for NB.
– PCA is the worst in terms of retaining the minimum percentage of features on average for NB.
– There are factors other than the attribute independence assumption of NB that affect its classification

accuracy with different FSS methods.
– IG, RLF and GP improve importance of C4.5 on five data sets and degrades it on none.
– WRP and CFS retains the minimum percentage of features on average for C4.5.

12

– There are factors other than the ability to identify attribute interactions that are affecting classifica-
tion accuracy of C4.5.

After having discussed the results, we come to a crucial question: If various FSS methods perform
differently for different machine learning algorithms, what factors are most important to consider while
selecting FSS methods to use? Hall and Holmes (Hall and Holmes, 2003) argue in their paper that there
are three factors to consider:

1. An understanding of how different FSS methods work.
2. Strengths and weaknesses of the target learning algorithm.
3. Background knowledge about data.

While agreeing to all of the above factors, we add that if the goal is to improve classification accuracy
of a learner, a decision about selecting a FSS method has to be reached in combination with following
additional criteria:

1. Choice of resampling method.
2. Choice of data filtering technique (to address class imbalance, outlier removal, handling missing values

and discretizing numeric attributes).
3. Choice of accuracy measure to use.

Choice of a resampling method concerns how to divide historical data into training and test data. In order
to assess the generalizability of a learner, it is necessary that the test data are not used in anyway to build
the learners (Song et al, 2011). A recent study by Afzal et al. (Afzal et al, 2012) recommended the use of
bootstrapping for software defect prediction studies. If not bootstrapping, the second recommended choice
is to use leave-one-out cross validation for smaller data sets and 10-fold cross validation for large data
sets. This subject however require more empirical studies to further strengthen these recommendations.

We also argue that the role of a data filtering technique in accurately classifying software components
is important. A study by Gao et al. (Gao et al, 2012) demonstrated that data sampling (over-sampling
or under-sampling) can counteract the adverse effect attributed to class imbalance in software fault pre-
diction. They also concluded that feature selection became more efficient when used after data sampling.
There are other examples of the use of data filtering techniques in software fault prediction, e.g., Menzies
et al. (Menzies et al, 2007) and Song et al. (Song et al, 2011) used a log filtering preprocessor which
replaces all numerics with their logarithms.

Choice of an accuracy indicator to evaluate the performance of defect predictors is also an im-
portant decision criterion. The use of MMRE as an accuracy indicator has been criticized by several
authors (Kitchenham et al, 2001; Myrtveit et al, 2005; Foss et al, 2003). Consequently, area under the
receiver operating characteristic curve (AUC) is increasingly being used as a standard choice for perfor-
mance evaluation in software fault predictions studies.2

It is important to highlight the performance of an evolutionary computational method (GP) as a FSS
method. For both NB and C4.5, GP improved the AUC values for maximum number of data sets and
degraded on the least number of data sets. For NB, GP is also among the methods that retained minimum
percentage of features on average. It is worth noting that for GP feature selection is an implicit part of
GP evolution. This enables automatic or semi-automatic selection of features during model generation.
GP allows almost any combination of a number of features. Evolution can freely add/remove multiple
features and can reconsider previous selections as new combinations are tried (Langdon and Buxton,
2004). A potential disadvantage of using an evolutionary algorithm like GP is that it can take more
computational resources as compared with other methods. Therefore with GP it has to be a tradeoff
between how much improvement in classification accuracy is required against available resources.

6 Validity evaluation

Wohlin et al. (Wohlin et al, 2000) discuss four types of threats to an experimental study: external (ability
to generalize), conclusion (ability to apply statistical tests), internal (ability to correctly infer connections
between dependent and independent variables) and construct (ability of dependent variable to capture
the effect being measured).

2 Section 4 provides more details about AUC.

13

External validity The datasets used in this study represent real-world use, collected during the course of
real industry projects developed by professionals. The datasets differed in their number of attributes and
sizes. However as noted by Gao et al. (Gao et al, 2012), analysis of another data set from different appli-
cation domain may provide different results which is a likely threat in all empirical software engineering
research.

Conclusion validity We were mindful that the type of statistical tests could potentially affect end results,
therefore Kruskal Wallis test was used as we had more than two samples with non-normal distributions.
This empirical study was performed using 10-fold cross-validation for statistically reliable results (rec-
ommended in (Kohavi, 1995; Afzal et al, 2012)). The performance of classifiers is compared using area
under the receiver operating characteristic curve (AUC) which we motivate is a standard way of evalu-
ating classification results.

Internal validity According to Gao et al. (Gao et al, 2012), different factors can affect the internal
validity of fault proneness estimates: measurement errors while collecting and recording software metrics;
modeling errors due to the unskilled use of software applications; errors in model selection during the
modeling process; and the presence of outliers and noise in the training dataset. We used the publicly
available data sets so other researchers can replicate our work. Secondly we have given the parameter
settings for different methods used to ease replication of our work.

Construct validity The datasets used in this study are the ones donated by the authors of fault prediction
studies and mostly use structural measures. Structural measures are widely used in software fault pre-
diction studies (Catal and Diri, 2009a), however finding the right predictors for software fault proneness
is an active area of research.

7 Conclusions

Feature subset selection (FSS) methods are used to keep the number of features in a dataset as small
as possible. Out of the various perceived advantages of using these FSS methods (Section 1), this study
evaluate whether or not the use of FSS methods have any significant affect on the classification accuracy
of software fault prediction when used with two diverse learning algorithms, C4.5 and näıve Bayes.

We compare a total of seven FSS methods, representing a mix of state-of-the-art methods and an
evolutionary computation method, on five software fault prediction datasets from the PROMISE data
repository. Our findings show that feature subset selection is generally useful for software fault prediction
using näıve Bayes and C4.5. However there are no clear winners for either of the two learning algorithms
for the variety of FSS methods used.

Based on individual AUC values, IG, RLF and GP improve näıve Bayes and C4.5 on five data sets
and degrade it on none. RLF, GP and CFS also retain the minimum percentage of features on average
for näıve Bayes. WRP and CFS retain the minimum percentage of features on average for C4.5.

In summary, our results suggest that RLF, IG and GP are the best FSS methods for software fault
prediction accuracy using näıve Bayes and C4.5. CNS and CFS are also good overall performers. We
recommend that any future software fault prediction study be preceded by an initial analysis of FSS
methods, not missing on methods that have shown to be more consistent than their competitors. It is
recommended in literature that for selecting a FSS method, a data miner needs to have an understand-
ing of how different FSS methods work, strengths and weaknesses of the target learning algorithm and
background knowledge about data. In the context of software fault prediction studies, we additionally
recommend that the data miner needs to have an understanding of different resampling methods, data
filtering techniques and accuracy measures for increasing the reliability and validity of prediction results.
In this study, we do not offer an interpretation of features retained by different FSS methods. It is, never-
theless, an interesting future work to relate features retained by different FSS methods with functioning
of the target learning algorithm and background knowledge about data.

14

References

Afzal W, Torkar R, Feldt R, Gorschek T (2009) Genetic programming for cross-release fault count
predictions in large and complex software projects. In: Chis M (ed) Evolutionary Computation and
Optimization Algorithms in Software Engineering: Applications and Techniques, IGI Global, Hershey,
USA, pp 94–126

Afzal W, Torkar R, Feldt R (2012) Resampling methods in software quality classification. International
Journal of Software Engineering and Knowledge Engineering 22:203–223

Altidor W, Khoshgoftaar TM, Gao K (2010) Wrapper-based feature ranking techniques for determining
relevance of software engineering metrics. International Journal of Reliability, Quality and Safety
Engineering 17:425–464

Azzeh M, Neagu D, Cowling P (2008) Improving analogy software effort estimation using fuzzy feature
subset selection algorithm. In: Proceedings of the 4th International Workshop on Predictor Models in
Software Engineering (PROMISE’08), ACM, New York, NY, USA

Bäck T, Fogel DB, Michalewicz Z (eds) (2000) Evolutionary computation 1 – Basic algorithms and
operators. Taylor & Francis Group, LLC, 27 Madison Avenue, New York, USA

Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artificial
Intelligence 97:245–271

Boetticher G, Menzies T, Ostrand T (2007) PROMISE repository of empirical software engineering data.
Http://promisedata.org/ repository, West Virginia University, Department of Computer Science

Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recognition 30:1145–1159

Burke EK, Kendall G (eds) (2005) Search methodologies—Introductory tutorials in optimization and
decision support techniques. Springer Science and Business Media, Inc., 233 Spring Street, New York,
USA

Catal C, Diri B (2009a) Investigating the effect of dataset size, metrics sets, and feature selection tech-
niques on software fault prediction problem. Information Sciences 179:1040–1058

Catal C, Diri B (2009b) A systematic review of software fault prediction studies. Expert Systems with
Applications 36(4):7346 – 7354

Chen Z, Boehm B, Menzies T, Port D (2005a) Finding the right data for software cost modeling. IEEE
Software 22:38–46

Chen Z, Menzies T, Port D, Boehm B (2005b) Feature subset selection can improve software cost esti-
mation accuracy. SIGSOFT Software Engineering Notes 30(4):1–6

Dash M, Liu H (1997) Feature selection for classification. Intelligent Data Analysis 1(1-4):131–156
Dejaeger K, Verbeke W, Martens D, Baesens B (2012) Data mining techniques for software effort esti-

mation: A comparative study. IEEE Transactions on Software Engineering 38:375–397
Dyb̊a T, Kampenes VB, Sjøberg DI (2006) A systematic review of statistical power in software engineering

experiments. Information and Software Technology 48(8):745 – 755
El-Emam K, Benlarbi S, Goel N, Rai SN (2001) Comparing case-based reasoning classifiers for predicting

high risk software components. Journal of Systems and Software 55(3):301–320
Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters 27(8):861–874
Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Transactions on Software

Engineering 25(5):675–689
Foss T, Stensrud E, Kitchenham BA, Myrtveit I (2003) A simulation study of the model evaluation

criterion MMRE. IEEE Transactions on Software Engineering 29(11)
Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Machine Learning 29(2-3):131–

163
Gao K, Khoshgoftaar TM, Wang H, Seliya N (2011) Choosing software metrics for defect prediction: an

investigation on feature selection techniques. Software Practice and Experience 41(5):579–606
Gao K, Khoshgoftaar T, Seliya N (2012) Predicting high-risk program modules by selecting the right

software measurements. Software Quality Journal 20:3–42
Gray D, Bowes D, Davey N, Sun Y, Christianson B (2011) The misuse of the NASA metrics data program

data sets for automated software defect prediction. IET Seminar Digests 2011(1):96–103
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Journal of Machine Learning

Research 3:1157–1182

15

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining
software: An update. SIGKDD Explorations Newsletter 11:10–18

Hall MA (2000) Correlation-based feature selection for discrete and numeric class machine learning. In:
Proceedings of the 2000 International Conference on Machine Learning (ICML’00), Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA

Hall MA, Holmes G (2003) Benchmarking attribute selection techniques for discrete class data mining.
IEEE Transactions on Knowledge and Data Engineering 15:1437–1447

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011) A systematic review of fault prediction perfor-
mance in software engineering. IEEE Transactions on Software Engineering PP(99)

Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic
(ROC) curve. RADIOLOGY 143(1):29–36

Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: A review. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22:4–37

Janecek A, Gansterer W, Demel M, Ecker G (2008) On the relationship between feature selection and
classification accuracy. In: Proceedings of the 3rd Workshop on New Challenges for Feature Selection
in Data Mining and Knowledge Discovery (FSDM’08), Microtome Publishing, Brookline, MA, USA

Jiang Y, Cukic B, Menzies T (2007) Fault prediction using early lifecycle data. In: Proceedings of the
The 18th IEEE International Symposium on Software Reliability (ISSRE’07), IEEE Computer Society,
Washington, DC, USA

Jiang Y, Cukic B, Menzies T, Bartlow N (2008) Comparing design and code metrics for software quality
prediction. In: Proceedings of the 4th international workshop on predictor models in software engi-
neering (PROMISE’08), ACM, New York, NY, USA

Khoshgoftaar TM, Seliya N (2004) Fault prediction modeling for software quality estimation: Comparing
commonly used techniques. Empirical Software Engineering 8(3):255–283

Khoshgoftaar TM, Nguyen L, Gao K, Rajeevalochanam J (2003) Application of an attribute selection
method to CBR-based software quality classification. In: Proceedings of the 15th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’03), IEEE Computer Society, Washington, DC,
USA

Khoshgoftaar TM, Seliya N, Sundaresh N (2006) An empirical study of predicting software faults with
case-based reasoning. Software Quality Control 14:85–111

Khoshgoftaar TM, Gao K, Seliya N (2010) Attribute selection and imbalanced data: Problems in software
defect prediction. IEEE Computer Society, Los Alamitos, CA, USA

Khoshgoftaar TM, Gao K, Napolitano A (2012) An empirical study of feature ranking techniques for
software quality prediction. International Journal of Software Engineering and Knowledge Engineering
(IJSEKE) 22:161–183

Kira K, Rendell LA (1992) The feature selection problem: Traditional methods and a new algorithm.
In: Proceedings of the 10th National Conference on Artificial Intelligence (AAAI’92)

Kirsopp C, Shepperd MJ, Hart J (2002) Search heuristics, case-based reasoning and software project
effort prediction. In: Proceedings of the 2002 Genetic and Evolutionary Computation Conference
(GECCO’02), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 1367–1374

Kitchenham BA, Pickard LM, MacDonell S, Shepperd M (2001) What accuracy statistics really measure?
IEE Proceedings Software 148(3)

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection.
In: Proceedings of the 14th International Joint conference on Artificial Intelligence (IJCAI’95), Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA

Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial Intelligence 97:273–324
Kotsiantis S, Zaharakis I, Pintelas P (2007) Machine learning: A review of classification and combining

techniques. Artificial Intelligence Review 26(3):159–190
Koza JR (1992) Genetic programming: On the programming of computers by means of natural selection.

MIT Press, Cambridge, MA, USA
Langdon WB, Buxton BF (2004) Genetic programming for mining DNA chip data from cancer patients.

Genetic Programming and Evolvable Machines 5:251–257
Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software defect

prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering
34(4):485–496

16

Li Y, Xie M, Goh T (2009) A study of mutual information based feature selection for case based reasoning
in software cost estimation. Expert Systems with Applications 36(3, Part 2):5921 – 5931

Ling CX, Huang J, Zhang H (2003) AUC: A statistically consistent and more discriminating measure than
accuracy. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI’03)

Liu H, Setiono R (1996) A probabilistic approach to feature selection—A filter solution. In: Proceedings
of the 1996 International Conference on Machine Learning (ICML’96), Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, pp 319–327

Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE
Transactions on Knowledge and Data Engineering 17(4):491–502

Ma Y, Cukic B (2007) Adequate and precise evaluation of quality models in software engineering stud-
ies. In: Proceedings of the 3rd International Workshop on Predictor Models in Software Engineering
(PROMISE’07), IEEE Computer Society, Washington, DC, USA, pp 1–

Menzies T, DiStefano J, Orrego A, Chapman RM (2004) Assessing predictors of software defects. In:
Proceedings of the Workshop on Predictive Software Models, collocated with ICSM’04, URL http:

//menzies.us/pdf/04psm.pdf

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors.
IEEE Transactions on Software Engineering 33(1):2–13

Menzies T, Jalali O, Hihn J, Baker D, Lum K (2010) Stable rankings for different effort models. Auto-
mated Software Engineering 17:409–437

Molina LC, Belanche L, Àngela Nebot (2002) Feature selection algorithms: A survey and experimental
evaluation. In: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM’02),
IEEE Computer Society, Washington, DC, USA, pp 306–313

Muni D, Pal N, Das J (2006) Genetic programming for simultaneous feature selection and classifier
design. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(1):106–117

Myrtveit I, Stensrud E, Shepperd M (2005) Reliability and validity in comparative studies of software
prediction models. IEEE Transactions on Software Engineering 31(5):380–391

Novakovic J (2009) Using information gain attribute evaluation to classify sonar targets. In: Proceedings
of the 17th Telecommunications forum (TELFOR’09)

Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk, URL http://www.

gp-field-guide.org.uk, (With contributions by J. R. Koza)
Quinlan JR (1993) C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA
Rish I (2001) An empirical study of the naive Bayes classifier. In: Proceedings of the workshop on

empirical methods in AI (IJCAI’01)
Rodriguez D, Ruiz R, Cuadrado-Gallego J, Aguilar-Ruiz J (2007a) Detecting fault modules applying

feature selection to classifiers. In: IEEE International Conference on Information Reuse and Integration
(IRI’07)

Rodriguez D, Ruiz R, Cuadrado-Gallego J, Aguilar-Ruiz J, Garre M (2007b) Attribute selection in soft-
ware engineering datasets for detecting fault modules. In: 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO’07)

Shivaji S, Jr EJW, Akella R, Kim S (2009) Reducing features to improve bug prediction. In: Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software Engineering (ASE’09), IEEE
Computer Society, Washington, DC, USA

Sikonja M, Kononenko I (1997) An adaptation of relief for attribute estimation in regression. In: Pro-
ceedings of the 14th International Conference on Machine Learning (ICML’97)

Silva S (2007) GPLAB—A genetic programming toolbox for MATLAB. http://gplab.sourceforge.
net, Last checked: 22 Dec 2014.

Smith MG, Bull L (2003) Feature construction and selection using genetic programming and a genetic
algorithm. In: Proceedings of the 6th European Conference on Genetic Programming (EuroGP’03),
Springer-Verlag, Berlin, Heidelberg

Song Q, Jia Z, Shepperd M, Ying S, Liu J (2011) A general software defect-proneness prediction frame-
work. IEEE Transactions on Software Engineering 37(3):356–370

Vivanco R, Kamei Y, Monden A, Matsumoto K, Jin D (2010) Using search-based metric selection and
oversampling to predict fault prone modules. In: 2010 23rd Canadian Conference on Electrical and

17

Computer Engineering (CCECE’10)
Wang H, Khoshgoftaar T, Gao K, Seliya N (2009) High-dimensional software engineering data and feature

selection. In: 21st International Conference on Tools with Artificial Intelligence (ICTAI’09), pp 83–90
Wang H, Khoshgoftaar TM, Napolitano A (2012) Software measurement data reduction using ensemble

techniques. Neurocomputing 92(0):124 – 132
Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2000) Experimentation in software

engineering: An introduction. Kluwer Academic Publishers, USA
Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. IEEE Intelligent Systems

and their Applications 13(2):44–49
Yousef WA, Wagner RF, Loew MH (2004) Comparison of non-parametric methods for assessing classi-

fier performance in terms of ROC parameters. In: Proceedings of the 33rd Applied Imagery Pattern
Recognition Workshop (AIPR’04), IEEE Computer Society, Washington, DC, USA

18

